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Abstract We study an interactive framework that explicitly allows for nonrational
behavior. We do not place any restrictions on how players’ behavior deviates from
rationality, but rather, on players’ higher-order beliefs about the frequency of such
deviations. We assume that there exists a probability p such that all players believe,
with at least probability p, that their opponents play rationally. This, together with the
assumption of a common prior, leads to what we call the set of p-rational outcomes,
which we define and characterize for arbitrary probability p. We then show that this
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set varies continuously in p and converges to the set of correlated equilibria as p
approaches 1, thus establishing robustness of the correlated equilibrium concept to
relaxing rationality and common knowledge of rationality. The p-rational outcomes
are easy to compute, also for games of incomplete information. Importantly, they can
be applied to observed frequencies of play for arbitrary normal-form games to derive a
measure of rationality p that bounds from below the probability with which any given
player chooses actions consistent with payoff maximization and common knowledge
of payoff maximization.

Keywords Strategic interaction · Correlated equilibrium · Robustness to bounded
rationality · Approximate knowledge · Incomplete information · Measure of
rationality · Experiments

JEL Classification C72 · D82 · D83

1 Introduction

Rationality, understood as consistency of behavior with stated objectives, information,
and strategies available, naturally lies at the heart of game theory. Still today, most
of game theory and its applications takes the rationality of the agents, knowledge
and higher knowledge thereof as given and, in an important way, relies on these to
make (ideally robust) predictions about behavior. However, it is clear that, in practice,
departures from full consistency or rationality not only occur and occur often, but they
also occur in innumerable ways.1 To address this, we develop a theory that relaxes
the assumption of rationality and higher order knowledge of rationality. We assume
that for any given probability p ∈ [0, 1], players choose rationally with probability at
least p and with respect to beliefs that assign probability at least p to their opponents’
choosing rationally as well; we put no constraint on what the remaining actions or
action profiles (occurring with frequency at most 1− p) may be. Among other things,
we study the robustness of behavior with respect to p, that is, its sensitivity to the
introduction of nonrationality, and derive a measure of “rationality” for observed
frequencies of play.

As a brief illustration, consider the following two examples. The first is a stylized
penalty kick game, taken from Palacios-Huerta (2003), based on actual penalty kicks
shot by professional soccer players in European leagues between 1995 and 2000.2

Players’ strategies are reduced to kick left or right (K L , K R) for the kicker (row
player) and to jump left or right (J L , J R) for the goalkeeper (column player). The
payoffs are described in Fig. 1 in the first matrix (and correspond to probability of

1 See the exhaustive list of examples in the survey ofConlisk (1996); see alsoRubinstein (1998) andMallard
(2011) on models of bounded rationality; Crawford (2013) and Harstad and Selten (2013) distinguish
optimization-based from nonoptimization-based models of bounded rationality; Camerer et al. (2011) and
Camerer and Ho (2015) contain surveys of behavioral game theory and economics. The experimental
literature has played an important role in advancing the research on bounded rationality in game theory.
2 We refer to that paper for discussions on the meaning of the strategies, payoffs, and the overall setup; see
also Palacios-Huerta and Volij (2008), Chiappori et al. (2002) for further related results.
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GPK ≡
JL JR

KL 58,42 95, 5
KR 93, 7 70,30

πemp
PK ≈

JL JR
KL 0.168 0.232
KR 0.252 0.348

πNE
PK =

JL JR
KL 0.160 0.223
KR 0.257 0.360

Fig. 1 Penalty kicks in professional European soccer leagues (p ≈ 0.96)

GK ≡
L M NN R

T 200, 50 0, 45 10,30 20,-250
B 0,-250 10,-100 30,30 50, 40

πemp
K ≈

L M NN R
T 0.178 0.054 0.462 0
B 0.082 0.026 0.218 0

πNE,1
K =

L M NN R
T 1 0 0 0
B 0 0 0 0

πNE,2
K =

L M NN R
T 0 0 0 0
B 0 0 0 1

πNE,3
K =

L M NN R
T 0.046 0.921 0 0
B 0.002 0.031 0 0

Fig. 2 Kreps game (p ≈ 0.7)

scoring for the kicker and probability of saving for the goalkeeper), the second matrix
describes the empirical frequencies with which the different strategies were played
in the field, and the third presents the probabilities assigned to each outcome by the
unique Nash equilibrium distribution of the game.

Although close, it can be checked that, if one assumes the existence of a common
prior, strictly speaking, frequencies of play are inconsistent with common knowledge
of rationality, as players are not playing best-responses to one another. As we will
discuss in Sect. 5, wherewe introduce an empirical measure of rationality derived from
our theory that allows to quantify discrepancies fromequilibriumplay,we compute that
at least 96% of each player’s (row player’s and column player’s) actions are consistent
with payoff maximization and common knowledge of payoff maximization.

The second example, represented in Fig. 2, is a game taken from Goeree and Holt
(2001) and due to David Kreps that has three Nash equilibria. Here subjects playing
the column role typically choose strategy (N N ) that is the only strategy that is not in
the support of any of the Nash equilibria of the game. Nonetheless, according to our
measure, at least 70% of each player’s (row player’s and column player’s) actions are
consistentwith payoff-maximization and commonknowledge of payoffmaximization,
whether or not the common prior assumption holds.

In this paper, we are interested in a theory of strategic interaction that incorporates
the following two aspects of bounded rationality: (i) some (possibly small) amount of
nonrational behavior, and (ii) the capacity of players to expect, and optimally react, to
nonrational behavior by their opponents. In order to develop such a theory, we relax the
assumptions that agents are rational at all times and that there is common knowledge
of rationality. We replace these with a substantially weaker assumption, namely, that
there exists a lower bound on the probability that players assign to their opponents
being rational, that is, to choosing actions that are payoff-maximizing given their own
information. More specifically, we study the behavior that arises, if, in every state of
the world, each player believes that the other players are rational with a probability
p or more. This is what we call common knowledge of mutual p-belief in opponents’
rationality. Together with the existence of a common prior it defines the notion of
p-rational outcome, which is at the center of our paper. Thus characterizing the set of
p-rational outcomes is tantamount to characterizing behavior that allows for mistakes,
arbitrary mistakes, and optimization w.r.t. the possibility of mistakes, as long as the
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expected frequency of mistakes by others is bounded above by 1 − p. Importantly,
we put no restriction on what it means to be non-rational, except that the rules of the
game implicitly require agents to select some action from the action space.3

After defining our central notion of p-rational outcomes, we give a strategic char-
acterization in Theorem 1 in terms of what we call (X, p)-correlated equilibria. These
are correlated equilibria, where incentive constraints hold on a subset (X ⊆ A) of the
overall action space, and where actions from this subset are believed to be played with
certainminimumprobability p. The theorem provides a nonepistemic characterization
that uses the (X, p)-correlated equilibria to relate the p-rational outcomes to corre-
lated equilibria and can be seen as giving a generalization that extends the main result
by Aumann (1987) to contexts of bounded rationality. The set of p-rational outcomes
is described by linear inequalities consisting of incentive and p-belief constraints, and
for any p; it always contains the set of correlated equilibria, with which it coincides
when p = 1. When p = 0, the set of p-rational outcomes makes up the whole space
of distributions over action space A, �(A).

In Theorem 2, we show that, besides being nonempty, convex and compact, the
set of p-rational outcomes varies continuously in the underlying parameter p. We
further show that when p is sufficiently close to 1, then rationalizable strategy profiles
are played with probability at least p. These results confirm in some sense the robust-
ness of the correlated equilibrium concept to bounded rationality. Proposition 2 further
characterizes the p-rational equilibria as BayesianNash equilibria of incomplete infor-
mation games, namely certain “canonical elaborations” as defined in Kajii and Morris
(1997a, b), that are perturbations of the underlying (complete information) game G
with some restrictions on the frequencies of “standard” and “committed” types. The
proposition can be seen as also providing an epistemic foundation of Bayesian equi-
libria of such perturbed games with “standard” and “committed” types.

Theorem 4 then shows that our main characterization result extends directly to the
case of games of incomplete information using the notion of Bayes correlated equilib-
rium of Bergemann andMorris (2015). To the extent that their results show robustness
of the Bayes correlated equilibria to underlying private information structures, we can
view our results as showing that the p-rational Bayes outcomeswe characterize (which
coincide with the Bayes correlated equilibria when p = 1) are robust to nonrational
behavior by the players, provided it occurs with probability no more than 1 − p.

As a further application of our theory, we use the p-rational outcomes to derive a
unique number p ∈ [0, 1] that quantifies proximity to common knowledge of ratio-
nality in a normal-form strategic interaction. In interactions where the common prior
assumption can be expected to hold, for any given distribution of play, say π ∈ �(A),
we can define a unique number p ∈ [0, 1], that gives the largest p such that each
player plays actions that are consistent with common knowledge of payoff maximiza-
tion given π with frequency at least p. This gives a direct measure of the maximum

3 As we discuss below, this is what separates this paper, from many other papers in the literature, that
have looked at specific ways in which agents can deviate from “full rationality” such as the models of
k-level reasoning, cognitive hierarchy or λ-quantal response, or theories of ε-equilibria and so on; see, e.g.,
Camerer and Ho (2015) for a discussion of some of these theories. By contrast, we remain agnostic about
how players behave when they are nonrational.
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possible amount of actions consistent with payoff maximization reflected in the dis-
tribution π . For interactions, where the common prior assumption does not hold, then
players may be acting rationally, but their rationality is underestimated by p as it does
not take into account possible inconsistencies in beliefs. Allowing for this, one can
show that p is a lower bound for the maximum possible amount of actions consistent
with payoff maximization and common knowledge of payoff maximization, reflected
in the distribution π . Therefore, the value p can be useful as a measure of minimum
amount of rationality in experimental data, whether or not there is a common prior.
We discuss this in more detail Sect. 5.

At a theoretical level, our analysis builds on the epistemic literature, centered around
the concepts of rationalizability, Bernheim (1984) and Pearce (1984), and correlated
equilibrium, Aumann (1974), Aumann (1987), that characterizes behavior under vary-
ing assumptions on players’ rationality and their reciprocal beliefs in each others’
rationality. Tan and da Costa Werlang (1988) show that independent rationalizabil-
ity characterizes rationality and common certainty of rationality; and Brandenburger
and Dekel (1987) connect it to subjective correlated equilibria and correlated ratio-
nalizability. Using the notion of common p-belief (of Monderer and Samet (1989),
who introduce the concept to study robustness of equilibria to incomplete informa-
tion regarding payoffs, and thus, do not account for deviations from rationality), Hu
(2007) introduces the notion of (correlated) p-rationalizability, and shows that it char-
acterizes rationality and common p-belief in rationality, for general p ≤ 1.4 He also
shows that as p converges to 1, the set of p-rationalizable actions approaches the set
of rationalizable actions.

For incomplete information games and within an ex ante context, Forges (1993)
and Forges (2006) introduces several notions of correlated equilibrium. Lehrer et al.
(2010), Lehrer et al. (2013) clarify epistemically the role of different assumptions and
information structures and study their effect on equilibrium behavior. Bergemann and
Morris (2015) introduce a further broader notion of correlated equilibrium, which they
call Bayes correlated equilibrium, and which they show characterizes behavior robust
to varying information structures. Bayes correlated equilibrium is the equilibrium
notion we use for our incomplete information analysis. At the interim stage, starting
from hierarchies of beliefs, Dekel et al. (2007) introduce the notion interim correlated
rationalizability and show that it characterizes common certainty of rationality. Ger-
mano et al. (2016), introduce the notion of interim correlated p-rationalizability, and
show that it characterizes common p-belief in rationality, for general p ≤ 1. We view
the ex ante and the interim approaches as providing complementary results; the ex ante
approach used in this paper making epistemically speaking more restrictive assump-
tions (assuming besides a common prior also common knowledge of the model and
the epistemic assumptions it entails). To the extent that the additional assumptions are
satisfied, the ex ante approach provides an effective tool for characterizing resulting
behavior and, in our case, also yields sharper bounds and predictions as compared to
the notions of p-rationalizability or interim correlated p-rationalizability.

4 To highlight an important difference with our approach, notice that, within our finite, ex ante context,
assuming common p-belief of rationality and a common prior for any p > 0, amounts to the same as
assuming common knowledge of rationality (see Lemma 1).
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The paper is structured as follows. Section 2 sets up both the game-theoretic and
epistemic framework and recalls and discusses the main results by Aumann (1987).
Section 3 is the main section, which introduces the notion of p-rational outcome and
contains strategic and topological characterizations, as well as some simple examples.
Section 4 contains some extensions, including to games of incomplete information.
Section 5 shows how the theory implies a natural measure to quantify the degree of
“rational” behavior in strategic interactions, and Sect. 6 provides some concluding
remarks. All the proofs are in the Appendix.

2 Preliminaries

In this section, we recall some well-known concepts in game theory and epistemic
game theory needed for the analysis of Sect. 3. In Sect. 2.1, we present the game-
theoretic framework and the standard solution concepts later generalized: correlated
and subjective correlated equilibrium (Aumann 1974). Then, in Sect. 2.2, we introduce
the epistemic framework, in which interactive knowledge and beliefs are formalized;
this uses standard constructions by Aumann (1987), Brandenburger and Dekel (1987)
orMonderer and Samet (1989), among others. Finally, in Sect. 2.3, we discuss themain
result by Aumann (1987), which relates common knowledge assumptions regarding
rationality with correlated and subjective correlated equilibria.

2.1 Correlated equilibria

A (finite, normal-form) game is defined as a tupleG = 〈I, (Ai )i∈I , (ui )i∈I
〉
, where I is

a finite set of players, and for any player i wehave: a finite set of actions Ai and a payoff
function ui : A → R, where A = ∏i∈I Ai denotes the set of action profiles. Given
distribution π ∈ �(A), for any player i , we say that action ai is optimal w.r.t. π if,

ai ∈ argmax
a′

i ∈Ai

∑

a−i ∈A−i

π [(a−i ; ai )] · ui
(
a−i ; a′

i

)
,

where A−i =∏ j �=i A j . Then, following Aumann (1974): (i) a distribution π ∈ �(A)

is a correlated equilibrium if for any player i every actionai is optimalw.r.t.π , and (ii) a
family of distributions (πi )i∈I ⊆ �(A) is a subjective correlated equilibrium if for any
player i every action ai is optimal w.r.t. πi . We denote the sets of correlated equilibria
and subjective correlated equilibria of G by C E (G) and SC E(G), respectively. It fol-
lows by definition that (C E(G))I ⊆ SC E(G). It is easy to see that everyNash equilib-
rium induces a correlated equilibrium; thus, C E(G) and SC E(G) are both nonempty.

2.2 Epistemic framework

Interactive knowledge and beliefs are exogenously modeled by a belief system, which
consists of a list B = 〈�, (�i )i∈I , (αi )i∈I , (μi )i∈I

〉
, where � is a finite set of states

(of the world), and for each player i we have: (i) �i , a knowledge partition of �,
where for any state ω we denote the cell containing ω by �i (ω), (ii) a strategy map
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αi : � → Ai measurable w.r.t. �i , and (iii) a (subjective) prior belief μi ∈ �(�)

with full support. An event is a collection of states E ⊆ �. As mentioned above, belief
systems formalize the following two epistemic aspects:

(1) Interim knowledge For any player i and any state ω, player i’s knowledge at ω is
represented by �i (ω): we say player i knows event E at state ω if �i (ω) ⊆ E .
Player i’s knowledge operator is thus defined as follows,

E 	→ Ki (E) = {ω ∈ � |�i (ω) ⊆ E } , for any E ⊆ �.

Note that the measurability of the strategy maps implies that each player knows at
every state what action she chooses. We say that an event E is evident knowledge
if E ⊆ ⋂i∈I Ki (E), and for state ω, event C is commonly known at ω if there
exists some evident knowledge E such that ω ∈ E ⊆ ⋂i∈I Ki (E). We denote
the event that C is commonly known by C K (C).

(2) Interim beliefs For each player i knowledge partition�i and prior beliefμi induce
interim beliefs at each state ω,

μi (ω)[E] = μi [E ∩ �i (ω)]

μi [�i (ω)]
, for any E ⊆ �.

Then, following Monderer and Samet (1989), for any probability p ∈ [0, 1] we
say that player i p-believes event E at stateω ifμi (ω)[E] ≥ p. Player i’s p-belief
operator is thus defined as follows,

E 	→ B p
i (E) = {ω ∈ � |μi (ω)[E] ≥ p } , for any E ⊆ �.

We say that an event E is p-evident belief if E ⊆ ⋂i∈I B p
i (E), and for state

ω, event C is common p-belief at ω if there exists some p-evident belief E such
that ω ∈ E ⊆ ⋂i∈I B p

i (E). We denote the event that C is common p-belief by
C B p(C). It is easy to see that in this framework, knowledge and 1-belief coincide,
due to the fact that prior beliefs have full support.

2.3 Correlated equilibria as an expression of Bayesian rationality

Each belief system B induces, for each player i , the following interim beliefs on her
opponents’ behavior at each state ω: μi (ω)[a−i ] = μi (ω)[⋂ j �=i α−1

j (a j )] for any
a−i ∈ A−i , and thus, the following interim expected payoff,

EB(ω)
[
ui (α−i ; ai )

] =
∑

a−i ∈A−i

μi (ω)[a−i ] · ui (a−i ; ai ) ,

for eachai ∈ Ai . Then,we say that player i is (Bayesian) rational at stateω if her choice
is optimal w.r.t. her interim beliefs, i.e., if αi (ω) ∈ argmaxai ∈Ai

EB(ω)
[
ui (α−i ; ai )

]
,

and denote the event that player i is rational by Ri . We denote the event that every
player is rational by R. Finally, note that belief system B also induces, for each player i ,
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a subjective outcome (distribution) π B
i ∈ �(A) given by π B

i (a) = μi [⋂ j∈I α−1
j (a j )]

for any a ∈ A. Aumann (1987) studies the impact of the following two properties in
belief systems:

• Common knowledge of rationalityBelief system B is rational if players are rational
at every state, i.e., if � = R. Note that since � is evident knowledge, it follows
that rationality is commonly known at every state. Aumann (1987) shows that if
belief system B is rational, then the family of subjective outcomes it induces is a
subjective correlated equilibrium: (π B

i )i∈I ∈ SC E(G).
• Common prior assumptionBelief system B satisfies the common prior assumption
if all the players hold the same prior belief, i.e., if μi = μ j for any i, j ∈ I . In
case the common prior assumption is satisfied, we drop subscripts and denote the
common prior belief, to which we refer as the common prior, by simply μ. In
this case, B induces an objective outcome (distribution) π B ∈ �(A) given by
π B(a) = μ[⋂i∈I α−1

i (ai )] for any a ∈ A.5 The main result in Aumann (1987)
shows that if B is rational and satisfies the common prior assumption, then the
objective outcome it induces is a correlated equilibrium: π B ∈ C E(G).

Two aspects of the formalization of belief systems are crucial for obtaining equilibrium
behavior: (i) strategy maps (αi )i∈I are structurally commonly known,6 and (ii) the
common prior assumption implies that players hold correct beliefs about how infor-
mation is distributed among their opponents.7 The combination of this features yields
that players hold, indeed, correct beliefs about how their opponents play, since: they
hold correct beliefs about how information is distributed and they hold correct beliefs
about how, specifically, choice is made contingent on information. For examples of
epistemic frameworks that offer a more transparent distinction between equilibrium
assumptions (as the two mentioned) and common knowledge of rationality see Tan
and da Costa Werlang (1988), Dekel et al. (2007) or Battigalli et al. (2011).

3 Bounded rationality and correlated equilibria

In this section we characterize an extension of correlated equilibrium that incorporates
the following two aspects of bounded rationality: (i) some (possibly small) amount of
nonrational behavior, and (ii) the capacity of players to expect, and optimally react,
to nonrational behavior by their opponents. Obviously, such behavior is at odds with
common knowledge of rationality: a weaker epistemic assumption is required. In Sect.
3.1, we present our central epistemic assumption, discusswhy it stands as a compelling
relaxation, and define the probabilistic behavior it induces as p-rational outcomes
(Definition 1). It remains unclearwhether the p-rational outcomes can be characterized

5 Or, alternatively, every player i’s subjective outcome π B
i happens to be identical.

6 That is, player i knows that, if player j gets the information corresponding to some state ω, then j plays
action α j (ω); formally this is represented by the fact that Ki (¬� j (ω) ∪ [α j = α j (ω)]) = � for any
ω ∈ �, and any i, j ∈ I .
7 That is, the probability of player i receiving the information corresponding to stateω,μ[�i (ω)] is exactly
the probability that, ex ante each player j assigns to player i obtaining the information corresponding to
state ω.
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without having to go through a tedious process of epistemic modeling. This problem is
solved in Sect. 3.2, where we present an easily computable generalization of correlated
equilibria, (X, p)-correlated equilibria, and show in Theorem 1 that the set of p-
rational outcomes can be characterized in terms of (X, p)-correlated equilibria of a
related game, Aumann and Dreze (2008) doubled game. In Sect. 3.3, we present some
examples illustrating the p-rational outcomes, and in Sect. 3.4, we discuss geometric
properties of the set of p-rational outcomes, and show that this set is robust to small
variations in the amount of nonrational behavior.

3.1 p-Rational outcomes: epistemic motivation

In order to capture the two features of bounded rationality mentioned above, we need
to depart from common knowledge of rationality. A natural and standard way to relax
knowledge assumptions is to resort to Monderer and Samet (1989) notion of p-belief,
as recalled in Sect. 2.2. However, it is not straightforward how p-beliefs should be
applied in order to accommodate the kind of nonrational behavior we are looking
for. Thus we propose to substitute common knowledge of rationality with common
knowledge of mutual p-belief in opponents’ rationality. That is, we assume that it is
commonly known that there exists some probability p for which every player believes,
with probability at least p, that the rest of players are rational. This idea is formalized
by belief systems that satisfy:

• Common knowledge of mutual p-belief in opponents’ rationality (MB pR)For fixed
probability p, mutual p-belief in opponents’ rationality holds at every state, i.e.,
� =⋂i∈I B p

i (R−i ).

Note then that, under common knowledge of mutual p-belief in rationality (MBpR),
we have: (i) some (possibly small) amount of nonrational behavior, and (ii) capacity
of players’ to expect, and optimally react, to nonrational behavior by their opponents.
Thus, MBpR captures the two aspects of bounded rationality we are looking to char-
acterize.8 Lemma 1 below studies how common knowledge of rationality, common
p-belief in rationality, and MBpR relate to each other, and illustrates some properties
of the latter, which motivate its suitability as a relaxation of common knowledge of
rationality.

Lemma 1 Let G be a game, p, a positive probability, and B, a belief system. Then:

(i) � = C B p(R) if and only if � = R.
(ii) If p = 1, then � = R if and only if � =⋂i∈I B p

i (R−i ).
(iii) If B satisfies MBpR and the common prior assumption, then μ [Ri ] ≥ p for any

player i , and μ [R] ≥ p2.

We provide some interpretations. The first result states that assuming common p-
belief in rationality at every state is identical to assuming rationality at every state.

8 Another natural alternative, suggested to us by Dov Samet, would be to consider a common prior that
satisfies μ

[
C B p (R)

] ≥ 1 − ε for some ε > 0. This is a weakening of mutual p-belief in opponents’ at
every state in that it imposes less structure on players’ beliefs, nonetheless it appears to be computationally
less tractable; we return to this later; see Remark 1 in Sect. 6.
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Thus, for any p > 0, behavior induced by common p-belief in rationality corresponds
exactly to correlated equilibria, and hence, we can conclude that common p-belief
in rationality is not appropriate to capture the aspects of bounded rationality we are
interested in. The second result shows that in the limit case of full rationality, when
p = 1,MBpRand commonknowledge of rationality coincide. Thus,when nonrational
behavior is excluded, MBpR induces precisely, correlated equilibria. The third result
studies the impact of the common prior assumption on MBpR and shows that the
fact that the common prior assumption entails correct belief implies that, for fixed p,
MBpR leads toindividual rational behavior with at least probability p, and to collective
rational behavior with at least probability p2, so that collective nonrational behavior is
bounded by probability (1 − p2). Then, we define the outcome distributions induced
by belief systems satisfying MBpR and the common prior assumption as follows:

Definition 1 (p-Rational outcome) Let G be a game, and p, a probability. Then, we
say that distribution π ∈ �(A) is a p-rational outcome if it is induced by some belief
system B that satisfies MBpR and the common prior assumption. We denote the set
of p-rational outcomes by p-RO(G).

The interest of p-rational outcomes lies in the notion of bounded rationality that they
capture via MBpR. Yet, it seems problematic that, given a game G and a probability
p, in order to characterize the set of p-rational outcomes, we need to consider all the
possible belief systems satisfyingMBpR and the common prior assumption, and then,
compute the outcomes they induce.We know that this can be circumvented for rational
systems satisfying common knowledge of rationality: by Aumann (1987) theorem, the
behavior of these belief systems is captured by the set of correlated equilibria, which
is easily computable through certain incentive constraints in the game G. In the next
section, we explore whether it is possible to characterize the set of p-rational outcomes
without the need of epistemic modeling.

3.2 p-Rational outcomes: strategic characterization

We are interested in characterizing the set of p-rational outcomes in terms of the origi-
nal game G, without evoking belief systems. Before doing sowe need to first introduce
the following notion of (X, p)-correlated equilibrium. This concept generalizes the
notion of correlated equilibrium by explicitly allowing for some actions to be played
nonoptimally, and plays a key role in our characterization result, Theorem 1 below.

Definition 2 ((X, p)-Correlated equilibrium) Let G be a game. Then, for any X =∏
i∈I Xi ⊆ A and any probability p we say that distribution π ∈ �(A) is a (X, p)-

correlated equilibrium if for any player i the following hold:

(i) Incentive constraints For any action ai ∈ Xi , ai ∈ argmaxa′
i ∈Ai

∑
a−i ∈A−i

π [(a−i ; ai )] · ui
(
a−i ; a′

i

)
.

(ii) p-belief constraintsFor any actionai ∈ Ai ,π
[
X−i × {ai }

] ≥ p·π [A−i × {ai }
]
.

We denote the set of (X, p)-correlated equilibria of G by (X, p)-C E (G).
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This notion weakens the usual incentive constraints in the following sense. Fix a
probability p ∈ [0, 1] and, for each player i , a subset Xi ⊆ Ai such that the distribution
on the overall set of action profiles π ∈ �(A) satisfies two kinds of constraints:

(i) Standard incentive constraints that are not required to hold for all actions, but
rather, only for those in Xi . Thus, strictly smaller subsets Xi � Ai can reflect
agents that, for actions in Ai\Xi , follow a mediator’s advice without questioning
the “rationality” of doing so (e.g., in the sense of a social norm) or simply act
irrationally in the sense ofmakingmistakes (forwhatever reason and inwhichever
way). It is easy to see that, when X = A, the incentive constraints imply that
(A, p) -C E (G) = C E (G) regardless of the value of p.

(ii) The p-belief constraints require that, at the interim level, each player assigns
probability at least p to the rest of the players all choosing action profiles
from X−i = ∏ j �=i X j . The belief constraints can reflect bounds or statisti-
cal regularities with which deviations from “rationality” are roughly known to
occur, by restricting the probability of this occurrence to at most 1 − p. When
the possibility of irrational behavior is excluded (p = 1), then we have that
(X, 1) -C E (G) ⊆ C E (G) for any X ∈ ∏i∈I 2

Ai . However, the opposite inclu-
sion fails if π is a correlated equilibrium of G whose support is not included in
X (but clearly it holds when X = A).

Finally, note that the computation of (X, p)-correlated equilibria is similar to
that of correlated equilibria; it only involves

∑
i∈I (|Xi | (|Ai | − 1) + |Ai |) ≤∑

i∈I |Ai | (|Ai | + 1) linear incentive and p-belief constraints. Now, in order to com-
plete our characterization result in Theorem 1 we need to recall the notion of doubled
game due to Aumann and Dreze (2008):

Definition 3 (Doubled game, cf.Aumann and Dreze 2008) Let G be a game. Then,
the doubled game of G is defined as the tuple 2G = 〈I, (A′

i

)
i∈I ,
(
u′

i

)
i∈I

〉
, where for

each player i :

(i) A′
i = Ai × {1, 2} is player i’s set of pure actions. With some abuse of notation,

we denote a generic element of A′ = ∏i∈I A′
i by (a, ν), where, for ν ∈ {1, 2}I ,

νi specifies which copy of Ai in A′
i player i’s pure action belongs to.

(ii) u′
i : A′ → R, given by (a, ν) 	→ ui (a) is player i’s payoff function,

Thus, in this context, when writing the action spaces of the game 2G as A′
i =

Ai × {1, 2} we mean that for each player there are two copies of the original action
space Ai , with the same payoffs as inG. Note that any distribution on the action profiles
of 2G, π̂ ∈ �

(
A′), induces a distribution on the action profiles of G in a natural way

by taking the marginal on A, that is, π = margAπ̂ . For any subset Y ⊆ �
(

A′) we
denotemargA(Y ) =⋃π̂∈Y

{
margAπ̂

}
. These elements provide all the tools required

to go on with the characterization of the set of p-rational outcomes of the game G.
Our next theorem shows that these can be expressed in terms of computationally

simple (X, p)-correlated equilibria of the doubled game 2G. The intuition for the
proof is as follows. A doubled game can be seen as splitting players’ actions into ones
chosen by the rational type (in Ai ×{1}) and by the irrational type (in Ai ×{2}). Then,
for each X = ∏i∈I (Ai × {1}), the (X, p)-correlated equilibria are distributions on

123



606 F. Germano, P. Zuazo-Garin

�(A′) that by construction satisfy the incentive constraints just for the rational types,
and where the p-belief constraints ensure that all players believe at interim level that
others play rationally with probability p or more. Finally, taking marginals ensures
that the distributions are on �(A).9

Theorem 1 (Strategic characterization of p-rational outcomes) Let G be a game and
p, a probability. Then, distribution π ∈ �(A) is a p-rational outcome of G if and
only if it is the distribution in �(A) induced by some (A(1), p)-correlated equilibrium
of 2G, where A(1) =∏i∈I (Ai × {1}). Formally,

p-RO (G) = margA

((
A(1), p

)
-C E (2G)

)
.

This characterizes behavior in a game G under MBpR and the common prior
assumption, or, in otherwords, all behavior inG representing the following two aspects
of bounded rationality: (i) some (possibly small) amount of nonrational behavior, and
(ii) the capacity of players to expect, and optimally react, to nonrational behavior by
their opponents. In particular, Theorem 1 implies that, given the structure of the dou-
bled game and of its (A(1), p)−correlated equilibria, the set of p-rational outcomes of
G as subset of �(A) is characterized by at most

∑
i∈I |Ai | (|Ai | + 1) linear inequali-

ties, (ofwhich
∑

i∈I |Ai | (|Ai | − 1) are incentive constraints and
∑

i∈I 2|Ai | are belief
constraints), which in turn are all linear functions of the payoffs of the original game
G and the probability p. Thus, the characterization of the set of p-rational outcomes
is similar, in computational terms, to that of the set of correlated equilibria, which is
defined by

∑
i∈I (|Ai |(|Ai )| − 1) linear inequalities.

3.3 Examples

The following examples illustrate the p-rational outcomes for two simple 2×2 games.
Consider first the following game G D , solvable by strict dominance with corre-

sponding augmented game 2G D ,

G D ≡
L R

T 2,2 1,1
B 1,1 0,0

2G D ≡
(L , 1) (R, 1) (L , 2) (R, 2)

(T, 1) 2,2 1,1 2,2 1,1
(B, 1) 1,1 0,0 1,1 0,0
(T, 2) 2,2 1,1 2,2 1,1
(B, 2) 1,1 0,0 1,1 0,0

.

To compute p-RO(G D) we compute first (A(1), p)-C E(2G D) and apply Theorem 1.
Notice that the strategies (B, 1) and (B, 2) of the row player and (R, 1) and (R, 2) of
the column player are strictly dominated, so that the remaining constraints that need
to be satisfied are the p-belief constraints. This gives:

p-RO(G D) =
{
π ∈ �(A)

∣∣∣∣
πT L ≥ p · (πT L + πT R), πBL ≥ p · (πBL + πB R)

πT L ≥ p · (πT L + πBL), πT R ≥ p · (πT R + πB R)

}
.

9 Clearly, due to the symmetric role of the different copies of the action spaces of 2G, the theorem would
also hold for any X = A×{ν}, whereby only one of the two copies of players’ actions satisfies the incentive
constraints.
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Fig. 3 0.80-RO(G D) (gray, outer polyhedron) and 0.95-RO(G D) (black, inner polyhedron)

The sets of p-RO(G D) for p = 0.80 and p = 0.95 are displayed in Fig. 3; where
it is clearly visible how the set of p-rational outcomes shrinks as p increases. Figure
4 shows the set of 0.80-RO(G D) together with the set of ε-correlated equilibria, ε-
C E(G D), for ε = 0.10.10 The sets of p-rational outcomes and ε-correlated equilibria
generally exhibit different shapes.

Consider now the following version G M P of matching pennies, with corresponding
doubled game 2G M P ,

G M P ≡
L R

T 1,0 0,1
B 0,1 1,0

2G M P ≡
(L , 1) (R, 1) (L , 2) (R, 2)

(T, 1) 1,0 0,1 1,0 0,1
(B, 1) 0,1 1,0 0,1 1,0
(T, 2) 1,0 0,1 1,0 0,1
(B, 2) 0,1 1,0 0,1 1,0

.

10 In general, this is the set of probability distributions π ∈ �(A) that satisfy the incentive constraints for
correlated equilibriawith a slack of ε, analogous toRadner’s ε-Nash equilibria, formally,π is an ε-correlated
equilibrium (ε-C E) if for any i ∈ I ,

∑

ai ∈Ai

max
a′

i ∈Ai

∑

a−i ∈A−i

π [(a−i ; ai )] · (ui (a−i ; a′
i ) − ui (a−i ; ai )

) ≤ ε.
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Fig. 4 0.80-RO(G D) (gray polyhedron) and 0.10-C E(G D) (green polyhedron)

The set p-RO(G M P ) is now somewhat more tedious to characterize. Nonetheless we
know it is a compact, convex polyhedron around the unique correlated (and unique
Nash) equilibrium, π̄ = ( 14 ,

1
4 ,

1
4 ,

1
4 ), which converges to π̄ as p converges to 1. In

particular the polyhedron contains profiles that do not yield the agents their value
of the game, but rather something in a neighborhood thereof. To give further intu-
ition, Fig. 5 shows the set p-RO(G M P ) for p = 0.95 together with the set of
ε-correlated equilibria, ε-C E(G M P ), for ε = 0.10. Again, both sets are visibly
distinct.

3.4 Further properties of p-rational outcomes

The next results further characterize the structure and nature of the set of p-rational
outcomes. The first shows that as p converges to 1 the p-rational outcomes converge
to the set of correlated equilibria. But more generally it also shows that the p-rational
outcomes always vary continuously in p,11 at any p ∈ [0, 1]; and go from being the
entire set �(A) when p = 0 to the set of correlated equilibria when p = 1.

11 A correspondence is continuous if it is both upper- and lower hemicontinuous; see, e.g., Ch. 17 in
Aliprantis and Border (2006) for further details and related definitions. The topology is the standard one,
inherited from Euclidean spaces.
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Fig. 5 0.95-RO(G M P ) (black, inner polyhedron) and 0.10-C E(G M P ) (green, outer polyhedron)

Theorem 2 (Topological properties of the set of p-rational outcomes) Let G be a
game and p a probability. Then the set of p-rational outcomes of the game G is a
nonempty, convex, compact set that varies continuously in p. Moreover, for p = 0,
we have 0-RO(G) = �(A), for p = 1, we have 1-RO(G) = C E(G), and for any
p ∈ [0, 1), we have dim[p-RO(G)] = dim[�(A)].

The very last statement further shows that all strategies can be in the support of
p-rational outcomes whenever p < 1. The next result qualifies this by showing that
if p is close enough 1, then rationalizable strategy profiles or ones that survive the
iterated elimination of strictly dominated strategies get a total weight of at least p.
This can be interpreted as the p-rationality counterpart of the fact that strategies that
do not survive the iterated elimination of strictly dominated strategies are not in the
support of correlated equilibria. Inwhat followswe denote by A∞ the set of all strategy
profiles that survive the iterated elimination of strictly dominated strategies.

Proposition 1 (Rationalizability and p-rational outcomes) Let G be a game. Then
there exists p̄ < 1 such that π [A∞] ≥ p for any π ∈ p-RO(G) and any p ≥ p̄.

This shows that if the probability p withwhich the opponents’ rationality is believed
is sufficiently high, then the probability with which players play rationalizable strate-
gies is also high. In other words, besides being close to the correlated equilibria in a
topological sense, the p-rational outcomes, for p close to one, will be close also in
terms of their support.
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The next result relates the p-rational outcomes to Bayesian Nash equilibria of
incomplete information games, where there is uncertainty not about the rationality of
the players but about their payoffs. To make the connection precise, we recall some
definitions from the work of Kajii and Morris (1997a, b). They define incomplete
information games they call elaborations, to be viewed as perturbations of the under-
lying complete information game G, in order to study notions of robust equilibrium.
We follow their approach, especially Kajii and Morris (1997a), in defining the notion
of (canonical) elaboration. A player’s set of possible types is written as the union
Ti = T s

i ∪ T c
i , where T s

i is a countable set of standard types whose payoffs coincide
with the ones of the game G, while T c

i ≡ Ai is a set of committed types who have a
strictly dominant action to play the strategy corresponding to their type. The set of all
type profiles is then T = �i∈I Ti . We can then define an elaboration of the game G
as an incomplete information game (G, P)with type space T , probability distribution
P ∈ �(T ), and payoff functions,

ũi (ai , a−i ; t) =
⎧
⎨

⎩

ui (ai , a−i ) if ti ∈ T s
i

1 if ai = ti ∈ T c
i

0 if ai �= ti and ti ∈ T c
i ,

where ui is the payoff function of the original game G. One can define Bayesian Nash
equilibria as profiles of strategies αi : T → �(Ai ) as usual, and, using the above form
for the payoff function ũi , it is easy to see that a strategy profile α is an equilibrium
if, for any player i and any type ti with P[ti ] > 0, we have

(i) αi (ti )[ai ] = 1 if ai = ti ∈ T c
i , and

(ii) ai ∈ argmaxa′
i ∈Ai

∑
t−i ∈T−i

P[t−i | ti ] ·∑a−i ∈A−i
α−i (t−i )[a−i ] · ui (a′

i , a−i ) if
ti ∈ T s

i and αi (ti )[ai ] > 0, where α−i (t−i )[a−i ] =∏ j �=i α j (t j )[a j ].
We then say distribution μ ∈ �(A) is an equilibrium action distribution (EAD) of
(G, P) if there is an equilibrium α of (G, P) with μ[a] = ∑t∈T P(t) · α(t)[a] for
all a ∈ A, where α(t)[a] =∏i∈I αi (ti )[ai ]. We are then in a position to relate our p-
rational outcomes of G to EAD’s of elaborations (G, P) putting sufficient probability
on standard types.

Proposition 2 (Bayesian Nash equilibria and p-rational outcomes) Let G be a game
and p a probability. Then the distribution π ∈ �(A) is a p-rational outcome of G if
and only if π is an equilibrium action distribution of an elaboration (G, P), where
P ∈ �(T ) is a probability measure on the set of types, that satisfies P[T s

−i | ti ] ≥ p,
for any ti ∈ Ti .

Perhaps not surprisingly, the p-rational outcomes of a game G can be expressed as
Bayesian Nash equilibria of an incomplete information game, where players believe
their opponents are “standard” types (i.e., payoff-maximizing in the original game
G) with probability at least p and can include “committed” types (i.e., committed to
playing fixed, not necessarily payoff-maximizing strategies in G) with the remain-
ing probability at most 1 − p. Essentially, the “standard” types of the elaborations
correspond to our rational types, whereas the “committed” types correspond to our
nonrational types; the difference is that, in the elaborations, the “committed” types’
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strategies become “rational” given the “fictitious” payoffs assigned through the func-
tions ũi . Put differently, the proposition provides an epistemic foundation for Bayesian
Nash equilibria of incomplete information games that are “elaborations” of the origi-
nal game G with “committed” types. In particular, these equilibria assume a common
prior and common knowledge of rationality.

4 Some extensions

In this section, we extend our analysis of p-rational outcomes and relate them to further
concepts studied in the literature. First, we present the bounded rationality counterpart
of Aumann andDreze (2008) notion of rational expectations by providing, in Theorem
3, a strategic characterization of the interim expected payoffs of p-rational outcomes.
Then, in Sect. 4.2, we extend our basic framework to games of incomplete information
and relate the resulting p-rational Bayes outcomes to the notion of Bayes correlated
equilibrium of Bergemann and Morris (2015).

4.1 p-Rational expectations

Aumann and Dreze (2008) define the rational expectations of game G as the set
of interim expected payoffs of each player, given some belief system that satisfies
common knowledge of rationality and the common prior assumption. Thus, according
to these authors, rational expectations can be identified with the value of game G; that
is, with the set of payoffs players can reasonably expect when taking part in G (being
‘reasonably’ understood, in their context, as consistent both with common knowledge
of rationality and the commonprior assumption). FollowingAumann andDreze (2008)
criteria, it is straightforward to extend their definition of rational expectation beyond
common knowledge of rationality, so that it covers the aspects of bounded rationality
we are interested in:

Definition 4 (p-Rational expectation) Let G be a game, p a probability, and B a
belief system satisfying MBpR and the common prior assumption. Then, a p-rational
expectation in G is the interim expected payoff of some player. We denote the set of
p-rational expectations of G by p-RE (G).

We can interpret the set of p-rational expectations of game G as the set of payoffs
players can reasonably expect when taking part in G, where now ‘reasonably’ is to
be understood as consistent with MBpR and the common prior assumption. The main
result by Aumann and Dreze (2008) provides a characterization of the set of rational
expectations of game G in terms of the correlated equilibria of the doubled game,
2G. Specifically, they show that each player i’s set of rational expectations is, exactly,
the set of interim expected payoffs of some correlated equilibrium of 2G. In order
to provide a similar characterization for p-rational expectations, we need to invoke
the notion of tripled game, which is analogous to that of doubled game in Sect. 3.2
but implies adding an additional payoff-irrelevant copy of each player’s set of actions.
Thus, the tripled game consists then on the list 3G = 〈I, (A′

i )i∈I , (u′
i )i∈I
〉
, where for

each player i we have set of actions A′
i = Ai × {1, 2, 3}, and playoff map u′

i is again
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indifferent to which copy of each of their action players are choosing. Then, the set of
p-rational expectations is characterized as follows:

Theorem 3 (Characterization of p-rational expectations) Let G be a game, p, a prob-
ability, and let A(1) =∏i∈I (Ai × {1}). Then:

(i) The p-rational expectations in G are the interim expected payoffs of the (A(1), p)-
correlated equilibria of the tripled game 3G when playing an action in Ai ×
{1, 2, 3}.

(ii) The p-rational expectations of rational players are the interim expected payoffs
of the (A(1), p)-correlated equilibria of the tripled game 3G when playing an
action in Ai × {1}.

Theorem 3 shows that each player i’s set of p-rational expectations is, exactly,
the set of interim expected payoffs of some (A(1), p)-correlated equilibrium of 3G.
Furthermore, it also shows that, if we are only interested in the p-rational expectation
of those ‘types’ of player i that act rationally, then this set is, exactly, the set of
interim expected payoffs of some (A(1), p)-correlated equilibrium of 3G, conditional
on playing, not any arbitrary action, but rather, only those in Ai × {1}.

4.2 Incomplete information

The analysis of the incomplete information situation requires the following general-
ization of the game-theoretic and epistemic frameworks presented in Sect. 2.
Bayesian games We follow the formalization in Lehrer et al. (2010), Lehrer et al.
(2013) and Bergemann and Morris (2015) that splits the Bayesian game in two com-
ponents, so that strategic and informational aspects can be studied separately. First,
we have a game with incomplete information G = 〈I,�,ψ, (Ai )i∈I , (ui )i∈I

〉
, where:

I is a finite set of players, � is a finite set of states of nature, ψ ∈ �(�) is a com-
mon prior with full support, and, for any player i , we have a finite set of actions Ai ,
and a payoff function ui : A × � → R, where A = ∏i∈I Ai is the set of action
profiles. The second component is an information structure S = 〈(Ti )i∈I , σ

〉
, where

each Ti is a finite set of signals (or types) for player i , and we have signal distribution
σ : � → �(T ), where T = ∏i∈I Ti is the set of signal profiles. A Bayesian game
consists then on a pair (G, S) in which the interaction proceeds as follows:

• A state of nature θ is randomly drawn with probability ψ [θ ].
• A profile of types t is randomly drawn with conditional probability σ [t |θ ] =

σ (θ) [t].
• Each player i , who privately receives signal ti , chooses an action ai and gets payoff

ui ((a−i ; ai ) , θ).

Belief systems (the Bayesian game case) The concept of belief system is extended
in order to be able to include payoff-uncertainty and information structures.
This way, in the present context a belief systems consists on a list B =〈
�, (�i )i∈I , μi , κ, (αi )i∈I , (τi )i∈I

〉
, where (i) � is a finite set of states of the world,

(ii) each �i is a partition of �, (iii) κ : � → � is a random variable that assigns a
state of nature to each state of the world, and (iv) for any player i we have random
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variables αi : � → Ai and τi : � → Ti , both measurable w.r.t. �i , that respectively
determine the action and signal corresponding to player i at each state of the world.
Finally, μi ∈ �(�) is a prior belief with full support. Again, we say that B satisfies
the common prior assumption if all the players have the same prior belief. Following
Bergemann and Morris (2015), we assume that a belief model always satisfies the
following standard condition that excludes informational incompatibilities between
the information structure and the belief system:

• Consistency For any player i , μi [τ = t, κ = θ ] = ψ(θ) · σ [t |θ ], for any type
profile t and any state of nature θ .

Interim beliefs are defined exactly as in Sect. 2.2, and thus, at state ω, each player
i’s interim beliefs about opponents’ behavior and the state of nature are given by
μi (ω)[(a−i , θ)] = μi (ω)[κ−1(θ) ∩⋂ j �=i α−1

j (a−i )], for any (a−i , θ) ∈ A−i × �.
These beliefs induce an interim expected payoff, for each action ai ,

EB(ω)
[
ui ((α−i ; ai ); κ)

] =
∑

a−i ∈A−i

μi (ω)[a−i ] · ui (a−i ; ai ) ,

Again, we say that player i is rational at state ω, if αi (ω) ∈ argmaxai ∈Ai
E(ω)[

ui ((α−i , ai ) , κ)
]
, and denote the event that player i is rational by Ri . The rest of

epistemic notions defined in Sects. 2.2 and 3.1, in particular that ofMBpR are straight-
forwardly adapted to the incomplete information case studied here. Then, similarly as
in Sect. 3.1, in the present context, the aspects of bounded rationality we are interested
in are represented by the following notion:

Definition 5 (p-Rational Bayes outcome) Let (G, S) be a Bayesian game, and
p, a probability. Then, we say that distribution π ∈ �(T × A × �) is a p-
rational Bayes outcome if it is induced by some belief system B that satisfies
consistency,MBpR and the common prior assumption.We denote the set of p-rational
Bayes outcomes by p-RBO(G, S).

The characterization of the set of p-rational Bayes outcomes follows a similar
pattern as the characterization of p-rational outcomes of a game with complete infor-
mation: first, we need to generalize the notion of correlated equilibria (Bergemann and
Morris (2015) version, in this case of incomplete information) so that it accounts for
nonoptimal behavior; second, we need to introduce the counterpart of doubled game
corresponding to the game with incomplete information.

Definition 6 ((X, p)-Bayes correlated equilibrium) Let (G, S) be a Bayesian game.
Then, for any X = ∏i∈I Xi ⊆ A and any probability p we say that distribution
π ∈ �(T × A × �) is a (X, p)-Bayes correlated equilibrium if the following hold:

(i) Consistency constraints For any type profile t and any state of nature θ ,
π [(t, θ)] = ψ [θ ] σ [t |θ ].

(ii) Incentive constraints For any player i , any type ti ∈ Ti and any action ai ∈ Xi ,

ai ∈ argmaxa′
i ∈Ai

∑

a−i ∈A−i

∑

θ∈�

π [(ti , (a−i ; ai ), θ)] · ui
(
(a−i ; a′

i ), θ
)
.
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(iii) p-Belief constraints For any player i , any type ti ∈ Ti and any action ai ∈ Ai ,

π
[
X−i × {(ti , ai )}

] ≥ p · π
[
A−i × {(ti , ai )}

]
.

We denote the set of (X, p)-Bayes correlated equilibria of (G, S) by (X, p)-
BC E (G, S).

It is easy to see that, if the amount of bounded rationality vanishes, p = 1, then every
(X, p)-Bayes correlated equilibria is also a Bayes correlated equilibria as defined by
Bergemann and Morris (2015).12 The only remaining element in order to present the
characterization result is then an appropriate version of the doubled game:

Definition 7 (Doubled game, the incomplete information case) Let G be a game with
incomplete information. Then, the doubled game of game G is defined as the tuple
2G = 〈I,�,ψ,

(
A′

i

)
i∈I ,
(
u′

i

)
i∈I

〉
, where for each player i :

(i) A′
i = Ai × {1, 2} is player i’s set of pure actions. With some abuse of notation,

we denote a generic element of A′ = ∏i∈I A′
i by (a, ν), where, for ν ∈ {1, 2}I ,

νi specifies which copy of Ai in A′
i player i’s pure action belongs to.

(ii) u′
i : A′� → R, given by ((a, ν), θ) 	→ ui (a, θ) is player i’s payoff function,

Finally, given a Bayesian game (2G, S), we can project outcome distributions of the
doubled game into outcome distributions of the original game. LetmargT ×A×�(Y ) ={
margT ×A×�π̂ |π̂ ∈ Y

}
for any subset Y ⊆ �

(
T × A′ × �

)
. Then, the characteriza-

tion result in this case becomes:

Theorem 4 (Strategic characterization of p-rational Bayes outcomes) Let (G, S) be
a Bayesian game and p, a probability. Then, distribution π ∈ �(T × A × �) is a p-
rational Bayes outcome of (G, S) if and only if it is the distribution in �(T × A × �)

induced by some (A(1), p)-Bayes correlated equilibrium of (2G, S), where A(1) =∏
i∈I (Ai × {1}). Formally,

p-RBO (G, S) = margT ×A×�

((
A(1), p

)
-BC E (2G, S)

)
,

This is parallel to our characterization result for the complete information case.
Finally, consider a game with incomplete information (G, S) and belief system B.
Besides consistency, MBpR and the common prior assumption, and following Forges
(1993), Forges (2006), we can impose the following additional conditions on B:

(1) Informational sufficiency of the joint type μ [κ = θ |∨i∈I �i ] = μ [κ = θ |τ ] for
any state of nature θ .

(2) Informational sufficiency of individual types μ
[
τ−i = t−i , κ = θ |�i

]

= μ
[
τ−i = t−i , κ = θ |τi

]
for any any player i , any partial profile of types t−i

and any state of nature θ .

Then it is easy to see that, if we impose only (1), or both (1) and (2), the respec-
tive distributions induced in A × � are a bounded rationality counterpart of Forges’
Bayesian solution and belief invariant Bayesian solution.

12 In such case p = 1, the p-beliefs constraints only hold if X = supp
(
margAπ

)
, and thus, the incentive

constraints are satisfied if and only if π satisfies what Bergemann and Morris call obedience.
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5 On p as an empirical measure of rationality

In the previous section we computed, for a given game G and for a given value
p ∈ [0, 1], the set of all distributions of play, π ∈ �(A), making up the p-rational
outcomes. In this section, we go the other way around and compute for a game G
and for a given distribution of play π , the unique largest value of p, say p, that is
compatible with π being a p-rational outcome. We then look again at games played
in the field or in experimental settings and compute, for the observed distributions of
play, the unique largest value p that is consistent with the empirical distribution of
play πemp. We argue that p can be interpreted as a lower bound measure for the degree
of “rationality” understood as possible payoff-maximizing behavior that is compatible
with the empirical frequency of play πemp. We now make this more precise.

Recall that from Theorem 2 it follows that the set of p-rational outcomes is always
compact and that it varies continuously in p. Moreover, since it goes from being the
set of correlated equilibria (when p = 1) to being the entire set�(S) (when p = 0), it
immediately follows that, for any given distribution of play π ∈ �(A), for any finite
normal-form game G, it is possible to compute a unique p ∈ [0, 1] such that:

p = max {p ∈ [0, 1] | π ∈ p-RO(G)} .

By definition of the p-rational outcomes, p is also the largest value of p consistent
with common knowledge of mutual p-belief of opponents’ rationality (MBpR) for
the distribution π . In particular, assuming the payoffs are the ones given in G, this
means that at the distribution π , every player chooses actions that are consistent with
common knowledge of payoff maximization with probability at least p. (Notice that
payoff-maximizing here is relative to some p-rational belief system B deduced from
π , see Sect. 3 for the definitions.)Moreover, given Theorem 1, the p-rational outcomes
are defined by finitely many linear inequalities so that the value p is relatively easy to
compute.

Therefore, the unique value p ∈ [0, 1]defined above can be interpreted as the largest
level of rationality in a given observers data pointπ such that, for each player, a fraction
p of his or her actions are consistent with common knowledge of payoff-maximization
given the distribution of play π . This provides a unique value that can be computed
for any observed finite strategic interaction or game played in an experimental setting,
including incomplete information games. Moreover, the obtained measure p has the
same interpretation and is thus comparable across games.

Especially the recent literature on behavioral game theory has provided many mod-
els of bounded rationality in games. Some of the most successful ones include the
quantal response equilibria of McKelvey and Palfrey (1995), and the k-level reason-
ing models of Stahl and Wilson (1994), Stahl and Wilson (1995), Costa-Gomes et al.
(2001), and Camerer (2003).13 These models indirectly provide measures of nonra-

13 Camerer andHo (2015) contains a recent discussion of these differentmodels;Wright andLeyton-Brown
(2014) measure and compare quantitatively the predictive performance of various models (including k-level
and λ-quantal response models) across a large sample of experiments.
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tional behavior that can be applied to experimental or field data.14 Without questioning
the models’ success at explaining and predicting strategic behavior in different exper-
imental settings, we believe the corresponding measures, as summary indicators for
the level of rationality of a given interaction, are not as suitable as as our measure
p for the following reasons. On one hand, the level λ of fitted λ-quantal response
models is not comparable without renormalization of the payoffs of the game. On
the other hand, the estimated levels k from k-level reasoning models need not give a
unique or clear-cut value, as they typically consist of a distribution of levels k within
the population, and, moreover, the estimated levels k generally depend on an assumed
level 0. We now discuss some experimental data, including games, where the common
prior assumption is unlikely to hold. In such cases, our measure p is a lower bound on
the maximum frequency of actions consistent with payoff maximization and common
knowledge of payoff maximization.

Consider again the penalty kick game (G P K ) based on penalty kicks shot by profes-
sional soccer players in European leagues, represented in Fig. 1 from the Introduction.
For the empirical frequencies provided, we compute a value of p ≈ 0.96 confirming
its closeness to the unique equilibrium of the game.15 As a second, closely related
example, consider the following two matching pennies games with similar strategic
characteristics as the penalty kicks game, and that were played in a lab.16 The first is a
standard (symmetric)matching pennies games (G M P ) and the second is an asymmetric
version (G AM P ) (Fig. 6).

AsGoeree andHolt (2001) explain, the games are chosen such thatwhile the original
game “conforms nicely to predictions of Nash equilibrium or relevant refinement”,
a change in the payoff structure produces a “large inconsistency between theoretical
predictions and observed behavior”. Therefore, while behavior is close to the predicted
(unique) Nash equilibrium in the basic game (G M P ), it is less close in the asymmetric
version (G AM P ). Again, our theory allows to quantify the level of “rationality” and
obtains values of p ≈ 0.96 for the first interaction (G M P ) and a level of p ≈ 0.80
for the second one (G AM P ). Notice that while the asymmetric version (G AM P ) was
“designed” to generate behavior visibly inconsistent with Nash behavior, the level
of “rationality” we find (p ≈ 0.80) is significantly above what we would obtain if

14 Aumann (1992) proposes a measure of “irrationality” using both probabilities and forgone payoffs;
implicitly, our measure also takes into account forgone payoffs.
15 To give a sense of what the number means in this case, we provide the underlying probability distribution
π2G

P K ∈ �(2A) of the doubled game, that supports the value p ≈ 0.96:

π2G
P K ≈

(J L , 1) (J R, 1) (J L , 2) (J R, 2)
(K L , 1) 0.166 0.216 0 0.016
(K R, 1) 0.252 0.348 0 0
(K L , 2) 0.002 0 0 0
(K R, 2) 0 0 0 0

.

Essentially, since the entry at ((K L , 1), (J R, 2)) is positive, this indicates that the goalkeepers jumped
right a little more than optimal, and since the entry ((K L , 2), (J R, 1)) is (barely) positive, this indicates
that the kickers kicked left very slightly more than optimal. The remaining entries with (K L , 1), (K R, 1),
(J L , 1), and (J R, 1) are all consistent with rationality.
16 The games and frequencies of play are taken from Goeree and Holt (2001).
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GMP ≡
L R

T 80,40 40,80
B 40,80 80,40

πemp
MP ≈

L R

T 0.230 0.250
B 0.250 0.270

GAMP ≡
L R

T 320,40 40,80
B 40,80 80,40

πemp
AMP ≈

L R

T 0.154 0.806
B 0.006 0.034

.

Fig. 6 Matching pennies (p ≈ 0.96) and asymmetric matching pennies (p ≈ 0.8)

GI ≡
L R

T 0,4 2,0
B 2,0 0,1

πemp
I,chimps ≈

L R

T 0.112 0.100
B 0.414 0.374

πemp
I,humans ≈

L R

T 0.227 0.190
B 0.318 0.265

.

Fig. 7 Inspection game (chimps: p ≈ 0.97; humans: p ≈ 0.70)

GDS2 ≡
L R

T 75,51 42,27
B 48,80 89,68

πemp
DS2

≈
L R

T 0.791 0.066
B 0.132 0.011

GDS3 ≡

L R

T 53,86 24,19
M 79,57 42,73
B 28,23 71,50

πemp
DS3

≈

L R

T 0 0
M 0.181 0.604
B 0.050 0.165

.

Fig. 8 Games solvable by two rounds (p ≈ 0.86) and three rounds (p ≈ 0.79) of strict dominance

players had been choosing their strategies uniformly at random (p ≈ 0.25). As a third
example, consider the inspection game (G I ) depicted in Fig. 7. The game is taken from
Martin et al. (2014) who study chimpanzee behavior in matching pennies type games,
and compare their behavior with human behavior. Calculating standard deviations of
observed choices from the Nash prediction they find that the chimpanzees’ choices are
closer to Nash equilibrium than humans’. Applying our measure p to their games, we
obtain higher levels of rationality for the chimps than for the humans, thus confirming
their findings. We here report our measure for one of their games.17

As a fourth example, consider the games depicted in Fig. 8.18 The first one is
solvable in two rounds of strict dominance (G DS2 ), whereas the second one is solvable
in three rounds (G DS3 ).

In particular, both games have a unique outcome consistent with common knowl-
edge of rationality, which are (T, L) for G DS2 , played with frequency 0.79, and
(B, R) for G DS3 , played with frequency 0.165. Our computed level of “rationality” is

17 We are grateful to Rahul Bhui and Peter Bossaerts for kindly providing us the data for this game.
18 These are taken from Costa-Gomes et al. (2001). We are grateful to Miguel Costa–Gomes for kindly
providing us the data for these experiments.
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p ≈ 0.86 for the first and p ≈ 0.79. The lower value of p in G DS3 compared with that
of G DS2 is consistent with the intuition that coordination that requires higher levels
of beliefs (in this case third order beliefs versus second order) is also more difficult to
obtain.

In the above games, the assumption of rationality and higher order beliefs in ratio-
nality imply a unique outcome, so that the assumption of a common prior is implicit in
predicting the equilibrium outcome. For such games, our measure p is indeed likely
to approximately pick up the degree of “rationality” in the sense of a maximum level
p such that every player plays actions consistent with payoff maximization with prob-
ability at least p, at the empirical distribution of play πemp.

On the other hand, in games with multiple equilibria, such as the coordination and
the Kreps games below, the assumption of a common prior becomes crucial in inter-
preting the value p. Consider the following simple (battle of the sexes) coordination
game:

G BS ≡
L R

T 2,1 0,0
B 0,0 1,2

πBS =
L R

T 0 0
B 1 0

.

For the extreme case where players play (L , B) with probability 1, this corresponds
to a value p = 0. At the same time, if we do not assume a common prior, the pro-
file (L , B) is consistent with common knowledge of rationality (Player 1 believes
player 2 will play R, and player 2 believes player 1 plays T ; it is a rationalizable
profile). In this case, our measure, confounds the two possible sources of “nonra-
tionality”, namely, nonpayoff-maximizing behavior that is due to lack of rationality
and higher order beliefs in rationality or behavior that is due to lack of a common
prior. Without knowing whether or not the assumption of a common prior is met,
we cannot separate the two, and so the resulting measure p cannot be interpreted
as a measure of “rationality” in the sense of an approximate maximum probability
of payoff-maximizing behavior at the distribution of play πemp.19 However, and this
is important for many cases of empirical relevance, the value p can nonetheless be
interpreted as a measure of “rationality” in the sense of a lower bound on the max-
imum frequency of behavior that is consistent with common knowledge of payoff
maximization at the distribution of play πemp. In other words, it remains true that a
computed value p implies that, at π , every player chooses actions that are consistent
with payoff maximizationwith probability at least p, whether or not there is a common
prior.20 The only difference is that without a common prior this need no longer be the
maximal such value. As the above example shows, the amount of payoff-maximizing
behavior may be above p for all players; this cannot happen if there is a common
prior.

19 Kneeland (2015) estimates for an interesting class of “ring games” the degrees to which agents are
rational, hold beliefs of opponents being rational, and consistency of beliefs, and deduces that deviations
from “equilibrium behavior” are largely due to inconsistency of beliefs.
20 To see this, notice that the computation of the largest p consistent with payoff maximization and no
further constraint must yield a no smaller p than the same computation with the additional constraint of the
common prior assumption.
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Finally, consider again theKreps game G K represented in Fig. 2 in the Introduction.
Here players typically play a strategy (N N ) that is the only strategy that is not in the
support of a Nash equilibrium of the game (these are (T, L), (B, R) and a mixed
equilibrium (( 3031 ,

1
31 ); ( 1

21 ,
20
21 , 0, 0))). Although the strategy is not part of any Nash

equilibrium, it is both rationalizable and in the support of the set of correlated equilibria,
and it is played with total frequency 0.68. By our measure, the overall frequency of
play has a level of “rationality” of at least p ≈ 0.7, whether or not there is a common
prior.

6 Concluding remarks

We conclude with a few remarks.

Remark 1 ((p, q)-Rational outcomes) An important objective of the paper was to put
as few restrictions on nonrational behavior as possible, so as to cover all sorts of
departures from rationality. However, throughout the paper we implicitly assumed—
as part of the notion of MBpR—that players always believe the other players are
rational with probability p or more; thus we indirectly assumed that all players have
the same p whether or not they are rational at a given state. This is consistent with all
players making mistakes with same lower bound probabilities and always being aware
of others making mistakes with these lower bound probabilities. Strictly speaking
though, it restricts behavior of rational and nonrational types.

Amore general benchmark—also in linewith ourmotivation—is to allow for differ-
ent beliefs in rationality for different players and for different types (whether rational
or nonrational at a given state). In particular, we can assume that each player i believes
the other players are rational with probability p or more when rational and believes
others are rational with probability q or more when not rational; importantly, one can
drop any restriction on the nonrational types and directly set q = 0 for all i ∈ I , which
would allow to not impose any belief constraints on nonrational types. This can be
formalized assuming a pair of probabilities (p, q), where the components associated
to states in which the agents are rational are represented by p, while the compo-
nents associated to the nonrational states are represented by q This leads to the more
general (p, q)-rational outcomes of G, (p, q)-RO(G). These are again marginals of
(A(1), (p, q))-correlated equilibria of 2G, in that they are distributions satisfying the
same conditions as the (A(1), p)-C E(2G) except that the p-belief constraints now
hold with probabilities p for all rational types, and hold with probability q for all
nonrational types. That is, we replace the original p-belief constraints (ii) with the
more general (p, q)-beliefs constraints of the form,

(ii’) For any player i and any ai ∈ Xi , π
[
X−i × {ai }

] ≥ p · π
[
A−i × {ai }

]

(ii’) For any player i and any ai ∈ Ai\Xi , π
[
X−i × {ai }

] ≥ q · π
[
A−i × {ai }

]
.

Thus, for any player i we have that (A(1), p)-C E(2G) ⊆ (A(1), (p, q))-C E(2G) ⊆
(A(1), (p, 0))-C E(2G) and therefore, p-RO(G) ⊆ (p, q)-RO(G) ⊆ (p, 0)-RO(G).

While the correspondence (p, q)-RO(G)maintains the basic topological properties
of the correspondence p-RO(G), it need not converge to the set of correlated equilibria
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of G as (p, q) → (1, 0), i.e., if only the rational types believe opponents are rational
with probability 1, but does so if one also requires (p, q) → (1, 1). This can be seen
already in Example 1. A (1, 0)-rational belief system can be very far from a (1, 1)-
rational belief system in that the former need not put any restriction on the total mass
of states where all players are rational, μ[R].21

The alternative notion of approximate knowledge of rationality requiring μ[C B p

(R)] > 1−ε, for ε > 0, (instead ofMBpR), ismore flexiblewith respect to the players’
beliefs in that it only restricts the total mass of common p-belief and hence does not
specify directly what interim beliefs individual players have. A characterization of
p-rational outcomes with this definition is possible along the lines of our Theorem
1, but involves more complicated incentive and p-belief constraints that are imposed
over all possible subsets and permutations of players.We leave such a characterization
for future work.

Remark 2 (Noncommon priors) Throughout the paper we assumed the existence of
common prior beliefs. This, together with the notion of MBpR, allowed us to derive
relatively stringent restrictions on behavior. It is natural to ask, what happens if the
common prior assumption is relaxed. As it turns out, under subjective or noncommon
prior beliefs, MBpR puts no restrictions on possible behavior – even when p = 1.
This follows from the fact that each player’s restrictions on her own subjective prior
only refer to the opponents’ rationality – not her own. Now, since the prior is sub-
jective, it might be the case that it is deluded about opponents’ behavior, so that
restrictions on the prior are not actual restrictions on opponents’ behavior. Since this
is true for every player, no restriction on behavior is placed.22 Or put in other words,
an essential feature of the notion of p-rational outcomes is that it allows for some
amount of irrational behavior, not only expected irrational behavior. When assum-
ing a common prior, the fact that opponents have correct beliefs about, say, player
1’s behavior, and those beliefs assume rationality, it cannot be the case that player

21 To see that in a (1, 0)-rational belief system the total mass of states where agents are nonrational is
unrestricted, take the game in Example 1 and consider the belief system B, where� = A, αi (a−i ; ai ) = ai ,
for any player i and any

(
a−i ; ai

) ∈ A, and where μ ∈ �(A) is given by μT L = μT R = μBL = 0 and
μB R = 1. It can be checked that it is (1, 0)-rational and clearly μ[R] = 0. At the same time, in a (p, q)-
rational belief system it is always the case that, for any player i and any state ω, μ(ω)

[
R−i
] ≥ q, hence

μ[R−i ∩ �i (ω)]≥q · μ[�i (ω)]�⇒
∑

�i (ω)∈�i

μ[R−i ∩ �i (ω)] = q ·
∑

�i (ω)∈�i

μ[�i (ω)]�⇒μ[R−i ]≥q

which besides confirming the expected convergence to the correlated equilibria as (p, q) → (1, 1), also
shows that positive q’s do put restrictions on the total mass of states where agents are rational μ[R].
22 In order to see it in detail, given game G and probability p we say that a family of distributions
(πi )i∈I ∈ (� (A))I is a p-subjectively rational outcome of G (p-S RO(G)) if there exists some belief
system B that satisfies MBpR, does not satisfy the common prior assumption and induces subjective
outcomes (πi )i∈I . As shown in the Appendix, it is easy to see that, for any p ∈ [0, 1], the whole space is
obtained, namely:

p-S RO (G) = (� (A))I .

In particular, a player who is certain that all the other agents are rational may still select a nonrational action,
and thus, any pure strategy profile in A is consistent with MBpR, even when p = 1.
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1 behaves irrationally with probability 1. However, this last property fails to hold
when allowing for subjective priors. In this case, player 1’s opponents’ beliefs about
player 1’s own behavior may not be informative about player 1’s true behavior, and
hence, they put no restrictions on it. This provides a stark contrast with the behavior
under common knowledge of rationality and also common p-belief in rationality as
in, respectively, Aumann (1974), Bernheim (1984), Brandenburger and Dekel (1987),
Pearce (1984), Tan and da Costa Werlang (1988) and Börgers (1994), Hu (2007), Ger-
mano et al. (2016), and in a sense further highlights the stringency of the common prior
assumption.23

Remark 3 (Comparison with further solution concepts) Our sets of p-rational out-
comes define sets of distributions of play that are broader than the correlated equilibria.
As the examples show, they are distinct from the ε-correlated equilibria, reflecting the
fact that they impose no constraints on the typeof departure from rationality assumed—
unlike the ε-optimizers of the ε-correlated equilibria. A similar remark applies to the
quantal response equilibria of McKelvey and Palfrey (1995) or other models such
as the level-k reasoning models [Stahl and Wilson (1994), Stahl and Wilson (1995),
Costa-Gomes et al. (2001), Camerer (2003)] that put specific restrictions on how play-
ers can deviate from rationality. More closely related are the rationalizable and the
p-rationalizable strategy profiles [see respectively Bernheim (1984), Pearce (1984),
Dekel et al. (2007) and Hu (2007), Germano et al. (2016)], which are derived at the
interim stage and without appealing to priors. Unlike the p-rational outcomes, whose
set of distributions is fully supported on A, whenever p < 1, both the rationalizable
and the p-rationalizable profiles may be strict subsets of A. It remains an empirical
question to what extent the p-rational outcomes bound observed behavior in a robust
and useful manner.

Remark 4 (Learning to play p-rational outcomes) Clearly, all learning dynamics that
lead to correlated equilibria (see e.g., Hart 2005) will also lead to p-rational out-
comes, which includes dynamics that converge in polynomial time (see e.g., Hart and
Mansour 2010). The question arises as to what further dynamics (not necessarily con-
verging to correlated equilibria) may converge to p-rational outcomes and whether
they include interesting dynamics that for example allow for faster or more robust
convergence.

APPENDIX

A Proof of Lemma 1

(i) The left implication is obvious, so let’s focus on the right one. By definition,
C B p (R) ⊆ ⋂i∈I B p

i (R), and therefore, for any i ∈ I , C B p (R) ⊆ B p
i (Ri ).

Then, since p > 0, and ω ∈ B p
i (Ri ), we have that Ri ∩ �i (ω) �= ∅, and

therefore, that �i (ω) ⊆ Ri and, in particular, ω ∈ Ri . Thus, B p
i (Ri ) ⊆ Ri .

23 Recall that the result of part (i) of Lemma 1 also holds with noncommon priors.
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(ii) It is immediate that C B1 (R) = � if and only of
⋂

i∈I B1
i (R) = �, so it suffices

to prove that
⋂

i∈I B1
i (R) = � if and only if

⋂
i∈I B1

i (R−i ) = �. The right
implication is immediate. For the proof of the left one, from part (i) of the lemma,
it is enough to check that if

⋂
i∈I B1

i (R−i ) = � then R = �. But this is immedi-
ate: take i, j ∈ I , i �= j , then B

p j
j

(
R− j
) ⊆ B

p j
j (Ri ), and therefore, B

p j
j (Ri ) =

�. Hence μ (Ri ) =∑ω∈� μ
(
Ri ∩ � j (ω)

) =∑ω∈� μ
(
� j (ω)

) = 1. Since μ

has full support on �, the latter implies that Ri = �. As the proof applies for
any i ∈ I , we obtain that R = �.

(iii) If
⋂

i∈I B p
i (R−i ) = �, then R =⋂i∈I

(
B p

i (R−i ) ∩ Ri
) =⋂i∈I B p

i (R). Thus,
R is p-evident belief and therefore, R ⊆ C B p(R). Now, since

⋂
i∈I B p

i (R−i ) =
�, we have both that μ

[
R−i
] ≥ p and μ

[
R−i ∩ Ri

] ≥ p · μ [Ri ]. The former
implies that that μ[R j ] ≥ p for any j �= i ; and thus, the same argument and
some reindexing imply that μ[Ri ] ≥ p. The fact that for any j �= i , μ [R] =
μ
[
R−i |Ri

] · μ [Ri ] ≥ p · μ [Ri ] ≥ p2 completes the proof.

B Proofs of the characterization results

In this section we first prove a technical lemma. Then we prove Theorem 4, and then
Theorem 1 as a special case of Theorem 4. The technical lemma is the following:

Lemma 2 Let (G, S) be a Bayesian game, p a probability, n ∈ {2, 3}, and π∗ ∈(
A(k), p

)
-BC E (nG, S) for some k ≤ n. For game nG, let belief system B =〈

�, (�i )i∈I , μ, κ, (αi )i∈I , (τi )i∈I
〉

be given by: (i) � = {(t, a, ν, θ) ∈ T × A′ × �

|π∗ [(a, ν, θ)]>0 }, and for any (t, a, ν, θ) ∈ �, (ii) μ [(t, a, ν, θ)]=π∗ [(t, a, ν, θ)],
(iii) κ (t, a, ν, θ) = θ , and for any i ∈ I , (iv) we have cells �i (t, a, ν, θ) =
T−i × A′−i × � × {(ti , ai , νi )}, (v) αi (t, a, ν, θ) = ai , and (vi) τi (t, a, ν, θ) = ti .
Then, B is a belief system for (G, S) satisfying consistency, MBpR and the common
prior assumption, and induces π∗ in T × A′ × �.

Proof It is immediate that αi and τi are measurable w.r.t. �i for any i ∈ I . Take
(t, θ) ∈ T × �; then, we have μ [τ = t, κ = θ ] = π∗ [(t, θ)] = ψ [θ ] · σ [t |θ ], and
therefore, B satisfies consistency. Now, note first the fact that for anyω = (t, a, ν, θ) ∈
� and any a′

i ∈ Ai it holds that,

E(ω)
[
ui
(
α−i , a′

i , κ
)] =

∑

(
t ′−i ,
(
a′−i ,ν

′−i

)
,θ ′)

π∗ [(t ′−i , ti , (a
′−i , ν

′−i ), (ai , νi ), θ
′)]

× ui
(
((a′−i , ν

′−i ); (ai , νi )), θ
′) ,

together with the incentive constraints, implies that for any i ∈ I we have that T ×
A′−i × (Ai × {k}) × � ⊆ Ri , and therefore,24 that μ

[∏
j �=i (A j × {k}) ∩ �i (ω)

]
≤

μ
[
R−i ∩ �i (ω)

]
for any i ∈ I and anyω ∈ �. Then, take i ∈ I andω = (t, a, ν, θ) ∈

� and note that:

24 We abbreviate, μ
[∏

j �=i (A j × {k}) ∩ �i (ω)
]

= μ
[(

T ×∏ j �=i (A j × {k}) × A′
i × �
)

∩ �i (ω)
]
,

with some abuse of notation.

123



Bounded rationality and correlated equilibria 623

μ[
∏

j �=i

(A j × {k}) ∩ �i (ω)] = π∗[
∏

j �=i

(A j × {k}) × {(ti , ai , νi )}],

μ [�i (ω)] = π∗[A′−i × {(ti , ai , νi )}].

In consequence, due to the p-belief constraints, we have μ
[
R−i ∩ �i (ω)

] ≥ p ·
μ [�i (ω)], and therefore, that B satisfies MBpR. ��

B.1 Proof of Theorem 4

For the right inclusion, pick π ∈ p-RBO (G, S) and B, a belief model that induces
π . Take distribution π∗ ∈ �

(
T × A′ × �

)
given by,

π∗ [(t, a, ν, θ)] = μ

⎡

⎣[τ = t, α = a, κ = θ ] ∩
⋂

i :vi =0

Ri ∩
⋂

i :vi =1

¬Ri

⎤

⎦

for any (t, a, ν, θ) ∈ T × A′ × �. Then, π∗ ∈ �
(
T × A′ × �

)
. The consistency

constraint is satisfied, since,

π∗ [(t, θ)] = μ

⎡

⎣[τ = t, κ = θ ] ∩
⋃

ν∈N I

⎛

⎝
⋂

i :vi =0

Ri ∩
⋂

i :vi =1

¬Ri

⎞

⎠

⎤

⎦

= μ [τ = t, κ = θ ] = ψ [θ ] · σ [t |θ ]

for any (t, θ) ∈ T × �. Now, note that for any i ∈ I , any ai , a′
i ∈ Ai , any ti ∈ Ti and

any νi ∈ N we have that,

∑

(t−i ,a−i ,ν−i ,θ)

π∗[(t−i , ti , (a−i , ν−i ), (ai , 1), θ)] · ui ((a−i , ν−i ), (ai , 1), θ)

−
∑

(t−i ,a−i ,ν−i ,θ)

π∗ [(t−i , ti , (a−i , ν−i ), (ai , 1), θ)
] · ui
(
(a−i , ν−i ), (a

′
i , νi ), θ

)

=
∑

ω∈Ri ∩[τi =ti ,αi =ai ]

(
E(ω)
[
ui ((α−i , αi (ω)) , κ)

]− E(ω)
[
ui
((

α−i , a′
i

)
, κ
)])≥0.

In addition, note that for any (ti , ai , νi ) ∈ Ti × A′
i ,

π
[
X−i × {(ti , ai , νi )}

] = μ
[
R−i ∩ [τi = ti , αi = ai ] ∩ [1Ri = 2 − νi

]]

=
∑

ω∈[τi =ti ,αi =ai ]∩
[
1Ri =2−νi

]
μ
[
R−i ∩ �i (ω)

]

≥
∑

ω∈[τi =ti ,αi =ai ]∩
[
1Ri =2−νi

]
p · μ [�i (ω)]

= p · π∗ [A′−i × {(ti , ai , νi )}
]
.
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Thus, both the incentive constraints and the p-belief constraints are satisfied. For the
left inclusion, just apply Lemma 2 to A′

i = Ai × {1, 2} and k = 1.

B.2 Proof of Theorem 1

This theorem can be seen as a corollary of Theorem 4. To see this, note that if G is a
gamewith complete information,we can defineBayesian game

(
G ′, S
)
, wherewehave

(i) G ′ = 〈I,�,ψ, (Ai )i∈I ,
(
u′

i

)
i∈I

〉
, with � = {θ}, ψ = 1{θ} and u′

i (a, θ) = ui (a)

for any a ∈ A and i ∈ I , and (ii) S = 〈(Ti )i∈I , σ
〉
with Ti = {ti } for any i ∈ I and

σ(t |θ) = 1. It is immediate that, for any X = ∏i∈I Xi ⊆ A and any p ∈ [0, 1], we
have that (X, p) -C E (G) = (X, p) -BC E

(
G ′, S
)
. But note also that if we take some

list B ′ = 〈�, (�i )i∈I , (αi )i∈I , (τi )i∈I , μ
〉
, which is a candidate to be a belief system

for G ′, for any i ∈ I , forcefully τi = 1{ti }; and therefore, B ′ is a belief system for G ′ if
and only if B = 〈�, (�i )i∈I , (αi )i∈I , μ

〉
is a belief system forG. Thus, it is immediate

that, for any p ∈ [0, 1], we have p-RO (G) = p-RBO
(
G ′, S
)
. So, let G be a game,

and p ∈ [0, 1]. Then, we just checked above that both p-RO (G) = p-RBO
(
G ′, S
)

and
(

A(1), p
)
-C E (2G) = (A(1), p

)
-BC E

(
2G ′, S

)
, hold, so from Theorem 4 we

conclude that p-RO (G) = (A(1), p
)
-C E (2G).

B.3 Proof of Theorem 3

We prove the first statement; the next one concerning the p-rational expectations of
rational types then follows directly. We suppose we are taking some player i’s expec-
tation. For right inclusion, take p-rational belief system B = 〈�, (�i )i∈I , (αi )i∈I , μ

〉

and ω ∈ �. We define:

π∗
i,ω [(a, ν)] = μ

⎡

⎣[α = a] ∩ Wi ∩
⋂

j �=i,ν j =1

R j ∩
⋂

j �=i,v j �=1

¬R j

⎤

⎦

for any (a, ν) ∈ A′, where Wi = Ri\�i (ω) if νi = 0, Wi = ¬ (Ri\�i (ω)) if νi = 1,
and Wi = �i (ω) if νi = 2. It is immediate that π∗

i,ω ∈ �
(

A′). By an argument
similar to the one in the first part of the proof of Theorem 4, reduced to the degenerate
case where |�| = 1, we can conclude that πi,ω is a

(
A(1), p

)
-correlated equilibrium

of G; moreover, it is immediate that player i’s expectation conditional on playing
(αi (ω) , 3) induced by πi,ω is exactly E(ω)

[
ui (α−i , αi (ω))

]
. For the left inclusion,

take Lemma 2 for the case A′
i = Ai × {1, 2, 3}, k = 1, and |�| = 1.

C Proof of Theorem 2

Nonemptiness follows from the fact that correlated equilibria always exist for any
finite game G and constitute p-rational outcomes for any p ∈ [0, 1]. Given that the set
of p-rational outcomes is a projection of the (X, p)-correlated equilibria of 2G, with
X = A(k) a copy of the action space of the original game G, the remaining properties

123



Bounded rationality and correlated equilibria 625

follow once they have been shown for the (X, p)-correlated equilibria of 2G. This
is what we do next. For the given game G, define the (X, p)-correlated equilibrium
correspondence, where X = A(k) with k ∈ {0, 1}, is fixed:

ρ : [0, 1] −→ �(2A)

p → (X, p)-C E (2G) .

Clearly ρ is convex- and compact-valued; it remains to be shown that it is also contin-
uous. We do this by showing that it is upper- and lower-hemicontinuous (respectively,
uhc and lhc) as a correspondence of p.

uhc

Since 2A is finite, �(2A) is compact, and hence upper-hemicontinuity is equivalent
to showing that ρ has a closed graph. But this is immediate from inspection of the
inequalities defining the sets (X, p)-C E (2G). In particular, all the inequalities are all
weak inequalities, linear in p. Moreover, the domain [0, 1] is compact.

lhc

Denote by �ρ ⊂ [0, 1] × �(2A) the graph of the correspondence ρ. Fix (p, π̂) ∈ �ρ

and let (pn)n ⊂ [0, 1] be a sequence converging to p.We need to show that there exists
a sequence

(
(π̂)n
)

n converging to π̂ such that (π̂)n ∈ ρ(pn) for sufficiently large n.
Take the point (p, π̂). Clearly this satisfies all inequalities defining ρ(p), in particular
also the p-rationality constraints.Consider the following sequence

(
pn, π̂
)

n ⊂ [0, 1]×
�(2A). If for sufficiently large n the elements are contained in �ρ we are done.
So consider the case where they are not. Consider the family of projections �ρ :
[0, 1] × �(2A) −→ [0, 1] × �(2A) that map, for fixed p̄ ∈ [0, 1], any element
( p̄, π̄) ∈ [0, 1] × �(2A) to the point in the set { p̄} × ρ( p̄) that is closest to ( p̄, π̄).
Since the sets ρ(·) are always nonempty, convex, compact polyhedra, we have that
�ρ

(
pn, π̂
)
is uniquely defined and moreover, �ρ

(
pn, π̂
) ∈ �ρ for any point in the

sequence
(

pn, π̂
)

n . It remains to be shown that the sequence
(
�ρ

(
pn, π̂
))

n converges
to the point (p, π̂). Apart from the p-belief constraints all other constraints defining
ρ(p) are independent of p. Hence, if (p, π̂ ) satisfies those constraints, then somust any
other point in the sequence

(
pn, π̂
)

n . Therefore the only constraints that can be violated
by elements of the sequence

(
pn, π̂
)

n are the p-belief constraints. Consequently, any
point in the sequence

(
�ρ

(
pn, π̂
))

n lies on the boundary of the polyhedra defined
by the p-belief constraints. As mentioned, these constraints are linear in p, and since
they also define nonempty, convex, compact polyhedra, the sequence

(
�ρ

(
pn, π̂
))

n
indeed converges to (p, π̂ ). This shows the continuity ofρ and hence also of p-RO(G)

in p.
Finally, the claims that, for p = 0, we have 0-RO(G) = �(A), and for p = 1,

we have 1-RO(G) = C E(G), are immediate. To see that for any p ∈ [0, 1), we
have dim[p-RO(G)] = dim[�(A)], notice that the (X, p)-correlated equilibria with
X = A1 and p < 1 entail distributions that put strictly positive weight on all strategies
in A2 as well as all convex combinations of such distributions. Projecting onto the
original space�(A) implies distributionswith strictly positiveweights on all strategies
in A as well as all possible convex combinations. This concludes the proof.
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D Proof of Proposition 1

Fix G and let An = �i∈I An
i denote the space of all pure strategy profiles that survive

n rounds of iterated elimination of strictly dominated strategies in G, and similarly
for the individual sets An

i . Let Gn denote the subgame of G with strategies restricted
to An . Because G is finite, the limit sets A∞

i , A∞, and G∞ are well defined (and are
obtained after finitely many iterations). Also, for any subset Y ⊂ A, let Y c = A\Y
denote the complement of Y in A. For any given p ∈ [0, 1], take p′ ≥ p. We show
that for p sufficiently close to 1, behavior is supported with high probability in A∞.
Specifically, we construct a p̄ < 1 such that for any p ∈ [ p̄, 1], if π ∈ p-RO(G),
then π

[
(A∞)c] ≤ 1 − p. Consider the game G0 = G and pick some p1 < 1. It

immediately follows from p-rationality that for p ∈ [p1, 1], if π ∈ p-RO(G), then

we have π
[(

A1
)c] ≤ 1− p. Suppose now that the above statement is true for n − 1,

namely there exists pn−1 < 1 such that for p ∈ [pn−1, 1], if π ∈ p-RO(G), then we

have π
[(

An−1
)c] ≤ 1 − p. We show that the statement also holds for n. Fix game

Gn−1. It follows from finiteness of G and continuity of the payoffs that there exists
pn ∈ [pn−1, 1) such a strategy in An−1\An that is strictly dominated in Gn−1 (by
some strategy in Gn−1 and hence in G) is also strictly dominated in G (by the same
strategy) given a p-rational belief system with p ≥ pn .25 This implies that for any
p ∈ [pn, 1] and any π ∈ p-RO(G), we also have π

[
(An)c] ≤ 1 − p. Finiteness of

the game implies that the process ends after finitely many steps implying that indeed
there exists p∞ < 1 such that for p ∈ [p∞, 1] and any π ∈ p-RO(G), we have
π
[
(A∞)c] ≤ 1 − p. Taking p̄ = p∞ proves the claim.

E Proof of Proposition 2

To see the if part, take π ∈ �(A) a p-rational outcome of G. By Theorem 1, there
exists an (A(1), p)-correlated equilibrium π̂ ∈ �(A′) of the doubled game 2G. Define
P ≡ π̂ and set

αi (ti )[ai ] =
{
1 if ti = ai

0 else ,

for all ti ∈ Ti . Then, by definition of the type spaces Ti = T s
i ∪ T c

i , we have:

• P[T s
−i | ti ] ≥ p, for any ti ∈ Ti ;

• αi (ti )[ai ] = 1 if ti ∈ T c
i and ti = ai

• ai ∈ argmaxa′
i ∈Ai

∑
t−i ∈T−i

P[t−i | ti ]·∑a−i ∈A−i
α−i (t−i )[a−i ]·ui (a−i ; a′

i ), where
α−i (t−i )[a−i ] =∏ j �=i α j (t j )[a j ].

Let μ[a] = ∑t∈T P(t) · α(t)[a], where α(t)[a] = ∏i∈I αi (ti )[ai ]; then, again by
construction, and using Theorem 1, we have μ = π .

25 This follows from pn ≥ pn−1, and because π ∈ p-RO(G) with p ≥ pn−1 implies π
[(

An−1
)c] ≤

1 − p.
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To see the only if part, take μ ∈ �(A) an EAD of (G, P) where P satisfies
P[T s

−i | ti ] ≥ p, for any ti ∈ Ti , and for some equilibrium profile α satisfying condi-
tions (i) and (ii). By definition, together with P , α can be seen as inducing a probability
distribution on the outcomes of the doubled game μ̂ ∈ �(2A), where types in T s

i and
corresponding strategies chosen are associated to A(2) and types in T c

i are associated
to strategies in A(2). As a consequence of (i) and (ii) and the definition of P , μ̂will also
satisfy the incentive constraints and the p-belief constraints for 2G. By Theorem 1,
computing the EAD μ of μ̂ gives us, a p-rational outcome of G.

F Proof of result in Remark 2

Adapting the original definition by Aumann (1974), Aumann (1987), for any X =∏
i∈I Xi ⊆ A, we say that the family (πi )i∈I ⊆ (� (A))I is a (X, p)-subjective

correlated equilibrium of G, if, for any i ∈ I the following are satisfied:

• Incentive constraints For any ai ∈ Xi , ai ∈ argmaxa′
i ∈Ai

∑
a−i ∈A−i

πi [(a−i ; ai )] ·
ui
(
a−i ; a′

i

)
.

• p-Belief constraints For any ai ∈ Ai , πi
[
X−i × {ai }

] ≥ p · πi
[
A−i × {ai }

]
.

We denote the set of (X, p)-subjective correlated equilibria of game G by (X, p)

-SC E (G). Given n ∈ {2, 3} and nG, we have a map margAI : (� (A′))I →
(� (A))I , where for any

(
π̂i
)

i∈I ∈ (� (A′))I , we have that margAI

((
π̂i
)

i∈I

) =(
margA

(
π̂i
))

i∈I . Then, the proof of the identity,

p-S RO (G) = margAI ((X, p) -SC E (2G)) ,

where X = ∏i∈I (Ai × {1}), is the same as the one for Theorem 1 after slight
modifications (just add sub-indices where needed). To see that the above marginals
constitute the whole space, take

(
ai
)

i∈I ⊆ A, and for any i ∈ I , πi = 1{ai}.
Fix k ∈ {1, 2}, and define, for any i ∈ I , π̂i = 1{((ai

j ,k) j �=i ;(ai
i ,2−k))}. It is

immediate that margAI

((
π̂i
)

i∈I

) = (πi )i∈I . Now, take i ∈ I , then the incen-
tive constraints are trivially satisfied, since π̂i [Ai × {1}] = 0. Moreover, the
p-belief constraint is also satisfied, because, regardless of i’s action, the sums are
on both sides 0 or 1. We conclude that, again for X = ∏i∈I (Ai × {1}), we have(
1{ai }
)

i∈I
∈ margAI ((X, p)-SC E(2G)) for any (ai )i∈I ⊆ A; thus, by convexity,

margAI ((X, p)-SC E(2G)) = ((� (A))I .
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