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Abstract This paper analyses a model of price formation in a market with a finite
number of non-identical agents engaging in decentralised bilateral interactions. We
focus mainly on equal numbers of buyers and sellers, though we discuss other cases.
All characteristics of agents are assumed to be common knowledge. Buyers simulta-
neously make targeted offers, which sellers can accept or reject. Acceptance leads to a
pair exiting and rejection leads to the next period. Offers can be public, private or “ex
ante public”. As the discount factor goes to 1, the price in all transactions converges
to the same value.

Keywords Bilateral bargaining · Outside options · Competition · Uniform price

1 Introduction

In this paper, we study price formation in a market with small numbers of buyers and
sellers, where transactions are bilateral between a single buyer and a single seller.
For a broad range of variants of a dynamic bargaining game with many sellers and
buyers, in which only one side of the market makes offers, we find that, as the discount
factor goes to 1, there is a stationary equilibrium where prices in different transactions
converge to a single value.
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1.1 Motivation for the problem studied

Most modern markets consist of a small number of participants on each side. These
participants buy from and sell to each other, write contracts with each other and
sometimes merge with each other. The transactions in these markets are often bilateral
in nature, consisting of an agreement between a buyer and a seller or a firm and a
worker. These bilateral trades occur without any centralised pricing mechanism, in a
series of bargains in which the “outside options” for a current bargaining pair are, in
fact, endogenously given for each by the presence of alternative partners on the other
side of the market. However, these potential alternative partners, by their presence,
implicitly compete with each other and one question that arises naturally is whether
the “competitive” pressure of the outside options leads to an approximately uniform
price for non-differentiated goods. It is this basic question, about endogenous outside
options and a uniform price, that this paper seeks to study. We focus on complete
information.1

1.1.1 Examples

Whilst the models we study are going to be highly stylised representations of these
examples, they at least have some features in common with them. A standard example
used in these settings is the housing market, for a given location and a given type of
home (to reduce the extent of differentiation). Sellers list their houses, buyers visit,
inspect and then convey their offers to the sellers-one offer from each buyer. Sellers
can accept or reject the offers they have; possibly they then make counter-offers or
often wait for the buyer to come back again with new higher offers. Whether counter-
offers are made or not distinguishes different extensive forms or bargaining protocols.
The offers are privately made to sellers, who typically do not know what other sellers
receive.

Another example is of a firm being acquired. Here the potential acquirer makes
a public targeted offer for a particular firm, which the shareholders of the potential
acquisition have to accept or reject (based on a recommendation by the management).
A rejection could lead to the acquirer raising its offer. There could be competition on
both sides, perhaps from another potential buyer called in bymanagement of the target
as a “white knight” and other possible targets with the same attractive characteristics
as the one in play. In this particular context, it makes sense to think of offers as being
one-sided, from the potential buyers, and publicly announced.

Private targetedoffers occur in negotiations for joint ventures. For example, the book
(Almqvist 2002) describes the joint venture talks between industrial gas companies
and chemical companies in the 1980s, in which the players were Air Products, Air
Liquide and British Oxygen on one side and DuPont, Dow Chemical and Monsanto
on the other. After some bargaining, two joint ventures and an acquisition resulted.

1 An incomplete information analysis has been done in a companion paper (Chatterjee and Das 2013).
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1.2 Main features of our model

Our model begins from a setting of two buyers with common valuation v, two sellers
with valuations M, H and complete information about these values. We assume that
v > H > M > 0. We then extend the model by adding both buyers, sellers to the
basic model. There is a one-time entry of players, at the beginning of the game, and a
buyer–seller pair who trade leave the market.

Players discount with a common discount factor δ ∈ (0, 1). We consider equilibria
for high values of δ and consider the limit of equilibria as δ → 1. The extensive forms
we consider have two main features; offers are one-sided and offers are simultaneous.
Simultaneous offers seems to us to be the right way to capture the essence of compe-
tition. Targeting an offer to one individual on the other side of the market enables us
to endogenise matching between buyers and sellers as a strategic decision. Once the
offers have been made, one per proposer, recipients simultaneously accept or reject. A
rejection ensures that the game continues to the following period, where payoffs are
discounted by δ.

Our main results, starting with the basic model, can be simply described. There is
a unique stationary equilibrium outcome under complete information, involving non-
degenerate mixed strategies for all players. As δ → 1, the mixed strategies collapse
to a single price and the price in all matches goes to H. In equilibrium, there could
be one-period delay with positive probability, but the cost of delay, of course, goes to
0 as δ → 1. The price H might be thought of as a competitive equilibrium price in
the complete information setting (Given our assumptions, any price between v and H
will equate supply and demand).

For the general n buyer–n seller case, we show the uniqueness of the limiting
payoff for buyers and the convergence of prices in all transactions to a single value
as δ → 1, for any stationary subgame perfect equilibrium (Theorem 1). The main
equilibrium characterisation result for the general case is given in Theorem 2, which
builds on the analysis preceding it in the paper.

In the next sub-section, we discuss the relevant literature and compare our results
to some of the existing work.

1.3 Related literature

We now qualitatively describe the existing literature and compare our model with it.
The first attempts to obtain micro foundations for markets using bilateral bargaining
were the papers by Rubinstein and Wolinsky (1985); Binmore and Herrero (1988);
Gale (1986) and Gale (1987), . These papers were all concerned with large anony-
mous markets, in which players who did not agree in a given period are randomly
and exogenously rematched in succeeding periods with someone they had never met
before. Rubinstein andWolinsky (1985) and Gale (1987) consider bargaining frictions
given by discounting and characterise the limiting price as the discount factor goes to
1. The limiting price depends on exogenously given probabilities of being matched in
the following period.
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Rubinstein and Wolinsky (1990) (see also Osborne and Rubinstein 1990, Chaps.
9.2, 9.3 for an exposition of their models) is the first paper to consider the issue of price
determination in small markets. They consider buyers and sellers, with the number of
buyers being more than that of sellers. Each buyer–seller pair is capable of generating
a surplus of 1 unit. In their basic model with random matching and no discounting,
they construct a class of non-stationary equilibria and show that these do not give the
entire surplus to the short side of the market; however, the stationary equilibrium does.
With discounting, some of their equilibrium constructions become difficult to sustain
for random matching, so they introduce a seller choosing a buyer who is “privileged”,
as in their equilibrium construction without discounting. They do not consider equal
numbers of buyers and sellers, heterogeneity in surpluses and direct competition for
the same seller by two different buyers (with discounting). Both the current paper
and the paper by Chatterjee and Dutta (1998) may be viewed as extensions of the
Rubinstein–Wolinsky model to richer strategic settings.

Chatterjee and Dutta (1998) attempt a project similar to this one, also with public
and private targeted offers and ex ante offers, but both sides of the market are allowed
to make offers. It turns out that this difference with the current paper is crucial. The
paper (Chatterjee andDutta 1998) does not, in general, obtain an asymptotically single
price as δ → 1; under public targeted offers, there is a pure strategy equilibrium
and all pure strategy equilibria involve two different prices. In general, the mixed
strategy equilibriumwith private offers remains non-degenerate even as δ → 1, unlike
this paper, even though the expected player payoffs converge. The intuition behind
these results in Chatterjee–Dutta is that there is a tension in every period between
two opposing forces acting on the price. Since the two sides of the market alternate
in making offers, a single rejection in a period (in the game with two buyers and
two sellers) will generate a “Rubinstein bargaining subgame”. In the presence of
heterogeneous agents, this leads to pressure on the prices to diverge towards the two
different bargaining solutions. However, there is also competition in each period to try
to match with the player who offers a higher surplus because of simultaneity of offers
and, therefore, undercutting or overbidding. This conflict is impossible to resolve with
two agreements taking place in the same period but there is a pure strategy equilibrium
with agreement taking place in different periods at different prices. The current paper
keeps the aspect of competition but eliminates the complication caused by the two
sides of the market making alternating offers. This explains why one sided offers
leads to unique stationary equilibrium with competitive price in the limit as players
get patient.

Gale and Sabourian (2005) and Sabourian (2004) use notions of strategic complex-
ity to select the competitive equilibrium in games of the kind studied by Rubinstein
and Wolinsky.

Hendon and Tranaes (1991), also following Rubinstein and Wolinsky (1990) study
a market with two heterogeneous buyers and one seller, and random matching after
initial disagreement.

To summarise, this current paper differs from the existing literature by considering
one or more of the following: (i) Small numbers and strategic matching. (ii) Extensive
forms with different assumptions about whether offers are public or targeted and
private. (iii) Simultaneous offers. Despite this variety and the number of differences
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with the papers mentioned above, the results we get are surprisingly consistent with
an asymptotic single price. It is clear that the fact that we consider one-sided rather
than alternating offers has much to do with this, and this might be considered one
of the takeaways from this paper, namely that the intuition for the single price result
holds broadly provided alternating offers don’t push prices apart when buyer–seller
valuations are heterogeneous.

In the next section, we discuss the basic model with two buyers and two sellers
under complete information. In Sect. 3, we analyse the general case where there are n
buyers and n sellers, for general finite n and obtain similar results on the asymptotic
buyer payoffs being the same. In Sect. 4 we consider possible extensions.

2 The basic framework

2.1 The model

2.1.1 Players and payoffs

In the basic model we address, there are two buyers and two sellers. As mentioned in
Sect. 1.2, there are two buyers B1 and B2 with a common valuation of v for the good
(the maximum this buyer is willing to pay for a unit of the indivisible good). There
are two sellers. Each of the sellers owns one unit of the indivisible good. Sellers differ
in their valuations (we can also interpret these as their costs of producing to order).
One of the sellers, (SM ) has a value of M for one or more units of the good. The other
seller, (SH ) similarly has a value of H where

v > H > M > 0

This inequality implies that either buyer has a positive benefit from trade with either
seller. Alternative assumptions can be easily accommodated but are not discussed
in this paper. In the basic complete information framework all these valuations are
commonly known. Finally, all players are risk neutral. Players (buyers or sellers) have
a common discount factor δ where δ ∈ (0, 1). Suppose a buyer agrees on a price pwith
seller S j in period t. Then the buyer has an expected discounted payoff of δt−1(v − p)
and S j has the payoff of δt−1(p − j), where j = M, H .

We shall discuss the informational assumptions along with the extensive forms in
the next subsection.

2.1.2 The extensive form

We consider an infinite horizon multi-player bargaining game with one-sided offers.
The extensive form of the game is described as follows.

At each time point t = 1, 2, . . . offers are made simultaneously by the buyers. The
offers are targeted. This means an offer by a buyer consists of a seller’s name (that
is SH or SM ) and a price at which the buyer is willing to buy the object from the
seller he has chosen. Each buyer can make only one offer per period. Two settings
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could be considered; one in which each seller observes all offers made (public targeted
offers) and one in which each seller observes only the offers she gets (private offers).
(Similarly for buyers after the offers have been made). In the present section we shall
focus on the first and consider the latter in a subsequent section. A seller can accept
at most one of the offers she receives. Acceptances or rejections are simultaneous.
Once an offer is accepted, the trade is concluded and the trading pair leave the game.
Leaving the game is publicly observable. The remaining players proceed to the next
period in which buyers again make price offers to the sellers. As is standard in these
games, time elapses between rejections and new offers.

2.1.3 Strategies and equilibrium

We will not formally write out strategies, since this is a standard “multi-stage game
with observable actions”(Fudenberg and Tirole 1990). Since we have public targeted
offers, a seller’s response (and subsequent actions by all players) can condition on the
history of offers made to the other seller, in addition to those she receives herself. Our
equilibrium notion here will be the standard subgame perfect equilibrium.

2.2 Equilibrium in the basic model

2.2.1 Stationary equilibria

We consider “stationary” equilibria, that is, equilibria in which buyers when making
offers condition only on the set of players remaining in the game and the sellers,
when responding, condition on the set of players remaining and the offers made by the
buyers (We emphasise that this is not a restriction on strategies, only on the equilibria
considered). Clearly these are particular sub-game perfect equilibria in our public
targeted offers extensive form. We shall demonstrate that the equilibrium outcome we
find in this way is the unique stationary equilibrium outcome. We shall proceed in
this subsection by showing that a candidate strategy profile, in fact, does constitute
an equilibrium. In the next subsection, we shall show that the stationary equilibrium
payoff vector is unique upto choice of the buyer who makes an offer to both sellers.

The conjectured equilibrium is as follows:

1. Consider a game in which only two players, buyer Bi and seller S j remain in the
market and j denotes the valuation/cost of S j . Then it is clear that (i)Bi offers j
and (i i)S j accepts any offer at least as high as j and rejects otherwise.

2. Now consider the four-player game.2 We consider the following strategies:
(a) One of the buyers, B1 say, makes offers to each seller with positive probability

and the other buyer B2 makes an offer only to SM . Let q be the probability with
which B1 offers to SH . B1 offers H to SH . B1 randomises an offer to SM , using
a distribution F1 (·) with support [pl , H ], where pl is to be defined later. The
distribution F1(·) consists of an absolutely continuous part from pl to H and

2 Note that, since we start with the same number of players on both sides of the market and since players
can leave only in pairs, any possible subgames will also have the same number of buyers and sellers.
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a mass point at pl . B2 randomises by offering M to SM (with probability q ′)
and randomising his offers in the range [pl , H ] using an absolutely continuous
distribution function F2. The distributions Fi (·) are explicitly calculated later.

(b) The sellers’ strategies in the four-player game are as follows. SH accepts the
highest offer greater than or equal to H and rejects if all offers are less than H .
SM accepts the highest offer with a payoff from accepting at least as large as the
expected continuation payoff from rejecting it (which is actually determined
endogenously). Throughout our analysis it is assumed that a seller who is
indifferent between accepting or rejecting an offer, always accepts.

3. The expected payoff of a buyer Bi in equilibrium is v − H. The expected payoff
of SH is 0 and that of SM is positive.

Proposition 1 There exists a stationary, subgame perfect equilibrium with the char-
acteristics described above.

Proof We break up the proof into a sequence of two lemmas, which are stated below.
The details are in the Appendix. ��

The first lemma explicitly calculates the equilibrium Fi (.), q and q ′, given a defi-
nition of pl . In the second lemma, we demonstrate the existence of the pl as defined.

Lemma 1 Suppose there exists a pl such that

pl − M = δ(E(y) − M),

where y (a random variable) represents the maximum price offer to SM under the
proposed strategies. Then the strategies in 1,2 and 3 above constitute an equilibrium
with

(i)

F1(s) = (v − H)(1 − δ(1 − q)) − q(v − s)

(1 − q)[(v − s) − δ(v − H)] (1)

(ii)

F2(s) = (v − H)(1 − δ(1 − q ′)) − q ′(v − s)

(1 − q ′)[(v − s) − δ(v − H)] (2)

(iii)

q = [v − H ](1 − δ)

(v − M) − δ(v − H)
(3)

(iv)

q ′ = [v − H ](1 − δ)

(v − pl) − δ(v − H)
(4)

Proof The above expressions are derived with the help of the indifference conditions
of the buyers. We relegate the formal proof to Appendix 1. ��

Wenow show that there indeed exists a pl as described above. The following lemma
does this.
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Lemma 2 There exists a unique pl ∈ (M, H), such that,

pl − M = δ(E(y) − M)

where E(y) is same as defined before.

Proof Consider any x ∈ (M, H). Let Fx
1 (.), Fx

2 (.), qx , q ′x , and Ex (y) be the expres-
sions obtained from F1(.) , F2(.), q, q ′ and E(y) respectively by replacing pl by x .
That is we compute the distributions and the probabilities according to the above
described strategy profile by assuming pl = x .

All we now need to show is that there exists a unique x∗ ∈ (M, H) such that,

x∗ − M = δ(Ex∗
(y) − M)

From our description given above, we can posit that Ex (y) ca be written as follows

Ex (y) = qx
[
q ′x M + (1 − q ′x)Ex

2 (p)
] + (1 − qx )

[
q ′x Ex

1 (p) + (1 − q ′x )
× E(highest offer)

]

where, Ex
i (p) is derived from Fx

i (.), (i = 1, 2) and is the expected price offer by the
buyer Bi ,when his offers are in the range [x, H ].

We claim that as x increases by 1 unit, increase in Ex (y) is by less than 1 unit. See
Appendix 2 for the proof of this claim.

Now we define the function G(.) as,

G(x) = x −
[
δEx (y) + (1 − δ)M

]

Differentiating G(.) w.r.t x we get,

G ′(x) = 1 − (δ)
∂Ex (y)

∂x

From our above claim we can infer that

G ′(x) > 0

From the equilibrium strategies we know that M < Ex (y) < H for any x ∈ (M, H).
Since δ ∈ (0, 1) we have,

lim
x→M

G(x) < 0 and lim
x→H

G(x) > 0

Since G(.) is a continuous and monotonically increasing function, using the Inter-
mediate Value Theorem we can say that there exists a unique x∗ ∈ (M, H) such
that,

G(x∗) = 0

⇒ x∗ = δEx∗
(y) + (1 − δ)M
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This x∗ is our required pl .
Thus we have,

G(pl) = 0

⇒ pl = (1 − δ)M + δE(y)

��

2.2.2 Uniqueness of the stationary equilibrium outcome

In this section we will show that the outcome derived above is the unique stationary
equilibrium outcome in this game, so that the expected payoff to each of the buyers is
v−H3. By outcomewemean the vector of payoffs obtained by the buyers and sellers.
We will adopt the methodology of Shaked and Sutton (1984).

Let M∗ and m∗ be the maximum and the minimum payoffs 4 obtained by a buyer
in any stationary equilibrium of the complete information game. Also let ΛH and ΛM

be the maximal stationary equilibrium payoffs for sellers SH and SM respectively.
The following lemma rules out the possibility of having each buyer offering to both

the sellers with positive probability.

Lemma 3 In any stationary equilibrium, when all four players are present, both
buyers cannot make offers to both sellers with positive probability.

Proof In a stationary equilibriumwhen both the buyers are offering to both the sellers,
each buyer should randomise its offer while offering to any of the sellers. Given
the buyers’ behaviour, each seller accepts an offer(or the maximum of the received
offers) if and only if the payoff from acceptance is at least as large as the discounted
continuation payoff from rejection. This implies that in a stationary equilibrium we
need not worry about the deviations by the sellers.

Let sMi be the upper bound of the support of offers to SM from the buyer Bi , i = 1, 2.
Let sHi be the upper bound of the support of offers to SH from the buyer Bi , i = 1, 2.
If sH1 	= sH2 then the buyer having a higher upper bound (say B1) can profitably

deviate by offering (s̄ H1 − ε) to SH , where ε > 0 and s̄ H1 − ε > s̄ H2 .
Thus ,

sH1 = sH2 = sH

By similar reasoning we can say that,

sM1 = sM2 = sM

3 In fact there is another stationary equilibrium where B2 offers to both the sellers with positive probability
and B1 to SM only. The qualitative nature will be the same and the buyer with valuation v obtains a payoff
of v − H .

This does not necessarily mean that the price is H. However, we shall show this is true asymptotically,
as δ → 1.
4 We assume (without needing to) that the supremal and infimal payoffs are actually achieved.
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Next we would argue that we must have sH = sM . Suppose not . W.L.O.G let
sH > sM . In this case one of the buyers can profitably deviate by offering p to SM
such that sH > p > sM . Thus we have,

sH = sM = s

Let q2 be the probability with which B2 offers to SH . Let FM
2 (.) and FH

2 (.) be
the conditional distributions of offers by B2 given that he makes offers to SM and SH
respectively. Take s ∈ [sM1 , s] ∩ [sH1 , s]. B1’s indifference (from making offer to SM
or SH ) relation tells us that:

(v − s)
[
q2 + (1 − q2)F

M
2 (s)

] + (
1 − q2)(1 − FM

2 (s)
)
δ(v − H)

= (v − s)
[
(1 − q2) + q2F

H
2 (s)

] + q2
(
1 − FH

2 (s)
)
δ(v − M)

Since δ(v − M) 	= δ(v − H), (1 − q2)
(
1 − FM

2 (s)
) 	= q2(1 − FH

2 (s)). W.L.O.G we
take,

(1 − q2)
(
1 − FM

2 (s)
)

> q2
(
1 − FH

2 (s)
)

⇒ (1 − q2)
(
1 − FM

2 (s)
)

> q2
(
1 − FH

2 (s)
)

The above inequality suggests that B2 puts a mass point at the upper bound of one of
the supports. If not then both (1 − q2)(1 − FM

2 (s)) and q2(1 − FH
2 (s)) are 0 and the

above inequality is not satisfied. This implies that B1 can profitably deviate. ��
Next we show that it is never the case that in a stationary equilibrium both buyers

offer to the seller with higher cost. This is described in the following lemma:

Lemma 4 In any stationary equilibrium, when all four players are present, both
buyers cannot offer to SH with positive probability.

Proof Clearly both offering to SH only is not possible in equilibrium. Similarly one
of the buyers offering to SH only and the other one making offers to both the sellers
with positive probability is not possible. In that case the buyer who is offering to both
can profitably deviate by offering M to SM . Thus if both are offering to SH it must be
the case that both are making offers to both the sellers with positive probability. From
Lemma 3 we know that this is not possible in a stationary equilibrium. This concludes
the proof. ��

Hence in stationary equilibrium it must be the case that only one buyer makes offer
to the seller with higher cost (SH ). With the help of the previous two lemmas, we will
now show in the following lemma that the seller with cost H can never obtain a strictly
positive payoff in a stationary equilibrium.

Lemma 5 In any stationary equilibrium, the seller with a higher valuation (i.e SH )
never gets an offer which is strictly greater than H. Thus ΛH = 0.
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Proof Suppose not. That is let it be the case that in a particular stationary equilibrium
SH obtains a strictly positive payoff (ΛH > 0). From Lemma 3 and Lemma 4 we
know that a single buyer is making this offer to SH . Since ΛH > 0, this buyer is
offering xH (where xH ≥ H + ΛH ) with positive probability and his payoff is less
than or equal to v − xH .

Suppose this buyer deviates and makes an offer of x ′
H such that,

x ′
H = H + εΛH

where 0 < δ < ε < 1.
This offer will always be accepted by SH , irrespective of what the other seller’s

strategy is. This is because if she rejects this offer then next period she can at most
obtain a payoff of ΛH which is worth δΛH now. However by accepting this offer she
gets εΛH > δΛH .

Since,

xH − x ′
H ≥ H + ΛH − H − εΛH

= ΛH (1 − ε) > 0,

this deviation is profitable for the buyer. Thus we must have ΛH = 0 . Fom this we
infer that in a stationary equilibrium SH never gets an offer greater than H . ��

Thus in any stationary equilibrium, SH always gets a payoff of zero. The following
lemma describes that the price offer to SM is bounded above by H .

Lemma 6 In a stationary equilibrium, SM cannot get an offer greater than H with
positive probability.

Proof Suppose SM gets an offer H+�,� > 0with positive probability. FromLemma
(5) we know that H never gets an offer greater than H in equilibrium. Thus the buyer
making the above offer to M can profitably deviate by offering H + λ�, (0 < λ < 1)
to SH . Thus in equilibrium SM cannot get an offer greater than H with positive
probability. ��

We now show that m∗ = M∗. This is described by the following two lemmas
(Shaked and Sutton 1984).

Lemma 7 The minimum payoff obtained by a buyer in a stationary equilibrium is
bounded below by v − H. Thus

m∗ ≥ v − H for i = 1, 2

Proof FromLemmas 5 and 6we can posit that none of the sellers gets any offer greater
than H with positive probability. Thus in a stationary equilibrium buyers’ offers are
always in the interval [M, H ]. Hencem∗ is bounded below by v−H . This proves that

m∗ ≥ v − H

��
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Lemma 8 The maximum payoff obtained by a buyer in a stationary equilibrium is
bounded above by v − H. Thus

M∗ ≤ v − H for i = 1, 2

Proof Suppose there exists a stationary equilibrium such that Bi obtains a payoff of
M∗ such that M∗ > v − H .

(i) Consider the situation when the buyers play pure strategies. It must be true that
the offer made by Bi is accepted. Let p∗ be the equilibrium price offer by Bi .
Since,

M∗ = v − p∗ > v − H

we have,
p∗ < H

This implies that this offer is accepted by seller SM .
Thus either Bj ( j 	= i) is offering to SH or it is offering a price lower than p∗ to
SM . In both cases Bj can profitably deviate by offering a price p to SM such that
p∗ < p < H .
Hence it is not possible for Bi to obtain a payoff of M∗ > v − H in a stationary
equilibrium when both buyers play pure strategies.

(ii) Suppose at least one of the buyers plays a non-degenerate mixed strategy. It is
easy to note that Bi cannot obtain a payoff of M∗ > v − H , if he offers to SH
with positive probability. Thus we only need to consider the situations when Bi
is offering to SM only.

Suppose both B1 and B2 are offering to SM only. There does not exist a stationary
equilibrium where one of the buyers plays a pure strategy. Thus both B1 and B2 play
mixed strategies. It is trivial to check that in equilibrium the supports of their offers
have to be the same. Let [s, s] be the common support of their offers, where s ≥ M .
Since Bi obtains a payoff higher than v − H we must have s < H . Let Fj (.) be the
distribution5 of offers by Bj , where j = 1, 2 and j 	= i . Thus for any s ∈ [s, s] buyer
Bi ’s indifference relation gives us

(v − s)Fj (s) + (1 − Fj (s))δ(v − H) = M∗

⇒ Fj (s) = M∗ − δ(v − H)

(v − s) − δ(v − H)

Since Fj (s) is always positive, Bj puts a mass point at s. From lemma 7, we know
that m∗ ≥ v − H . Thus by applying similar reasoning we can show that Bi also puts
a mass point at s.

5 We assume that Fj (.) is differentiable.
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We will now show that Bi can profitably deviate. Suppose Bi shifts the mass from
s to s + ε where ε > 0 and ε is arbitrarily small. The change in payoff of Bi is given
by,

�ε = Fj (s + ε)
(
v − (s + ε)

) − Fj (s)

2
(v − s) (5)

We will show that for small values of ε the above change in payoff is positive. For
ε > 0, from (5) we have,

�ε = [
Fj (s) + εF ′

j (x)
](

v − (s + ε)
) − Fj (s)

2
(v − s)

where x ∈ (s, ε).
This implies

�ε = Fj (s)(v − s) + εF
′
j (x)(v − s) − εFj (s) − ε2F ′

j (x) − Fj (s)

2
(v − s)

= Fj (s)(
v − s

2
− ε) + εF ′

j (x)(v − s) − ε2F ′
j (x)

Since ε is arbitraily small, we have ε2F ′
j (x) ≈ 0.

Thus
�ε = Fj (s)(

v − s

2
− ε) + εF ′

j (x)(v − s) > 0

This shows that Bi has a profitable deviation.
Next, consider the case when Bi offers to SM and Bj offers to SH . If Bi is playing a

pure strategy then his offer must be less than H . If Bi is playing a mixed strategy then
the upper bound of the support must be less than H . In both cases Bj can profitably
deviate.

Lastly, consider the case when Bi is offering to SM and Bj is offering to both the
sellers. If Bi obtains a payoff of M∗ > v − H then the upper bound of the support of
his offers must be less than H . Since the other buyer is offering to SH , his payoff is
bounded above by v − H . This implies that Bj can profitably deviate.

Hence from the above arguments we can infer that,

M∗ ≤ v − H (6)

��
Proposition 2 The outcome implied by the asymmetric equilibrium of Proposition 1
is the unique stationary equilibrium outcome of the basic game.

Proof From Lemmas 7 and 8 we have,

M∗ ≤ v − H ≤ m∗ (7)

By construction we have,
m∗ ≤ M∗
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This implies that,
M∗ = v − H = m∗

This concludes the proof. ��

2.2.3 Asymptotic characterisation

We now determine the limiting equilibrium outcome when the discount factor δ goes
to 1.

From (3) we know that the probability with which the buyer B1 offers to SH is
given by,

q = (v − H)(1 − δ)

(v − M) − δ(v − H)
(8)

From (8) it is clear that as δ → 1, q → 0.
From Sect. 2.2.1 recall the equation,

G(x) = x − [δEx (y) + (1 − δ)M]

Since the fixed point x∗ is a function of δ, we denote it by x∗(δ).
The following lemma shows that the lower boun of price offer.

Lemma 9 There exists a δ∗ ∈ (0, 1), such that for any δ ∈ (δ∗, 1), the fixed point
x∗(δ) is always less than δH.

Proof We know that for any δ ∈ (0, 1), limx→H G(x) > 0.
Since the function G(x) is continuous and monotonically increasing in x , there

exists a δ∗ ∈ (0, 1) such that, G(δH) > 0 for all δ ∈ (δ∗, 1). Thus for any δ ∈ (δ∗, 1),
the fixed point x∗(δ) is always less than δH . ��

Next, we show that as agents become patient enough, the probability with which
the buyer B2 offers M to SM , goes to zero. This is described in the following lemma.

Lemma 10 As δ → 1, q ′ → 0.

Proof We have,

q ′ = (v − H)(1 − δ)

(v − pl) − δ(v − H)

= 1
v

v−H + δH−pl
(1−δ)(v−H)

where pl = x∗(δ).
From Lemma 9 we have δH − pl > 0. Thus we have

q ′ → 0 as δ → 1

��
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We will now show that as the discount factor goes to 1, the distributions of offers
to SM collapse. The following proposition shows this.

Proposition 3 As δ → 1, pl → H.

Proof The offers from B2 to SM in the range [pl , H ], follows the distribution function

F2(s) = (v − H)[1 − δ(1 − q ′)] − q ′(v − s)

(1 − q ′)[v − s − δ(v − H)]
⇒ 1 − F2(s) = H − s

(1 − q ′)[v − s − δ(v − H)] .

Note that,
1 − F2(H) = 0

From Lemma 10 we know that as δ → 1, q ′ → 0. Thus as δ → 1, for s arbitrarily
close to H we have,

1 − F2(s) ≈ H − s

H − s
= 1

Thus the support of the distribution F2 collapses. This implies that as δ → 1,
pl → H . ��

This shows that as agents become patient enough, the unique stationary equilibrium
outcome of the basic complete information game implies that in presence of all players
both the buyers almost surely offer H to seller SM . Hence although trading takes place
through decentralised bilateral interactions, asymptotically we get a uniform price for
a non-differentiated good.

2.3 Possibility of other equilibria in the public offers case6

In the public offers model there is a possibility of other subgame perfect equilibria
for high values of δ. These equilibria can be constructed on the basis of the stationary
equilibrium described above. This is as follows.

1. Suppose in the beginning both the buyers offer p = M to SM .
2. SM accepts one offer by choosing each seller with probability 1

2 .
3. If any buyer offers slightly higher than p (but less than some p′ as described

below), then SM rejects all offers and next period players revert to the stationary
equilibrium.

4. If any of the buyer offer a price grater than or equal to p′ , then the seller SM
accepts that price.

5. If both buyers offer p and SM rejects them, then next period buyers offer p to SM
again.

6 Asher Wolinsky directed our attention to this type of equilibrium, similar to constructions elsewhere in
the literature.
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The equilibrium payoff to SM from accepting any of the equilibrium offer is 0. If
buyers stick to their equilibrium strategies and SM rejects an equilibrium offer then
next period his payoff is 0. Thus SM has no incentive to deviate.

On the other hand buyers’ equilibrium payoff is 1
2 (v − M)+ 1

2δ(v − H). From the
proposed equilibrium strategies we know that if a buyer deviates then the continuation
payoff to SM by rejecting all offers is close to δ(H − M), since from the previous
section we know that the payoff to SM from the stationary equilibrium approaches
H − M as δ goes to 1. Hence if a deviating buyer wants his offer to be accepted by
SM then he must offer p′ or higher to her where p′ = δH + (1− δ)M . In that case his
deviating payoff would be v − p′, which is strictly lower than 1

2 (v − M)+ 1
2δ(v − H)

for high values of δ. If a buyer deviates by offering slightly higher than M (i.e less than
p′ ) then all offers are rejected by SM and next period he obtains a payoff of v − H
(which is worth δ(v − H) now). Thus he has no incentive to offer something higher
than M . Lastly observe that it is optimal for SM to reject all offers if some buyer offers
something higher than M(and less than p′). This is because his continuation payoff
from rejection will be higher than his payoff from acceptance.

We can get equilibria of this kind for all p ∈ [M, pl) when δ is close to 1.
As is usual in equilibria of this kind, a small change in a buyer’s equilibrium offer

leads to a large change in the expected continuation payoff for all players.
However, if an ε (for arbitrary positive ε ) deviation by a player from the proposed

equilibrium path is considered as a mistake, then there is no change in the expected
continuation payoff. In that case a buyer can profitably deviate by offering a price little
above p to SM . If this does not change the expected equilibrium path, SM accepts this
offer with probability 1, the buyer deviation is profitable and this candidate equilibrium
is destroyed.We feel this argument has somevalidity, though a full formal development
is outside the scope of this paper (and similar arguments have been suggested earlier
in different contexts by other authors).

In the next section we do the analysis of the general case, i.e when there are n
buyers and n sellers, for some general finite n ≥ 3.

3 n Buyers and n sellers, n ≥ 3

3.1 Players and payoffs

There are n buyers (n > 2 and n finite) and n sellers. Each buyer’s maximum will-
ingness to pay for a unit of an indivisible good is v. Each of the sellers owns one unit.
Sellers differ in their valuations. We denote seller S j ’s valuation ( j = 1, . . . , n) by u j

where,
v > un > un−1 > · · · > u2 > u1

The above inequality implies that any buyer has a positive benefit from trade with
any of the sellers. All players are risk neutral. Hence the expected payoffs obtained
by the players in any outcome of the game are identical to that in the basic model. For
our notational convenience, we re-label u1 = L and un = H .
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3.2 The extensive form

This is identical to the one in the basic complete information game. We consider the
infinite horizon, public and targeted offers gamewhere the buyers simultaneouslymake
offers and each seller either accepts or rejects an offer directed towards her. Matched
pairs leave the game and the remaining players continue the bargaining game with the
same protocol.

3.3 Equilibrium

We seek, as usual, to find stationary equilibria. Thus buyers’ offers at a particular time
point depend only on the set of players remaining and the sellers’ responses depend
on the set of players remaining and the offers made by the buyers. We first show that
in any arbitrary stationary equilibrium, as agents become patient, buyers’ payoff is
unique and all price offers converge to same value. Thereafter we construct one such
equilibrium for the described extensive form.

3.3.1 Uniqueness of the asymptotic stationary equilibrium payoff and prices.

For the basic two-buyer, two-seller game, we have demonstrated the uniqueness of the
stationary equilibrium. Following the same method of proof would be difficult in the
general case because of the large number of special cases one would have to consider.
We therefore adopt a different route here and use the uniqueness of the stationary
equilibrium in the basic two-by-two model to demonstrate that in any stationary sub-
game perfect equilibrium, the accepted price offer by any seller converges to H as
δ → 1. Thus in the general case as well, the buyers’ payoffs converge to the same
value (v − H ) as δ → 1. This payoff is “as if” the price in all transactions were the
same but, of course, this is not literally true since δ ∈ (0, 1). We thus show that the
asymptotic outcome implied by the particular stationary equilibrium demonstrated is
the unique asymptotic outcome obtained in any stationary equilibrium. The following
theorem demonstrates this result.

Theorem 1 In any stationary equilibrium of a game with n buyers and n sellers
(n ≥ 3, n finite), prices in all transactions converge to H as players become patient
enough( δ → 1).

The above theorem directly follows from the uniqueness result of the 2 -buyer, 2
seller game of the basic model (Proposition 2) and iterating on the following proposi-
tion (Proposition 4).

Proposition 4 Let n ≥ 1. If for any m = 1, 2, . . . , n; (n finite) it holds that in a game
with m buyers and m sellers accepted price offers converge to H for high values of δ,
then this is also the case with any stationary equilibrium of a game with n + 1 buyers
and n + 1 sellers

Proof Please refer to Appendix. 10. ��
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Whilst the formal proof of the proposition is in theAppendix,we give some intuition
here for the result. We start from the two buyers and two sellers case, where there is a
unique stationary equilibrium with the price going to H as δ → 1. Thus, if there are
more sellers and buyers, a seller knows that if she manages to stay in the game until
there is only one other seller left, namely the one with value H, she can expect to get
a price close to H. If discounting is small, she will only be willing earlier to accept
prices close to H, because of the “outside option” of waiting. This holds for all the
other sellers. The buyers, on the other hand, compete up the prices of the low-valued
sellers and for them, the seller with value H is an outside option. The prices for the
low valued sellers therefore get bid up in earlier periods to something close to H ;
as discounting goes to zero (δ → 1), this goes to H. Note this argument requires
stationarity because the expectations of future play are not affected by the history of
offers and counter-offers.

3.3.2 Characterisation of stationary equilibrium

We have shown that the asymptotic outcome of an arbitrary stationary equilibrium
of the described extensive form is unique. We now provide a characterisation of a
stationary equilibrium for the extensive form described. Since we start out with equal
numbers of buyers and sellers, any possible subgame will also have that. Depending
on the parametric values we can have three types of equilibria. However, as δ becomes
greater than a threshold value, there is only one type of equilibrium.

From the basic complete information game, for each i = 1, . . . , n−1, we calculate
pi such that,

pi = (1 − δ)ui + δE(yi ) (9)

where E(yi ) is defined as the equilibrium expected maximum price offer which
Si gets in the four-player game with Si and Sn as the sellers and two buyers with
valuation v.7

For each i = 1, . . . , n − 1 we define q̄i as,

q̄i = H − pi
(v − pi ) − δ(v − H)

(10)

and qH as ,

qH = (v − H)(1 − δ)

(v − L) − δ(v − H)
(11)

Let P = ∑
i=1,...,n−1 q̄i . The following three propositions fully characterise the equi-

librium behavior in the present game.8 In all of them, sellers’ strategies are as follows:
(i) Sn accepts any offer greater than or equal to H . (ii) Seller Si (i = 1, . . . , n − 1)

7 Note that pi is given by the equilibrium of the appropriate four-player game, which has already been
described earlier. It can essentially be treated as an exogenously given function of the parameters of the
problem for the purposes of the n − player analysis.
8 Note that all quantities used in these propositions are defined with respect to the exogenously given
parameters of the game.
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accepts the highest offer with a payoff from accepting at least as large as the expected
continuation payoff from rejecting it. The following theorem summarizes the equilib-
rium characterisations of the extensive form defined.

Theorem 2 The equilibrium in the general case is given by the Propositions (5), (6)
and (7). For δ close to 1 and n > 2, Proposition (7) gives the relevant characterisation.

Proposition 5 If for δ ∈ (0, 1),P < 1 and 1−P > qH , then a stationary equilibrium
is as follows:

(i) Buyer B1 makes offers to S1 only. B1 puts a mass of q ′
1 at L and has a continuous

distribution of offers F1(.)with [p1, H ] as the support. Bn makes offers to S1 with
probability q1. He randomises his offers to S1with a probability distribution F1

n (.)

with [p1, H ] as the support. F1
n (.) puts a mass point at p1 and has an absolutely

continuous part from p1 to H.
(ii) For i = 2, . . . , n−1, Bi makes offers to Si only. Bi ’s offers to Si are randomised

with a distribution Fi (s). Fi (.) puts a mass point at pi and has an absolutely
continuous part from pi to H. Bn makes offers to Si (i = 2, . . . , n − 1) with
probability qi = q̄i . Bn’s offers to Si are randomised by an absolutely continuous
probability distribution Fi

n with [pi , H ] as the support.
(iii) Bn offers to Sn with probability qH . He offers H to Sn.
(iv) In equilibrium, all buyers obtain an expected payoff of v − H.

The analytical details are in Appendix. 4.

Proof Please refer to Appendix. 4. ��
We now consider the case when P < 1 and 1 − P < qH .

Proposition 6 If for a δ ∈ (0, 1)P < 1 and 1−P < qH , then a stationary equilibrium
is as follows:

(i) For i = 1, 2, . . . , n − 1, buyer Bi makes offers to Si only. Bi ’s offers to Si
are random with a distribution Fi (s). Fi (.) puts a mass point at pi and has an
absolutely continuous part from pi to H. Bn makes offers to Si (i = 1, . . . , n −
1) with probability qi = q̄i . Bn’s offers to Si are random with an absolutely
continuous probability distribution Fi

n with [pi , H ] as the support.
(ii) Bn offers to Sn with probability qn = 1 − P . He offers H to Sn.
(iii) In equilibrium, all buyers obtain an expected payoff of v − H.

The analytical details are in Appendix 5

Proof Please refer to Appendix 5 ��
Finally we consider the case when P > 1.

Proposition 7 If P ≥ 1, then a stationary equilibrium is as follows:
For i = 1, . . . , n − 1, buyer Bi makes offers to seller Si only. Bi ’s offers to Si

are randomised using a distribution function Fi (.) , with [pi , p̄] as the support. The
distribution Fi (.) puts a mass point at pi and has an absolutely continuous part from
pi to p̄. Buyer Bn offers to all sellers except Sn. Bn’s offers to Si (i = 1, . . . , n − 1)
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are randomised with a continuous probability distribution Fi
n. The support of offers is

[pi , p̄]. The probability with which Bn offers to Si (i = 1, . . . , n − 1) is qi . If P = 1
then p̄ = H. If P > 1 then p̄ < H and as δ → 1, p̄ → H. In equilibrium, all
buyers obtain an expected payoff of v − p̄. The following relations formally define the
equilibrium:

Further if for δ = δ∗,P > 1 then for all δ > δ∗,P > 1 and p̄ → H as δ → 1.
The analytical details are in Appendix 6.

Proof Please refer to Appendix 6. ��

Proposition (7) tells us that as agents become patient enough, prices in all transac-
tions tend towards H .9 Note, from Eq. (10) and the definition of P , that for δ close
to 1 and n > 2,P ≥ 1. Therefore, Proposition (7) is the appropriate case to con-
sider for high enough δ. The following observation can be made about the asymptotic
result. For δ high enough, the prices tend towards the valuation of the highest seller,
independently of the distributions of the valuations of the other sellers. Hence even if
the distribution of the valuations of the sellers Si (i = 1, . . . , n−1) is heavily skewed
towards L , the uniform asymptotic price will still be H .

We conclude this section by providing a verbal description of the nature of the
stationary equilibrium described above.

It can be observed that in all of the above stationary equilibria(Propositions 5, 6
and 7)) each buyer, other than Bn,is assigned to a seller to make offers to-buyer Bi
to seller Si . The remaining buyer (Bn) offers to all (or all but one) the sellers. This
creates some competition among the buyers, since each seller(except Sn) gets two
offers with positive probability. The probability qH is the probability with which Bn

should offer to Sn in equilibrium if B1 puts a mass point at u1(= L). The quantity q̄i is
the probability with which Bn should offer to Si in equilibrium, if Bi puts a mass point
at pi and Bn offers to all the sellers. Further, in any stationary equilibrium, a buyer
who is assigned to a seller S j has to put a mass point either at u j or at p j . Hence, for
a given δ, if Bn has to make offers to all the sellers then it is necessary to have P < 1.
Further if 1 − P > qH , then it is possible to have the buyer B1 put a mass point at
L; the equilibrium is then described by Proposition (5). Otherwise the equilibrium is
described by Proposition (6). On the other hand if P ≥ 1 it is not possible to have Bn

offering to all the sellers in equilibrium. In that case he offers to all but the highest
valued seller. The equilibrium is then described by Proposition (7). In the 2 × 2 case,
the conditions P < 1 and 1 − P > qH are satisfied for all values of δ ∈ (0, 1) . This
is because in the 2 × 2 case P = H−pl

(v−pl )−δ(v−H)
, which is less than 1 for all values of

δ ∈ (0, 1). Further 1−P = (v−H)(1−δ)
(v−pl )−δ(v−H)

> qH = (v−H)(1−δ)
(v−M)−δ(v−H)

as pl > M . Hence
the qualitative nature of the equilibrium described in Proposition ( 5) is identical to
the one described in the basic model. However for n > 2, the conditions satisfied by
the 2 × 2 configuration need not hold for all values of δ.

9 We have seen earlier (in the 2×2 game analysis) that pi goes to H as δ → 1. In this propsition, we show
that p → H as δ → 1. Thus the supports of the randomised strategies also collapse as δ → 1.
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4 Extensions

In this section we consider possible extensions by having offers to be private, buyers
being heterogeneous and number of buyers being more than the number of sellers. An
extension of the basic model to ex-ante public offers is available in the Appendix.

4.1 Private offers

In this subsection, we consider a variant of the extensive form of both the basic model
(2 buyers–2 sellers) and the general model (n buyers–n sellers; n ≥ 3) by having
offers to be private. This means in each period a seller observes only the offer(s)
she gets and a buyer does not know what and to whom offers are made by the other
buyer(s).

Our equilibrium notion here will be public perfect equilibrium. The only pub-
lic history in each period is the set of players remaining in the game. Clearly in
the private targeted offers model, the response of a seller can condition only on her
own offer. Hence, in the basic model, the equilibrium of Proposition 1 is a pub-
lic perfect equilibrium of the game with private targeted offers. Further, in prov-
ing this stationary equilibrium outcome to be unique (Proposition 2) we have never
used the fact that each seller while responding observes the other seller’s offer. Thus
the same analysis will hold good in the private offers model. Hence the outcome
implied by the stationary equilibrium of Proposition (1) is the unique public perfect
equilibrium outcome of the basic complete information game with private targeted
offers.

Next, consider the general model with n buyers and n sellers. In Proposition (7),
the highest valued seller does not get any offer when all the players are present. Hence
the continuation game faced by a seller from rejection is always the same irrespective
of whether she gets one offer or two offers. A seller knows that by rejecting all the
offer(s) she will face a four-player game with Sn as the other seller and two buyers
with valuation v. Thus the seller Si ,(i = 1, . . . , n − 1) knows the continuation game
for sure and this does not require her to observe the offers received by other sellers or
the seller to whom buyer Bn is making his offer. Since for high values of δ,P ≥ 1,
we have the following corollary:

Corollary 1 With private offers, Proposition (7) describes a public perfect equilib-
rium of the game for high values of δ.

Theorem (1) extends to the game with private offers with some minor modification of
the details10.

10 This is when in a stationary equilibrium all sellers get offers with positive probability. A seller Sk getting
only one offer does not know for sure the continuation game on rejection. Hence her minimum acceptable
price when she gets only one offer is always greater than her valuation uk .This is the only change in detail
of the proof of Theorem 1. The rest of the proof holds good for private offers as well.
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4.2 Heterogeneous buyers

Suppose, in the basic model, buyers too are heterogeneous. That is, buyer Bi has a
valuation of vi where,

v1 > v2 > H > M

Analysis of the basic model holds good. Next, consider a model with n heteroge-
neous buyers and n heterogeneous sellers such that

vN > vN−1 > · · · > v2 > v1 > H > uN−1 > · · · > L

ui (i = 1, 2, . . . , n)is the valuation of seller Si with u1 = L and uN = H . vi
(i = 1, 2, . . . , n) is the valuation of buyer Bi . An analogue of Theorem 2 holds in this
case. The discussion is in Appendix 8.

We conclude this subsection by providing an example to show that even if there is
potential of trade for both the sellers, such trades need not take place in the equilibrium
of our model. Suppose there are two buyers with valuation v1 and v2 and two sellers
with valuations H and M such that

M < v2 < H < v1

In equilibrium, both the buyers offer v2 to the seller with valuation M and the trade
takes place between the M-seller and the v1-buyer (If, in equilibrium, the v2 buyer
were concluding the trade with positive probability, the v1 buyer would offer ε > 0
more and have a profitable deviation). Note that, in this case, any price between v2
and H would be a competitive equilibrium in which the demand and supply would
equate.

4.3 n Buyers, n − 1 sellers

We now consider the case when there are more buyers than sellers. That is, there are n
buyers and n − 1 sellers such that n ≥ 2. Buyers are homogeneous and their common
valuation exceeds the valuation of the highest valued seller. The extensive form of the
game is same as before.

For n = 2, the solution is quite trivial. Both buyers would compete for the only
available seller and hence they would pull up the equilibrium price to v, the common
valuation of the buyers.

Appendix 12 shows that for n > 2, we can construct a stationary equilibrium such
that when agents become patient, prices in all transactions converge to a single value v,
the common valuation of the buyers. Thus in the limit only the short side of the market
gets positive surplus. This is equivalent to the Walrasian outcome of the present setup.

5 Conclusion

This paper has considered a dynamic strategicmatching and bargaining game, with the
feature that only one side of the market makes offers. Unlike other papers in the field,
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the offers are made simultaneously to capture competition. We find that stationary
equilibria give a single price asymptotically in all the transactions.

Previous work has shown that this conclusion is not true when buyers and sellers
take it in turns to make offers (a game of which the Rubinstein bargaining game
is a special case). Alternating offers with heterogeneity in valuations tends to drive
valuations apart.

Other authors (Corominas-Bosch 2004) have mentioned the difficulty of solving
dynamic bargaining and matching games with many players if there is heterogeneity
of valuations on both sides, though she was specifically concerned with alternating
offers. This turns out mostly not to be an issue for us.

One interesting heterogeneity would be to consider settings in which the value of
buyer i for seller j ′s good is vi j , as in the housing market. In this setting it seems
appropriate to assume that sellers’ valuations do not depend upon the identity of
the potential buyers. This is kept for future research, though it seems feasible that
techniques similar to the ones used in this paper would enable us to characterise
equilibrium prices in such markets as well.
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Appendix 1: Proof of Lemma 1

The proof proceeds as follows: We first show that F1(·), F2(.) as given are probability
distributions and have the desired properties. Next we show that q, q ′ are in (0,1).
Assuming pl is betweenM and H,we then show that the strategies are an equilibrium.
In the Lemma (2), we show that there is a unique pl implied by all these conditions
and it is between M and H .

Since both buyers offer to SM , it is clear that in equilibrium the offers to SM from
both the buyers have to be randomised.

To begin with, we figure out the continuation payoff for SM from rejecting her
offer(s). Consider the case when rejecting an offer leads her to face a 2-player game
next period. This gives her a continuation payoff of zero.

When rejection leads SM to face a 4-player game next period, the continuation
payoff needs to be endogenously determined from the equilibrium strategies of the
buyers. (Recall y is the maximum price SM gets in equilibrium in the next period (a
random variable this period)). Thus if pl is the minimum acceptable price for SM in
this situation, we must have,

pl − M = δ(E(y) − M)

⇒ pl = (1 − δ)M + δ(E(y))

123

www.hcfoundation.ru


972 K. Chatterjee, K. Das

Given the buyers’ strategies, E(y) is given by,

E(y) = q
[
q ′M + (1 − q ′)E2(p)

] + (1 − q)
[
q ′E1(p) + (1 − q ′)E(highest offer)

]

where E1(p) is the conditional expectation of B1’s offers given that he is offering to
SM and E2(p) is the conditional expectation of B2’s offers given that he is not offering
M to SM .

Since, as per our proposed strategies, competition takes place for SM only, it is easy
to note that E(y) > M . The fact δ ∈ (0, 1) implies that we must have pl > M .

Consider the region [pl , H ] first, where both B2 and B1( if he does make one to
SM ) make an offer. In equilibrium both buyers must be indifferent for all price offers
in this region.

According to the proposed strategies the support of B1’s offer to SM is [pl , H ].
Also we know that B1 in equilibrium can obtain a payoff of v − H by offering H to
SH . Hence for any s ∈ (pl , H ] we should have the following indifference relation:

(v − s)
[
q ′ + (1 − q ′)F2(s)

] + (
1 − q ′)(1 − F2(s)

)[
δ(v − H)

] = v − H,

which gives us,

F2(s) = (v − H)
(
1 − δ(1 − q ′)

) − q ′(v − s)

(1 − q ′)
[
(v − s) − δ(v − H)

]

as per (2).
As stated earlier, pl is the minimum acceptable price for SM , when on rejection

she faces a 4-player game next period. This implies that on the equilibrium path pl is
the minimum acceptable price for SM when she gets two offers. Thus B1’s offer of pl
to SM is accepted only when B2 offers M to SM . Hence for s = pl , B1’s indifference
relation is,

(v − pl)[q ′] + (1 − q ′)[δ(v − H)] = v − H

which implies,

q ′ = [v − H ](1 − δ)

(v − pl) − δ(v − H)

as per (4).
Since H > pl , from (4) we have,

q ′ = [v − H ](1 − δ)

(v − pl) − δ(v − H)
<

[v − H ](1 − δ)

[v − H ](1 − δ)
= 1

This implies that q ′ ∈ (0, 1).
For F2(.) to be a distribution function as conjectured, we must have F2(H) = 1

and F2(Pl) = 0. From (2) we have,

1 − F2(s) = H − s

(1 − q ′)[(v − s) − δ(v − H)]
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From (4) we can infer that,

1 − F2(pl) = H − pl
(1 − q ′)[(v − pl) − δ(v − H)] = (1 − q ′)

(1 − q ′)
= 1

and 1 − F2(H) = 0. Thus we have F2(H) = 1 and F2(pl) = 0. Hence F2 has the
conjectured properties.

Now consider the behavior of B2 in the selected region. Since B2 can obtain a
payoff of v − H by offering H to SM , for any s ∈ [pl , H ] we should have,

(v − s)[q + (1 − q)F1(s)] + (1 − q)(1 − F1(s))[δ(v − H)] = v − H

which gives us (1).
Next, consider other regions. According to the conjectured equilibrium strategies,

B2 offers M to SM with probability q ′ (i.e, he puts a mass point at M). Also B1 offers
H to Sh with probability q. At equilibrium B2 should be indifferent for all price offers
he makes. Therefore we should have,

(v − M)q + (1 − q)δ(v − H) = v − H

which gives us (3). Since H > M , from (3) we have,

q = [v − H ](1 − δ)

(v − M) − δ(v − H)
<

[v − H ](1 − δ)

[v − H ](1 − δ)
= 1

This implies that q ∈ (0, 1).
For F1 to satisfy the conjectured properties we should have F1(pl) > 0(since B1

puts a mass point at pl while offering to SM ) and F1(H) = 1. From (1) and (3) we
have,

1 − F1(pl) = H − pl
(1 − q)[(v − pl) − δ(v − H)]

= (1 − q ′)
(1 − q)

Since pl > M, q > q ′. Thus
(1 − q ′)
(1 − q)

< 1 (12)

From (12) we can infer that,

1 − F1(pl) < 1 ⇒ F1(pl) > 0

Also it is easy to note that 1 − F1(H) = 0. Hence F1(H) = 1. Thus F1(.) satisfies
the conjectured properties.

Lastly, to conclude the proof it needs to be verified that above specified strategies
constitute a subgame perfect equilibrium. We use the one deviation property to do this.
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Consider the sellers first. Since we are considering public offers, a seller’s history
constitutes the set of players, the offer she receives and the other seller’s received
offer(s). On the equilibrium path there are only two possible histories. One has all
the players present with both sellers getting equilibrium offers. The other one is when
only two players are present and an equilibrium offer is made. It is easy to observe that
in the two-player game no seller has a profitable one-shot deviation. This is because
offers are one sided. Thus we need to verify equilibrium for the 4 -player game only.
In the 4-player game irrespective of SM ’s offer, it is always optimal for SH to accept
any offer greater than or equal to H . If she rejects then next period period either
she will face a 4 -player game or a 2-player game. In either case, given that other
players adhere to their equilibrium strategies the maximum payoff which SH can
obtain is 0. Also SH has no incentive to accept any offer less than H, (which gives
her a negative payoff), as she can always guarantee a zero payoff by rejecting the
offer.

Next let us look at the possible one-shot deviations for SM on the equilibrium path.
Suppose in the event when she gets two offers, she rejects an offer greater than or
equal to pl . Her continuation payoff would then be pl − M . This is less than or equal
to the payoff obtained by accepting the offer. Thus on the candidate equilibrium path
there is no profitable one-shot deviation by SM . Finally, the way we have specified
SM ’s strategy, there exists no profitable one shot deviations for SM for any off-path
history.

Now consider the buyers. After any history there can be only two possible situa-
tions. Either all the players are present or only one pair remains. Given other players’
strategies and the one-deviation property it is easy to note that buyers cannot profitably
deviate.

This concludes the proof of the lemma.

Appendix 2: Proof of the claim that ∂Ex( y)
∂x < 1

We prove this in the following steps:

(i) From the expression obtained for q ′ we can say that q ′x is increasing in x .
(ii) Next we show that as we raise x by 1 unit, there is an increase in Ex

2 (p) by less
than 1 unit.

Increasing x by 1 unit means raising the lower bound of support of Fx
2 (.) by 1 unit.

Thus we need to show that

Ex+1
2 (p) < Ex

2 (p) + 1

Consider the distribution F̃ x
2 (.) with [x + 1, H + 1] as the support such that,

F̃ x
2 (s) = Fx

2 (s − 1)

123



Trading, competition for bargaining partners and the “law of one price” 975

Let ˜Ex
2 (p) be the expectation obtained under F̃ x

2 (s) . Thus,

˜Ex
2 (p) =

∫ H+1

x+1
s d F̃ x

2 (s)

⇒ ˜Ex
2 (p) =

[∫ H+1

x+1
(s − 1) d F̃ x

2 (s)

]
+ 1

=
[∫ H+1

x+1
(s − 1) dFx

2 (s − 1)

]
+ 1

=
[∫ H

x
(s) dFx

2 (s)

]
+ 1

= Ex
2 (p) + 1

Fx+1
2 (p) is obtained from F̃ x

2 (s) by transferring themass from the interval (H, H+
1] to [x + 1, H ], i.e transferring mass from higher values to lower values. Thus it is
clear that,

Ex+1
2 (p) < ˜Ex

2 (p) = Ex
2 (p) + 1

By similar reasoning we can say that,

Ex+1
1 (p) < Ex

1 (p) + 1

These imply that the increase in E(highest offer) following a unit increase in x is
less than 1.

Hence from the above arguments it follows that,

∂Ex (y)

∂x
< 1.

Appendix 3: Proof of Lemma 12

As before, define the function G(.) as,

G(x) = x − [δEx (y) + (1 − δ)M]

where Ex (y) is obtained from E(y) as before(i.e by replacing pl by x). Using the
logic used in Lemma 2 we can argue that G ′(x) is monotonically increasing in x for
x ∈ (p′

l , H). Next, from the above prescribed strategies it is easy to see that for any
x ∈ (p′

l , H),we have Ex (y) > p′
l . Thus we can infer that there exists a δ∗ ∈ (0, 1)

such that,

lim
x→p′

l

G(x) = x − [δ∗Ex (y) + (1 − δ∗)M] = 0
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Thus for any δ > δ∗, we have limx→p′
l
G(x) < 0. Also since for all x ∈ (p′

l , H) ,
Ex (y) < H , we have limx→H G(x) > 0. Hence by applying the Intermediate Value
Theorem we can infer that there exists a unique x∗ ∈ (p′

l , H) such that G(x∗) = 0.
This x∗ is our required pl . Thus there is a unique pl ∈ (p′

l , H) such that for all δ > δ∗,

G(pl) = 0 ⇒ pl = δE(y) + (1 − δ)M.

Appendix 4: Analytical details and proof of Proposition 5

Analytical details

The distributions F1(.), F1
n (.), q1 and q ′

1 are given by:

F1(s) = (v − H)[1 − δ(1 − q ′
1)] − q ′

1(v − s)

(1 − q ′
1)[(v − s) − δ(v − H)] (13)

F1
n = (v − H)[1 − δq1] − (1 − q1)(v − s)

q1[(v − s) − δ(v − H)] (14)

q ′
1 = (v − H)(1 − δ)

(v − p1) − δ(v − H)
(15)

q1 = q̄1 + (1 − P − qH ) (16)

For i = 2, . . . , n − 1, Fi (.) and Fi
n(.) are given by,

Fi = (v − H)(1 − δ)

(v − s) − δ(v − H)
(17)

Fi
n = (v − H)[1 − δqi ] − (1 − qi )(v − s)

qi [(v − s) − δ(v − H)] (18)

Proof

Consider Buyer B1 first. He puts a mass point at L and his equilibrium payoff is v−H .
Since we are considering public offers, S1 will accept an offer of L only when Bn is
offering to Sn . This is because only in that contingency would the continuation payoff
to S1 from rejection be zero. Thus we must have,

(v − L)qH + (1 − qH )δ(v − H) = v − H (19)

Solving for qH we get (11). Consider the region [p1, H ], where both B1 and Bn make
offers. In equilibrium each buyer should be indifferent among all the points in the
support. Thus for s ∈ [p1, H ], B1’s indifference relation is given by:

(v − s)
[
(1 − q1) + q1F

1
n (s)

] + q1
(
1 − F1

n (s)
)
δ(v − H) = v − H
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Solving for F1
n (.) from the above relation we get (14). Similarly for s ∈ [p1, H ], Bn’s

indifference relation from offering to S1 is,

(v − s)
[
q ′
1 + (1 − q ′

1)F1(s)
] + (1 − q ′

1)
(
1 − F1(s)

)
δ(v − H) = v − H

Solving for F1(.) we get (13). Putting s = p1 in Bn’s indifference relation we get,

(v − s)q ′
1 + (1 − q ′

1)δ(v − H) = v − H

which gives us (15). Note that from (14) and (10) we have,

1 − F1
n (p1) = H − p1

q1
[
(v − p1) − δ(v − H)

] = q̄1
q1

From (16) we know that q1 > q̄1. Hence we have 1− F1
n (p1) < 1 which implies that

F1
n (p1) > 0. This confirms our conjecture that Bn , while offering to S1 puts a mass

point at p1. It is easy to check that F1
n (H) = 1. Similarly from (13) and (15) we have,

1 − F1(p1) = H − p1
(1 − q

′
1)

[
(v − p1) − δ(v − H)

] = (1 − q ′
1)

(1 − q ′
1)

= 1

which implies F1(p1) = 0. Again it is easy to observe that F1(H) = 1 .
Next, consider buyer Bi , i = 2, . . . , n − 1. Consider the region [pi , H ] , where

both Bi and Bn make offers. In equilibrium both buyers should be indifferent between
any offers in the region. For s ∈ [pi , H ], Bn’s indifference relation is given by,

(v − s)
[
Fi (s)

] + [
1 − Fi (s)

]
δ(v − H) = v − H

Solving for Fi (.) from above, we get (17). We can easily infer that Fi (pi ) > 0 and
Fi (H) = 1. This confirms the conjecture that Bi puts a mass point at pi . Similarly,
Bi ’s indifference relation is given by:

(v − s)
[
(1 − qi ) + qi F

i
n(s)

] + qi
(
1 − Fi

n(s)
)
δ(v − H) = v − H

which gives us (18). Putting s = pi in Bi ’s indifference relation we get qi =
v−pi

(v−pi )−δ(v−H)
= q̄i . Hence we have,

1 − Fi
n(pi ) = H − pi

qi
[
(v − pi ) − δ(v − H)

] = qi
qi

= 1

Thus F1
n (pi ) = 0 and Fi

n(H) = 1. Also note that,

∑

i=1,,,n−1

qi + qH = q̄1 + (1 − P − qH ) +
∑

j=2,...,,n−1

q̄ j + qH = 1
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Since u j > L for j > 1, from (19) we know that,

(v − u j )q
H + (1 − qH )δ(v − H) < v − H for j = 2, . . . , n − 1

Hence Bi (i = 2, . . . , N ) does not have any incentive to offer u j to seller S j . Further,
Bi cannot obtain a payoff higher than v − H by deviating unilaterally and making
offers to any other sellers. Lastly, the waywe have specified sellers’ strategies it is easy
to check that none of the sellers has a unilateral profitable deviation on the equilibrium
path. This concludes the proof.

Appendix 5: Analytical details and proof of Proposition 6

Analytical details: For i = 1, . . . , n − 1, Fi (.) and Fi
n(.) are given by,

Fi = (v − H)(1 − δ)

(v − s) − δ(v − H)
(20)

Fi
n = (v − H)[1 − δqi ] − (1 − qi )(v − s)

qi [(v − s) − δ(v − H)] (21)

Proof This proof is identical inmany respects to the proof of Proposition (5). Consider
the region [pi , H ],(i = 1, . . . , n − 1). In this region both Bi and Bn make offers with
positive probability. By considering the indifference relations of Bi and Bn in this
region, we can get (20) and (21) in the samemanner as we obtained (17) and (18) in the
proof of the previous proposition. Similarly, we can infer that Fi (pi ) > 0; Fi (H) = 1
and Fi

n(pi ) = 0; Fi
n(H) = 1. Since qn = 1 − P < qH , from (19) we know that,

(v − L)qH + (1 − qH )δ(v − H) = v − H and

(v − u j )q
H + (1 − qH )δ(v − H) < v − H

for all j = 2, . . . , n − 1. Since qn < qH , for all j = 1, . . . , n − 1 we have,

(v − u j )qn + (1 − qn)δ(v − H) < v − H

Hence Bi (i = 1, . . . , n− 1) has no incentive to offer ui to seller Si . Finally note that,

∑

i=1,...,n

qi =
∑

i=1,...,n−1

q̄i + (1 − P) = 1

This concludes the proof. ��
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Appendix 6: Analytical detail and proof of Proposition 7

Analytical detail

For i = 1, . . . , n − 1 we have

Fi (s) = (v − p̄) − δ(v − H)

(v − s) − δ(v − H)
(22)

Fi
n = (v − H)

[
1 − δqi

] − (1 − qi )(v − s)

qi
[
(v − s) − δ(v − H)

] (23)

qi = p̄ − pi
(v − pi ) − δ(v − H)

(24)

Proof

Consider the region [pi , p̄] (i = 1, . . . , n−1), where both the buyers Bi and Bn make
offers. Hence the indifference relation of Bn is given by,

(v − s)Fi (s) + (
1 − Fi (s)

)
δ(v − H) = v − p̄

This gives us (22). One can easily figure out from (22 ) that Fi (pi ) > 0 and Fi ( p̄) = 1.
This confirms our conjecture that Bi (i = 1, . . . , n − 1) puts a mass point at pi . Buyer
Bi ’s indifference relation is given by,

(v − s)
[
(1 − qi ) + qi (F

i
n(s))

] + qi
(
1 − Fi

n(s)
)
δ(v − H) = v − p̄

Solving for Fi
n(.) we get (23). By substituting s = pi in Bi ’s indifference relation we

get (24). From (23) and (24) it is easy to see that Fi
n(pi ) = 0 and Fi

n(H) = 1. For
consistency in the expressions obtained we must have,

∑

i=1,...,n−1

qi = 1 ⇒
∑

i=1,...,n−1

p̄ − pi
(v − pi ) − δ(v − H)

= 1 (25)

From the hypothesis of the proposition we know that P ≥ 1. If P = 1, from (25) we
have p̄ = H . If P > 1 , from (25) we can infer that p̄ < H .

From the analysis of the basic complete information game we know that for each
i = 1, . . . , n − 1, H−pi

(v−pi )−δ(v−H)
→ 1 and pi → H as δ → 1. Thus if P > 1 for a

particular δ∗ ∈ (0, 1),11 it will be so for all δ > δ∗. Thus, the equilibrium behavior will
remain the same for all higher values of δ. Hence we can characterise the equilibrium

11 In fact, as δ increases we will eventually have P > 1.
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for values of δ close to one. Using (25) we have,

∑

i=1,...,n−1

(
1 − p̄ − pi

(v − pi ) − δ(v − H)

)
= n − 2 ⇒

∑

i=1,...,n−1

(v − p̄)−δ(v − H)

(v − pi ) − δ(v − H)
= n − 2

⇒ p̄ = v − (n − 2)

⎡

⎣
∏

i=1,...,n−1

[
(v − pi ) − δ(v − H)

]

∑
j=1,...,n−1

[∏
k=1,...,n−1;k 	= j

{
(v − pk) − δ(v − H)

}]

⎤

⎦ − δ(v − H)

(26)

From the basic model we know that for each i = 1, . . . , n − 1, pi → H as δ → 1.
Hence [(v − pi ) − δ(v − H)] → 0 as δ → 1. From (26) we have,

p̄ = v −

⎡

⎢⎢⎢
⎣

n − 2
∑

j=1,...,n−1

[∏
k=1,...,n−1;k 	= j

{
(v−pk )−δ(v−H)

}

∏
i=1,...,n−1

[
(v−pi )−δ(v−H)

]
]

⎤

⎥⎥⎥
⎦

− δ(v − H)

As δ → 1,

⎡

⎢⎢
⎣

n−2

∑
j=1,...,n−1

[ ∏
k=1,...,n−1;k 	= j

{
(v−pk )−δ(v−H)

}

∏
i=1,...,n−1

[
(v−pi )−δ(v−H)

]
]

⎤

⎥⎥
⎦ → 0. Hence as δ → 1, p̄ →

H . This concludes the proof.

Appendix 7: Ex-ante public offers model

Ex ante public offers model

Players and payoffs

These are identical to those described in the basic model.

The extensive form

We consider an infinite horizon12 multi-person bargaining game. At each time point
t = 1, 2 . . . offers are made by the buyers only. However the offers are not targeted.
Instead each buyer posts a price at which he is willing to purchase the good. Sellers
can accept either of the posted prices. If two sellers accept the price posted by the same
buyer, the buyer selects between them with equal probability. Also if a seller accepts
a price and fails to sell his good, all other offers expire. Matched pairs leave the game.
The unmatched players move on to the next period and the bargaining is continued
under the same protocol. In this setting the sellers can be compared to workers who

12 Hoon-Sik Yang’s question in a seminar presentation prompted us to add this section; our thanks to him.
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sell their services and buyers can be compared to firms who seek to purchase services
from the workers.

Stationary equilibrium for ex ante public offers

We intend to find a stationary equilibrium of this (modified) extensive form. The
qualitative nature of the equilibrium, analogous to the one we have studied before, is
as follows. One of the buyers B1 randomises between posting a price of H and posting
something less than H . He randomises his prices if his posting is less than H . The
other buyer B2’s posted price is randomised along a support whose upper bound is H .

In order to describe the candidate equilibrium, we note that the two player game
(one buyer–one seller) is identical to that in the targeted offers model. We consider
only the four-player game. Consider the following strategies:

(a) One of the buyers, B1 say, puts a mass of q at H and a continuous distribution of
posts ( (1−q)F1(.)) from pl to H , where pl will be defined later. The conditional
distribution F1(.) consists of an absolutely continuous part from pl to H and a
mass point at pl . B2, on the other hand randomises his posts by putting a mass
point at p′

l and an absolutely continuous part F2(.) from pl to H, with p′
l < pl .

The price p′
l is defined as,

p′
l = M + H

2
(27)

The distributions Fi (.) will be explicitly calculated.
(b) The sellers’ strategies in the four-player game are as follows:

1. Suppose p1 and p2 are the posted prices such that M ≤ p1 ≤ p2 . If p2 ≥ H ,
then SM accepts p1 (p2) if p1 ≥ M+p2

2 (p1 <
M+p2

2 ). If p2 < H then
SM accepts p2 only if the payoff from accepting it is at least as large as the
continuation payoff from rejecting it. SH accepts p2 provided p2 ≥ H .

2. The expected payoff of a buyer i in equilibrium is v − H . The expected payoff
of SH is zero and that of SM is positive.

The following lemmaexplicitly calculates the equlibriumdescribed above assuming
its existence.

Lemma 11 Suppose there exists pl ∈ (p′
l , H) such that,

pl − M = δ(E(y) − M),

where p (a random variable) represents the highest price post≤ H under the proposed
strategies. Then the proposed strategies constitute an equilibrium with,

(i)

F1(s) = (v − H)(1 − δ(1 − q)) − q(v − s)

(1 − q)[(v − s) − δ(v − H)]
(ii)

F2(s) = (v − H)(1 − δ(1 − q ′)) − q ′(v − s)

(1 − q ′)[(v − s) − δ(v − H)]
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(iii)

q = [v − H ](1 − δ)

(v − p′
l) − δ(v − H)

(iv)

q ′ = [v − H ](1 − δ)

(v − pl) − δ(v − H)

Proof The proof is identical to the proof of Lemma 1, if we replace M by p′
l . ��

The next lemma states that for sufficiently high values of δ there exists a unique pl
in the open interval (p′

l , H).

Lemma 12 There exists a δ∗ ∈ (0, 1) such that for all δ > δ∗, there exists a unique
pl ∈ (p′

l , H) that satisfies,

pl = δE(y) + (1 − δ)M

Proof Refer to Appendix 3. ��

Asymptotic characterisation for ex ante public offers case

In the public offers model, as δ → 1, pl → H . Thus as agents become patient enough
we get a uniform price for the non-differentiated goods. Since the proof of this is
almost identical to the proof of Proposition 3 we omit it.

Note that the different versions of the extensive form give similar equilibria and the
same asymptotic result, provided offers are one-sided.

Appendix 8: n Buyers and n sellers, buyers are heterogeneous

Heterogeneous buyers

Suppose the buyers are heterogeneous such that,

vN > vN−1 > · · · > v2 > v1 > H > uN−1 > · · · > L

For each i = 1, . . . , n − 1, define

phi = (1 − δ)ui + δE(yhi ) and

q̄hi = H − phi
(vi − phi ) − δ(vhi − H)

,

where E(yhi ) is defined as the equilibrium expected maximum price offer that Si gets
in the four-player game with Si and Sn as the sellers and two buyers with valuation vi
and vn . As before, let Ph = ∑

i=1,...,n−1 q̄
h
i . Define q

H
h = (v1−H)(1−δ)

(v1−L)−δ(v1−H)
≡ qH as

v1 = v.
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Proposition 8 With heterogeneous buyer valuations, analogues to Propositions 5, 6
and 7 hold good forPh < 1 and 1−Ph > qH ,Ph < 1 and 1−Ph < qH andPh ≥ 1
respectively. For Ph < 1 and 1 − Ph > qH the lowest-valued buyer with valuation v

offers to S1. The specifics, however, are slightly different(see Appendix 9). Also with
private offers, Proposition 7 describes the equilibrium for high values of δ.

Remark 1 We omit the formal proof of the results for heterogeneous buyers since this
is very similar to those of the previous propositions. Here, we explain why in the case
of Ph < 1 and 1 − Ph > qH the lowest-valued buyer with valuation v offers to S1,
rather than one of the others.13 In equilibrium, the buyer who is making offers to S1
puts a mass point at the reservation value of that seller (i.e. at L). Since the buyer
is indifferent between offering L to S1 and making randomised offers in the range
[p1, H ], the probability (qH ) with which the buyer Bn makes offers to Sn must just
make B1 indifferent among the offers in the support of his randomised strategy.14 This
gives qH as below.

(v − L)qH + (1 − qH )δ(v − H) = v − H

⇒ qH = (v − H)(1 − δ)

(v − L) − δ(v − H)

Buyer Bj ( j 	= 1; j 	= n) makes randomised offers to the seller S j with [p j , H ]
as the support. First, it is easy to see that Bj cannot profitably deviate by making
offers to Sk ( j 	= k 	= n) in the range [pk, H ]. To ensure that the proposed strategies
constitute an equilibrium we need to show that this buyer with valuation v j ( 	= v), has
no incentive to offer ui (or in the range (ui, pi ) ) to Si , i = 1, . . . , n−1;. First consider
i = 2, . . . , n − 1. Since offers are public15, a seller with valuation ui will only accept
an offer of ui (or something in the range (ui, pi )) if the buyer Bn makes an offer to Sn .
Hence, the payoff to the buyer with valuation v j of making an offer of ui to Si is,

(v j − ui )q
H + (1 − qH )δ(v j − H)

Define qH
j such that, (v j − ui )qH + (1 − qH )δ(v j − H) = v j − H . This implies

qH
j = (v j−H)(1−δ)

(v j−ui )−δ(v j−H)
. Since v j > v for all j 	= 1 and ui > L , for all i 	= 1 we have

qH
j = (v j − H)(1 − δ)

(v j − ui ) − δ(v j − H)
>

(v − H)(1 − δ)

(v − L) − δ(v − H)
= qH

Since (v j − ui ) > δ(v j − H), (v j − ui )qH + (1 − qH )δ(v j − H) < (v j − H). The
equilibrium payoff to the buyer with valuation v j is (v j − H). This implies that the
buyer has no incentive to offer ui to seller Si . This also proves that for i = 1, the

buyer Bj has no incentive to offer L to S1. To see this note that
(v j−H)(1−δ)

(v j−L)−δ(v j−H)
>

13 This is a sufficient condition for the strategies described to be an equilibrium.
14 W.L.O.G we assume that v1 = v.
15 Note that the equilibrium for private offers is described by a different proposition.
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(v−H)(1−δ)
(v−L)−δ(v−H)

. Since B1 is also offering L to S1 with some positive probability the

payoff to Bj by offering L to S1 is strictly less than (v j −L)qH +(1−qH )δ(v j −H) <

v j − H. Hence Bj has no incentive to offer anything in the range [ui , pi ) to Si
(i = 1, . . . , n − 1).

Appendix 9: Details of the equilibria defined in Proposition (8)

We give here a more detailed description of the equilibrium for heterogeneous buyers
for the n × n model.

Ph < 1 and 1 − Ph > qH

Buyer Bi (i = 1, . . . , n − 1) offers to seller Si only. B1 while making offers to S1
puts a mass of q ′h

1 at L . With probability (1 − q ′h
1 ) he randomises his offers to S1

using a continuous probability(conditional) distribution function Fh
1 with [ph1 , H ] as

the support. Bn offers to S1 with probability qh1 . His offers are randomised using a
probability distribution function F1

nh with [ph1 , H ] as the support. F1
nh puts a mass

point at phi . The distributions F
h
1 , F1

nh and the probabilities qh1 and q ′h
1 are given by:

Fh
1 = (vn − H)

[
1 − δ(1 − q ′h

1 )
] − q ′h

1 (vn − s)

(1 − q ′h
1 )

[
(vn − s) − δ(vn − H)

]

F1
nh = (v − H)

[
1 − δqh1

] − (1 − qh1 )(v − s)

qh1
[
(v − s) − δ(v − H)

]

q ′h
1 = (vn − H)(1 − δ)

(vn − ph1 ) − δ(vn − H)

qh1 = q̄h1 + (1 − Ph − qH )

For i = 2, . . . , n − 1, Bi ’s offers to Si are randomised with a distribution Fh
i (s).

Fh
i (.) puts a mass point at phi and has an absolutely continuous part from phi to H . Bn

makes offers to Si (i = 2, . . . , n − 1) with probability qhi = q̄hi . Bn’s offers to Si are
randomised using an absolutely continuous probability distribution Fi

nh with [phi , H ]
as the support. For i = 2, . . . , n − 1, Fh

i (.), Fi
nh(.) are given by,

Fh
i = (vn − H)(1 − δ)

(vn − s) − δ(vn − H)

Fi
nh = (vi − H)[1 − δqhi ] − (1 − qhi )(vi − s)

qhi [(vi − s) − δ(vi − H)]

Bn offers to Sn with probability qH . He offers H to Sn .
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Ph < 1 and 1 − Ph < qH

Buyer Bi (i = 1, . . . , n − 1) offers to seller Si only. Bi ’s offers to Si are random with
a distribution Fh

i (s). Fh
i (.) puts a mass point at phi and has an absolutely continuous

part from phi to H . Bn makes offers to Si (i = 1, . . . , n−1) with probability qhi = q̄hi .
Bn’s offers to Si are random with an absolutely continuous probability distribution
Fi
nh with [phi , H ] as the support. For i = 1, . . . , n−1 , Fh

i (.) and Fi
nh(.) are given by

Fh
i = (vn − H)(1 − δ)

(vn − s) − δ(vn − H)

Fi
nh = (vi − H)

[
1 − δqhi

] − (1 − qhi )(vi − s)

qhi
[
(vi − s) − δ(vi − H)

]

Bn offers to Sn with probability qhn = 1 − Ph . He offers H to Sn .

Ph ≥ 1

Buyer Bi makes offers to seller Si only. Bi ’s offers to Si are randomised using a
distribution function Fh

i (.) with [phi , p̄h] as the support. The distribution Fh
i (.) puts a

mass point at phi and has an absolutely continuous part from phi to p̄h . Buyer Bn makes
offers to all sellers except Sn . Bn’s offers to Si (i = 1, . . . , n − 1) are randomised
with a continuous probability distribution Fi

nh . The support of offers is [phi , p̄h]. The
probability with which Bn makes offers to Si is qhi . IfPh = 1 then p̄h = H . IfPh > 1
then p̄h < H and as δ → 1, p̄h → H . Fh

i (.), Fi
nh and qhi are given by the following

expressions:

Fh
i (s) = (vn − p̄h) − δ(vn − H)

(vn − s) − δ(vn − H)

Fi
nh = (vi − H)

[
1 − δqhi

] − (1 − qhi )(vi − H)

qi
[
(vi − s) − δ(vi − H)

]

qhi = p̄h − phi
(vi − phi ) − δ(vi − H)

Appendix 10: Proof of Theorem 1

Consider an arbitrary stationary equilibrium of the game with n + 1 buyers and n + 1
sellers.

First of all it is to be observed that in any stationary equilibrium the seller with
valuation H can never get offers from more than one buyers with positive probability.
Refer to Appendix 11 for a formal proof of this claim.

There can be two situations. Either all sellers are getting an offer with positive
probability or at least one seller is not getting an offer with probability 1.
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Case 1 Suppose all sellers are getting offers with positive probability:
This implies that the upper bound of the support of price offers to the sellers is H .

Further except for seller H , each seller in the considered equilibrium gets offers from
at least two buyers with positive probability. This is because if one of the sellers other
than H is getting offers from only one buyer then she must be getting an offer equal
to her valuation. This is not possible in equilibrium.

Also it is to be noted that in a stationary equilibrium it is never possible that at a time
point there are remaining buyers and sellers to bematched and the seller with valuation
H has already left. Suppose it is the case. Let the highest value seller remaining be
H̃ < H. Then from our hypothesis, the highest equilibrium price is H̃ . Now consider
the period when the seller with valuation H had left. It must be the case that a buyer
BH had offered a price y ≥ H to this seller. Hence the payoff obtained by that buyer is
less than or equal v − y ≤ v − H . In this stationary equilibrium, the highest expected
price offer to the seller with valuation H̃ is H̃ . Hence in equilibrium no buyer will
offer more than H̃ to this seller. Suppose the buyer BH deviates by offering to the
seller with valuation H̃ . Two things are possible if this seller rejects this offer from the
deviating buyer. Either next period the same set of sellers and buyers will be present or
there will be fewer buyers and sellers with the seller with valuation H being present.
In the first case we know that the seller with valuation H̃ will accept any offer greater
than or equal to H̃ and in the latter case by our hypothesis she will accept an offer
of H − γ where γ > 0 and is arbitrarily small for high values of δ. Since only one
buyer can offer to the seller with valuation H in equilibrium, in either case BH can
profitably deviate by offering to the seller with valuation H̃ .

Consider a seller Sk with valuation uk . At least two buyers are offering to this seller
with positive probability. Since all sellers are getting offers with positive probability,
in any stationary equilibrium there can be the following three possibilities:

(i) Sk is getting more than one offer but fewer than (n + 1) offers In such a
case rejection of all offers would lead to a continuation game with n1-buyers and
n1 sellers with 2 ≤ n1 < n + 1. Then by hypothesis, all price offers converge
to H in the continuation game when δ → 1. For high values of δ we can thus
approximate the expected highest price offer to Sk in the continuation game by a
number H − ε, where ε → 0 as δ → 1 . Hence the minimum acceptable price
offer this period should be at least as large as pk = [δ(H − ε) + (1 − δ)uk].

(ii) Sk gets one offer but some other seller gets more than one offers In such a
situation again rejection of all offers would lead to a continuation game with
n1-buyers and n1 sellers with 2 ≤ n1 < n + 1 . Thus the minimum acceptable
price offer this period should be at least as large as pk = [δ(H − ε)+ (1− δ)uk].

(iii) Sk gets one offer and all other sellers also get one offer In this situation rejecting
the offer would lead to a gamewith seller Sk and one buyer next period. Hence the
continuation payoff from rejection is 0 and thus the minimum acceptable price
is uk .

(iv) Sk gets (n + 1) offers Rejection of all offers leads to a game with n + 1-buyers
and n+1 sellers. Let p̄ be the minimum acceptable price to Sk in such a situation.

It is easy to note that
uk < p̄; uk < pk
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Consider an arbitrary stationary equilibrium strategy profile.
First, suppose p̄ < pk .
Wewould first argue that it is never possible that in equilibrium all buyers will make

offers to Sk with probability 1. This actually follows from our proof of uniqueness of
the basic model with two buyers and two sellers. If such is the case then we can show
that at least two buyers would put a mass point at the lower bound of the support. This
is not possible in equilibrium.

Claim It is never a possibility that in equilibrium a buyer makes an offer s ∈ (uk, p̄)
as a part of his behavioural randomised strategy.

Proof of the claim An offer s ∈ (uk, p̄) is accepted when Sk gets only one offer.
However if a buyer is offering something in this range and getting it accepted with
positive probability, then he could have still made that offer accepted with the same
probability by offering s − λ ∈ (uk, p̄). This is a profitable deviation and it is true for
any s ∈ (uk, p̄). This proves our claim. ��
Claim It is never a possibility in equilibrium that two buyers put a mass point at p̄
as a part of their behavioural randomised strategies.

Proof of the claim Suppose the claim is false. Consider a buyer Bk who puts a mass
point at p̄. This offer can get accepted only when Sk gets (n + 1) offers and all other
offers are less than or equal to p̄. Since there is another buyer Bj who puts a mass
point at p̄, Bk can profitable deviate by shifting the mass from p̄ to p̄+λ, λ arbitrarily
small. This is because by shifting the mass to p̄ + λ, the probability of acceptance
gets an upward jump but the payoff from acceptance remains the same. This proves
our claim. ��

Since Sk is getting offers from two buyers with positive probability, there has to be
a distribution of randomised offers to Sk from each buyer. As all sellers are getting an
offer with positive probability, the upper bound of the support of the distribution is H .
Hence with positive probability an offer greater than or equal to pk is made to Sk .

Without loss of generality we can take pk to be the lowest offer greater than or
equal to pk . Consider a buyer who is making this offer. Let qk be the total probability
that the offers by all other buyers are less than pk . Since this buyer’s payoff is v − H
(as offers are being made to all sellers with positive probability) we have

(v − pk)qk + (1 − qk)δ(v − H) = v − H

(By our hypothesis the continuation payoff of the buyer if his offer is rejected is
δ(v − H).) This gives us:

qk = (v − H)(1 − δ)

(v − pk) − δ(v − H)
= 1

v
v−H + δH−pk

(1−δ)(v−H)

Since pk is bounded above by δH , as δ → 1, qk → 0.
If p̄ ≥ pk , then also we can show in the same way as above that the total mass put

at uk goes to zero as δ → 1.
Thus as δ goes to 1, the probability that all offers to Sk are less than pk goes to zero.

Hence the highest offer is always greater than or equal to pk .
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Case 2 At least one seller is not getting an offer with probability 1:
First of all it is easy to note that if exactly one seller is not getting an offer with

probability 1 in a stationary equilibrium, then this seller must be the seller with valu-
ation H . Otherwise the buyer who is making offer to the seller with valuation H can
profitable deviate by making offer to the seller who in equilibrium is not getting an
offer with probability 1.

Consider a seller Sk with valuation uk < H who is getting an offer. If she gets
j offers ( j = 1, 2, . . . , n) then rejecting all offers would lead to a game with n1
buyers–n1 sellers next period (2 ≤ n1 < n + 1). This is because at least one of the
sellers is not getting an offer. Then by hypothesis, the minimum acceptable price in
this case would be pk = δ(H − ε) + (1 − δ)uk . If Sk gets n + 1 offers then rejection
of all offers would lead to a game with n + 1 buyers–n + 1 sellers next period. Let
p̄ be the minimum acceptable price. Suppose p̄ < pk . In equilibrium thus all offers
are at least as large as p̄. In equilibrium all buyers cannot put a mass at p̄. Hence at
least one buyer while making offers to Sk should not put a mass point at p̄. In that
case no buyer should ever put a mass point at p̄. This is because an offer less than pk
is only accepted when the seller gets n + 1 offers. However since at least one buyer is
always offering more than p̄, an offer of p̄ is always rejected. This is not possible in
equilibrium.

We would now argue that there can never be a distribution of offers to Sk with the
lower bound of the support being less than pk and greater than p̄. Suppose it is the
case and let sk be the lower bound of the support with p̄ < sk < pk . Consider the
buyer who makes offers in the interval (sk, sk + τ) with positive probability where
τ > 0 and is sufficiently small. Offers in this range are almost surely (as τ → 0)
rejected since all offers are almost surely greater than the offers in this range and an
offer in this range would only be accepted if the seller gets n + 1 offers. This is true
for all sk < pk . Hence offers to Sk are at least as large as pk .

If pk ≤ p̄, then all price offers are always at least as large as pk .
Hence as δ → 1, price offers to Sk are almost surely greater than or equal to pk .

pk → H as δ → 1

Thus we have shown that as δ → 1, the accepted price offer by any seller in a
stationary equilibrium with (n + 1) buyers and (n + 1) sellers converges to H .

This concludes the proof of this proposition.

Appendix 11: Seller with valuation H cannot get offer from more than one buyers
with positive probability

Suppose this is true. Then there exists a stationary equilibrium where at least two
buyers make offers with positive probability to the seller with valuation H . Let Bk and
Bj be two such buyers. Clearly there has to be a distribution of offers to the H seller
with an upper bound of the support s̄H > H . Thus equilibrium payoff to each of these
buyers is v− s̄H < v−H . Consider the following deviation by one of these buyers(say
Bk). Suppose Bk makes an unacceptable offer to H (H − e, e > 0) with probability
1. Then next period according to our hypothesis his minimum payoff would be close
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to (v − H) for high values of δ. This is because next period he will face a game which
will have fewer than (n + 1) sellers and buyers. Either seller H would be present or
she would be not. According to our hypothesis, for high values of δ the payoff to the
buyer would be close to v − H in the first case and strictly higher than v − H in the
later case. Hence for high values of δ, Bk’s payoff from deviation is at least as large
as δ(v − H). For high values of δ we would have δ(v − H) > v − s̄H . Thus it is a
profitable deviation by the buyer. This proves the claim.

Appendix 12: A Stationary equilibrium of the game with n buyers and n − 1
sellers

We will derive a stationary equilibrium of this extensive form. Thus buyers’ offers at
any time point depend only on the set of players remaining and the sellers’ responses
depend only on the set of players remaining, and the offers. Before we describe the
equilibrium of this game formally we will verbally discuss its nature. In equilibrium,
if all the players are present, buyer Bi (i = 1, . . . , n − 1) makes offers to Si only.
His offers are randomised using a distribution function function Fi (.), with [pi , p̄]
(pi and p̄ will be defined later ) as the support. Fi (.) puts a mass point at pi and has
an absolutely continuous part from pi to p̄. Buyer Bn makes offers to all the sellers
with positive probability. Bn’s offers to S j ( j = 1, . . . , n − 1) are randomised using
a probability distribution Fi

n(.). The support of offers is [pi , p̄].
For each i = 1, . . . , n − 1 we define pi as,

pi = (1 − δ)ui + δv (28)

Let qi be the probabilitywithwhich Bn offers to seller Si . The following proposition
now formally defines the equilibrium of the game.

Proposition 9 (i) The above conjectured strategies constitute a stationary equilib-
rium of the present game with,

Fi (s) = v − p̄

v − s
(29)

Fi
n(s) = (v − p̄) − (1 − qi )(v − s)

qi (v − s)
(30)

qi = p̄ − pi
v − pi

(31)

p̄ = v − (n − 2)

∏
i=1,...,n−1(v − pi )

∑
j=1,...,n−1[

∏
k=1,...,n−1;k 	= j (v − pk)] (32)

(ii) In equilibrium, each buyer obtains an expected payoff of (v − p̄).

Proof First consider the buyer Bi , (i = 1, . . . , n−1). For s ∈ [pi , p̄] his indifference
relation is,

(v − s)[(1 − qi ) + qi F
i
n(s)] = v − p̄
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Solving the above relation for Fi
n(.) we get (30). Putting s = pi in Bi ’s indifference

relation we obtain (31). It is easy to note that Fi
n(pi ) = 0 and Fi

n( p̄) = 1.
Next, consider the buyer Bn . The support of his offers to Si (i = 1, . . . , n − 1) is

[pi , p̄]. For s ∈ [pi , p̄], Bn ’s indifference relation is given by

(v − s)[Fi (s)] = v − p̄

which gives us (29). Note that Fi (pi ) > 0 and Fi ( p̄) = 1. This confirms our conjecture
that Bi puts a mass point at pi .

To have consistency in the expressions obtained we must have,

∑

i=1,...,n−1

qi = 1 ⇒
∑

i=1,...,n−1

( p̄ − pi )

(v − pi )
= 1

⇒
∑

i=1,...,n−1

(v − p̄)

(v − pi
) = n − 2

Rearranging the terms in the above relation we get (32).
Now we should check that the strategies constitute an equilibrium. First, observe

that on the equilibrium path if a seller Si rejects her offer(s) then next period she will
face a game with two buyers and one seller. This will give her a discounted payoff
of δ(v − ui ). Hence her minimum acceptable price should be pi . From the analysis
of the basic model one can infer that on the equilibrium path, there is no profitable
deviation for the players. The way we have specified sellers’ strategies these always
constitute best responses in any off-path contingency. It is easy to check that buyers’
strategies also constitute best responses in any off-path contingency. This concludes the
proof. ��
Remark 2 Note that irrespective of whether a seller gets one offer or two offers,
the continuation game faced by her from rejection is the same. Hence the stationary
equilibrium constructed is a public perfect equilibrium for the case of private targeted
offers.

From (28) it is easy to observe that pi → v as δ → 1. Thus as δ → 1, (v− pi ) → 0
for i = 1, . . . , n − 1. This implies that the second term in (32) goes to zero as δ tends
to one. Hence ,

p̄ → v as δ → 1

This implies that the distributions of the price offers by each buyer collapse to a
single value in the limit.
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