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Abstract In this article, we investigate the Grundy values of the popular game of
Fibonacci nim. The winning strategy, which amounts to understanding positions of
Grundy value 0, was known since Whinihan (Fibonacci Quart 1:9–13, 1963). In this
paper, we extend Whinihan’s analysis by computing all the positions of Grundy value
at most 3. Furthermore, we show that, when we delete the Fibonacci numbers (which
have Grundy value 0), the Grundy values of the starting positions are increasing, and
we give upper and lower bounds on the growth rate.

Keywords Combinatorial game theory · Fibonacci numbers · Zeckendorf’s theorem

1 Introduction

Fibonacci nim, described and analyzed in Whinihan (1963), is a two-player combina-
torial game, popular due to its simple game rules and its elegant solution. Its analysis
involves not only the Fibonacci numbers, but also the Zeckendorf representation of a
natural number. It is played on one heap of tokens and the rules are the same for both
players; thus the game is impartial (see Berlekamp et al. 2001).

The rules of the game are as follows. Suppose that there are originally n tokens in
the heap. On the first move, the first player can remove between 1 and n − 1 tokens.
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If, on the previous move, the last player removed r tokens, then the next player can
remove up to 2r tokens. The game ends when there are no moves left; the player left
without a move loses.

Many impartial games are studied under the disjunctive sum operator; that is, two
games G and H are played together, with a move in their sum G + H being either a
move inG or amove in H , but not both. Sumsof games are highly amenable to analysis,
due to the Sprague–Grundy theory Sprague (1935), Grundy (1939), which we review
in Sect. 2. Fibonacci nim, however, is a so-called move-size dynamic game, where
the current player’s move options depend on the particular removal by the previous
player, and so the possible moves of the game depend not only on the position but also
on the game history. There are two logical ways of summing games of Fibonacci nim,
or equivalently, playing Fibonacci nim with several heaps, based on where the move
dynamic lives: is the move dynamic global, or is it local, specific to each heap?

In this article, we consider the move dynamic to be local, so there is a separate
move dynamic assigned to each heap, and a move in one heap does not change the
move dynamic in any other heap. The reason for this is that this rule fits in properly
with the Sprague–Grundy theory, as it is simply the disjunctive sum operator. This
allows us to analyze the game assuming we can analyze each heap separately.

In order to analyze each heap, it is necessary to compute Grundy values of single-
heap positions. We consider a position to be a pair (n, r), where n is the total number
of stones in the heap, and r is the maximum number that may be removed on the next
turn. The starting position is therefore (n, n − 1). We sometimes simply write n to
denote (n, n).

In Table 1, we display the Grundy values of the pairs (n, r) for small values of n
and r . We write G(n, r) for the Grundy value of the pair (n, r).

The structure of the rest of the paper is as follows. In Sect. 2, we review the Sprague–
Grundy theory. In Sect. 3, we review Zeckendorf’s theorem and the winning strategy
for Fibonacci nim. In Sect. 4, we give a complete description of the positions (n, r)
with G(n, r) ≤ 3. In Sect. 5, we show that the nonzero Grundy values of the starting
positions are increasing and provide upper and lower bounds for their sizes.

2 The Sprague–Grundy theory

When analyzing an impartial two-player game in isolation, it is sufficient to identify
theN positions, which are winning for the next player, and theP positions, which are
winning for the previous player (or, equivalently, losing for the next player). These
positions can be classified recursively, as follows:

• A position is an N position if there is at least one move to a P position.
• A position is a P position if every move is to an N position.

It is possible to analyze a sum of several games by understanding each game indi-
vidually, but it is necessary to know more detailed information than just whether it is
an N or P position. The key is the minimal excludant (mex) function.

Definition 2.1 Let S denote a finite set of nonnegative integers. Then the minimal
excludant mex(S) is the least nonnegative integer not in S.
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Table 1 Grundy values for Fibonacci nim

n\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0

1 0 1

2 0 0 2

3 0 0 0 3

4 0 1 1 3 3

5 0 0 0 0 0 4

6 0 1 1 1 1 4 4

7 0 0 2 2 2 4 4 4

8 0 0 0 0 0 0 0 0 5

9 0 1 1 1 1 1 1 1 5 5

10 0 0 2 2 2 2 2 2 5 5 5

11 0 0 0 3 3 3 3 5 5 5 5 5

12 0 1 1 3 3 3 3 3 6 6 6 6 6

13 0 0 0 0 0 0 0 0 0 0 0 0 0 6

14 0 1 1 1 1 1 1 1 1 1 1 1 1 6 6

15 0 0 2 2 2 2 2 2 2 2 2 2 2 6 6 6

16 0 0 0 3 3 3 3 3 3 3 3 3 7 7 7 7 7

17 0 1 1 3 3 3 3 3 3 3 3 3 3 7 7 7 7 7

18 0 0 0 0 0 4 4 4 4 4 4 7 7 7 7 7 7 7 7

19 0 1 1 1 1 4 4 4 4 4 4 4 7 7 7 7 7 7 7 7

20 0 0 2 2 2 4 4 4 4 4 4 4 4 7 7 7 7 7 7 7 7

The Sprague–Grundy theory assigns a nonnegative integer G(X), known as the
Grundy value of X , to each finite impartial game X recursively, by letting G(X) =
mex ({G(Y )}), where Y runs over all the moves from X .

If X decomposes as a sum of several games, say X = X1 +· · ·+ Xn , then G(X) =
G(X1)⊕ · · ·⊕G(Xn), where the operator ⊕ is “add in binary without carrying.” (See
e.g. Berlekamp et al. 2001 for more details). An impartial game X is a P position iff
G(X) = 0.

3 Playing Fibonacci nim

The essential ingredient to winning at Fibonacci nim is Zeckendorf’s theorem.

Theorem 3.1 (Zeckendorf 1972) Every positive integer has a unique representation
as a sum of distinct Fibonacci numbers, no two of which are consecutive.

Wecall this representation theZeckendorf representation ofn.Wewrite zi (n) for the
i th smallest part in theZeckendorf representation of n; if the Zeckendorf representation
of n contains fewer than i parts, then we write zi (n) = ∞. We also write expressions
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of the form n = a + b+ c+ · · · , meaning that z1(n) = a, z2(n) = b, z3(n) = c, and
c < ∞.

Now, assume that (n, r) is anN position. As we shall prove in Theorem 4.1, this is
true if and only if r ≥ z1(n). A winning move is to remove z1(n) tokens. (There may
be other winning moves as well).

Because the winning strategy of Fibonacci nim is so closely tied to Zeckendorf’s
theorem, we can view the entire game as a game-theoretic interpretation of Zeck-
endorf’s theorem.

4 Small Grundy values

Notation We write Ft for the t th Fibonacci number. As usual, we index the Fibonacci
numbers so that F0 = 0 and F1 = 1.

We show the following:

Theorem 4.1 G(n, r) = 0 if and only if r < z1(n).

Remark 4.2 An important special case of Theorem 4.1 is that the starting position
(n, n − 1) with n stones is losing iff n is a Fibonacci number.

This is a classical result, due to Whinihan (1963). However, its proof will be useful
for the rest of our results, so we review it here. We will make use of the following
Lemma:

Lemma 4.3 Suppose n > 1 and 1 ≤ k < z1(n). If z1(k) = Ft , then z1(n−k) is either
Ft+1 or Ft−1. In particular, z1(n − k) ≤ 2k, and if k ≥ 4, then z1(n − k) ≤ 2k − 2.

Remark 4.4 We primarily use the clause that z1(n − k) ≤ 2k. However, at one point
in the proof of Theorem 4.7, we will need the stronger clause that z1(n − k) ≤ 2k − 2
if k ≥ 4.

Proof We prove this by induction on the number of parts in the Zeckendorf represen-
tation of k. We start with the case of k being a Fibonacci number, so that z1(k) = k.
Suppose that z1(n) = Fs . We divide the proof into two cases: s ≡ t (mod 2) and
s �≡ t (mod 2). If s ≡ t (mod 2), then we have t = s − 2d for some d ≥ 1, and we
have

Fs − k = Fs − Fs−2d = Fs−2d+1 + Fs−2d+3 + · · · + Fs−3 + Fs−1,

so

z1(Fs − k) = Fs−2d+1 = Ft+1.

Now, note that the Zeckendorf representation of n − k is equal to the union of the
Zeckendorf representation of Fs − k and the Zeckendorf representation of n with the
first part (that is, Fs) removed. So, the result holds in this case.
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Now, suppose that s �≡ t (mod 2). Then t = s − 2d − 1 for some d ≥ 0, and we
have

Fs − Ft = Fs − Fs−2d−1 = Fs−2d−2 + Fs−2d + · · · + Fs−3 + Fs−1,

so z1(Fs − k) = Fs−2d−2 = Ft−1. As before, we have z1(n − k) = z1(Fs − k), so
here too the result holds.

Now suppose that the result holds whenever the Zeckendorf representation of k
has p − 1 parts. Suppose furthermore that the Zeckendorf representation of k has
p parts. Then, since k − z1(k) has p − 1 parts, we know that if z1(k) = Ft , then
z1 (k − z1(k)) ≥ Ft+2, so z1 (n − k + z1(k)) ≥ Ft+1 > Ft = z1(k). Hence, by the
base case above with n − k + z1(k) and z1(k), respectively, playing the parts of n and
k, z1(n − k) is either Ft−1 or Ft+1. �	
Proof of Theorem 4.1 The proof of this theorem, and the others in this section, are all
by induction on n. It suffices to show that, from any position with r ≥ z1(n), there
is some k with k ≤ r so that 2k < z1(n − k) (in fact, k = z1(n) works), and that
if r < z1(n), then for every k ≤ r, 2k ≥ z1(n − k). In the language of N and P
positions, this says that for every N position (r ≥ z1(n)), there is a move to a P
position (r < z1(n)), and for every P position, all moves are to N positions.

Assume that r ≥ z1(n). We show that 2z1(n) < z2(n) = z1(n − z1(n)). Since
z1(n) is a Fibonacci number, say Ft with t ≥ 2, and z2(n) is also a Fibonacci number
at least Ft+2, we have

z2(n) ≥ Ft+2 = Ft+1 + Ft > 2Ft ,

as desired. Hence, k = z1(n) satisfies the condition in the previous paragraph.
Now assume that k < z1(n). By Lemma 4.3, if z1(k) = Ft , then z1(n− k) ≤ Ft+1.

Since Ft+1 ≤ 2Ft ≤ 2k, we have 2k ≥ z1(n − k), as desired. �	
Theorem 4.5 G(n, r) = 1 iff z1(n) = 1 and 1 ≤ r < z2(n).

Proof In order for G(n, r) to be 1, there must be some k with 1 ≤ k ≤ r so that
G(n − k, 2k) = 0, and furthermore, G(n − k, 2k) �= 1 for all k with 1 ≤ k ≤ r .
Suppose z1(n) = 1 and r < z2(n). Then G(n − 1, 2) = 0 by Theorem 4.1, since
z1(n − 1) = z2(n) ≥ 3, as otherwise the Zeckendorf representation of n would have
two consecutive Fibonacci numbers, which is impossible. We now show that, for each
k < z2(n) = z1(n−1), G(n−k, 2k) �= 1. It suffices to show that either z1(n−k) �= 1
or 2k ≥ z2(n − k). This follows from applying Lemma 4.3 with n − 1 in place of n,
since if z1(n − k) = 1, then z2(n − k) = z1(n − 1 − k).

Now, suppose that z1(n) > 1. If r < z1(n), then by Theorem 4.1, G(n, r) = 0. If
r ≥ z1(n), then there is amove to (n−z1(n)+1, 2z1(n)−2). Now, z1(n−z1(n)+1) =
1, and 2z1(n)−2 ≤ z2(n−z1(n)+1) = z2(n). HenceG(n−z1(n)+1, 2z1(n)−2) = 1,
so G(n, r) �= 1.

Finally, suppose that z1(n) = 1 and r ≥ z2(n). Then G(n − z2(n), 2z2(n)) = 1,
since 2z2(n) < z3(n) = z2(n− z2(n)). Thus, in this case, there is a move to a position
with Grundy value 1, so G(n, r) �= 1. �	
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Theorem 4.6 G(n, r) = 2 iff z1(n) = 2 and 2 ≤ r < z2(n).

Proof In order for G(n, r) to be 2, there must be moves to positions of values 0 and 1,
and nomove to a position of value 2.Wenowshow that if z1(n) = 2 and2 ≤ r < z2(n),
then G(n, r) = 2. Since r ≥ 2 and z1(n) = 2, G(n − 2, 4) = 0, so there is a move to
a 0-position, since z1(n − 2) = z2(n) ≥ 5. Furthermore, G(n − 1, 2) = 1, so there is
a move to a 1-position. Now, suppose that G(n− k, 2k) = 2 for some k ≤ r . Then, by
induction, we would have z1(n − k) = 2 and 2k < z2(n − k). But if z1(n − k) = 2,
then z2(n − k) = z1(n − k − 2), which, since k ≤ r < z2(n) = z1(n − 2), is ≤2k by
Lemma 4.3, which contradicts the induction. Hence, there are no moves to positions
of value 2.

Now, suppose z1(n) �= 2. If z1(n) = 1 and 1 ≤ r < z2(n), then by Theorem 4.5,
G(n, r) = 1. Now, suppose z1(n) = 1 and r ≥ z2(n). Then G(n − z2(n) + 1, 2z2(n)
− 2) = 2 by induction. Hence, in this case, G(n, r) �= 2.

Finally, suppose z1(n) = 2 and r ≥ z2(n). Then G(n − z2(n), 2z2(n)) = 2,
since 2z2(n) < z3(n). Hence, there is a move to a position with Grundy value 2, so
G(n, r) �= 2. �	
Theorem 4.7 G(n, r) = 3 iff z1(n) = 1, z2(n) = 3, and 3 ≤ r < z3(n), or z1(n) = 3
and 3 ≤ r < z2(n) − 1.

Proof In order for G(n, r) to be 3, there must be moves to positions of values 0, 1, and
2, and nomove to a position of value 3.We now show that if z1(n) = 1, z2(n) = 3, and
3 ≤ r < z3(n), then G(n, r) = 3. By Theorem 4.1, G(n−1, 2) = 0, so there is a move
to 0. By Theorem 4.5, G(n − 3, 6) = 1, since n − 3 = 1+ z3(n)+ · · · and z3(n) ≥ 8
by Zeckendorf’s theorem, since z2(n) = 3. By Theorem 4.6, G(n − 2, 4) = 2, since
n − 2 = 2 + z3(n) + · · · . Now, we show that there are no moves from (n, r) to a
position with Grundy value 3. Clearly, removing one or two tokens does not leave a
position with Grundy value 3. If we were to leave a position with Grundy value 3 after
removing 3 ≤ k < z3(n), then we must either have z1(n − k) = 1, z2(n − k) = 3,
and 2k < z3(n − k), or z1(n − k) = 3 and 2k < z2(n − k) − 1. In the first case,
we have z3(n − k) = z1(n − k − 4), and as k < z3(n) = z1(n − 4), Lemma 4.3
implies that z3(n− k) ≤ 2k, contradicting the hypothesis. In the second case, we have
z2(n − k) = z1(n − k − 3) ≤ 2(k − 1) by Lemma 4.3, contradicting the assumption
that z2(n − k) > 2k + 1. Hence, there is no move to a position with Grundy value 3.

Now suppose that z1(n) = 3 and 3 ≤ r < z2(n) − 1. Then G(n − 3, 6) = 0 since
6 < z1(n − 3) = z2(n). Now, G(n − 2, 4) = 1 since n − 2 = 1 + z2(n) + · · ·
and z2(n) ≥ 8. Furthermore, G(n − 1, 2) = 2 since n − 1 = 2 + z2(n) + · · · .
If there were a move to a position (n − k, 2k) of Grundy value 3, then we would
either have z1(n − k) = 1, z2(n − k) = 3, and 2k < z3(n − k), or z1(n − k) = 3
and 2k < z2(n − k) − 1. Furthermore, if k ≤ 3, then we have already seen that
G(n − k, 2k) �= 3, so we may assume that k ≥ 4, putting us in the final case of
Lemma4.3, asmentioned inRemark 4.4. In the first case, z3(n−k) = z1(n−k−4), and
as k+1 < z2(n) = z1(n−3), Lemma 4.3 implies that z3(n−k) ≤ 2(k+1)−2 = 2k,
so by induction G(n − k, 2k) �= 3. In the second case, z2(n − k) = z1(n − k − 3), and
by Lemma 4.3, z1(n − k − 3) ≤ 2k, contradicting the hypothesis. Hence, once again
there is no move to a position with Grundy value 3.

123



Grundy values of Fibonacci nim 623

Now, we must show that for any (n, r) not of the above two forms, G(n, r) �= 3. If
n = 1 + 3 + z3(n) + · · · and r < 3, then there are only at most two moves, so there
are only at most two Grundy values among its moves, so G(n, r) < 3. This is also true
if n = 3 + z2(n) + · · · and r < 3. Now, if n = 1 + 3 + z3(n) + · · · and r ≥ z3(n),
then we can remove z3(n) tokens to obtain (n − z3(n), 2z3(n)), which has Grundy
value 3 by induction. Similarly, if n = 3 + z2(n) + · · · and r ≥ z2(n) − 1, then we
can remove z2(n)− 1 tokens to reach (n − z2(n)+ 1, 2z2(n)− 2), which has value 3
by induction. Hence, these positions do not have Grundy value 3.

Now, suppose n = 1 + z2 + · · · , where z2 ≥ 5. If r < z2, then G(n, r) ≤ 1. If
r ≥ z2, then there is a move to (n − z2 + 2, 2z2 − 4), which has Grundy value 3 by
induction, so G(n, r) �= 3. Now suppose n = 2+z2+· · · . If r < z2, then G(n, r) ≤ 2.
If r ≥ z2, then there is a move to (n − z2 + 1, 2z2 − 2), which has Grundy value 3 by
induction, so G(n, r) �= 3. Finally, suppose z1(n) ≥ 5. If r < z1(n), then G(n, r) = 0.
If r ≥ z1(n), then there is a move to (n − z1(n) + 3, 2z1(n) − 3), which has Grundy
value 3. Hence G(n, r) �= 3. This completes the proof. �	

It appears to be more difficult to classify the positions of Grundy value k for k ≥ 4.
Thus we turn to the problem of understanding the Grundy values of the initial positions
(n, n − 1) (and (n, n)) and their growth.

5 Values of starting positions

In this section we prove the following result.

Theorem 5.1 Ignoring the Fibonacci numbers, the Grundy values G(n, n − 1) of the
starting positions are non-decreasing. Furthermore, when they increase, they increase
by one.

Consider positions of the form (n, n). A starting position is of the form (n, n − 1).
Unless n is a Fibonacci number, it is clear that G(n, n) = G(n, n − 1), since the only
additional move is to (0, 0), which has Grundy value 0. Recall that we sometimes
denote a position of the form (n, n) simply by n. It is clear that Theorem 5.1 follows
from the theorem below, which we prove instead.

Theorem 5.2 For all n ≥ 0, G(n) ≤ G(n + 1) ≤ G(n) + 1.

Before we begin the proof, we introduce some notation. For each g ≥ 0, let h(g)
be the smallest value of n for which there is some r with G(n, r) = g. It is clear
that we could equivalently let h(g) be the smallest value of n for which G(n, n) = g.
For g ≥ 0, let Ag denote the set of pairs (n, r) with n < h(g + 1) and for which
G(n, r) = g. We think of Ag as being the “first block” of positions (n, r) for which
G(n, r) = g. A key property of Ag is that if (n, r) ∈ Ag and r ′ > r , then (n, r ′) ∈ Ag

as well.

Proof We prove the theorem by induction on n, together with the following statement:
if G(n) = g, then for each d < g, there is some move from n to (md , kd) with
(md , kd) ∈ Ad . For n = 0, both of these statements are clear. Now, suppose they
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both hold for n; we show that they also hold for n + 1. Suppose G(n) = g. Then, for
each d < g, there is a move from n to (md , kd) ∈ Ad . Thus there is a move from
n + 1 to (md , kd + 2). Since (md , kd + 2) ∈ Ad , we have a move from n + 1 to a
position in Ad . Hence, there are moves from n + 1 to positions of Grundy value d for
all d < g, so G(n + 1) ≥ g. The inductive hypothesis shows that h(g + 1) ≥ n + 1,
so any position (m, k) with m < n + 1 and G(m, k) = g must be in Ag; furthermore,
h(g+2) > n+1. Thus, if there is a move from n+1 to a position (m, k)with Grundy
value g, then (m, k) ∈ Ag . This completes the proof. �	

Theorem 5.3 We have log3/2(n) ≤ G(n) ≤ ⌈
2
√
n
⌉ + 1.

Proof We first prove the lower bound. For n > 0, let n′ = ⌈ 3n
2

⌉
. We show that

G(n′) ≥ G(n)+1, which implies the lower bound log3/2(n) ≤ G(n). By Theorem 5.2,
we have G(r) ≤ G(r + 1) ≤ G(r) + 1 for all r . From n′, there is a move to n, and
hence to r for each r ≤ n. Thus, the moves from n′ include moves to 0, 1, 2, . . . , n,
and {G(0),G(1), . . . ,G(n)} = {0, 1, . . . ,G(n)}. Hence G(n′) ≥ G(n) + 1.

To prove the upper bound, we let j (g) be the least value of r for which there is
some n with G(n, r) = g. In order for G(n, r) to be equal to g, there must be at least g
moves from (n, r), since there must be moves to positions of value 0, 1, 2, . . . , g− 1.
Hence, j (g) ≥ g. Now, assuming we have computed h(g), we give a lower bound for
h(g + 1). In order for G(n, r) to be equal to g + 1, there must be a move to a position
(n1, r1) whose Grundy value is g. Hence, we need n1 ≥ h(g) and r1 ≥ j (g) ≥ g.
Since r1 = 2(n − n1), we obtain 2(n − n1) ≥ g, or n ≥ g

2 + n1 ≥ g
2 + h(g), so

h(g + 1) − h(g) ≥ g
2 . Since h(1) = 1, we have

h(g) − 1 =
g−1∑

i=1

(h(i + 1) − h(i)) ≥
g−1∑

i=1

i

2
= g(g − 1)

4
,

so h(g) ≥ g(g−1)
4 . Thus,

h(
⌈
2
√
n
⌉ + 1) ≥ (2

√
n + 1)2

√
n

4
+ 1 > n,

so G(n) ≤ ⌈
2
√
n
⌉ + 1, as desired. �	

In fact, it appears that the lower bound is a lot closer to the truth than is the upper
bound. More precisely, we conjecture based on numerical evidence that G(n) + 1 ≤
G (⌈ 3n

2

⌉) ≤ G(n) + 2, which would imply that the growth rate is logarithmic.
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