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Abstract In this paper, we address various types of two-person stochastic games—
both zero-sum and nonzero-sum, discounted and undiscounted. In particular, we
address different aspects of stochastic games, namely: (1) When is a two-person sto-
chastic game completelymixed? (2) Canwe identify classes of undiscounted zero-sum
stochastic games that have stationary optimal strategies? (3) When does a two-person
stochastic game possess symmetric optimal/equilibrium strategies? Firstly, we pro-
vide some necessary and some sufficient conditions under which certain classes of
discounted and undiscounted stochastic games are completely mixed. In particular,
we show that, if a discounted zero-sum switching control stochastic game with sym-
metric payoff matrices has a completely mixed stationary optimal strategy, then the
stochastic game is completely mixed if and only if the matrix games restricted to
states are all completely mixed. Secondly, we identify certain classes of undiscounted
zero-sum stochastic games that have stationary optima under specific conditions for
individual payoff matrices and transition probabilities. Thirdly, we provide sufficient
conditions for discounted as well as certain classes of undiscounted stochastic games
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to have symmetric optimal/equilibrium strategies—namely, transitions are symmetric
and the payoff matrices of one player are the transpose of those of the other. We also
provide a sufficient condition for the stochastic game to have a symmetric pure strategy
equilibrium. We also provide examples to show the sharpness of our results.

Keywords Completely mixed stochastic game · Symmetric optimal and equilibrium
strategy · Stationary strategy · Undiscounted and discounted stochastic game ·
Single-player controlled stochastic game · Switching control stochastic game ·
Separable reward-state independent transition (SER-SIT) game

1 Introduction

Shapley (1953) introduced the concept of two-person zero-sum discounted stochastic
games of infinite horizon with finite state space and finite action space, a payoff
matrix at each state, a discount factor between 0 and 1, and probabilities of transitions
between the states for every pair of actions of the players. Without loss of generality,
the row chooser can be considered as the maximizer and the column chooser as the
minimizer. Given a starting state, each player simultaneously selects strategies (pure
actions or probability distributions over their respective sets of actions) that result in an
immediate (expected) payoff to the row player from the column player. The game then
transitions to another state depending on the transition probabilities and the strategies
of the players.As the gameprogresses, the payoffs are discounted by the given discount
factor. One player maximizes the expected discounted payoffs accumulated over the
infinite horizon, and the other minimizes the same.

In this paper, we address three different aspects of zero-sum and nonzero-sum sto-
chastic games: (1) existence of stationary optimal/equilibrium strategies for discounted
and undiscounted stochastic games, (2) symmetric equilibria, and (3) completely
mixed games. The following paragraphs give a brief motivation for the questions
we wish to address on each of these topics.

Shapley showed that every two-person zero-sum finite discounted stochastic game
has a uniqueoptimumexpectedpayoff (called the value of the game) that themaximizer
obtains from the minimizer, and that the players have stationary optimal strategies.
Stationary strategies are those which depend only on the current state of the game and
not on how the state was reached. Fink (1964) and Takahashi (1964) extended this con-
cept of stochastic games to n players with countably many states, while Rieder (1979)
extended it to games with countably many players. Maitra and Parthasarathy (1970)
proved the existence of equilibrium for stochastic games with infinite action space
and uncountable state space. Gillette (1957) introduced the concept of undiscounted
(or limiting average) payoffs in stochastic games. Gillette (1957), and Blackwell and
Ferguson (1968) gave an example of an undiscounted stochastic game (“The Big
Match”) where one of the players does not have stationary optimal strategies. Mertens
andNeyman (1980, 1981) showed that every two-person zero-sumfinite undiscounted
stochastic game has a value, though stationary optimal strategies may not exist. The
existence of stationary optimal or equilibrium strategieswas proved for some classes of
stochastic games, including single-player controlled games (Parthasarathy and Ragha-
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van 1981; Filar 1984; Filar 1985), perfect information stochastic games (Shapley
1953), switching control stochastic games (Filar 1981), additive reward–additive tran-
sition (ARAT) games (Himmelberg et al. 1976; Parthasarathy 1982; Raghavan et al.
1986), separable reward–state independent transition (SER-SIT) games (Parthasarathy
et al. 1984), and state independent transition (SIT) games (Parthasarathy and Sinha
1989; Nowak 2003). We define some of these classes in Sect. 2. In Subsect. 3.2, we
identify certain classes of undiscounted stochastic games that have stationary optima.

Nash (1951) showed that finite symmetric games have symmetric equilibria. Sym-
metric equilibria are those where the players play the same probability distribution
over their respective action sets. Symmetric games are typically used to describe sin-
gle population games in evolutionary game theory where the players in the population
have the same set of strategies (Hofbauer and Sigmund 2003). In this context, the only
relevant equilibrium is the symmetric Nash equilibrium which is an evolutionarily
stable strategy (Maynard Smith and Price 1973). This serves as our motivation to first
look at symmetric equilibrium in bimatrix games. Gale (1960) showed the existence
of a symmetric optimal strategy in finite zero-sum games with skew symmetric payoff
matrices. Symmetric equilibria have been shown to exist in discontinuous symmetric
games as well (Dasgupta and Maskin 1986; Reny 1999). Sujatha et al. (2014) showed
the existence of symmetric optimal strategy for discounted stochastic gameswith skew
symmetric payoff matrices. In Subsect. 3.3, we provide some sufficient conditions for
stochastic games to have symmetric optima or equilibria.

Completely mixed matrix games are games where all optimal strategies are com-
pletely mixed. For a two-person zero-sum game to be completely mixed, Kaplansky
(1945) showed that the payoff matrix must be a square matrix and each player must
have a unique optimal strategy. He also provided the necessary and sufficient condi-
tion for the game to be completely mixed (and specifically for a symmetric game with
payoff matrix of order 5 × 5), and later extended the same to odd-ordered skew sym-
metric payoff matrices (Kaplansky 1995). Raghavan (1970) extended the above result
to nonzero-sum bimatrix games. Oviedo (1996) further extended the result to show
the conditions under which the set of all equilibrium strategies is completely mixed
in a bimatrix game. Using the results of Oviedo, Sujatha et al. (2014) showed that not
all two-person zero-sum games with skew symmetric payoff matrices are completely
mixed. They also showed necessary and sufficient conditions for a bimatrix game
with odd ordered skew symmetric payoff matrices to be completely mixed. It was also
shown that bimatrix games with skew symmetric payoff matrices of even order are
never completely mixed. We prove some necessary and some sufficient conditions for
classes of discounted as well as undiscounted stochastic games, and discuss tightness
of these conditions in Subsect. 3.1.

In Sect. 2, we provide some definitions. In Sect. 3, we discuss our results and look at
only two-person finite stochastic games. We provide necessary conditions for certain
classes of stochastic games to have completely mixed optimal strategies. We also
identify classes of undiscounted zero-sum stochastic games with stationary optima.
We, then, look at symmetric optima and symmetric equilibria. In particular, if all the
payoff matrices are skew symmetric, we provide conditions for optimal strategies
to be symmetric. Finally, for nonzero-sum discounted stochastic games, we show
conditions under which symmetric equilibrium exists. Our proof follows along the

123



764 S. Babu et al.

lines of Blackwell and Ferguson (1968). We also give examples to indicate why some
of these conditions are required.

2 Definitions

Definition 1 Bimatrix Game and Matrix Game: Let A = (ai j ) and B = (bi j ) be two
m × n matrices. The bimatrix game (A, B) is a two-person game in normal form,
where each player chooses their strategy independently. In short, a bimatrix game is a
two-person nonzero-sum game. Let pi and q j be the probability that player-1 (the row
player) and player-2 (the column player) choose the i-th row and j-th column respec-
tively. Then, the expected payoff to player-1 is given by pt Aq = ∑m

i=1
∑n

j=1 piai j q j .
Similarly the expected payoff to player-2 is given by pt Bq = ∑m

i=1
∑n

j=1 pibi j q j .
This is a one-shot game, that is, players choose their strategies, obtain their respective
expected payoffs and the game ends.

If B = −A, the game is a zero-sum game, also called a matrix game. We refer to
the game as the matrix game A, or as the matrix game with payoff matrix A.

Definition 2 Optimum (Minmax Value) and Nash Equilibrium: Let A be a matrix
game where the row player (player-1) is the maximizer and the column player (player-
2) is the minimizer. von Neumann (1928) showed that there exists a pair of strategies
(xo, yo) of the players which is optimal for both the players, that is

xt Ayo ≤ xot Ayo ≤ xot Ay, for all strategies x of player-1, y of player-2.

(xo, yo) is an optimal strategy pair. xot Ayo is a constant across all optimal strategy
pairs, and this constant is called the optimum or minmax value or, just, the value. We
denote the value of A by val(A).

Given a bimatrix game (A, B) where both players are maximizers, (xo, yo) is a
Nash equilibrium strategy pair (Nash 1951) if

xt Ayo ≤ xot Ayo, for all strategies x of player-1, and

xot By ≤ xot Byo, for all strategies y of player-2.

xot Ayo and xot Byo areNash equilibriumpayoffs of player-1 andplayer-2 respectively,
corresponding to (xo, yo) and may not be unique across Nash equilibrium strategies.

Definition 3 Two-Person Stochastic Game: A two-person nonzero-sum stochastic
game denoted by Γ = (S, A1, A2, r1, r2, q) consists of
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1. Two players, player-1 and player-2.
2. A non-empty, finite, countable, or uncountable, Borel set of states. (If the state

space is finite, we write S = {s1, s2, . . . , sN } and the game is called a finite
stochastic game).

3. For each state s ∈ S, finite, non-empty sets of actions available to player-k (k =
1, 2), denoted by Ak(s) = {1, 2, . . . ,mk(s)}. Without loss of generality, we may
assume Ak(s) = Ak (and hence mk(s) = mk), for all s ∈ S.

4. Let the game be in state s and let player-1 and player-2 choose actions i ∈ A1
and j ∈ A2 respectively. Then the immediate rewards for each of the players are
given by rk(s, i, j), k = 1, 2. The payoff matrix in state s for player-1 is denoted
by R1(s) and that for player-2 is denoted by R2(s).

5. Let player-1 and player-2 choose actions i ∈ A1 and j ∈ A2 respectively in
state s ∈ S. Then, the probability of transition from state s to state s′ is given by
q(s′|s, i, j). The transition probability matrix is given by Q(i, j) for all i, j . In a
finite stochastic game, this is a N × N matrix.

For zero-sum stochastic games, r1 = −r2 (= r , say). We denote the game as
(S, A1, A2, r, q).

Definition 4 Stationary Strategy: Let S be the state space and PA1 be the set of prob-
ability distributions on player-1’s action set A1. A stationary strategy for player-1 is
a Borel measurable mapping f : S → PA1 that is independent of the history that led
to the state s ∈ S. Similarly, we define a stationary strategy for player-2 as a Borel
measurable mapping g : S → PA2 that is independent of the history that led to the
state s ∈ S. We denote the set of stationary strategies by PS

A1
and PS

A2
respectively.

Definition 5 β-Discounted Payoffs: Consider a two-person discounted nonzero-sum
stochastic game Γβ = (S, A1, A2, r1, r2, q, β). Given the initial state s0, a pair of
stationary strategies ( f, g) for the players, and a discount factor β ∈ (0, 1), the β-
discounted payoffs for player-k (k = 1, 2) is as follows:

I (k)
β ( f, g)(s0) =

∞∑

t=0

β t r (t)
k (s0, f, g)

Here, r (t)
k (s0, f, g) is the expected immediate reward at the t-th stage to player-k.

For the zero-sum case, I (1)
β ( f, g)(s0) = −I (2)

β ( f, g)(s0). We denote I (1)
β as Iβ .

Definition 6 Undiscounted Payoffs: For a two-person undiscounted nonzero-sum sto-
chastic game with starting state s0, let ( f, g) be a pair of stationary strategies for
player-1 and player-2 respectively. Then the undiscounted or limiting average payoff
is given as follows:

[Φ(1)( f, g)](s0) = lim inf
T↑∞

[(
1

T + 1

) T∑

t=0

r (1)
t (s0, f, g)

]

, for player-1

[Φ(2)( f, g)](s0) = lim inf
T↑∞

[(
1

T + 1

) T∑

t=0

r (2)
t (s0, f, g)

]

, for player-2
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For the zero-sum case, Φ(1)( f, g)(s0) = −Φ(2)( f, g)(s0). We denote Φ(1) as Φ.

Definition 7 Optimal Strategies and Value (in the stochastic game): A pair of station-
ary strategies ( f o, go) is optimal in the zero-sum discounted stochastic game if, for
all s ∈ S

Iβ( f, go)(s) ≤ Iβ( f o, go)(s) ≤ Iβ( f o, g)(s), for all f ∈ PS
A1

, for all g ∈ PS
A2

(where player-1 is the maximizer and player-2 is the minimizer).
In other words,

Iβ( f o, go)(s) = inf
g

[Iβ( f o, g)(s)] = sup
f

[Iβ( f, go)(s)], for all s ∈ S.

Shapley (1953) proved the existence and uniqueness of the value Iβ( f o, go) across
all pairs of optimal strategies ( f o, go). The value of the stochastic game, vβ , is given
by:

vβ(s) = Iβ( f o, go)(s) = sup
f
inf
g

[Iβ( f, g)(s)] = inf
g
sup
f

[Iβ( f, g)(s)], for all s ∈ S.

While the value of the stochastic game is unique, optimal strategies may not be
unique.

For the undiscounted zero-sum game, ( f ∗, g∗) is a pair of optimal strategies if for
all s ∈ S, we have:

[Φ( f, g∗)](s) ≤ [Φ( f ∗, g∗)](s) ≤ [Φ( f ∗, g)](s) for all f ∈ PS
A1

, g ∈ PS
A2

.

Definition 8 Matrix (Bimatrix) Game Restricted to a State: For a two-person finite
zero-sum (discounted or undiscounted) stochastic game, recall that mk indicates
the number of pure actions of player k, k = 1, 2. Consider the matrix R(s) =
(r(s, i, j))m1×m2 restricted to state s ∈ S. That is, for a fixed s ∈ S, the (i, j)-th
element of R(s) is the immediate reward to player-1 and player-2 when they choose
actions i and j respectively. Then, the one-shot game where the payoff matrix of
player-1 is R(s) is referred to as the matrix game restricted to state s.

Throughout the paper, we will use the notation R(s) to indicate the matrix game
restricted to state s.

Similarly, for a two-person finite nonzero-sum stochastic game, given s ∈ S, we
call the bimatrix game (R1(s), R2(s)) as the bimatrix game restricted to state s.

Definition 9 Auxiliary Game: The game with payoff matrix A(s) whose (i, j)-th
element is (r(s, i, j) + β

∑
s′∈S vβ(s′)q(s′|s, i, j)) where vβ(s′) is the value of the

discounted stochastic game whose initial state is s′, is called the auxiliary game at
state s (or starting at state s).

Shapley (1953) showed that val A(s) = vβ(s).
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Definition 10 Nash Equilibrium (in the stochastic game): A pair of stationary strate-
gies ( f o, go) constitutes a Nash equilibrium in the discounted stochastic game if, for
all s ∈ S

I (1)
β ( f o, go)(s) ≥ I (1)

β ( f, go)(s), for all f ∈ PS
A1

, and

I (2)
β ( f o, go)(s) ≥ I (2)

β ( f o, g)(s), for all g ∈ PS
A2

assuming that both players want to maximize their payoffs.
Similarly, a pair of strategies ( f ∗, g∗) constitutes a Nash equilibrium for an undis-

counted stochastic game if for all s ∈ S,

[Φ(1)( f ∗, g∗)](s) ≥ [Φ(1)( f, g∗)](s) for all f ∈ PS
A1

, and

[Φ(2)( f ∗, g∗)](s) ≥ [Φ(2)( f ∗, g)](s) for all g ∈ PS
A2

.

Henceforth, whenever we say “equilibrium”, we mean “Nash equilibrium”.

Definition 11 Symmetric Optimal and Symmetric Equilibrium Strategy Pairs: A pair
of optimal (or equilibrium) strategies ( f ∗, g∗) is called a symmetric optimal (equilib-
rium) strategy if both players use the same strategy at optimum (equilibrium), that is,
f ∗ = g∗. We say ( f ∗, f ∗) is a symmetric optimal (equilibrium) strategy pair or sim-
ply f ∗ is a symmetric optimal (equilibrium) strategy. (Clearly, we talk of symmetric
optima (equilibria) only when the payoff matrix (matrices) is (are) square. We assume
A1 = A2).

Definition 12 Completely Mixed Stochastic Game (Filar 1985): Consider a two-
person stochastic game (S, A1, A2, r1, r2, q, β). If every optimal stationary strategy
for either player assigns a positive probability to every action in every state, then the
stochastic game is said to be completely mixed. Such strategies are referred to as
completely mixed strategy of the stochastic game.

For example, consider a single-player controlled stochastic game with positive
payoffs. Let Fo and Go denote the set of all optimal stationary strategies for player-1
and player-2 respectively. Then the stochastic game is completely mixed if for all
( f o, go) ∈ Fo × Go, f oi (s) and goj (s) are strictly positive for all i , j and s.

Definition 13 Single-Player Controlled Stochastic Games (Parthasarathy and Ragha-
van 1981): In single-player controlled stochastic games, only one of the players con-
trols the transitions. For example, when player-1 controls transitions, q(s′|s, i, j) =
q(s′|s, i) for all i ∈ A1, for all j ∈ A2, and for all s, s′ ∈ S.

Definition 14 Switching Control Stochastic Games (Filar 1981): In switching control
stochastic games, the transition is controlled by player-1 alonewhen the game is played
in a certain subset of states and by player-2 alone when the game is played in other
states. That is, S = S1 ∪ S2, S1 ∩ S2 = φ and the transition probabilities are given by

q(s′|s, i, j) = q(s′|s, i), for all s′ ∈ S, s ∈ S1, i ∈ A1, j ∈ A2

q(s′|s, i, j) = q(s′|s, j), for all s′ ∈ S, s ∈ S2, j ∈ A2, i ∈ A1.
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Definition 15 AIT (Action Independent Transition) Games (Krishnamurthy 2011): In
AIT stochastic games, the transitions are independent of the actions of the two players.
That is, for all i ∈ A1, for all j ∈ A2, and for all s, s′ ∈ S, q(s′|s, i, j) = q(s′|s).

Definition 16 SER-SIT (Separable Reward–State Independent Transition) Games
(Parthasarathy et al. 1984): SER-SIT stochastic games exhibit the following two prop-
erties:

1. The rewards can be written as the sum of two functions—one function that depends
on the state alone, and another function that depends on the actions alone. That is,
for all s ∈ S, for all i ∈ A1, for all j ∈ A2,

rk(s, i, j) = ck(s) + ak(i, j), k = 1, 2, where ck(s) is a measurable function

2. The transitions are independent of the state from which the game transitions. That
is, for all i ∈ A1, for all j ∈ A2, and for all s, s′ ∈ S,

q(s′|s, i, j) = q(s′|i, j).

3 Results

We consider only two-person finite stochastic games. In each of the following subsec-
tions, we address a different aspect of stochastic games—namely, completely mixed
stochastic games, undiscounted stochastic games with stationary optimal strategies,
and symmetric equilibrium strategies in stochastic games respectively.

3.1 Completely mixed stochastic games

In general, a stochastic game need not be completely mixed. In this subsection, we
provide conditions under which finite discounted zero-sum single-player controlled
as well as switching control stochastic games are completely mixed using results
from Kaplansky (1945). As single-player controlled stochastic games are a subclass
of switching control stochastic games, results for the former follow from those of the
latter. However, we state them separately as we first prove the results for single-player
controlled stochastic games and then extend them to switching control stochastic
games. We also provide examples to highlight the necessity of some of the conditions
in these results. Further, for two-person nonzero-sum games, we provide sufficient
conditions for SER-SIT games to have a completely mixed equilibrium, and a neces-
sary condition for SER-SIT games to be completely mixed in the discounted as well as
undiscounted cases. Further, we also extend a result on finite discounted nonzero-sum
stochastic games by Sujatha et al. (2014) to finite undiscounted zero-sum stochastic
games.
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3.1.1 Zero-sum stochastic games

Lemma 1 Let A ∈ R
n×n and let A = At . Suppose there exists a probability vector

x ∈ R
n with

∑n
j=1 ai j x j = c, for i = 1, 2, . . . , n. Then

∑n
i=1 ai j xi = c, for j =

1, 2, . . . , n. Further, c is the (minmax) value of the matrix game A, and x is optimal
for both the players.

Proof We skip the proof as it is straightforward. �
The following results of Kaplansky (1945) are needed for proving some of our

results.

1. (Theorem 1 of Kaplansky 1945) Consider a two-person matrix game with payoff
matrix A ∈ R

m×n . Suppose player-1 has a completely mixed optimal strategy. If
yo is any optimal strategy for player-2, then

∑n
j=1 ai j y

o
j ≡ v for i = 1, . . . ,m

where v is the value of the matrix game.
2. (Theorem 2 of Kaplansky 1945) Consider a completely mixed two-person matrix

game with payoff matrix A ∈ R
m×n . Let Ai j be the cofactor of ai j . Then the value

of the game is given by v = det(A)∑
i
∑

j Ai j
, where the denominator is always nonzero.

Also, if v �= 0, then det(A) �= 0.
3. (Theorem 4 ofKaplansky 1945) Let A ∈ R

n×n be the payoffmatrix of a two-person
matrix game. Every optimal strategy of player-1 is completely mixed if and only if
every optimal strategy of player-2 is also completely mixed. �

We now present the following results on stochastic games with completely mixed opti-
mal strategies. Though some of these results are about symmetric optimal strategies,
these results are primarily used to prove Theorem 3 on completely mixed stochastic
games. Subsection 3.3 discusses further results on symmetric optima and equilibria in
stochastic games.

We, first, make the following observation.
Let f ∗ be an optimal stationary strategy of player-1 and λ be any strategy of

player-2 in state s such that r(s, f ∗(s), λ) + β
∑

s′∈S vβ(s′)q(s′|s, f ∗(s), λ) ≥ c.

Then I (1)
β ( f ∗, g)(s) ≥ c for all states s ∈ S and all strategies g of player-2. That is,

the payoff for player-1 against any strategy of player-2 is at least c for a given discount
factor β. �

In the following lemma, we provide conditions which are sufficient for existence of
a symmetric optimal strategy for thematrix game R(s) restricted to state s for all s ∈ S.
In general, the symmetric optimal strategy for R(s) need not be unique as seen in the
example of a game with r(s, i, j) = 1 for all s, i, j . We provide a sufficient condition
for the symmetric optimal strategy to be unique. Further, under certain conditions the
existence of a symmetric optimal strategy pair for R(s) for all s ∈ S is necessary
for the existence of a completely mixed optimal stationary strategy for the stochastic
game.

Lemma 2 Consider a finite discounted zero-sum single-player controlled stochastic
game where player-1 is the controlling player, that is, q(s′|s, i, j) = q(s′|s, i) for all
s ∈ S. Let R(s) be symmetric for each s ∈ S. Let ( f ∗, g∗) be a completely mixed
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optimal stationary strategy pair for the stochastic game. Then, f ∗(s) is a symmetric
optimal strategy pair for R(s) for all s ∈ S.

Further, for all s ∈ S, let R(s) be non-singular. Then, f ∗(s) is the unique symmetric
optimal strategy pair for R(s), for all s ∈ S.

Proof Let ( f ∗, g∗) be a completely mixed optimal stationary strategy pair for the
stochastic game. Since f ∗ is a completelymixed optimal stationary strategy of player-1
in the stochastic game, by Kaplansky (1945, Theorem 1) we have, for all s ∈ S

vβ(s) = r(s, f ∗(s), j) + β
∑

s′∈S
vβ(s′)q(s′|s, f ∗(s)), for all j ∈ A2. (1)

Since the game is controlled by player-1, the second term of Eq. 1 is independent
of player-2’s actions (that is, independent of any j ∈ A2). Therefore, for all s ∈ S,
r(s, f ∗(s), j) is independent of j since vβ(s) is a constant. That is,

r(s, f ∗(s), j) = vβ(s) − β
∑

s′∈S
vβ(s′)q(s′|s, f ∗(s)) = constant c(s) for s ∈ S, for all j ∈ A2 .

ByLemma 1, c(s) is theminmax value of thematrix game R(s). Further, by Lemma
1, f ∗(s) is a symmetric optimal strategy for R(s).

Now, if R(s) is non-singular for all s ∈ S, we shall show that f ∗(s) is the unique
symmetric optimal strategy for R(s) for all s ∈ S. If possible, let μ∗ be another
optimal strategy of player-1 for the game R(s), s ∈ S. Then by Kaplansky (1945,
Theorem 1), (μ∗)t R(s) ≡ v(s)e where e = (1, . . . , 1)t and v(s) = val(R(s)). Also
( f ∗(s))t R(s) ≡ v(s)e. Since R(s) is non-singular, it follows thatμ∗ = f ∗(s). Hence,
f ∗(s) is the unique symmetric optimal strategy for R(s). �
Remark 1 Lemma 2 can be extended to AIT stochastic games. In fact, we do not
require symmetry of R(s).

Remark 2 Lemma 2 can be extended to switching control stochastic games as follows.
Consider a finite discounted zero-sum switching control stochastic gamewhere S1 and
S2 are the set of states where player-1 and player-2 are, respectively, the controlling
players, S = S1 ∪ S2 and S1 ∩ S2 = φ. Further let ( f ∗, g∗) be a completely mixed
optimal stationary strategy pair for the stochastic game. For each s ∈ S, let R(s) be
symmetric and non-singular. Then, f ∗(s) is the unique symmetric optimal strategy
for R(s) for all s ∈ S1, and g∗(s) is the unique symmetric optimal strategy for R(s)
for all s ∈ S2.

For finite discounted zero-sum single-player controlled and switching control sto-
chastic games, we provide sufficient conditions for R(s) to be completely mixed, as
well as for the stochastic game to be completely mixed. We will use the following
result by Parthasarathy and Raghavan (1981) in the proof of Theorem 3.

(Lemma 4.1 of Parthasarathy and Raghavan 1981) Consider a non-singular matrix
C = (ci j )n×n where ci j = ai j + b j with ai j > 0 for all i, j . Suppose Cx = αe where
x is a probability vector, α is a scalar and e = (1, . . . , 1)t . Then the matrix A = (ai j )
is non-singular and Ax = βe for some scalar β. �
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Theorem 3 Consider a finite discounted zero-sum stochastic game which is either
a single-player controlled stochastic game where player-1 is the controlling player
or a switching control stochastic game. Let R(s) be symmetric for each s ∈ S. Fur-
ther, suppose there exists a completely mixed optimal stationary strategy pair for the
stochastic game. Then the following are equivalent.

1. The discounted stochastic game is completely mixed.
2. The matrix game R(s) is completely mixed for every s.

Proof We will first prove the result for the single-player controlled stochastic game
where player-1 is the controlling player. Without loss of generality, assume that
r(s, i, j) > 0 for every tuple (s, i, j).

We will first show that 2 follows from 1. Let the discounted stochastic game be
completely mixed. This means that the auxiliary game A(s) is completely mixed for
every s. The (i, j)-th element ofA(s) is given by r(s, i, j)+β

∑
s′∈S vβ(s′)q(s′|s, i).

By Kaplansky (1945, Theorem 2), value of A(s) = det(A(s))∑∑A(s)i j
. Since A(s) is

completely mixed and vβ(s) > 0, value ofA(s) is nonzero. Hence det (A(s)) �= 0, or
A(s) is non-singular for every s ∈ S. By Parthasarathy and Raghavan (1981, Lemma
4.1), it follows that R(s) is non-singular for all s ∈ S.

Now, let ( f o, go) be a completely mixed optimal stationary strategy pair for the
stochastic game. By Lemma 2, ( f o(s), f o(s)) is an optimal strategy pair for R(s).
( f o(s), f o(s)) is also completely mixed as f o is a completely mixed strategy of
player-1, and A1 = A2. Thus, as R(s) is non-singular for all s ∈ S, it follows by
Lemma 2 that R(s) is completely mixed for every s ∈ S.

Conversely, suppose R(s) is completely mixed for all s ∈ S. Let ( f o, go) be
a completely mixed optimal stationary strategy pair for the discounted stochastic
game. For all s ∈ S, as r(s, i, j) > 0 and R(s) is completely mixed, R(s) is non-
singular by Kaplansky (1945, Theorem 2). The auxiliary game starting at state s
is A(s) = ((r(s, i, j) + β

∑
s′∈S vβ(s′)q(s′|s, i))). By Parthasarathy and Raghavan

(1981, Lemma 4.1), A(s) is non-singular for all s ∈ S.
By Lemma 2, ( f o(s), f o(s)) is the unique symmetric optimal strategy pair for R(s).

Then, f o(s)t R(s) = v(s)et .
If possible, letA(s0) not be completely mixed for some s0 ∈ S. Then by Kaplansky

(1945, Theorem 4), there exists an optimal strategy μ∗ of player-1 such that μ∗(s0) is
not completely mixed.

Thus,
∑n

i=1[(r(s0, i, j) + β
∑

s′∈S vβ(s′)q(s′|s0, i))μ∗
i ] = vβ(s0), where μ∗ =

(μ∗
1, μ

∗
2, . . . , μ

∗
n)

t , and n = m1 = m2, the number of actions each player has.
Also,A(s0) f o(s0) = ∑n

i=1[(r(s0, i, j)+β
∑

s′∈S vβ(s′)q(s′|s0, i)) f oi ] = vβ(s0).
SinceA(s0) is non-singular, μ∗ and f o must coincide. Thus every optimal strategy

for player-1 is completely mixed. Hence the single-player controlled stochastic game
is completely mixed.

For switching control stochastic games, the above proof can be mimicked for sets
of states S1 and S2 separately, and the result follows due to Remark 2 that extends
Lemma 2 to switching control stochastic games. �

We now provide two examples (Examples 1 and 2) to show whether some of the
conditions in Theorem3 are necessary or not. These two examples consider discounted
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zero-sum player-2 controlled stochastic games with three states, namely s1, s2, and
s3, and discount factor β = 1/2. As the states s2 and s3 are absorbing states, it can be
seen that vβ(s2) = 0 and vβ(s3) = 1 in both the examples.

Example 1 Symmetry of the payoff matrices for all states is not a necessary condition.
Let the payoffs and the transition probabilities for each of the three states be as

follows.

s1 :

⎡

⎢
⎢
⎢
⎢
⎣

0 2
(0, 1, 0) (0, 0, 1)

3 1
(0, 1, 0) (0, 0, 1)

⎤

⎥
⎥
⎥
⎥
⎦

, s2 :

⎡

⎢
⎢
⎢
⎢
⎣

1 −1
(0, 1, 0) (0, 1, 0)

−1 1
(0, 1, 0) (0, 1, 0)

⎤

⎥
⎥
⎥
⎥
⎦

, s3 :

⎡

⎢
⎢
⎢
⎢
⎣

2 0
(0, 0, 1) (0, 0, 1)

0 2
(0, 0, 1) (0, 0, 1)

⎤

⎥
⎥
⎥
⎥
⎦

The auxiliary game when the stochastic game starts at s1 is

A(s1) =
⎡

⎣
0 2 + β/(1 − β)

3 1 + β/(1 − β)

⎤

⎦ =
⎡

⎣
0 3

3 2

⎤

⎦

which is clearly completely mixed.
In fact, A(s) as well as R(s) are completely mixed, for all s ∈ S. However, R(s1)

is not symmetric. Hence, symmetry of R(s), for all s ∈ S, is not a necessary condition
for Theorem 3 to hold. �
Example 2 The stochastic game being completely mixed is not necessary for R(s) to
be completely mixed for all s ∈ S.

We consider a minor modification to the payoffs in state s1 in Example 1.

s1 :

⎡

⎢
⎢
⎢
⎢
⎣

0 2
(0, 1, 0) (0, 0, 1)

2 1
(0, 1, 0) (0, 0, 1)

⎤

⎥
⎥
⎥
⎥
⎦

, s2 :

⎡

⎢
⎢
⎢
⎢
⎣

1 −1
(0, 1, 0) (0, 1, 0)

−1 1
(0, 1, 0) (0, 1, 0)

⎤

⎥
⎥
⎥
⎥
⎦

, s3 :

⎡

⎢
⎢
⎢
⎢
⎣

2 0
(0, 0, 1) (0, 0, 1)

0 2
(0, 0, 1) (0, 0, 1)

⎤

⎥
⎥
⎥
⎥
⎦

The auxiliary game starting at s1 is A(s1) =
⎡

⎣
0 3

2 2

⎤

⎦ and is not completely mixed.

However the matrix game R(s1) is completely mixed since (1/3, 2/3) is the unique
symmetric optimal strategy for R(s1). In fact, R(s) is completely mixed for all s. �

Our next example (Example 3) highlights the condition under which a stochastic
game is not completely mixed though R(s) for all s ∈ S are completely mixed. In
fact, the stochastic game does not have even one completely mixed optimal stationary
strategy in this example. We start with the following interesting result on completely
mixed n × n matrix games that is used in the example.

123



Stationary, completely mixed and symmetric... 773

Lemma 4 Let A ∈ R
n×n. Let the matrix game A be completely mixed. Then the

new matrix game

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 + d1 a12 + d2 . . . a1n + dn

a21 + d1 a22 + d2 . . . a2n + dn

.

.

.

an1 + d1 an2 + d2 . . . ann + dn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

has no row domination for every

di ∈ R, i = 1, . . . , n.
That is, no row is dominated by a convex combination of other rows.

Proof If possible, let the new game have row domination. This means that a convex
combination of the rows of A dominate another row of A. However, no convex com-
bination of rows can dominate another row of A entry wise since the matrix game A
is completely mixed. Hence the new game has no row domination. �
Example 3 We demonstrate the necessity of the condition in Theorem 3 that the
stochastic game has at least one completely mixed optimal stationary strategy. We
construct a discounted single player controlled stochastic game with symmetric pay-
off matrices where R(s) is completely mixed for each s ∈ S, but the stochastic game
does not have any completely mixed optimal stationary strategy.

Let R(s0) =

⎡

⎢
⎢
⎢
⎢
⎣

2 −1 −1

−1 2 −1

−1 −1 2

⎤

⎥
⎥
⎥
⎥
⎦
. Let s1, s2, and s3 be absorbing states whose payoff

matrices are given by:

R(s1) =

⎡

⎢
⎢
⎢
⎢
⎣

6 0 0

0 6 0

0 0 6

⎤

⎥
⎥
⎥
⎥
⎦

, R(s2) =

⎡

⎢
⎢
⎢
⎢
⎣

12 0 0

0 12 0

0 0 12

⎤

⎥
⎥
⎥
⎥
⎦

, and R(s3) =

⎡

⎢
⎢
⎢
⎢
⎣

18 0 0

0 18 0

0 0 18

⎤

⎥
⎥
⎥
⎥
⎦

.

Let the game start in state s0 andmove to state si if column i is played. Let the discount
factor be β = 1

7 .
Clearly, R(s) is completely mixed for each s.
Further, vβ(s1) = 6

1−β
= 7, vβ(s2) = 12

1−β
= 14, and vβ(s3) = 18

1−β
= 21.

Hence,

A(s0) =

⎡

⎢
⎢
⎢
⎢
⎣

2 + βvβ(s1) −1 + βvβ(s2) −1 + βvβ(s3)

−1 + βvβ(s1) 2 + βvβ(s2) −1 + βvβ(s3)

−1 + βvβ(s1) −1 + βvβ(s2) 2 + βvβ(s3)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

3 1 2

0 4 2

0 1 5

⎤

⎥
⎥
⎥
⎥
⎦

.

In this specific example, adding 1, 2 and 3 to thefirst, second and third columns of R(s0)
respectively yields thematrixA(s0). By Lemma 4,A(s0) has no row domination. Also
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( 23 ,
1
3 , 0) is the only optimal stationary strategy for player-1 (the maximizer) inA(s0)

and it is not completely mixed. SinceA(s0) has no completely mixed optimal strategy,
the assumption that there exists at least one completely mixed optimal stationary
strategy for both players in the stochastic game does not hold. However, R(s) is
completely mixed for all s ∈ S. �

3.1.2 Nonzero-sum stochastic games

We now look at some results for two-person finite nonzero-sum SER-SIT stochastic
games. We also look at an extension of a result by Sujatha et al. (2014) to finite
undiscounted zero-sum stochastic games. Though this result is for zero-sum stochastic
games, we have stated and proved the same in this subsection as it is an extension of
a result on finite discounted nonzero-sum stochastic games by Sujatha et al. (2014),
the proof of which (the latter) has been provided in the Appendix.

Parthasarathy et al. (1984) showed that, given a two-person finite nonzero-sum
SER-SIT game, a state independent stationary equilibrium strategy pair can be easily
found by just solving a single bimatrix game (E, F), where, in the case of discounted
SER-SIT games, the (i, j)th entry of E and F are a1(i, j)+β

∑
s′ c1(s

′)q(s′|i, j) and
a2(i, j) + β

∑
s′ c2(s

′)q(s′|i, j) respectively. Here a1, a2, c1 and c2 are as per Defin-
ition 16. In Krishnamurthy et al. (2009), the authors discuss pure strategy equilibria
and show that pure strategy equilibria of the SER-SIT game and of the bimatrix game
(E, F) correspond. In general, equilibria of the SER-SIT game and of the bimatrix
game (E, F) may not correspond. Parthasarathy et al. (1984) give an example where
the SER-SIT game has more number of equilibrium points than the bimatrix game to
which it has been reduced. In the following theorem, we show that the SER-SIT game
has a completely mixed equilibrium if and only if the bimatrix game (E, F) has one.
Further, if the SER-SIT game is completely mixed, so is (E, F).

Lemma 5 LetΓβ be a two-person finite discounted nonzero-sumSER-SIT gamewhere
the reward functions of the players are rk(s, i, j) = ck(s) + ak(i, j), k = 1, 2, and
the transition probabilities are q(s′|s, i, j) = q(s′|i, j), for all i ∈ A1, j ∈ A2,
s, s′ ∈ S. Let (E, F) be the m1 ×m2 bimatrix game (a1(i, j)+β

∑
s′ c1(s

′)q(s′|i, j),
a2(i, j) + β

∑
s′ c2(s

′)q(s′|i, j)), i = 1, . . . ,m1, j = 1, . . . ,m2, where m1 = |A1|
and m2 = |A2|. Then, (E, F) has a completely mixed equilibrium if and only if Γβ

has a completely mixed equilibrium. In fact, if Γβ is a completely mixed game, so is
(E, F).

Proof Let (x∗, y∗) be a completely mixed equilibrium point of the bimatrix game
(E, F). Define f ∗(s) ≡ x∗ and g∗(s) ≡ y∗ for all s ∈ S. By Parthasarathy et al.
(1984, Theorem 4.1), ( f ∗, g∗) is an equilibrium pair for the discounted SER-SIT
game Γβ , and by construction, ( f ∗, g∗) is completely mixed.

Conversely, let ( f ∗, g∗) be a completely mixed equilibrium pair for the discounted
SER-SIT game Γβ . Then, ( f o, go) where f o(s) ≡ f ∗(s′) and go(s) ≡ g∗(s′) for
all s ∈ S, where s′ ∈ S is a fixed state, is a state-independent completely mixed
equilibrium pair for Γβ . It is easy to see that ( f ∗(s′), g∗(s′)) is a completely mixed
equilibrium of (E, F) too.

123



Stationary, completely mixed and symmetric... 775

By Parthasarathy et al. (1984, Theorem 4.1), for any equilibrium of (E, F), we
can construct an equilibrium of Γβ . Therefore, if (E, F) has an equilibrium which is
not completely mixed, so does Γβ . In other words, if Γβ is a completely mixed game,
(E, F) is a completely mixed game too. �
Remark 3 By Parthasarathy et al. (1984, Theorem 4.2) for two-person finite undis-
counted nonzero-sum SER-SIT games, Lemma 5 can be proved for two-person finite
undiscounted nonzero-sum SER-SIT games as well.

Corollary 6 If the m1 ×m2 matrices (ak(i, j)), (k = 1, 2), and the transition proba-
bility matrices are symmetric, then the corresponding SER-SIT game has a symmetric
equilibrium pair in the discounted as well as undiscounted case. �

We state two relevant results pertaining to conditions when matrix as well as
bimatrix games are completely mixed. For a two-person zero-sum game with a skew-
symmetric payoff matrix of even order, Kaplansky (1945) showed that the game can
never be completely mixed. Further, he showed that the zero-sum game with payoff
matrix Am×n is completely mixed if and only if A is a square matrix with rank n − 1,
and all the cofactors of A are different from zero and have the same sign. Sujatha
et al. (2014) showed that a two-person zero-sum game with a skew-symmetric payoff
matrix of even order can never be completely mixed. This follows directly from a
contradiction to Kaplansky’s result (1945) and is based on the fact that the rank of a
skew symmetric matrix is of even order. As the cofactors of the matrix A do not have
the same sign, the game can never be completely mixed.

Theorem 8 extends Theorem 7 to undiscounted stochastic games.

Theorem 7 (Theorem 3 of Sujatha et al. 2014) Consider a bimatrix game (A, B) with
odd ordered skew-symmetric payoff matrices. Let ε be the set of all equilibrium points.
For every (x, y) ∈ ε, let there exist v1 and v2 such that Ay = v1e and xt B = v2et .
Then the game is completely mixed if and only if the principal Pfaffians1 of both payoff
matrices are all nonzero and alternate in sign.

For the sake of completeness, the proof of Theorem 7 is provided in the Appendix.

Theorem 8 Consider a finite undiscounted zero-sum stochastic game Γ with skew
symmetric payoff matrices that are odd ordered. Suppose R(s) is completely mixed
for all s ∈ S. Then Γ has value 0 and has a completely mixed optimal strategy.

Proof As all payoff matrices are skew symmetric, the value of the stochastic game
is 0. Let ( f o(s), go(s)) be the completely mixed optimal strategy for R(s), for each
s ∈ S. Then ( f o, go) is a completely mixed stationary optimal for the discounted
stochastic game with the same payoff matrices and transition probabilities as Γ . As
this is true for any value of β (in particular, β near 1), ( f o, go) is a completely mixed
stationary optimal for the undiscounted stochastic game too. �

It is an open question as to whether or not the undiscounted stochastic game is
completely mixed for the conditions listed in Theorem 8.

1 The Pfaffian of a skew-symmetric matrix is the square root of the determinant.
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3.2 Undiscounted stochastic games with stationary optimal strategies

Sujatha et al. (2014) showed that finite discounted zero-sum stochastic games have
symmetric optimal stationary strategies under certain conditions of symmetry (The-
orem 9 below). We extend this result to a bigger class of finite discounted zero-sum
stochastic games and to finite undiscounted zero-sum stochastic games too. The results
provide sufficient conditions for finite undiscounted zero-sum stochastic games to have
stationary optimal strategies, or in other words, a new class of finite undiscounted zero-
sum stochastic games that have stationary optimal strategies. Theorem 10 extends
Theorem 9 to undiscounted stochastic games.

Theorem 9 (Theorem 5 of Sujatha et al. 2014): Consider a finite discounted zero-
sum stochastic game where R(s) is skew-symmetric for all s ∈ S. Then the value of
the stochastic game is 0 and the stochastic game has symmetric optimal stationary
strategies independent of the discount factor and the transition probabilities.

For the sake of completeness, we give the proof for Theorem 9 in the Appendix.

Theorem 10 Consider a finite undiscounted zero-sum stochastic game where R(s)
is skew-symmetric for all s ∈ S. Then the value of the stochastic game is 0 and
the stochastic game has symmetric optimal stationary strategies independent of the
transition probabilities.

Proof From Theorem 9, a finite discounted zero-sum stochastic game with skew sym-
metric payoff matrices has a symmetric optimal stationary strategy pair ( f o, f o) that
is independent of the discount factor and the transition probabilities.

(1 − β)Iβ( f o, g)(s) ≥ 0, for all g, for all β

or Φ( f o, g)(s) ≥ 0 as β → 1 (by Tauberian theorem)

Hence, f o is optimal for player-1 in the undiscounted stochastic game too. Similarly,
f o is optimal for player-2 as

Φ( f, f o)(s) ≤ 0, for all f

Hence, the undiscounted zero-sum stochastic game has a symmetric optimal sta-
tionary strategy pair, namely ( f o, f o), that does not depend on the transition
probabilities. �
Remark 4 Let f o be a symmetric optimal stationary strategy for a finite undiscounted
zero-sum stochastic game with skew symmetric payoff matrices. Then, whether or not
( f o(s), f o(s)) is optimal for R(s) for all s ∈ S, is an open question.

The following theorem is a natural extensionofTheorem9 to a discounted stochastic
game where only N −1 states have skew symmetric payoff matrices and the transition
probabilities to the state with the arbitrary payoff matrix are (the same) constant.
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Theorem 11 Consider a finite discounted zero-sum stochastic game. (Recall that S =
{s1, s2, . . . , sN }). Without loss of generality, let R(s1), R(s2), . . . , R(sN−1) be skew
symmetric and let R(sN ) be any arbitrary matrix. Further let q(sN |s, i, j) = constant
c, 0 ≤ c ≤ 1, for all s ∈ S. Then the composition of optimal strategies of R(s) is an
optimal stationary strategy for the stochastic game.

Proof For s �= sN , the value of the matrix game R(s) is 0 since R(s) is skew-
symmetric. Let vN be the minmax value of the matrix game R(sN ). Let f o(s) be
an optimal strategy for player-1 in the matrix game R(s) for each s ∈ S.

Now, for the stochastic game starting at state s �= sN , if player-1 plays f o(s) for all
s ∈ S, then for each stationary strategy g of player-2, the payoff to player-1 is given
by

Iβ( f o, g)(s) = r(s, f o(s), g(s)) + β
∑

s′∈S
r(s′, f o(s′), g(s′))q(s′|s, f o(s), g(s))

+β2
∑

s′′∈S
r(s′′, f o(s′′), g(s′′))q2(s′′|s, f o(s), g(s)) + . . .

= r(s, f o(s), g(s)) + β
∑

s′ �=sN

r(s′, f o(s′), g(s′))q(s′|s, f o(s), g(s))

+βr(sN , f o, g)q(sN |s, f o(s), g(s))

+β2
∑

s′′ �=sN

r(s′′, f o(s′′), g(s′′))q(s′′|s, f o(s), g(s))

+β2r(sN , f o, g)q2(sN |s, f o(s), g(s)) + . . . (2)

Let the transition probability matrix be denoted by Q =
⎛

⎝
q11 . . . q1,N−1 c
.
.
.

qN1 . . . qN ,N−1 c

⎞

⎠ .

Then the (i, N )th entry of Q2 = qi1c+· · ·+qi,N−1c+c2 = c(qi1+· · ·+qi,N−1+
c) = c. Hence, q2(s|sN , f o, g) = c, for all s ∈ S, and so on. Also R(s) for all s �= sN
is skew symmetric. Using these in Eq. 2, we have

Iβ( f o, g)(s) ≥ β c vN + β2 c vN + . . .

≥ c
β

1 − β
vN , for all g (3)

If the stochastic game started at state sN instead, then the payoff to player-1 is

Iβ( f o, g)(sN ) = r(sN , f o(sN ), g(sN ))

+β
∑

s′∈S
r(s′, f o(s′), g(s′))q(s′|sN , f o(s), g(s))

+β2
∑

s′′∈S
r(s′′, f o(s′′), g(s′′))q2(s′′|sN , f o(s), g(s)) + . . .
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≥ vN + c
β

1 − β
vN

≥ 1 + β(c − 1)

1 − β
vN , for all g (4)

Similarly, let go(s) be the optimal strategy for player-2 (the minimizer) for R(s) for
each s ∈ S. We can show that Iβ( f, go)(s) ≤ c β

1−β
vN , for all f , when the stochastic

game starts in state s �= sN , and Iβ( f, go)(sN ) ≤ 1+β(c−1)
1−β

vN , for all f , when the
stochastic game starts in state sN . Hence, ( f o, go) is an optimal stationary strategy
pair for the stochastic game. �
Remark 5 We can extend Theorem 11 to a finite state space where the payoff matrices
for all except m states (m < N ) are skew symmetric, and the transition probabilities
to each of these m states is a constant (albeit different).

Remark 6 Theorem 11 and Remark 5 can be extended to finite undiscounted zero-
sum stochastic games too. Note, in particular, that this class of undiscounted stochastic
games has stationary optimal strategies. Also note that this class contains the class of
of undiscounted stochastic games provided by Theorem 10.

3.3 Symmetric equilibrium in stochastic games

Symmetric equilibrium in bimatrix games has relevance especially in single population
evolutionary games (Hofbauer and Sigmund 2003). Gale (1960) showed that if A is a
skew-symmetric matrix, then there exists a symmetric optimal strategy for the matrix
game A. Nash (1951) showed that given any square matrix A, there exists a symmetric
equilibrium for the bimatrix game (A, At ). Hofbauer and Sigmund (2003) also provide
an alternative proof to this result by Nash (1951). Flesch et al. (2013) have shown
the existence of symmetric stationary equilibria in symmetric irreducible discounted
stochastic games. However, characterizing the class of symmetric stochastic games
with symmetric stationary strategies remains open.

In this subsection, we provide sufficient conditions for two-person finite discounted
as well as undiscounted, zero- as well as nonzero-sum stochastic games to have sym-
metric optimal/ equilibrium strategies. We also provide a sufficient condition for
existence of pure strategy symmetric equilibria in two-person finite discounted as
well as undiscounted nonzero-sum stochastic games. We begin with Theorem 12 that
extends the result of Nash (1951) to stochastic games.

Theorem 12 Consider a two-person finite nonzero-sum discounted stochastic game
Γβ . Suppose r1(s, i, j) = r2(s, j, i) and q(s′|s, i, j) = q(s′|s, j, i), for all s, s′ ∈
S, i, j ∈ A1 (= A2). Then, Γβ has a symmetric equilibrium.

Proof Since all transition probabilities are symmetric and R2(s) = R1(s)t for all
s ∈ S, it follows that I (1)

β ( f, g)(s) = I (2)
β (g, f )(s). On lines similar to the alternative

proof given byHofbauer and Sigmund (2003) toNash’s result (1951), it follows thatΓβ
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has a symmetric equilibrium using Kakutani’s fixed point theorem (Kakutani 1941).
�

Remark 7 Theorem 12 holds for two-person finite zero-sum discounted stochastic
games too. Theorem 12 also holds for two-person finite undiscounted, zero- as well as
nonzero-sumSER-SIT andAITgames. In SER-SIT games, for example, the individual
matrices can be symmetrized using Gale’s (1960) technique and hence made skew
symmetric.

The following result can be shown from the results by Duersch et al. (2012).

Corollary 13 Consider a two-person finite nonzero-sum discounted stochastic game
Γβ . For each s ∈ S, let the bimatrix game restricted to state s have a pure strategy
symmetric equilibrium. Further, suppose all payoff matrices and transition probability
matrices are symmetric. Then, Γβ has a symmetric pure strategy equilibrium.

Corollary 13 holds for two-person finite nonzero-sum undiscounted stochastic
games too. Without symmetry conditions, it is not known whether two-person finite
nonzero-sum undiscounted stochastic games have symmetric equilibria or not. Only
some partial results are available about this (Flesch et al. 2013).

4 Conclusion and future work

In this paper, we showed some necessary conditions and some sufficient conditions
for discounted as well as undiscounted stochastic games to have a completely mixed
optimal (in the zero-sum case) or equilibrium (in the nonzero-sum case). We showed
some sufficient conditions for discounted as well as undiscounted stochastic games
to have symmetric equilibria. We also showed that an undiscounted stochastic game
with skew-symmetric payoff matrices has optimal stationary strategies and in fact, the
strategies are symmetric. We also extended this result to discounted and undiscounted
stochastic games in which there is no restriction on the payoff matrix in a constant
number of states and all other states have skew-symmetric payoff matrices. In this
paper, we have looked at certain classes of stochastic games and can extend the results
to classes of stochastic games such as Additive Reward Additive Transition (ARAT)
games, as well as to some classes of uncountable state space stochastic games.

Acknowledgements We would like to thank the two anonymous Referees and the Associate Editor for
their valuable and detailed comments that has helped structure this paper better.

5 Appendix

The proofs of Theorems 7 and 9 are published in the Proceedings of a Conference that
are not available online, and is hence not easily accessible currently. For the sake of
completeness, we provide these proofs below.

Wefirst provide necessary notation and known results that are used in the proofs. For
the bimatrix game (A, B), let ε denote the set of equilibrium strategies. Let (x0, y0) ∈
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ε. Further let Cofactor(Ai j ) and Cofactor(Bi j ) denote the cofactors of ai j and bi j
respectively. For showing the conditions for a stochastic game to be completely mixed
using the concept of principal Pfaffians, we need the following results by Oviedo
(1996).

1. (Theorem 1 of Oviedo 1996) If ε is completely mixed and xt0Ay0 = xt0By0 = 0,
then there exists an i (1 ≤ i ≤ n) such that Cofactor(Ai1), Cofactor(Ai2), ...,
Cofactor(Ain) are different from zero and have the same sign. Similarly, there
exists a j (1 ≤ j ≤ n) such that Cofactor(Bj1), Cofactor(Bj2), ..., Cofactor(Bjn)

are different from zero and have the same sign.
2. (Corollary 1 of Oviedo 1996) If ε is completely mixed, then xt0Ay0 = det (A)∑

i, j
Ai j

and

xt0By0 = det (B)∑

i, j
Bi j

, where the denominators are always different from 0.

3. (Proposition 1 of Oviedo 1996) Suppose there exists constants v1 and v2 such that
for any (x, y) ∈ ε, Ay = v1e and xt B = v2et . Suppose, moreover, that both A and
B are square matrices of rank n − 1. Then ε is completely mixed.

Proof of Theorem 7 (Theorem 3 of Sujatha et al. 2014) Let the set of all equilibrium
strategies ε be completely mixed. Let x and y be the strategies used by player-1 and
player-2 respectively. Since the matrices are odd ordered skew symmetric, det (A) =
det (B) = 0. Then, xt Ay = xt By = 0 by Oviedo (1996, Corollary 1).

Further byOviedo (1996, Theorem 1) andwithout loss of generality, we can assume
Cofactor(Ai j ) > 0 for all i , for all j . That is, (−1)i+ jmi j > 0 where mi j is the sub-
determinant obtained by deleting the i th row and j th column of the matrix A. By
Kaplansky (1995, Theorem 1), this implies that (−1)i+ j pi p j > 0 where pi and p j

are the ith and jth principal Pfaffians of A.
If i and j are both even or both odd, then the above equation implies that either

both pi and p j are greater than 0, or both are lesser than 0. If i is even and j is odd or
vice versa, then either (pi > 0, p j < 0) or (pi < 0, p j > 0). Thus all the principal
Pfaffians of A are nonzero and alternate in sign. The same holds for all the principal
Pfaffians of matrix B.

Conversely, let the principal Pfaffians of matrix A be nonzero and alternate in sign.
Without loss of generality, we can assume that pi > 0 where i is odd and p j < 0
where j is even.

Then, (−1)i+ j pi p j > 0. That is, (−1)i+ jmi j > 0, where mi j is the sub-
determinant obtained by deleting the i th row and j th column of matrix A. This implies
that ci j > 0, where ci j is the cofactor of ai j .

Hence all cofactors of A (and similarly of B) are nonzero and have the same sign.
The rank of both these matrices is n − 1 since the minors of order n − 1 are nonzero.
Consider a strategy (x0, y0) ∈ ε. Then there exists v1 and v2 such that Ay0 = v1e and
(x0)t B = v2et . By Oviedo (1996, Proposition 1), ε is completely mixed. �
Proof of Theorem 9 (Theorem 5 of Sujatha et al. 2014) Let f o(s) be the optimal
strategy for player-1 for R(s). Gale (1960) showed that for a finite zero-sum game
with a skew symmetric matrix, the value of the game is 0 and any strategy that is
optimal for one player is also optimal for the other player. Hence, if we view R(s)
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as a finite zero sum game with skew symmetric payoff matrix, then the value of the
stochastic game is 0. Let g be any strategy for player-2. We have r(s, f o, g) ≥ 0.

Indicate r( f, g) by

⎛

⎜
⎝

r(1, f (1), g(1))
r(2, f (2), g(2))

.

.

.

r(N , f (N ), g(N ))

⎞

⎟
⎠ .

The total expected β-discounted income for player-1 is given by

Iβ( f o, g)(s) =
∞∑

t=0

β t q(t)(s′|s, f o, g)r(s, f o, g)

= [I − βQ( f o, g)]−1r( f o, g)|sthcoordinate

where Q( f o, g) is a N × N matrix with (s, s′)th element representing the transition
probability q(s′|s, f o, g). It is obvious that for all g, for all s

Iβ( f o, g)(s) ≥ 0 (5)

Similarly, let go be an optimal stationary strategy for player-2. The total expected
β-discounted income for player-2 is given by

Iβ( f, go)(s) = [I − βQ( f, go)]−1r( f, go)|sthcoordinate (6)

ByGale’s result (1960), any strategy that is optimal for one player is also optimal for
the other player, that is go = f o.Hence, Iβ( f, f o)(s) = [I−βQ( f, f o)]−1r(s, f, f o)
(from Eq. 6). Hence for all s, for all f ,

Iβ( f, f o)(s) ≤ 0 (7)

Comparing Eqs. 5 and 7, we have Iβ( f o, g)(s) = Iβ( f, f o)(s) = 0. That is, the
value of the stochastic game starting in state s is 0. Note that the auxiliary game and the
matrix game restricted to state s coincide for all discount factors. Thus the stochastic
game has symmetric optimal stationary strategies independent of the discount factor
β and the transition probability q(s′|s, f, g). �
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