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Abstract Characterizations of Nash equilibrium, correlated equilibrium, and ratio-
nalizability in terms of common knowledge of rationality are well known. Analogous
characterizations of sequential equilibrium, (trembling hand) perfect equilibrium, and
quasi-perfect equilibrium in n-player games are obtained here, using earlier results of
Halpern characterizing these solution concepts using non-Archimedean fields.
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1 Introduction

Arguably, the major goal of epistemic game theory is to characterize solution concepts
epistemically. Characterizations of the solution concepts that are most commonly used
in strategic-form games, namely, Nash equilibrium, correlated equilibrium, and ratio-
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nalizability, in terms of common knowledge of rationality are well known (Aumann
1987; Brandenburger and Dekel 1987). We show how to get analogous characteri-
zations of sequential equilibrium (Kreps and Wilson 1982), (trembling hand) perfect
equilibrium (Selten 1975), and quasi-perfect equilibrium (van Damme 1984) for arbi-
trary n-player games, using results of Halpern (2009, 2013).

To put our results in context, we start by reviewing the characterizations of Nash
equilibrium, correlated equilibrium, and rationalizability in Sect. 2. In Sect. 3, we
recall Halpern’s characterizations of sequential equilibrium and perfect equilibrium,
since these play a key role in our new results. Halpern’s results involve the use of
nonstandard probability measures, which take values in non-Archimedean fields. We
briefly review these as well, and then state and prove the new characterizations of
sequential equilibrium, quasi-perfect equilibrium, and perfect equilibrium in terms
of common knowledge of rationality. For our results, we need to consider two types
of rationality: local rationality, which considers only whether each player’s action is
a best response at each information set (with everything else fixed), and rationality,
which considers whether the player’s whole strategy from that point on is a best
response. This distinction seems critical when comparing perfect and quasi-perfect
equilibrium [as already noted by van Damme (1984)]; interestingly, it is not critical
when it comes to sequential equilibrium. We compare our results to those of Asheim
and Perea (2005), who provide a characterization of sequential equilibrium and quasi-
perfect equilibrium for 2-player games in terms of common knowledge of rationality
similar in spirit to ours.We conclude in Sect. 4 with a discussion of the use of common
knowledge of rationality in characterizing solution concepts.

2 A review of earlier results

To explain our results, we briefly review the earlier results on characterizing solution
concepts in strategic-form games in terms of common knowledge [see (Dekel and
Siniscalchi 2015) for a more comprehensive survey]. We assume that the reader is
familiar with standard solution concepts such as Nash equilibrium, correlated equilib-
rium, and rationalizability; see (Osborne and Rubinstein 1994) for a discussion. Let
� = (N ,S, (ui )i∈N ) be a finite strategic-form game, where N = {1, . . . , n} is the set
of players, S = ×i∈NSi is a finite set of strategy profiles, and ui : S → R is player
i’s utility function. For ease of exposition, we assume that Si ∩ S j = ∅ for i �= j .

Let a model of � be a tuple M = (�, s, (Pri )i∈N ), where � is a set of states of �,
s associates with each state ω ∈ � a pure strategy profile s(ω) ∈ S, and Pri is a
probability distribution on �, describing i’s initial beliefs.1 Let si (ω) denote player
i’s strategy in the profile s(ω), and let s−i (ω) denote the strategy profile consisting of
the strategies of all players other than i .

For S ∈ Si , let [S] = {ω ∈ � : si (ω) = S} be the set of states at which player i
chooses strategy S. Similarly, let [ �S−i ] = {ω ∈ � : s−i (ω) = �S−i } and [ �S] = {ω ∈
� : s(ω) = �S}. For simplicity, we assume that [ �S] is measurable for all strategy
profiles �S, and that Pri ([Si ]) > 0 for all strategies Si ∈ Si and all players i ∈ N .

1 For simplicity, we assume in this paper that � is finite, and all subsets of � are measurable.
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Characterizing solution concepts in terms of common knowledge… 459

As usual, we say that a player is rational at state ω (in a model M of �) if his
strategy at ω is a best response in � given his beliefs at ω. We view Pri as i’s prior
belief, intuitively, before i has been assigned or has chosen a strategy. We assume
that i knows his strategy at ω, and that this is all that i learns in going from his prior
knowledge to his knowledge at ω, so his beliefs at ω are the result of conditioning Pri
on [si (ω)].2 Given our assumption that Pri ([si (ω)]) > 0, the conditional probability
Pri | [si (ω)] is well defined.

Note that we can view Pri as inducing a probability PrSi on strategy profiles �S ∈ S
by simply taking PrSi (�S) = Pri ([ �S]); we similarly define PrSi (Si ) = Pri ([Si ]) and
PrSi (�S−i ) = Pri ([S−i ]). Let PrSi,ω = PrSi | si (ω). Intuitively, at state ω, player i

knows his strategy si (ω), so his distribution PrSi,ω on strategies at ω is the result of

conditioning his prior distribution on strategies PrSi on this information.
Formally, i is rational at ω if, for all strategies S ∈ Si , we have that

∑

�S′−i∈S−i

PrSi,ω(�S′−i )ui (si (ω), �S′−i ) ≥
∑

�S′−i∈S−i

PrSi,ω(S′−i )ui (S, �S′−i ).

We say that player i is rational in model M if i is rational at every state ω in M .
Finally, we say that rationality is common knowledge in M if all players are rational at
every state of M . (Technically, our definition of rationality being common knowledge
in M means that rationality is universal in M (i.e., true at all states in M), and thus, in
particular, common knowledge at all states in M according to the standard definition
of common knowledge at a state (cf., Fagin et al. 1995). While common knowledge
of rationality at a state does not imply that rationality is universal in general, in the
models that we focus on in this paper, the two notions coincide.)

With this background, we can state Aumann’s (1987) characterization of Nash
equilibrium. As usual, we can identify a mixed strategy profile �σ in � with a distribu-
tion Pr�σ on S; the distribution Pr�σ can be viewed as a crossproduct ×i∈N Prσi (where
Prσi is a distribution on Si ).3 Let �i denote the set of mixed strategies for player i .

Theorem 2.1 �σ is a Nash equilibrium of � iff there exists a model M =
(�, s, (Pri )i∈N ) of � where rationality is common knowledge such that Pri = Pr j
for all i, j ∈ N and PrSi = Pr�σ for all i ∈ N.

The fact that Pri = Pr j for all i, j ∈ N means that there is a common prior.
Because Pr�σ has the form of a cross-product, the fact that PrSi = Pr�σ means that i’s
beliefs about other players’ strategies is independent of the state; that is, PrSi | si (ω)

marginalized to S−i is independent of ω.4

2 While this arguably is a reasonable assumption for strategic-formgames,whenwemove to extensive-form
games, agents will be able to learn more in the course of a game.
3 We consistently use S, possibly subscripted, to denote a pure strategy, while σ , possibly subscripted or
with a prime, denotes a mixed strategy.
4 Aumann and Brandenburger (1995) show that common knowledge of rationality is not required for σ

to be a Nash equilibrium. This is not a contradiction to Theorem 2.1, which simply says that σ is a Nash
equilibrium iff there exists a model M describing the beliefs of the players where rationality is common
knowledge. There may be other models where the players play σ and rationality is not common knowledge.
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Theorem 2.1 is actually a special case of Aumann’s (1987) characterization of
correlated equilibrium. Recall that we can think of a correlated equilibrium of � as
a distribution η on S. Intuitively, η is a correlated equilibrium if, when a mediator
chooses a strategy profile �S according to η and tells each player i his component Si
of �S, then playing Si is a best response for i . This intuition is formalized in Aumann’s
theorem:

Theorem 2.2 η is a correlated equilibrium of � iff there exists a model M =
(�, s, (Pri )i∈N ) of � where rationality is common knowledge such that PrSi = η

for all i ∈ N.

Theorems 2.1 and 2.2 show that the difference between correlated equilibrium and
Nash equilibrium can be understood as saying that, with correlated equilibrium, the
common prior does not have to be a cross-product, so that a player i’s beliefs may
vary, for different choices of strategy. Of course, if the prior is a cross-product, then
the correlated equilibrium is also a Nash equilibrium. With correlated equilibrium, as
with Nash equilibrium, there is a common prior.

We complete the review of characterizations of solution concepts in strategic-form
games in terms of common knowledge of rationality with the following characteri-
zation of correlated rationalizability (where a player can believe that other players’
strategies are correlated), due to Brandenburger and Dekel (1987):

Theorem 2.3 S j is a (correlated) rationalizable strategy for player j in a game �

iff there exists a model M = (�, s, (Pri )i∈N ) of � where rationality is common
knowledge and a state ω ∈ � such that s j (ω) = S j .

Note that the characterization of rationalizability does not require the players to
have a common prior.

3 Characterizing sequential equilibrium and perfect equilibrium

Our goal is to characterize sequential equilibrium and perfect equilibrium in finite
extensive-formgameswith perfect recall in terms of commonknowledge of rationality.
We assume that the reader is familiar with the standard definitions of extensive-form
games of perfect (trembling hand) perfect equilibrium, quasi-perfect equilibrium, and
sequential equilibrium. Our characterizations make essential use of non-epistemic
characterizations of sequential and perfect equilibrium using nonstandard probability
(Halpern 2009, 2013). We briefly review these results here.

One of the issues that the definitions of sequential and perfect equilibrium need to
deal with are probability zero events, specifically, those corresponding to information
sets that are off the equilibrium path. Halpern (2009, 2013) presents a novel way to
approach this issue in the context of games, by making use of nonstandard probability
measures, which we now describe.

Non-Archimedean fields are fields that include the real numbers R as a subfield,
and also contain infinitesimals, which are positive numbers that are strictly smaller
than any positive real number. The smallest such non-Archimedean field, commonly
denoted R(ε), is the minimal field generated by adding to the reals a single infinites-
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imal, denoted by ε.5 R(ε) consists of all the rational expressions f (ε)/g(ε), where
f (x) and g(x) are polynomials with real coefficients and g(0) �= 0. It is easy to see
that this gives us a field that includes the reals and ε. We can place an order < on the
elements of R(ε) by taking 0 < ε < 1/r for all reals r > 0, and extending to all of
R(ε) by assuming that standard properties of the reals (e.g., that r2 < r if 0 < r < 1)
continue to hold. Thus, 0 < · · · < ε3 < ε2 < ε holds, for all real numbers r > 0 we
have that 1/ε > r , and so on. (We can use formal division to identify f (ε)/g(ε) with
a power series of the form a0 + a1ε + a2ε2 + · · · ; this suffices to guide how the order
< should be extended to quotients f (ε)/g(ε).)

The field R(ε) does not suffice for our purposes. In this paper we will be interested
in non-Archimedean fields R∗ that are elementary extensions of the standard reals.
This means that R∗ is an ordered field that includes the real numbers, at least one
infinitesimal ε, and is elementarily equivalent to the field of real numbers. The fact that
R

∗ andR are elementarily equivalent means that every formula ϕ that can be expressed
in first-order logic and uses the function symbols + and × (interpreted as addition
and multiplication, respectively) and constant symbols r standing for particular real
numbers (the underlying language contains a constant symbol r for each real number
r ∈ R) is true in F iff ϕ is true in R. We call such a field a normal non-Archimedean
field. Thus, for example, every odd-degree polynomial has a root in a normal non-
Archimedean field R

∗ since this fact is true in R and can be expressed in first-order
logic.Note thatR(ε) is not a normal non-Archimedeanfield. For example, one property
of the reals expressible in first-order logic is that every positive number has a square
root. However, ε does not have a square root in R(ε). For the results of this paper, we
do not have to explicitly describe a normal non-Archimedean field; it suffices that one
exists. The existence of normal non-Archimedean fields is well known, and follows
from the fact that first-order logic is compact; see Enderton (1972).6

Given a normal non-Archimedean field R∗, we call the elements of R the standard
reals in R

∗, and those of R∗\R the nonstandard reals. A nonstandard real b is finite
if −r < b < r for some standard real r > 0. If b ∈ R

∗ is a finite nonstandard real,
then b = a + ε, where a is the unique standard real number closest to b and ε is an
infinitesimal. Formally, a = inf{r ∈ R : r > b} and ε = b − a; it is easy to check
that ε is indeed an infinitesimal. We call a the standard part of b, and denote it st (b).

A nonstandard probability measure Pr on� just assigns each event in� an element
in [0, 1] in some (fixed) non-Archimedean field R

∗. Note that Pr(�) = 1, just as
with standard probability measures. We require Pr to be finitely additive. Recall that,
for the purposes of this paper, we restrict attention to finite state spaces �. This
allows us to avoid having to define an analogue of countable additivity for nonstandard
probability measures. Given a nonstandard probability measure ν, we can define the
standard probability measure st (ν) by taking st (ν) (w) = st (ν(w)). Two possibly
nonstandard distributions ν and ν′ differ infinitesimally if st (ν) = st

(
ν′) (i.e., for

all events E , the probabilities ν(E) and ν′(E) differ by at most an infinitesimal,

5 The construction of R(ε) apparently goes back to Robinson (1973).
6 There is a natural extension of R(ε) called R

∗(ε) that is normal. As shown by Halpern (2009, 2013),
Theorems 3.3 and 3.5 could be strengthened to use R

∗(ε) rather than an existentially quantified normal
non-Archimedean field.
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462 J. Y. Halpern, Y. Moses

so st
(
ν(E) − ν′(E)

) = 0). If a nonstandard distribution assigns a positive (possibly
infinitesimal) probability to everypossible outcome in agame, then there is no technical
problem in conditioning on such outcomes. Moreover, every standard probability
measure differs infinitesimally from a nonstandard probability measure that assigns
positive probabilities to all outcomes.

A behavioral strategy σ for player i in an extensive-form game associates with
each information set I for player i a distribution σ(I ) over the actions that can be
played at I . We allow σ(I ) to be a nonstandard probability distribution. We say that σ
is standard if σ(I ) is standard for all information sets I for player i . Two behavioral
strategy σ and σ ′ for player i differ infinitesimally if, for all information sets I for
player i , the distributions σ(I ) and σ ′(I ) differ infinitesimally. Two strategy profiles
�σ and �σ ′ differ infinitesimally if σi and σ ′

i differ infinitesimally for i = 1, . . . , n. We
say that a behavioral strategy σ is completely mixed if it assigns positive (but possibly
infinitesimal) probability to every action at every information set.

A behavioral strategy profile in an extensive-form game induces a probability on
terminal histories of the game (i.e., histories that start at the root of the game tree and
end at a leaf). Let Z� be the set of terminal histories in a game �. (We omit explicit
mention of the game � if it is clear from context or irrelevant.) Given a behavioral
strategy profile �σ for �, let Pr�σ be the probability on terminal histories induced by �σ .
Thus, Pr�σ is a distribution on pure strategy profiles if �σ is a mixed strategy profile,
and a distribution on histories if �σ is a behavioral strategy profile in an extensive-form
game. We hope that the context will disambiguate the notation. Since we can identify
a partial history with the terminal histories that extend it, Pr�σ (h) and Pr�σ (I ) are well
defined for a partial history h and an information set I . Recall that in an extensive-form
game �, each player i’s utility function is defined on Z� .

A belief system (Kreps and Wilson 1982) is a function μ that associates with each
information set I a probability, denoted μI , on the histories in I . Given a behavioral
strategy �σ and a belief system μ in an extensive-form game �, let

EUi ((�σ ,μ) | I ) =
∑

h∈I

∑

z∈Z
μI (h)Pr�σ (z | h)ui (z).

Thus, the expectedutility for i of (�σ ,μ) conditional on reaching I captures the expected
payoff to player i if I is reached via the distribution �σ and from that point on the game
is played according to μ. Intuitively, this expected utility captures what i can expect
to receive if i changes its strategy at information set I .

Finally, if �σ is a completely-mixed behavioral strategy profile, let μ�σ be the belief
system determined by �σ in the obvious way:

μ�σ
I (h) = Pr�σ (h | I ).

Definition 3.1 Fix a game �. Let I be an information set for player i , let �σ ′ be a
completely-mixed behavioral strategy profile, and let ε ≥ 0. Then we say that σi is
an ε-best response to �σ ′−i for i conditional on having reached I using �σ ′ if, for every
strategy τi for player i , we have that

EUi (((σi , �σ ′−i ), μ
�σ ′
I ) | I ) ≥ EUi (((τi , �σ ′−i ), μ

�σ ′
I ) | I ) − ε. (1)
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Characterizing solution concepts in terms of common knowledge… 463

The strategy σi is an ε-best response for i relative to �σ ′ if σi is an ε-best response to
�σ ′−i for i conditional on having reached I using �σ ′ for all information sets I for i .

Observe that in Eq. 1 the probability of reaching I on both sides of the inequality
depends only on �σ ′ (viaμ�σ ′

I ) and not on τi . Thus, τi only influences player i’s behavior
after I has been reached.

Given an information set I for player i , let AI be the set of actions available to i at
histories in I .7 As usual, we take �(AI ) to be the set of probability measures on AI .
Note that if σi is a behavioral strategy for player i then, by definition, σi (I ) ∈ �(AI ).

Definition 3.2 If ε ≥ 0 and I is an information set for player i that is reached with
positive probability by �σ ′, then a ∈ �(AI ) is a local ε-best response to �σ ′−i for i
conditional on having reached I using �σ ′ if, for all a′ ∈ �(AI ), we have that

EUi (((σ
′
i [I/a], �σ ′−i ), μ

�σ ′
I ) | I ) ≥ EUi (((σ

′
i [I/a′], �σ ′−i ), μ

�σ ′
I ) | I ) − ε, (2)

where σ ′
i [I/a′] is the behavioral strategy that agrees with σ ′

i except possibly at infor-
mation set I , and σ ′

i [I/a′](I ) = a′. The strategy σi is a local ε-best response for i
relative to �σ ′ if σi (I ) is a local ε-best response to �σ ′−i for i conditional on having
reached I using �σ ′ for all information sets I for i . The strategy �σi is a (local) best
response for i relative to �σ ′ (resp., (local) best response for i conditional on having
reached I using �σ ′) if σi is a (local) 0-best response for i relative to �σ ′ (resp., (local)
0-best response for i conditional on having reached I ).

Thus, with local best responses, we consider the best action at an information set; with
(non-local) best responses, we consider the best continuation strategy.

Halpern (2009, 2013) characterizes perfect equilibrium using non-Archimedean
fields and local best responses as follows:

Theorem 3.3 Let � be a finite extensive-form game with perfect recall. Then the
(standard) behavioral strategy profile �σ = (σ1, . . . , σn) is a perfect equilibrium of
� iff there exists a normal non-Archimedean field R

∗ and a nonstandard completely-
mixed behavioral strategy profile �σ ′ with probabilities inR∗ that differs infinitesimally
from �σ such that, for each player i = 1, . . . , n and each information set I of player i ,
σi (I ) is a local best response for i relative to �σ ′.

Roughly speaking,Theorem3.3 shows thatwe can replace the sequenceof strategies
converging to �σ considered in Selten’s definition of perfect equilibrium by a single
nonstandard completely-mixed strategy that is infinitesimally close to �σ . Considering
a completely-mixed strategy guarantees that all information sets are reached with
positive probability, and thus allows us to define best responses conditional on reaching
an information set, for every information set.

We can obtain a characterization of quasi-perfect equilibrium by requiring that σi
be a best response for i rather than a local best response (Halpern 2009, 2013).8 As

7 As is standard, we assume that the same set of actions is available to i at all histories in I .
8 The characterization of perfect equilibrium given in (Halpern 2009) involved best responses. In (Halpern
2013), it was pointed out that thiswas incorrect;σi needed to be a local best response to get a characterization
of perfect equilibrium, but taking it to be a best response gave a characterization of quasi-perfect equilibrium.
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464 J. Y. Halpern, Y. Moses

we said earlier, the fact that the key difference between perfect equilibrium and quasi-
perfect equilibrium is that local best responses were required for the former and best
responses were required for the latter was already stressed by van Damme (1984) in
his original definition of quasi-perfect equilibrium.

Theorem 3.4 (Halpern 2009, 2013)Let� be a finite extensive-form gamewith perfect
recall. Then the (standard) behavioral strategy profile �σ = (σ1, . . . , σn) is a quasi-
perfect equilibrium of � iff there exists a normal non-Archimedean field R

∗ and a
nonstandard completely-mixed behavioral strategy profile �σ ′ with probabilities in
R

∗ that differs infinitesimally from �σ such that, for each player i = 1, . . . , n, the
strategy σi is a best response for i relative to �σ ′.

Finally, we can obtain a characterization of sequential equilibrium by requiring
that σi be an ε-best response for i to �σ ′ rather than a local best response as in Theo-
rem 3.3, or a best response as in Theorem 3.4. It can be shown if ε is an infinitesimal,
then there exists an infinitesimal ε′ such that an ε-local best response relative to �σ ′ is
actually an ε′-best response (see Lemma 3.10), so, as we would expect, the require-
ment for sequential equilibrium is actually a weakening of the requirements for both
perfect and quasi-perfect equilibrium.

Theorem 3.5 (Halpern 2009, 2013)Let� be a finite extensive-form gamewith perfect
recall. Then there exists a belief systemμ such that the assessment (�σ ,μ) is a sequential
equilibrium of � iff there exist a normal non-Archimedean field R

∗, an infinitesimal
ε ∈ R

∗, and a nonstandard completely-mixed behavioral strategy profile �σ ′ with
probabilities inR∗ that differs infinitesimally from �σ such that σi is an ε-best response
for i relative to �σ ′, for each player i = 1, . . . , n.

Our epistemic characterizations are based on Theorems 3.3, 3.4, and 3.5. Given a
finite extensive-form game �, we take a model M of � to be a tuple (�,Z, (Pri )i∈N )

where, as before,� is a finite set of states andPri is a (possibly nonstandard) probability
distribution on�. NowZ is a function that associates with each stateω ∈ � a terminal
history in�, denotedZ(ω). The distribution Pri on states induces a distribution PrZi on
terminal histories in the obvious way. A model M = (�,Z, (Pri )i∈N ) of the game �

is compatible with a behavioral strategy profile �σ if PrZ1 = · · · = PrZn = Pr�σ .
Wenowdefine twonotions of rationality, corresponding to the types of best response

considered above: local best response and best response. To be consistent with the type
of response considered, we call these local rationality and rationality. Both notions
have been considered in the literature, although different terms have been used. Arieli
and Aumann (2015) use the terms action rationality and utility maximization instead
of “local rationality” and “rationality”.

Definition 3.6 Fix ε > 0 and amodelM compatiblewith a completely-mixed strategy
profile �σ ′. Player i is ε-locally rational at state ω if, for each information set I for
player i , if some history h ∈ I is a prefix of Z(ω), player i plays action a after h in
Z(ω), and st

(
σ ′
i (I )(a)

)
> 0, then a is a local ε-best response to �σ−i for i conditional

on having reached I using �σ ′. Player i is locally rational at ω if he is 0-locally rational
at ω. Player i is ε-rational at state ω if, for each information set I for player i , if
some history h ∈ I is a prefix of Z(ω), then st

(
σ ′
i

)
is an ε-best response to �σ−i for
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i conditional on having reached I using �σ ′. Player i is rational at state ω if he is
0-rational at ω.

Note that in the definition of local rationality at ω, we do not require that the action
played by i at a prefix ofZ(ω) be a local best response if that action is played with only
infinitesimal probability. Similarly, in the definition of rationality, we require st

(
σ ′
i

)

to be a best response, not σ ′
i , since we are ultimately interested in st

(
σ ′
i

)
. Also note

that we define rationality only in models that are compatible with a completely-mixed
behavioral strategy profile. This ensures that the expected utility conditional on I is
well defined for each information set I . We could, of course, try to define rationality
more generally, but the extra work would not be relevant to the results of this paper.

We are now ready to formally capture perfect equilibrium in terms of common
knowledge of rationality, using Theorem 3.3. Intuitively, the assumption that σi is a
best response relative to the nonstandard �σ ′ is replaced by the assumption of common
knowledge of rationality when players play �σ ′.

Theorem 3.7 Let � be a finite extensive-form game with perfect recall. Then �σ is a
perfect equilibrium of � iff there exist a normal non-Archimedean field R

∗, a non-
standard, completely-mixed strategy profile �σ ′ that differs infinitesimally from �σ with
probabilities inR∗, and a model M = (�,Z, (Pri )i∈N ) of� compatible with �σ ′ where
local rationality is common knowledge.

Proof Suppose that �σ is a perfect equilibrium of�. Then, by Theorem 3.3, there exists
a normal non-Archimedean field R

∗ and a nonstandard completely-mixed strategy
profile �σ ′ with probabilities in R

∗ that differs infinitesimally from �σ such that, for
each player i , the strategy σi is a local best response for i relative to �σ ′. Let M =
(�,Z, (Pri )i∈N )be such that� = {ωh : h ∈ Z�},Z(ωh) = h, andPri (ωh) = Pr�σ ′(h),
for i = 1, . . . , n. Clearly M is compatible with �σ ′. We claim that it is common
knowledge in M that all players are locally rational.

To see this, consider an arbitrary state ωh ∈ �. Suppose that I is an information
set for player i , h′ ∈ I is a prefix of h, the action played by i at h′ in h is a, and
st

(
σ ′
i (I ))(a)

)
> 0. Since σi is a local best response for i conditional on having

reached I using �σ ′, Eq. (2) from Definition 3.2 (with ε = 0) implies that

EUi ((σ
′
i [I/σi (I )], �σ ′−i ), μ

�σ ′
I ) | I ) ≥ EUi ((σi [I/a′], �σ ′−i ), μ

�σ ′
I ) | I )

for all a′ ∈ �(AI ). It easily follows that

EUi ((σ
′
i [I/a′′], �σ ′−i ), μ

�σ ′
I ) | I ) ≥ EUi ((σi [I/a′], �σ ′−i ), μ

�σ ′
I ) | I ) (3)

for all actions a′ ∈ AI and all actions a′′ in the support of σi (I ). By assumption,
σ ′
i differs infinitesimally from σi . Hence, the fact that st

(
σ ′
i (I )(a)

)
> 0 implies that

σi (I )(a) > 0, so that the action a must be in the support of σi (I ). Therefore, (3) holds
for a′ = a, so i is rational at ωh . We conclude that every player i is locally rational at
all states ω ∈ � and thus, by definition, it is common knowledge in M that the players
are locally rational.
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For the converse, fix �σ and suppose that there exist R∗, �σ ′, and a model M as
required by the theorem. For each information set I for player i , if a ∈ AI is in the
support of σi (I ), then st

(
σ ′
i (I )(a))

)
> 0. Since M is compatible with �σ ′, there must

exist some state ω in M with a prefix h of Z(ω) in I such that i plays a after h in
Z(ω). Since i is locally rational at ω, performing a must be a local best response for
i conditional on having reached I using �σ ′. Thus, σi (I ) must be a local best response
for i conditional on having reached I using �σ ′. Hence, by Theorem 3.3 we obtain that
�σ is a perfect equilibrium. ��

Perhaps not surprisingly, we obtain an analogue of Theorem 3.7 by replacing “local
rationality” by “rationality”.

Theorem 3.8 Let � be a finite extensive-form game with perfect recall. Then �σ is a
quasi-perfect equilibrium of � iff there exist a normal non-Archimedean field R

∗, a
nonstandard, completely-mixed strategy profile �σ ′ that differs infinitesimally from �σ
with probabilities in R∗, and a model M = (�,Z, (Pri )i∈N ) of � compatible with �σ ′
where rationality is common knowledge.

Proof The proof is similar in spirit to that of Theorem 3.7, and simpler, so we leave
details to the reader. ��

Interestingly, for sequential equilibrium, we can work with either ε-rationality or
ε-local rationality.

Theorem 3.9 Let � be a finite extensive-form game with perfect recall. The following
are equivalent:

(a) there exists a belief system μ such that the assessment (�σ ,μ) is a sequential
equilibrium of �;

(b) there exist a normal non-Archimedean field R∗, a nonstandard, completely-mixed
behavioral strategy profile �σ ′ with probabilities in R

∗ that differs infinitesimally
from �σ , an infinitesimal ε > 0 in R∗, and a model M = (�,Z, (Pri )i∈N ) compat-
ible with �σ where ε-rationality is common knowledge;

(c) there exist a normal non-Archimedean field R∗, a nonstandard, completely-mixed
strategy profile �σ ′ with probabilities in R

∗ that differs infinitesimally from �σ , an
infinitesimal ε > 0 in R

∗, and a model M = (�,Z, (Pri )i∈N ) compatible with �σ
where ε-local rationality is common knowledge.

Proof In light of Theorem 3.5, the equivalence of (a) and (b) is almost immediate. To
see that (a) implies (c), suppose that (�σ ,μ) is a sequential equilibrium.ByTheorem3.5,
there exists a strategy profile �σ ′ that differs infinitesimally from �σ and an infinitesimal ε
such that, for each player i , strategy σi is an ε-local best response relative to �σ ′−i .
Construct M as in the proof of Theorem 3.7. Since σi differs infinitesimally from σ ′

i ,
for each player i , there exists an infinitesimal ε′

i such that, for all information sets I
for player i ,

EUi (((σi , �σ ′−i ), μ
�σ ′
I ) | I ) ≥ EUi (((σi , �σ ′−i ), μ

�σ ′
I ) | I ) − ε′

i . (4)
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Let ε′ = maxi=1,...,n ε′
i and let

r = mini=1,...,n {σi (I )(a): I is an information set for i and a is in the support of σi (I )};

that is, r is the smallest positive probability assigned by a strategy σi , i = 1, . . . , n.
Note that ε′ + ε + ε/r is an infinitesimal (since r is a standard rational). We claim that
(ε′ + ε + ε/r)-local rationality is common knowledge in M .

To see this, fix a player i and a state ω in M , and let h = Z(ω). Again, suppose
that I is an information set for player i , h′ ∈ I is a prefix of h, the action played by i
at h′ in h is a, and st

(
σ ′
i (I ))(a)

)
> 0. We want to show that

EUi (((σ
′
i [I/a], �σ ′−i ), μ

�σ ′
I ) | I ) ≥ EUi (((σ

′
i [I/a′], �σ ′−i ), μ

�σ ′
I ) | I ) − (ε′ + ε + ε/r)

(5)
for all actions a′ ∈ AI . First observe that, by choice of ε′, it easily follows from (4)
that

EUi (((σ
′
i [I/a], �σ ′−i ), μ

�σ ′
I | I ) ≥ EUi (((σi [I/a], �σ ′−i ), μ

�σ ′
I | I ) − ε′. (6)

Moreover, since σi is an ε-best response relative to �σ ′−i , for all actions a
′ ∈ AI , we

must have

EUi (((σi , �σ ′−i ), μ
�σ ′
I ) | I ) ≥ EUi (((σ

′
i [I/a′], �σ ′−i ), μ

�σ ′
I ) | I ) − ε. (7)

Since (7) holds for each action a′ in the support of σi (I ), we must have

EUi (((σi , �σ ′−i ), μ
�σ ′
I ) | I )

= σi (I )(a)EUi (((σi [I/a], �σ ′−i ), μ
�σ ′
I ) | I )

+
∑

{a′: σi (I )(a′)>0, a′ �=a}
σi (I )(a

′)EUi (((σi [I/a′], �σ ′−i ), μ
�σ ′
I ) | I )

≤ σi (I )(a)EUi (((σi [I/a], �σ ′−i ), μ
�σ ′
I ) | I )

+
∑

{a′: σi (I )(a′)>0, a′ �=a}
σi (I )(a

′)(EUi (((σi , �σ ′−i ), μ
�σ ′
I ) + ε)

= σi (I )(a)EUi (((σi [I/a], �σ ′−i ), μ
�σ ′
I ) | I )

+(1 − σi (I )(a))(EUi (((σi , �σ ′−i ), μ
�σ ′
I ) | I ) + ε).

A little algebraic manipulation now shows that

EUi (((σi [I/a], �σ ′−i ), μ
�σ ′
I ) | I )

≥ EUi ((σi , �σ ′−i ), μ
�σ ′
I ) | I ) − ε(1 − σi (I )(a))/σi (I )(a)

≥ EUi ((σi , �σ ′−i ), μ
�σ ′
I ) | I ) − ε/r. (8)

Equation (5) follows immediately from (6), (7), and (8). Thus, (ε′ + ε + ε/r)-local
rationality is common knowledge in M . We have shown that (a) implies (c).
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It remains to show that (c) implies (a). So suppose that there exists a field R
∗, a

nonstandard strategy profile �σ ′, an infinitesimal ε > 0 in R
∗, and a model M where

ε-local rationality is common knowledge, as required for (c) to hold. It is almost
immediate that σi is an ε-local best response for i relative to σ ′

i
. We want to show

that there exists some infinitesimal ε′′, possibly different from ε, such that σi is an
ε′′-best response for i relative to σ ′

i , for each player i . The result then follows from
Theorem 3.5.

To do this, we need some preliminary definitions. In a finite extensive-form game �

with perfect recall, for each player i , we can define a partial order �i on player i’s
information sets such that I �i I ′ if, for every history h ∈ I , there is a prefix h′ of h
in I ′. Thus, I �i I ′ if I is below (i.e., appears later than) I ′ in the game tree. We define
the height of an information set I for player i , denoted by height(I ), inductively as
follows; height(I ) = 1 if I is a maximal set for player i , that is, there is no information
set I ′ such that I ′ �i I . If I is not maximal, then height(I ) = max{height( Î ) + 1 :
Î �i I }. Since � is a finite game, height(I ) is well defined. Indeed, the size of the
game ensures that there is a finite bound d such that height(I ) ≤ d for all information
sets in the game. For ε′ defined just before Eq. (4), we can now prove the following
result:

Lemma 3.10 σi is a d(ε + ε′)-best response for i relative to �σ ′ in �.

Proof For all information sets I of player i , we show by induction on k = height(I )
that σi is a k(ε + ε′)-best response to �σ ′

i conditional on having reached I using �σ ′.
So fix an arbitrary player i , and let I be an information set for i . If I is maximal, then
height(I ) = 1. By assumption, σi is a local ε-best response to �σ ′−i conditional on
having reached I using �σ ′, so the base case of the induction holds. Now suppose that
height(I ) = k > 1 and that the claim holds for all I ′ such that height(I ′) < k.

By choice of ε′, we have by Eq. (4) that

EUi (((σi , �σ ′−i ), μ
�σ ′
I ) | I ) ≥ EUi (((σ

′
i [I/σi (I )], �σ ′−i ), μ

�σ ′
I ) | I ) − ε′. (9)

Let τi be an arbitrary strategy for player i . By assumption, σi is a local ε-best response
relative to �σ ′−i , so

EUi (((σ
′
i [I/σi (I )], �σ ′−i ), μ

�σ ′
I ) | I ) ≥ EUi (((σ

′
i [I/τi (I )], �σ ′−i ), μ

�σ ′
I ) | I ) − ε. (10)

Let I = {I1, . . . , Im} be the information sets for player i that immediately succeed I
in � (i.e., for each I j ∈ I, I j � I and there is no information set I ′ such that
I j �i I ′ �i I ) and can be reached by starting at a history in I and playing τ(I ). By
the inductive hypothesis, σi is a (k−1)(ε+ε′)-best response to �σ ′−i at each information
set I ′ ∈ I, so player i’s utility is at most (k − 1)(ε + ε′) worse if he plays σi rather
than τi at each I ′ ∈ I. It easily follows that

EUi ((σi [I/τi (I )], �σ ′−i ), μ
�σ
I ) | I ) ≥ EUi ((τi , �σ ′−i ), μ

�σ
I ) | I ) − (k − 1)(ε + ε′). (11)
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Putting together (9), (10), and (11), we obtain that

EUi (((σi , �σ ′−i ), μ
�σ ′
I ) | I ) ≥ EUi (((τi , �σ ′−i ), μ

�σ ′
I ) | I ) − k(ε + ε′).

Since height(I ) ≤ d for each information set I in�, it follows that σi is an d(ε+ε′)-
best response for i relative to �σ ′, for each player i = 1, . . . , n. This completes the
proof of the lemma. ��

Clearly ε′′ = d(ε + ε′) is an infinitesimal, so by Theorem 3.5, it follows that there
exists a belief system μ such that the assessment (�σ ,μ) is a sequential equilibrium
of �, as desired. ��

It follows from Theorem 3.9 that Theorem 3.5 can be generalized to use either
ε-rationality or ε-local rationality. Each of the choices gives a characterization of
sequential rationality.

It is interesting to compare our results to those of Asheim and Perea (2005). As
mentioned, they provide epistemic characterizations of sequential equilibrium and
quasi-perfect equilibrium in 2-player games in terms of rationality. Their notion of
rationality is essentially equivalent to ours; since they do not use local rationality, it is
perhaps not surprising that they do not deal with perfect equilibrium, which seems to
require it.

To obtain their results, Asheim and Perea represent uncertainty using a general-
ization of LPSs (lexicographic probability sequences) (Blume et al. 1991a, b) that
they call systems of conditional lexicographic probabilities (SCLPs). An LPS is a
sequence (Pr0, . . . ,Prk) of probability measures on a measure space (S,F). Roughly
speaking, we can identify such a sequence with the nonstandard probability measure
(1− ε −· · ·− εk)Pr0 +ε Pr1 + · · ·+ εk Prk on (S,F). Indeed, it has been shown that
LPSs and nonstandard probability spaces (NPSs) are essentially equivalent in finite
spaces (Blume et al. 1991a; Halpern 2010). However, it is not hard to show that SCLPs
can capture some situations that cannot be captured by NPSs. Roughly speaking, this
is because SCLPs do not necessarily satisfy an analogue of the chain rule of probability
(Pr(A | B) × Pr(B | C) = Pr(A | C) if A ⊆ B ⊆ C), which does hold for NPSs.9

(Of course, we might view such situations as unreasonable.) It would be interesting to
investigate whether our results could be obtained with some variant of LPSs or CPSs
(conditional probability spaces).

Another relativelyminor difference between our result and that ofAsheim andPerea
is that they work with what they call common certain belief rather than with common
knowledge, where certain belief of E is defined relative to a model characterized
by an LPS (μ1, . . . , μk) if μ j (E) = 1 for j = 1, . . . , k. Although Asheim and
Perea’s theorems are stated in terms of mutual certain belief of rationality rather than
common certain belief, where mutual certain belief holds if both of the players have
certain belief of rationality, they also require mutual certain belief of each player’s
type; in their setting, this implies common certain belief of rationality.

9 There is no notion of multiplication in SCLPs, so this statement is not quite accurate. Nevertheless,
consequences of the chain rule, such as that μ(A | B) = μ(A′ | B) implies μ(A | C) = μ(A′ | C) do not
hold for SCLPs.
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Finally, in their characterization of quasi-perfect equilibrium, Asheim and Perea
also require common certain belief of caution, which, roughly speaking, in our lan-
guage says that players should prefer a strategy that is a best response to one that is
an ε-best response, even for an infinitesimal ε. Dropping caution when moving from
quasi-perfect equilibrium to sequential equilibrium in Asheim and Perea’s framework
corresponds to moving from rationality to ε-rationality in our framework.

4 Discussion

Theorems 3.7, 3.8, and 3.9 illustrate the role that common knowledge of rationality
plays in perfect equilibrium, quasi-perfect equilibrium, and sequential equilibrium.
Comparing Theorems 2.1 to 3.7, note that for �σ to be a perfect equilibrium, Theo-
rem 3.7 requires players to always be rational; that is, for every information set I
that a player i can reach in the game, i must be rational conditional on reaching I .
Since Theorem 2.1 considers only normal-form games, the requirement that players
always be rational has no bite. But we could prove an analogue of Theorem 2.1 for
Nash equilibrium in extensive-form games, and again it would suffice to have ratio-
nality ex ante, rather than conditional on reaching each information set. The other key
difference between Theorems 2.1 and 3.7 is that in Theorem 3.7, rather than taking
the probability on histories in M to be determined by �σ , it is determined by �σ ′, a
completely-mixed nonstandard strategy that differs infinitesimally from �σ . Note that
there are many strategies that differ infinitesimally from �σ . The exact choice of �σ ′
has only an infinitesimal impact on i’s beliefs at information sets I that are on the
equilibrium path; but for information sets I off the equilibrium path, the choice of �σ ′
completely determines i’s beliefs; different choices can result in quite different beliefs.

The distinction between Theorems 3.7 and 3.9 highlights one way of thinking about
the difference between perfect equilibrium and sequential equilibrium. For perfect
equilibrium, it has to be common knowledge that players are always rational; for
sequential equilibrium, it suffices to have common knowledge that players are always
ε-rational for an infinitesimal ε > 0. The distinction between Theorems 3.7 and 3.8
brings out the point that van Damme already stressed in the definition of quasi-perfect
equilibrium: the difference between local best responses and best responses. We find
it of interest that this distinction does not play a role in sequential equilibrium.

Our results complement Aumann’s earlier epistemic characterizations of Nash and
of correlated equilibria. The general picture obtained is that all of these solution
concepts can be characterized in terms of common knowledge of rationality; the dif-
ferences between the characterizations depend on what we assume about the prior
probability, whether rationality holds at all information sets or just at the beginning,
and whether we consider rationality or ε-rationality. As we show in related work
(Halpern and Moses 2007), as a consequence of this observation, it follows that all
these solution concepts can be embodied in terms of a single knowledge-based pro-
gram (Fagin et al. 1995, 1997), which essentially says that player i should perform
action a if she believes both that she plans to perform a and that playing a is optimal
for her in the sense of being a best response. This is, arguably, the essence of ratio-
nality. In the case of each of the equilibrium notions that we have discussed, for the
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corresponding notions of rationality and best response, if it is common knowledge
that everyone is following this knowledge-based program, then rationality is common
knowledge.

Can other standard solution concepts be characterized in this way? It is straightfor-
ward to state and prove an analogue of Theorem 2.1 for Bayes–Nash equilibrium. Now
the state space in the model would include each player’s type. If we define rationality
and best responses in terms of minimax regret, rather than in terms of maximizing
expected utility, Hyafil and Boutilier (2004) define a notion of minimax-regret equi-
librium that can be captured in terms of common knowledge of rationality. Similarly,
Aghassi and Bertsimas (2006) define rationality in terms of maximin (i.e., maximizing
the worst-case utility) and use that to define what they callmaximin equilibria. Again,
we can prove an analogue of Theorem 2.1 for this solution concept.

Perhaps more interesting is the solution concept of iterated admissibility, also
known as iterated deletion of weakly dominated strategies. Brandenburger et al. (2008)
provide an epistemic characterization of iterated admissibility (i.e., iterated deletion
of weakly dominated strategies) where uncertainty is represented using LPSs (lex-
icographic probability sequences). They define a notion of belief (which they call
assumption) appropriate for their setting, and show that strategies that survive k rounds
of iterated deletion are ones that are played in states where there is kth-order mutual
belief in rationality; that is, everyone assumes that everyone assumes …(k − 1 times)
that everyone is rational. However, they prove only that their characterization of iter-
ated admissibility holds in particularly rich structures called complete structures,where
all types are possible. More recently, Halpern and Pass (2009) provide a characteri-
zation that is closer to the spirit of Theorem 2.1. The key new feature is that instead
of just requiring that everyone is rational, and that everyone knows that everyone is
rational, and that everyone knows that everyone knows…, they require that all every-
one knows is that everyone is rational, and that all everyone knows is that all everyone
knows is that everyone is rational, and so on. In this claim, the statement that all agent
i knows is ϕ is true at a state ω if, not only is it the case that ϕ is true at all states
that i considers possible at ω (which is what is required for i to know ϕ at ω), but
it is also the case that i assigns ψ positive probability for each formula ψ consistent
with ϕ. Thus, we capture “all i knows is ϕ” by requiring that i considers any situation
compatible with ϕ possible. In the specific case of iterated admissibility, this means
that i considers possible (i.e., assigns positive probability to) all strategies compatible
with rationality. As shown by Halpern and Pass (2009), a strategy survives k rounds
of iterated deletion iff it is played at a state in a structure where all everyone knows
is that all everyone knows …(k times) that everyone is rational. This result does not
require the restriction to complete structures.

Now consider extensive-form rationalizability (EFR) (Pearce 1984), an extension
of rationalizability that seems appropriate for extensive-form games (Halpern and Pass
2009). Battigalli and Siniscalchi (2002) provide an epistemic characterization of EFR
using a notion of strong belief ; these are beliefs that are maintained unless evidence
shows that the beliefs are inconsistent. For example, if player 1 has a strong belief
of player 2’s rationality, then whatever moves player 2 makes, player 1 will revise
her beliefs and, in particular, her beliefs about player 2’s beliefs, in such a way that
she continues to believe that player 2 is rational (so that she believes that player 2 is
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making a best response to his beliefs), unless it is inconsistent for her to believe that
player 2 is rational. Battigalli and Siniscalchi characterize EFR in terms of common
strong belief of rationality. Specifically, they show that a strategy satisfies EFR iff it is
played in a complete structure. Again, using “all i knows” would allow us to give an
epistemic characterization of EFR in the spirit of the theorems in this paper without
the restriction to complete structures (Halpern and Pass 2009).10

To summarize, the notion of common knowledge of rationality seems deeply
embedded in many game-theoretic solution concepts. While not all solution concepts
can be given epistemic characterizations in terms of some variant of common knowl-
edge of rationality [one counterexample is the notion of iterated regret minimization
(Halpern and Pass 2012)], the results of this paper and of others mentioned in the
preceding discussion show that many of the most popular solution concepts do admit
such a characterization.
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