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Abstract A network congestion game is played on a directed, two-terminal network.
Every player chooses a route from his origin to his destination. The cost of a route
is the sum of the costs of the arcs on it. The arc cost is a function of the number of
players who use it. Rosenthal proved that such a game always has a Nash equilibrium
in pure strategies. Here we pursue a systematic study of the classes of networks for
which a strong equilibrium is guaranteed to exist, under two opposite monotonicity
assumptions on the arc cost functions. Our main results are: (a) If costs are increas-
ing, strong equilibrium is guaranteed on extension-parallel networks, regardless of
whether the players’ origins and destinations are the same or may differ. (b) If costs
are decreasing, and the players have the same origin but possibly different destinations,
strong equilibrium is guaranteed on series-parallel networks. (c) If costs are decreas-
ing, and both origins and destinations may differ, strong equilibrium is guaranteed
on multiextension-parallel networks. In each case, the network condition is not only
sufficient but also necessary in order to guarantee strong equilibrium. These results
extend and improve earlier ones by Holzman and Law-Yone in the increasing case,
and by Epstein et al. in the decreasing case.
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1 Introduction

Networks serve as the infrastructure for various activities, including transportation,
communication, computation, etc. Typically, many users share the resources of a net-
work, and are affected by each other’s actions. The study of network congestion games
aims at analyzing the strategic aspects of such interactions.

A network congestion game1 is described by a network and a set of players, each
with a designated origin and destination. A player chooses as his strategy any of the
routes from his origin to his destination, and incurs a total cost equal to the sum of
the costs of the arcs that form his chosen route. For each arc, the per-user cost is
determined as a function of the number of users of that arc.

This model was introduced by Rosenthal (1973b).2 He proved that a network con-
gestion game always has a Nash equilibrium in pure strategies. This is due to the fact
that such a game (and more generally, any congestion game Rosenthal 1973a) has an
exact potential in the sense of Monderer and Shapley (1996).

However, a Nash equilibrium does not necessarily entail efficiency or stability
with respect to coalitional deviations, as required in the concept of strong equilibrium
(Aumann 1959). Without further conditions, a strong equilibrium may fail to exist
even in the simple set-up of two players having to choose between two arcs a and b
leading from their common origin to their common destination. Indeed, suppose the
per-user cost of a is 0 for a single user and 2 when both use it, and the per-user cost
of b is 3 for a single user and 1 when both use it. The resulting game is a prisoner’s
dilemma: it is a dominant strategy for each player to choose a, yielding a unique Nash
equilibrium with each player paying 2, whereas a joint deviation to b would reduce
each player’s cost to 1.

We may be able to ensure existence of strong equilibrium by imposing various
conditions on the structure of the network, the players’ origins and destinations, and the
arc cost functions. The above example, in which the cost function of a was increasing
and that of b was decreasing, indicates that it is essential to impose one kind of
monotonicity on all arc cost functions. If the costs pertain to the usage of the arcs
(e.g., they represent the time it takes to traverse an arc), it is natural to assume that
they increase with the number of users. This indeed has been the assumption in much
of the congestion games literature. But if we are looking at the costs of building and
maintaining the arcs, which are shared by the users of each arc, then the per-user cost
is likely to decrease with the number of users. Such is the case in the recent network
design literature in computer science (see, e.g., Anshelevich et al. 2004).

Here we contrast the two alternative kinds of cost monotonicity, and examine the
conditions on network structure and player locations that guarantee the existence of

1 We give here a verbal description of this class of games. Precise definitions are given in Sect. 2.
2 A related model with a continuum of players, each having a negligible effect on the congestion, was
introduced earlier in transportation science, e.g., Beckmann et al. (1956). This nonatomic variant of our
model was also studied recently in the game theoretic literature by Milchtaich (2005, 2006).
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Table 1 The classes of networks guaranteeing existence of strong equilibriumunder different combinations
of locations regime and cost monotonicity type

INC DEC
(Increasing costs) (Decreasing costs)

SOSD Extension-parallel All networks

(same-origin same-destination) (Holzman and Law-yone 2003) (trivial)

SOAD Extension-parallel Series-parallel

(same-origin any-destinations) (Theorem 1) (Theorem 2)a

AOAD Extension-parallel Multiextension-parallel

(any-origins any-destinations) (Theorem 1) (Theorem 3)b

a The sufficiency part of this result was essentially proved earlier by Epstein et al. (2009). They only
considered fair connection games, but their proof remains valid for the more general class of network
congestion games with decreasing costs
b Sufficiency for extension-parallel networks and fair connection games was proved earlier by Epstein et
al. (2009)

strong equilibrium under each of them. Intuitively, decreasing costs should facilitate
strong equilbrium, since the players help each other by sharing the same arcs. This
intuition is easily translated to an existence proof of strong equilibrium in the case
of decreasing costs, if all players have the same origin and the same destination.
But if different players have different origins and destinations, full sharing becomes
impossible, and it is not clear how to reach a strong equilibrium.

We consider three regimes regarding the players’ locations: (a) all players have the
same origin and the same destination, (b) all players have the same origin but may
have any destinations,3 and (c) players may have any origins and any destinations. For
each combination of locations regime andmonotonicity type (increasing or decreasing
costs), we fully characterize the networks for which all the corresponding congestion
games possess strong equilibria. The characterizations involve thewell-known class of
series-parallel networks (introduced originally in the study of electrical networks), and
two subclasses: extension-parallel networks (introduced in Holzman and Law-yone
2003) and the somewhat more general multiextension-parallel networks (introduced
here). These subclasses are obtained by maintaining the framework of constructing
networks via series join and parallel join, but requiring that series join be applied only
when one of the two networks being joined is of a simple kind. Table 1 summarizes
the results and attributes them to earlier work or to theorems in this paper.

We discuss now the relation of our work to the most relevant previous work. The
study of strong equilibrium in congestion games with increasing costs was initiated
in Holzman and Law-Yone (1997), and specialized to the network set-up in Holzman
and Law-yone (2003). The latter considered only the same-origin same-destination
regime, and characterized the extension-parallel networks as those guaranteeing strong
equilibrium in this case. Here we prove that the same class of networks guarantees
strong equilibrium even if origins and destinations may vary across players. This

3 The case when all players have the same destination but may have any origins is equivalent, and hence
will not be treated explicitly.
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generalization is by no means straightforward. Indeed, a key property of extension-
parallel networks in the same-origin same-destination case—the absence of so-called
bad configurations in the strategy spaces—is lost when players have different origins
and destinations.

Our results for the case of decreasing costs are closely related to the work of
Epstein et al. (2009). They considered the class of fair connection games, which
amounts to network congestion games in which the per-user cost of an arc is a constant
(that may depend on the arc) divided by the number of users of that arc. They gave
sufficient conditions for a network to guarantee existence of strong equilibrium in
all corresponding fair connection games, under each of the three player locations
regimes. In fact their proofs do not exploit the special cost structure of fair connection
games, and extend easily to network congestion gameswith decreasing costs. Themain
contribution of our work is that our network conditions are also necessary, whereas
those of Epstein et al. were not. In the same-origin any-destinations case, this is due to
the existence of non-series-parallel networks that guarantee strong equilibrium in all
fair connection games, but not in all network congestion games with decreasing costs.
In the any-origins any-destinations case, we identify a weaker sufficient condition than
theirs—multiextension-parallel instead of extension-parallel—which is moreover a
necessary condition. Another point to note is that our definition of a network, unlike
that of Epstein et al., allows cycles, which renders it more general and closer to real
life. In all nontrivial positive results the networks are acyclic, but this is a consequence
of the characterizations rather than a restrictive a-priori assumption.

Strong equilibrium in congestion games with decreasing costs (not necessarily on
networks) was first studied by Rozenfeld and Tennenholtz (2006). They showed that,
essentially, the only strategy spaces that guarantee existence of strong equilibrium
are those with singleton strategies. This negative result is due to the extremely strong
sense of ‘guaranteeing’ in their model: for a given strategy space, they considered
all ways of deciding which strategies are feasible to each player, and required that all
corresponding congestion games possess strong equilibria. In ourmodel, the feasibility
of strategiesmay differ across players, but is not arbitrary—it is fully determined by the
players’ origins and destinations. The contrast between Rozenfeld and Tennenholtz’s
result and our much more positive ones highlights the importance of this feature of
our model.

When comparing our results for the two kinds of cost monotonicity, a few obser-
vations stand out. On the one hand, the classes of networks that guarantee strong
equilibrium when costs are decreasing are significantly larger, in each of the loca-
tions regimes, than the corresponding class for increasing costs. On the other hand, in
the increasing case, our result not only yields the existence of strong equilibrium but
shows that every Nash equilibrium is strong. The latter is not true in the decreasing
case. For example, consider the set-up with two players choosing between two arcs,
and suppose the per-user cost of a is 2 for a single user and 0 when both use it, and
that of b is 2 for a single user and 1 when both use it. There are two Nash equilibria
in which the players choose the same arc, but only one of them—where they choose
a—is strong. Another observation is that in the decreasing case, the class of networks
guaranteeing strong equilibrium is very sensitive to the locations regime, whereas in
the increasing case that class is the same regardless of the regime.
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Wegive precise definitions and statements of themain results in the next section.The
proof of the result for increasing costs appears in Sect. 3. The treatment of decreasing
costs is divided into the sufficiency part (Sect. 4) and the necessity part (Sect. 5). In the
latter, we give forbidden substructure characterizations of our network classes, which
are of independent graph theoretic interest.

2 Definitions and main results

2.1 Networks

Our networks are directed, may contain cycles, and have two terminals—a source and
a sink. These terminals serve as points of reference but not necessarily as the origin
and destination of the players. Formally, a network is specified as D = (V, A, s0, s1),
where:

• V is a finite set of vertices;
• A is a finite set of arcs; each arc a ∈ A has a tail t (a) ∈ V and a head h(a) ∈ V ;
• s0 (the source) and s1 (the sink) are two distinct vertices in V .

A route in D is a sequence of the form v0, a1, v1, a2, . . . , v�−1, a�, v� where
v0, v1, . . . , v� are distinct vertices, and a1, . . . , a� are arcs satisfying t (ai ) = vi−1
and h(ai ) = vi for i = 1, . . . , �. It is a u − v route if v0 = u and v� = v. The
following condition, which is part of our definition of a network, expresses the special
role of the source and the sink:

• Every vertex in V and every arc in A belongs to at least one s0 − s1 route in D.

A subnetwork of D is a network D′ obtained from D by (possibly) deleting some
vertices and arcs, and renaming two of the remaining vertices as the source and the
sink of D′.

The simplest kind of network is a single-arc network, with one arc from the source
to the sink. Somewhat more general is the class of multiple-arc networks, with one or
more arcs from the source to the sink (which are the only vertices).

Given two networks D1, D2, we define two kinds of join operations. The series join
D = D1 → D2 is obtained by identifying the sink of D1 with the source of D2; the
source of D1 becomes that of D, and the sink of D2 becomes that of D. The parallel
join D = D1 ‖ D2 is obtained by identifying their two sources, to become that of D,
and their two sinks, to become that of D. In either operation, the set of vertices of D
is the disjoint (except for the identified terminals) union of the vertex sets in D1 and
D2, and the set of arcs of D is the disjoint union of the arc sets in D1 and D2.

A network D is series-parallel if there exists a sequence of networks D1, D2, . . . ,

Dm with Dm = D, so that for every i = 1, . . . ,m, either Di is a single-arc network,
or there exist j, k < i such that Di = Dj → Dk or Di = Dj ‖ Dk . Such a
sequence is called a series-parallel construction of D. The definition of an extension-
parallel network is similar, but requires that whenever Di in the sequence is formed
as a series join of Dj and Dk , at least one of Dj , Dk must be a single-arc network.
For a multiextension-parallel network, the requirement is that at least one of Dj , Dk

involved in a series join must be a multiple-arc network. These classes of networks
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Fig. 1 Examples of networks: a extension-parallel b multiextension-parallel but not extension-parallel c
series-parallel but not multiextension-parallel d not series-parallel

are nested as extension-parallel⊆multiextension-parallel⊆ series-parallel. See Fig. 1
for examples.

2.2 Games

A network D = (V, A, s0, s1) is given. To define a game on D, we consider a finite
set N of players. For each i ∈ N , an origin oi ∈ V and a destination di ∈ V are
specified, so that oi �= di and the set �i of all oi − di routes in D is nonempty. This
set is player i’s strategy space. We look at three nested classes of player locations:
SOSD⊆ SOAD⊆AOAD. In SOSD (same-origin same-destination) all oi , i ∈ N , are
the same, and all di , i ∈ N , are the same. In SOAD (same-origin any-destinations) all
oi are the same, but the di may be distinct. In AOAD (any-origins any-destinations)
both the oi and the di may be distinct.

For each arc a ∈ A, the per-user cost of a is a function of the number k of users
of a, written as ca(k). In general, the ca(k) for a ∈ A and 1 ≤ k ≤ |N | are arbitrary
nonnegative real numbers, but we focus on two classes of monotone cost assignments.
In INC (increasing costs) k ≤ � implies ca(k) ≤ ca(�), whereas in DEC (decreasing
costs) k ≤ � implies ca(k) ≥ ca(�) for all a ∈ A.4

Given the network D, the players’ locations, and the cost assignments, the game
G is defined as follows. Recall that a strategy Ri ∈ �i is a oi − di route. We identify
each Ri with the set of arcs that belong to this route, so Ri ⊆ A. The set of strategy

4 The correct terminology for INC is nondecreasing costs, and that for DEC is nonincreasing costs. But we
prefer the shorter and more transparent terms.
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profiles is �N = ×i∈N�i . Given R = (Ri )i∈N ∈ �N , the congestion at arc a ∈ A is

σa(R) = |{i ∈ N : a ∈ Ri }|,

and the disutility of player i ∈ N is

π i (R) =
∑

a∈Ri

ca(σa(R)).

Any gameG defined in this way from D is called a congestion game on D. We shall be
interested in subclasses of this class of games, corresponding to conditions imposed on
the players’ locations and/or the cost assignments. For example, a SOSD-INC game on
D is a game defined as above with SOSD player locations and INC cost assignments,
and similarly for the other combinations.

Our games are defined in disutility form, and so the standard game theoretic con-
cepts apply with reverse inequalities. Thus, R = (Ri )i∈N ∈ �N is a Nash equi-
librium if there do not exist a player i ∈ N and a strategy Pi ∈ �i such that
π i (Pi , RN\{i}) < π i (R). It is a strong equilibrium if there do not exist a non-
empty coalition of players S ⊆ N and strategies Pi ∈ �i for i ∈ S such that
π i (PS, RN\S) < π i (R) for every i ∈ S. Here (PS, RN\S) is the strategy profile
where each player i ∈ S chooses Pi and each j ∈ N \ S chooses R j . We refer to such
PS as a profitable deviation of coalition S (from R). The sets of Nash equilibria and
strong equilibria in the game G are denoted by NE(G) and SE(G) respectively, and
clearly satisfy SE(G) ⊆ NE(G).

We say that a network D is �-strong with respect to a subclass � of games on D,
if every game in � has a strong equilibrium. For example, D is SOSD-INC-strong if
SE(G) �= ∅ for every SOSD-INC gameG on D, and similarly for the other subclasses.

2.3 Results

Theorem 1 Let D be an extension-parallel network, and let G be a AOAD-INC game
on D. Then SE(G) = NE(G).

Since, by Rosenthal’s (1973b) theorem, all congestion games G on any network
D have NE(G) �= ∅, it follows from Theorem 1 that extension-parallel networks are
AOAD-INC-strong. In the opposite direction, Holzman and Law-yone (2003) showed
that non-extension-parallel networks are not SOSD-INC-strong. These facts, together
with the containment relations between the player location classes, yield:

Corollary 1 Let D be a network. The following conditions are equivalent:

1. D is SOSD-INC-strong.
2. D is SOAD-INC-strong.
3. D is AOAD-INC-strong.
4. D is extension-parallel.
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The subclass SOSD-DEC is trivial. Indeed, let D be any network, and let G be
a game on D with oi = o, di = d for all i ∈ N , and decreasing costs. Then the
players have a common strategy space �, consisting of all o − d routes in D. Let
minR∈�

∑
a∈R ca(|N |) be attained at R̂ ∈ �. Then the profile where every player

chooses R̂ gives the lowest disutility to each player, and is therefore a strong equilib-
rium in G.5 Thus, all networks are SOSD-DEC-strong.

For the remaining two subclasses, we have:

Theorem 2 Let D be a network. Then D is SOAD-DEC-strong if and only if D is
series-parallel.

Theorem 3 Let D be a network. Then D is AOAD-DEC-strong if and only if D is
multiextension-parallel.

3 Increasing costs

In this section we prove Theorem 1. Let D = (V, A, s0, s1) be an extension-parallel
network, and let N be a set of players with origins oi , i ∈ N , and destinations di ,
i ∈ N . For each i ∈ N , we fix a s0 − oi route and a di − s1 route, and denote their
union (viewed as a set of arcs) by Fi . For each oi − di route Ri , the set Ri ∪ Fi forms
a s0− s1 route; and conversely, for each s0− s1 route R that contains Fi , the set R \ Fi

forms a oi − di route. Writing R
i = Ri ∪ Fi and denoting the set of s0 − s1 routes

that contain Fi by �
i
, we conclude that the mapping Ri �→ R

i
is a bijection from �i

to �
i
. We refer to R

i
as the extension of strategy Ri .6

We recall now themain tools developed inHolzman andLaw-Yone (1997) and adapt
them to our needs here. The set � of s0 − s1 routes in D admits a tree-representation
in the following sense. There exists a tree T with root r , and a one-to-one labeling of
the non-root nodes of T by the arcs in A, so that each branch of T (i.e., a path from
r to a terminal node) corresponds to a route in �, and vice versa. Note that the set of
labels along the branch has to be equal to the set of arcs along the corresponding route,

5 This observation was made earlier, in related models, by Rozenfeld and Tennenholtz (2006) and Epstein
et al. (2009).
6 It is natural to try to analyze a AOAD game G on D by associating with it an auxiliary game G on
D, as follows. In G, all players have origin s0 and destination s1, but each player i ∈ N may use only
routes that contain Fi . Thus, the strategy spaces �i in G correspond bijectively to the strategy spaces

�
i
in G. To account for the extra usage of arcs in G compared to G, the cost functions in G are reset as

ca(k) = ca(k− fa), fa < k ≤ |N |, where fa = |{i ∈ N : a ∈ Fi }|. One can show that a Nash equilibrium
R in G corresponds to a Nash equilibrium R in G. However, this approach breaks down when considering
strong equilibrium: it may be the case that PS is a profitable deviation of coalition S from R in G, while the

corresponding deviation P
S
from R is not profitable in G. This may occur when a player i ∈ S is adversely

affected in G by the added congestion on an arc a ∈ Fi , caused by another player j ∈ S with a ∈ P j \ R j .
Thus, AOAD games are not equivalent to SOSD games with restricted choices of routes. That is why we
need a more delicate proof technique, which uses tools developed earlier for SOSD games, but does so in
a significantly more involved way than in Holzman and Law-Yone (1997).
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Fig. 2 An extension-parallel network D and a tree-representation T (the arcs of D are named, and these
names appear as labels of the non-root nodes of T ; for later reference, some of the vertices of D are also
named)

but they need not appear in the same order. Figure 2 illustrates an extension-parallel
network D and a tree-representation T of its s0 − s1 routes.7

Thus, the s0−s1 routes in D are identified as the branches of the tree-representation
T . For a player i ∈ N with origin oi and destination di , only those routes containing
Fi (defined above) are relevant, and they are identified as the branches of T that
contain Fi . The strategies in �i are obtained by removing Fi from these branches.
To illustrate this, consider the network D in Fig. 2, and suppose player i has oi = s0,
di = v and player j has o j = u, d j = w. For i , we take Fi = {k, �} and observe
that there are two branches in T containing {k, �}; upon removing {k, �} from them
we get {b, f } and {b, g} respectively, the two strategies of player i . For j , we take
F j = {b, �} and find three branches in T containing {b, �}; upon removing {b, �} from
them we get player j’s three strategies: {e}, {k, f }, {k, g}.

Next, we present a technique based on the tree-representation, which allows us to
keep track of the changes in congestion experienced by the players when they move
from one strategy profile to another. Let R = (Ri )i∈N ∈ �N be a strategy profile, and
let (PS, RN\S) be another profile where each i ∈ S chooses Pi ∈ �i instead of Ri .
For every arc x we define δ(x) as the change in congestion at x , that is,

δ(x) = σx (P
S, RN\S) − σx (R).

7 In general, given an extension-parallel network D we can construct a tree-representation T by induction
on the extension-parallel construction of D. Indeed, a single-arc network is represented by a single-edge
tree. If D is obtained from D′ by an extension with arc a, then T is obtained from T ′ by adding a new root
joined by an edge to the root of T ′, and labeling the latter by a. If D is the parallel join of D′ and D′′, then
T is constructed as the union of T ′ and T ′′ with their roots identified.
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Let T be a tree-representation of the network. In order to use T , it is convenient to
think not of the profiles R and (PS, RN\S) as such, but of the corresponding profiles

of s0−s1 routes R and (P
S
, R

N\S
), obtained by extending each Ri to R

i
and each Pi ,

i ∈ S, to P
i
, as done above. We note that the quantities δ(x) remain the same when

computed with respect to R and (P
S
, R

N\S
), because adding the Fi ’s shifts σx (R)

and σx (PS, RN\S) by the same amount. Each R
i
can be written uniquely in the form

R
i = (a1, . . . , ak, b1, . . . , b�), (1)

where the arcs are listed in the order of their appearance on the corresponding branch
in T , and b1 is the first among them at which the congestion decreases. That is,

δ(a1) ≥ 0, . . . , δ(ak) ≥ 0, δ(b1) < 0.

(Possibly, k = 0 or � = 0.) If i ∈ S and R
i
is as in (1), we say that player j ∈ S

replaces i , if

P
j = (a1, . . . , ak, c1, . . . , cm), (2)

where

δ(c1) > 0, . . . , δ(cm) > 0.

(Possibly, m = 0.) Note that a player may replace himself.
A key fact about the replacement relation, proved inHolzman and Law-Yone (1997,

p. 93), is the following:

Claim 1 For every player i ∈ S there exists a player j ∈ S who replaces i .

We prove here an additional fact which is specific to our set-up, and hinges on the

way the players’ extended strategy spaces�
i
were formed. If i1, i2, . . . , it are distinct

players in S, we say that they form a replacement cycle if i2 replaces i1, i3 replaces
i2, ... , it replaces it−1, and i1 replaces it .

Claim 2 Suppose that players 1, 2, . . . , t form a replacement cycle in S. Then P
i+1 ∈

�
i
for i = 1, . . . , t (with t + 1 taken as 1).

Proof Fixing i , we have to show that Fi ⊆ P
i+1

. Assume, for the sake of contradic-

tion, that x ∈ Fi \ P
i+1

. Using the form (1) for R
i
and (2) for P

i+1
, observe that x

must appear in (1)—as Fi ⊆ R
i
, but not in (2). Hence x = bp for some 1 ≤ p ≤ �.

Now, consider P
i
. This is a branch of T that contains Fi , therefore x appears in P

i
,

and so does b1 (because it appears on the path from the root to bp = x). As δ(b1) < 0,

this prevents P
i
from being written in the form (2), in contradiction to the fact that

player i replaces his predecessor in the cycle. �
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Proof of Theorem 1 Let D be an extension-parallel network. Let G be a game on D,
with player origins oi and destinations di for i ∈ N , and increasing cost functions
ca(k). Let T be a tree-representation of D, and let the set of arcs Fi , the mapping

Ri �→ R
i
, and its image �

i
be defined as above for all i ∈ N .

We have to show that NE(G) ⊆ SE(G). Assume, for the sake of contradiction, that
R = (Ri )i∈N ∈ �N is a Nash equilibrium, but PS = (Pi )i∈S is a profitable deviation
of coalition S, for some ∅ �= S ⊆ N . Consider the profiles of extended strategies

before and after the deviation: R and (P
S
, R

N\S
). It follows from Claim 1 and the

finiteness of S that there is a replacement cycle in S.Without loss of generality, assume
that this cycle is 1, 2, . . . , t as in Claim 2. Choose a player i ∈ {1, . . . , t} for whom∑

x∈R
i cx (σx (R)) is maximal among all players in the cycle.

Consider the set P
i+1

, which is a branch in T . Its intersection with any branch

of T is an initial segment of it. In particular, one of the two sets P
i+1 ∩ R

i+1
and

P
i+1 ∩ R

i
is contained in the other. The argument breaks into two cases, according

to the direction of this containment.

Case 1 P
i+1 ∩ R

i+1 ⊆ P
i+1 ∩ R

i

By Claim 2, player i has Qi = P
i+1 \ Fi among his strategies. If he alone deviates

from R and chooses Qi , his disutility is given by

π i (Qi , RN\{i}) =
∑

x∈Pi+1

cx (σx (Q
i , RN\{i}))

+
∑

x∈Fi+1

cx (σx (Q
i , RN\{i}))

−
∑

x∈Fi

cx (σx (Q
i , RN\{i})). (3)

To estimate the first of these three sums, we show that at each arc x ∈ Pi+1, the
congestionσx (Qi , RN\{i}) is no higher thanσx (PS, RN\S). Indeed, since i+1 replaces

i , the sets R
i
and P

i+1
can be written in the forms (1) and (2), respectively. By (2),

δ(x) ≥ 0 and the inequality is strict if x /∈ R
i
. Thus, the only way for σx (Qi , RN\{i})

to exceed σx (PS, RN\S) would be if x ∈ Qi \ Ri and x ∈ R
i
, which is impossible:

R
i
is the union of Ri and Fi , each of which is disjoint from Qi \ Ri . Since the cost

functions are increasing, it follows that

∑

x∈Pi+1

cx (σx (Q
i , RN\{i})) ≤

∑

x∈Pi+1

cx (σx (P
S, RN\S)).

Furthermore, as the deviation PS is profitable for player i + 1,

∑

x∈Pi+1

cx (σx (P
S, RN\S)) <

∑

x∈Ri+1

cx (σx (R)).
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Turningnow to the secondand third sums in (3),we claim thatσx (Qi , RN\{i}) = σx (R)

for every arc x that appears in either of them. Indeed, if x ∈ Fi then neither Ri nor Qi

includes x . The remaining case is x ∈ Fi+1 \ Fi . Noting that Fi+1 ⊆ P
i+1 ∩ R

i+1
,

it follows from the assumption of Case 1 that Fi+1 ⊆ R
i
, and hence Fi+1 \ Fi ⊆ Ri .

Also, Fi+1 \ Fi ⊆ P
i+1 \ Fi = Qi , so in the remaining case both Ri and Qi include

x . Using the claim just proved, and the above estimate for the first sum in (3), player
i’s disutility at (Qi , RN\{i}) can be estimated as follows:

π i (Qi , RN\{i}) <
∑

x∈Ri+1

cx (σx (R)) +
∑

x∈Fi+1

cx (σx (R)) −
∑

x∈Fi

cx (σx (R))

=
∑

x∈R
i+1

cx (σx (R)) −
∑

x∈Fi

cx (σx (R))

≤
∑

x∈R
i

cx (σx (R)) −
∑

x∈Fi

cx (σx (R))

= π i (R),

where the second inequality follows from the choice of i as a maximizer of∑
x∈R

i cx (σx (R)). This is a contradiction, since R is a Nash equilibrium.

Case 2 P
i+1 ∩ R

i ⊆ P
i+1 ∩ R

i+1

Consider in this case the single deviation of player i + 1 to Pi+1. We claim
that at each arc x ∈ Pi+1, the congestion σx (Pi+1, RN\{i+1}) is no higher than
σx (PS, RN\S). Indeed, as inCase1 it follows from the replacement relation that δ(x) ≥
0 and the inequality is strict if x /∈ R

i
. Thus, the only way for σx (Pi+1, RN\{i+1}) to

exceed σx (PS, RN\S) would be if x ∈ Pi+1 \ Ri+1 and x ∈ R
i
, which is impossible:

Pi+1 \ Ri+1 = P
i+1 \ R

i+1
and the latter is disjoint from R

i
by the assumption of

Case 2. Since the cost functions are increasing, it follows that

π i+1(Pi+1, RN\{i+1}) =
∑

x∈Pi+1

cx (σx (P
i+1, RN\{i+1}))

≤
∑

x∈Pi+1

cx (σx (P
S, RN\S))

= π i+1(PS, RN\S)
< π i+1(R)

where the second inequality is due to the profitability of the deviation PS for player
i + 1. Again, this is a contradiction to R being a Nash equilibrium. �
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Fig. 3 A series-parallel network D with 4 players, and a subnetwork D′

4 Decreasing costs: sufficiency

In this section we prove the existence of strong equilibrium in a certain class of
games on series-parallel networks with decreasing costs. The sufficiency parts of both
Theorems 2 and 3 will be deduced from this more general result. In order to formulate
the result, we need some additional definitions.

Let G be a game on a series-parallel network D, with player set N , origin oi and
destination di for each i ∈ N . Let D′ = (V ′, A′, s′

0, s
′
1) be a subnetwork formed in one

of the steps of a series-parallel construction of D. The induced game on D′, denoted
by G ′ = G[D′], is a congestion game on D′ defined as follows. Its set of players N ′
consists of those players i ∈ N having a oi − di route that meets A′ (i.e., there exists
Ri ∈ �i such that Ri ∩ A′ �= ∅).8 For each i ∈ N ′, his origin o′i in the induced game
is defined to be oi if oi ∈ V ′, and s′

0 otherwise; similarly, his destination d ′i is di if
di ∈ V ′, and s′

1 otherwise. The cost functions in the induced game are the restrictions
of those in G. For illustration, consider the network D in Fig. 3, and the subnetwork
D′ with source s′

0 and sink s′
1. In this example, N = {1, 2, 3, 4} and N ′ = {1, 2, 3}.

The origins and destinations in the induced game G ′ are: o′1 = s′
0, d

′1 = s′
1, o

′2 = s′
0,

d ′2 = d2, o′3 = o3, d ′3 = d3.
Given a network D and a player set N with origins oi and destinations di for i ∈ N ,

we say that player i is complete if for every j ∈ N , there exist a oi − o j route and
a d j − di route in D (either of these routes may consist of a single vertex, in case
oi = o j or d j = di ). For example, in Fig. 3 player 1 is complete, the others are not.

8 In some cases, the set of players N ′ may be empty. Allowing such trivial induced games does not cause
any difficulty.
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For a player i in a game G we denote by opti (G) the optimal outcome of the game
from his point of view, i.e.,

opti (G) = min
R∈�N

π i (R).

We are now ready to formulate our existence result.

Proposition 1 Let D be a series-parallel network, and let G be a AOAD-DEC game
on D. Assume that D has a series-parallel construction such that, whenever D′ and D′′
are joined in series in this construction, the corresponding induced games G ′ = G[D′]
and G ′′ = G[D′′] with respective player sets N ′ and N ′′ satisfy the condition: for at
least one of the two induced games, say G ′, all players in N ′ ∩ N ′′ are complete in G ′.
Then G has a strong equilibrium R such that π i (R) = opti (G) for every complete
player i in G.

Before proving Proposition 1, we indicate how it implies the sufficiency parts of
Theorems 2 and 3. For this, we need to show that under the conditions of those
theorems, the assumption of Proposition 1 holds true. Under Theorem 2, all players
i ∈ N have the same oi . Sowhen D′ → D′′ occurs in the construction of D, all players
i ∈ N ′ have the same o′i in G ′. Moreover, all players i ∈ N ′ ∩ N ′′ have d ′i = s′

1
(the sink of D′), and are therefore complete in G ′ as required. Under Theorem 3,
D is multiextension-parallel. So when two subnetworks are joined in series in the
construction of D, one of them is a multiple-arc network. In a game on such a network,
all players are complete. We note that Proposition 1 applies also in other cases, not
covered by either of the two theorems. For example, one can verify that the assumption
of the proposition holds true in Fig. 3, although the network is not multiextension-
parallel and the players’ origins and destinations are all distinct.

The proof of Proposition 1 will be inductive. The role of the property added in the
conclusion (π i (R) = opti (G) for complete players) is to strengthen the induction
hypothesis so that the induction will go through.9

Proof of Proposition 1 Let D be a series-parallel network. LetG be a game on D with
player set N , and decreasing cost functions. Assuming that D has a series-parallel
construction as required in the proposition, we prove by induction on the length of
this construction that G has a strong equilibrium R such that π i (R) = opti (G) for
every complete player i in G. If D is a single-arc network the statement trivially holds
(every player has a single strategy).

For the induction step, we assume that D = D′ → D′′ or D = D′ ‖ D′′. Let
G ′ = G[D′] and G ′′ = G[D′′] be the induced games, with respective player sets N ′
and N ′′. If one of the player sets, say N ′, is empty, then G = G ′′ and we are done
by induction. Henceforth we assume that both N ′ and N ′′ are nonempty. Note that
N = N ′ ∪ N ′′. By induction, let R′ = (R′i )i∈N ′ be a strong equilibrium in G ′ such

9 Our proof is essentially the same as the proofs of the corresponding (but less general) statements in
Epstein et al. (2009), with one significant simplification. Much of the effort in their proof was devoted to
showing that if a strong equilibrium exists, then one with π i (R) = opti (G) for complete players also exists
(their Lemma 3.2). We get this extra property along with the inductive proof of existence, at no extra cost.
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that π i (R′) = opti (G ′) for every complete player i in G ′, and let R′′ = (R′′i )i∈N ′′ be
a strong equilibrium in G ′′ such that π i (R′′) = opti (G ′′) for every complete player i
in G ′′.

Case 1 D = D′ → D′′
Note that for players in N ′ ∩ N ′′, the vertex s′

1 = s′′
0 serves as the destination in

G ′ and the origin in G ′′. We form a strategy profile R = (Ri )i∈N in G as follows. If
i ∈ N ′ \ N ′′ then Ri = R′i , if i ∈ N ′′ \ N ′ then Ri = R′′i , and if i ∈ N ′ ∩ N ′′ then Ri

is the concatenation of R′i and R′′i . We show that R has the required properties in G.
Assume that coalition S ⊆ N has a profitable deviation PS from R in G. Write

Sint = S ∩ N ′ ∩ N ′′, and suppose first that Sint �= ∅. By the assumption of the
proposition, all players in Sint are complete inG ′, say. If i ∈ Sint, his disutility function
in G is the sum of its G ′ and G ′′ components. As i is complete in G ′, we have
π i (R′) = opti (G ′), so the G ′ component of player i’s disutility cannot be reduced by
the deviation. Therefore all i ∈ Sint must profit from the deviation in theG ′′ component
of their disutility function. Thus PS induces a profitable deviation of S∩N ′′ from R′′,
in contradiction to R′′ being a strong equilibrium in G ′′. Suppose now that Sint = ∅.
Then PS induces a profitable deviation of S ∩ N ′ from R′, and a profitable deviation
of S ∩ N ′′ from R′′. At least one of these coalitions is nonempty, yielding again a
contradiction. We have shown that R is a strong equilibrium in G.

For the second part, note that if player i is complete in G, he is complete in both
G ′ and G ′′. Thus π i (R) = π i (R′) + π i (R′′) = opti (G ′) + opti (G ′′) = opti (G), as
required.

Case 2 D = D′ ‖ D′′
Note that for players in N ′ ∩ N ′′, the source s′

0 = s′′
0 is the origin and the sink

s′
1 = s′′

1 is the destination. Playing in G, they can choose a route in either D′ or D′′.
The other players are confined to one of the two subnetworks. If N ′ ∩ N ′′ = ∅ then
R′ and R′′ together form a strong equilibrium in G, and we are done (the second
part holds vacuously, as there are no complete players in G). Thus, we assume that
N ′ ∩ N ′′ �= ∅.

Since the cost functions are decreasing,wehaveopti (G)= min{opti (G ′), opti (G ′′)}
for i ∈ N ′ ∩ N ′′. Clearly, each of these quantities is independent of the choice of
i ∈ N ′ ∩ N ′′. Assume, without loss of generality, that opti (G) = opti (G ′) for all
i ∈ N ′ ∩ N ′′.

Consider the subgame ofG ′′ with player set N ′′ \N ′, whichwe denote byG ′′′. Since
the assumption of the proposition continues to hold when some players are removed,
we may apply the induction hypothesis to G ′′′. Let R′′′ = (R′′′i )i∈N ′′\N ′ be a strong
equilibrium in G ′′′. We form a strategy profile R = (Ri )i∈N in G by letting Ri = R′i
for i ∈ N ′ and Ri = R′′′i for i ∈ N ′′ \ N ′. We show that R has the required properties
in G.

The complete players in G are all i ∈ N ′ ∩ N ′′, and for them we have π i (R) =
π i (R′) = opti (G ′) = opti (G). This verifies the second part, and also shows that no
member of N ′ ∩ N ′′ can participate in a profitable deviation from R. Therefore, such
a deviation can only consist of changes within each subnetwork, which cannot be
profitable since R′ and R′′′ are strong equilibria in the respective games. Hence R is
a strong equilibrium in G. �
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Fig. 4 Two examples of network congestion games with decreasing costs that have no strong equilibrium
(for each arc, the first number is the single-user cost, and the second one—where relevant—is the per-user
cost for double usage)

5 Decreasing costs: necessity

We start with two basic examples of network congestion games with decreasing costs.
The network in Fig. 4a is known as the Wheatstone bridge, and is denoted by W ;
the one in Fig. 4b is denoted by B. The indicated two-player games have no strong
equilibrium, as can be checked from the tables representing their disutility functions.10

It is straightforward to construct similar examples on the same networks with any
higher number of players.

These examples are basic in the sense that they can occur on any network that does
not fulfill the corresponding requirements for existence of strong equilibrium. This
is made precise by the following definition and results. A subdivision of a network
D is a network obtained from D upon replacing every arc by a route of one or more
arcs. The new vertices introduced in this process have just one incoming arc and one
outgoing arc.

Proposition 2 Let D be a network. Then D is series-parallel if and only if D has no
subnetwork which is isomorphic to a subdivision of the network W (Fig. 4a).

Proposition 3 Let D be a network. Then D is multiextension-parallel if and only if D
has no subnetwork which is isomorphic to a subdivision of one of the following three

10 The construction in Fig. 4b was given by Epstein et al. (2009). The network W , however, was given
by them as an example of a non-series-parallel network which, nevertheless, has the property that every
same-origin fair connection game on it possesses a strong equilibrium. Our construction in Fig. 4a shows
that this depends on the special cost structure of fair connection games, and does not extend to arbitrary
decreasing costs.
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networks: W (Fig. 4a), B (Fig. 4b), or B+ (obtained from B by splitting the middle
vertex into two vertices with an arc between them).

Before proving these propositions, we show how they imply the necessity parts of
Theorems 2 and 3. If D is not series-parallel, by Proposition 2we can find a subdivision
W ′ of W contained in D. We place the players’ origins and destinations in W ′ as in
Fig. 4a. For each arc of W , we choose one arc in the corresponding route in W ′, and
assign to it the costs associated with the original arc in Fig. 4a. We assign zero costs
to all other arcs in W ′, and prohibitively high costs to all arcs of D which are not
in W ′. This gives a SOAD-DEC game on D without a strong equilibrium, proving
necessity in Theorem 2. If D is notmultiextension-parallel, we proceed similarly using
Proposition 3. In case we find a subdivision of B+, we mimick the construction on
B in Fig. 4b, assigning zero costs to all arcs on the route connecting the two copies
of the middle vertex. In any case, we get a AOAD-DEC game on D without a strong
equilibrium, proving necessity in Theorem 3.

Propositions 2 and 3 are purely graph theoretic, and give forbidden substructure
characterizations of the respective classes of networks. Various results in this format
have appeared in the literature, including several analogs of Proposition 2 (Duffin1965;
Valdes 1978; Milchtaich 2006). However, the networks for which these analogs were
proved differ from ours in one or more ways, being undirected, or without terminals,
or acyclic. Therefore we give our own proofs here.

For the proofs,we introduce some terminology and notation. Let D = (V, A, s0, s1)
be a network. We denote by � the set of s0 − s1 routes in D. Given a route R in D,
and two vertices u, v on it such that u weakly precedes v, we denote by Ruv the
u − v subroute of R. For a u − v route R and a v − w route R′, we denote by RR′
the concatenation of R and R′. Note that RR′ may not be a route because vertices
may be repeated, but we can obtain a u − w route by short-cutting segments between
two occurrences of the same vertex in RR′. When necessary, we will assume that
such short-cuts are made without explicitly saying it. A path in D is defined like a
route, except that arcs may be traversed in either direction (for each i , {t (ai ), h(ai )} =
{vi−1, vi }). We use the notational conventions above also for paths.

Proof of Proposition 2 One direction is trivial: if D has a series-parallel construction,
it follows by induction on the steps of this construction that D cannot contain a
subdivision of W .

In the other direction, we assume that D = (V, A, s0, s1) is not series-parallel and
prove that it has a subnetwork isomorphic to a subdivision of W . Clearly, D is not a
single-arc network. Moreover, we may assume that D is not the series or parallel join
of two subnetworks D1 and D2. Indeed, if it is of this form, then at least one of D1,
D2 is not series-parallel, and as it is smaller than D we know by induction that it has
a subnetwork isomorphic to a subdivision of W . That is also a subnetwork of D, and
we are done. In particular, we may assume that no arc in A has tail s0 and head s1 (or
else D would be the parallel join of a single-arc subnetwork and another subnetwork).

Suppose that some vertex v ∈ V \ {s0, s1} belongs to every route in �. Let

V1 = {u ∈ V : ∃R ∈ � such that u is on Rs0v},
V2 = {u ∈ V : ∃R ∈ � such that u is on Rvs1}.
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As every vertex in V belongs to some route in �, we have V = V1 ∪ V2. Moreover,
V1 ∩ V2 = {v}. Indeed, if u �= v and u ∈ V1 ∩ V2, let R, R′ ∈ � be such that u
belongs to Rs0v and R′

vs1 . Then Rs0u R
′
us1 gives a route in � that avoids v, contrary to

our assumption. For a similar reason, there can be no arc in A from a vertex in V1 \ {v}
to one in V2 \ {v}. No such arc in the opposite direction is possible, as it would not
belong to any route in�. Thus, all arcs in A are either inside V1 or inside V2. It follows
that D is the series join of two subnetworks on V1 and V2 respectively, contradicting
our assumption.

We conclude that no vertex v ∈ V \{s0, s1} belongs to all routes in�. This implies,
byMenger’s theorem (see, e.g., Chartrand et al. 2011, Theorem 4.38), the existence of
two internally disjoint routes R, R′ in �. Suppose now that two such routes are given,
and there is no path in V \ {s0, s1} joining a vertex of R and a vertex of R′. Then the
undirected graph obtained from D by deleting s0, s1 and ignoring the directions of arcs
has at least two connected components (that of R and that of R′). Let V1 be the vertex
set of one component, and let V2 be the vertex set of the union of the others. Then D
is the parallel join of two subnetworks on V1 ∪ {s0, s1} and V2 ∪ {s0, s1} respectively,
contradicting our assumption.

Thus,we canfind two internally disjoint routes R, R′ in� and a path P inV \{s0, s1}
joining a vertex u of R and a vertex v of R′. We may assume that no internal vertex
of P is on R or R′ (otherwise we can replace P by a suitable subpath). Given two
consecutive arcs a and b on P with common vertex w, we say that a change of
direction occurs at w if w is the tail of both a and b or the head of both a and b.
Note that if no change of direction occurs along P , then R, R′, P form a subnetwork
of D which is isomorphic to a subdivision of W , as required. If there are changes of
direction, we enumerate the vertices at which they occur as w1, w2, . . . , wk in order
of their appearance when P is traversed from u to v. Among all triples R, R′, P
as above, we choose one for which k is the smallest (k ≥ 1, or else we are done).
Among triples with the smallest k, we choose one for which the subpath Puw1 is the
shortest.

All arcs in Puw1 have the same direction. Suppose first that they all go forward, i.e.,
Puw1 is a route. As every vertex belongs to some route in �, there exists a w1 − s1
route Q. We claim that no internal vertex of Q can belong to either Rs0u or Puw1 or R

′.
Indeed, let z be an internal vertex of Q. Denote by Q∗

zw1
the path obtained by going

backwards on Q from z tow1. If z is on Rs0u then Q∗
zw1

Pw1v gives a path from a vertex
of R to a vertex of R′ with fewer changes of direction than P , a contradiction. If z is
on Puw1 (necessarily an internal vertex, as z �= w1 and by the previous case z �= u),
then PuzQ∗

zw1
Pw1v gives a u − v path with the same number of direction changes as

P , but its subpath Puz till the first change is shorter than Puw1 , a contradiction. Finally,
if z is on R′ then Puw1Qw1z gives a path from a vertex of R to a vertex of R′ with
no changes of direction, so our claim is proved. It follows that Rs0u Puw1Q is a route
in � which is internally disjoint from R′. These two routes, together with the path
Pw1v , yield a triple as above with fewer changes of direction than R, R′, P , contra-
dicting our choice. The remaining case, when all arcs in Puw1 go backward, is treated
similarly: Q is taken to be a s0 − w1 route, and the arguments are symmetric to the
above. �
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Proof of Proposition 3 Here, too, one direction is trivial: if D has a multiextension-
parallel construction, it follows by induction on the steps of this construction that D
cannot contain a subdivision of W , B, or B+.

For the other direction, given Proposition 2, it suffices to show that if D is series-
parallel but not multiextension-parallel then it has a subnetwork isomorphic to a subdi-
vision of B or B+.We prove this by induction on the number of steps in a series-parallel
construction of D. Clearly, D is not a single-arc network, so D is the series or parallel
join of two subnetworks D′ and D′′. If either D′ or D′′ is not multiextension-parallel
then, by induction, it has a subnetwork isomorphic to a subdivision of B or B+. That
is also a subnetwork of D, and we are done. So we may assume that both D′ and D′′
are multiextension-parallel. As D is not, it must be a series join. Say D = D′ → D′′,
with D′ = (V ′, A′, s′

0, s
′
1) and D′′ = (V ′′, A′′, s′′

0 , s′′
1 ).

Consider D′ and the set �′ of all s′
0 − s′

1 routes. Suppose that every route in �′
includes all the vertices in V ′. Then the vertices appear in the same order in all routes,
because D′, being series-parallel, is acyclic. Say this order is s′

0 = v′
0, v

′
1, . . . , v

′
� = s′

1.
Then every arc in A′ must go from v′

i−1 to v′
i for some i = 1, . . . , �. This implies that D

is multiextension-parallel: it can be constructed by first joining in series the multiple-
arc subnetwork with vertices v′

�−1, v
′
� and D′′, then joining in series the multiple-arc

subnetwork with vertices v′
�−2, v

′
�−1 and the subnetwork constructed in the previous

step, and so on. This contradicts our assumption on D. Hence we can find a route R′
in �′ and a vertex v′ ∈ V ′ that is not on R′. We can also find a route Q′ in �′ that
includes v′. Let u′ be the last vertex on Q′

s′0v′ that is also on R′, and let w′ be the first
vertex on Q′

v′s′1
that is also on R′. Note that u′, v′, w′ are distinct, and u′ precedes w′

on R′ (or else R′
w′u′Q′

u′w′ would give a cycle). This yields a u′ − w′ route R′
u′w′ , a

u′ − v′ route Q′
u′v′ , and a v′ − w′ route Q′

v′w′ , such that any internal vertex of one of
them does not belong to any of the other two.

Arguing similarly in D′′, we find there three vertices u′′, v′′,w′′ with corresponding
u′′−w′′, u′′−v′′, and v′′−w′′ routes as above. Ifw′ = s′

1 and u
′′ = s′′

0 thenw′ = u′′ in
D. The subnetwork of D consisting of u′, v′, w′, v′′, w′′ and the routes between them
found above is isomorphic to a subdivision of B. Otherwise, if w′ �= s′

1 or u
′′ �= s′′

0 ,
then by concatenating aw′ − s′

1 route in D′ and a s′′
0 −u′′ route in D′′ we get aw′ −u′′

route in D with at least one arc. The subnetwork of D consisting of u′, v′, w′, u′′, v′′,
w′′ and the routes between them found above is isomorphic to a subdivision of B+.
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