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Abstract We present a classification of all stationary subgame perfect equilibria of the
random proposer model for a three-person cooperative game according to the level of
efficiency. The efficiency level is characterized by the number of “central” players who
join all equilibrium coalitions. The existence of a central player guarantees asymptotic
efficiency. The marginal contributions of players to the grand coalition play a critical
role in their expected equilibrium payoffs.
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1 Introduction

The three-person cooperative game with side payments in characteristic-function form
is a classical problem of game theory in which three players negotiate about coalition
formation and payoff allocations. The game serves as a prototype for the economic
analysis of efficiency and equity in resource allocation. Since Neumann and Mor-
genstern (1944), various kinds of solutions have been proposed in the literature on
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cooperative game theory. There has been no consensus among game theorists about
what is an appropriate solution for a three-person game and for an n-person coopera-
tive game, in general. This disagreement remains to the present day. It may be argued
that the diversity of solutions is a virtue, reflecting the complexity of the real world.
However, to apply cooperative game theory to economic analysis, we need a general
understanding of when one solution is more suitable than others.

In the last two decades, the non-cooperative game approach to cooperative games
has been rapidly growing. Cooperation has been analyzed as a non-cooperative equi-
librium under a specified procedure of coalition formation. Ray (2007) has provided an
excellent review of this field. Among the bargaining games studied well is the random
proposer model (Baron and Ferejohn 1989; Okada 1996). The stationary subgame
perfect equilibrium (SSPE) of the model provides a non-cooperative foundation for
various cooperative solutions, including the Nash bargaining solution (Okada 2010),
the coalitional Nash bargaining solution (Compte and Jehiel 2010), the core (Yan
2002) for a general game, and the kernel (Montero 2002) and the nucleolus (Montero
2006) for a weighted majority game.

The aim of this paper is to characterize all SSPEs of a three-person superadditive
game with general parameters played by patient players. The grand coalition of three
players is assumed to be a unique efficient coalition. To our knowledge, the full struc-
ture of the SSPEs of a three-person random proposer game has not yet been reported
in the literature.! In particular, when a game has an empty core and the grand coalition
is a unique efficient coalition, it is well known that an SSPE outcome must be inef-
ficient,> whereas almost all cooperative solutions presume efficiency even in such a
case. A complete analysis of a three-person cooperative game helps us to understand
why and how inefficiency and/or inequality may occur in negotiations among rational
players under the condition of complete information.

We consider all SSPEs of a three-person game in terms of the support of every
player’s mixed strategy, i.e., the set of all coalitions that the player may choose with
positive probability. There are 343 possible configurations of supports for players’
strategies. These configurations can be classified into different levels of efficiency,
measured by the equilibrium probability of the grand coalition. In the one efficient
SSPE, the grand coalition forms with probability one. In an asymptotically efficient
SSPE, the grand coalition will form almost surely. In an inefficient SSPE, the prob-
ability of the grand coalition is less than one, and may possibly be zero. We show
that the existence of a “central” player who joins all equilibrium coalitions guarantees
efficiency (in one configuration) and asymptotic efficiency (in 36 configurations). An
inefficient SSPE arises when the core of a game is empty. When the grand coalition
may form with positive probability (in 162 configurations), the expected payoffs of
the players are equal to their marginal contributions to the grand coalition except in
three configurations.

1 Recently, Nash (2008) considered a non-cooperative bargaining model called the agencies method for a
three-person cooperative game and presented some computational results.

2 1t is also well known that an efficient allocation is guaranteed if renegotiation is allowed. See Seidmann
and Winter (1998) and Okada (2000), among others.
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This paper is organized as follows. Section 2 gives some definitions. Section 3
provides several lemmas useful for the analysis. Section 4 presents a classification of
SSPEs. Section 5 concludes the paper.

2 Preliminaries

An n-person game in coalitional form with transferable utility is represented as a pair
(N,v), where N = {1,2,...,n} is the set of players. A nonempty subset S of N
is called a coalition of players. The number of members of § is denoted by s. The
characteristic function v is a real-valued function that assigns to each coalition S its
value v(S). Itis assumed that v satisfies (i) v({i}) = O foralli € N (zero-normalized),
1) v(SUT) > v(S) + v(T) for any two disjoint coalitions S and 7' (superadditive),
and (iii) v(N) > v(S) for every S C N, S # N. The last condition is a regularity
one that guarantees that only the grand coalition N maximizes the total value. For
S C N, let RS denote the s-dimensional Euclidean space with coordinates indexed
by the elements of S. Each point in RS is denoted by x5 = (xl.s)ie s.

The payoff allocation for a coalition S is a vector x5 = (xiS )ies of RS, where
xiS represents the payoff for player i € S. A payoff allocation x* for S is feasible if
Zie s xis < v(S). Let X S denote the set of all feasible payoff allocations for S, and
let X f_ denote the set of all elements in X3 with nonnegative components. For S ¢ N
and x € RV, the excess of S with respect to x is defined by e(S, x) = v(S) — Dies Xi-
Fori € N,m; = v(N) — v(N — {i}) is player i’s marginal contribution to the grand
coalition N.

As a non-cooperative bargaining procedure for a game (N, v), we consider the
random proposer model with recognition probability p = (p1, ..., pn), where p; > 0
for every i. The bargaining rule is simple. Negotiations take place over a possibly
infinite number of rounds 7 (= 1, 2, ...) until an agreement is reached. At the start of
each round ¢, one player i € N is randomly selected as a proposer with probability
pi. Player i proposes a coalition S, with i € S and a payoff allocation x% € X JSF All
other members of S either accept or reject the proposal (S, x5) sequentially according
to a fixed order. The order of responders does not affect the result in any critical
way. If all responders accept the proposal, then the game ends with the agreement
(S, x5).3 All members i of S receive payoffs xl.s , and the others receive zero payoffs.
Otherwise, negotiations continue in the next round ¢ 4 1 with the same rule as in round
t. If the game does not stop, all players receive zero payoffs. Let (0 < § < 1) be the
common discount factor for future payoffs. All players have perfect information about
the history of play whenever they choose their actions. The bargaining game above is
denoted by I'®. The notation I" denotes the limit as the discount factor § goes to one
in %,

A (behavior) strategy o; for player i in I'® (and also in I') is a function that assigns
a randomized (mixed) action to every possible move of the player, depending on the

3 This stopping rule loses no generality of analysis for our aim to study a three-person game where, if a
two-person coalition forms, then one player outside the coalition has no choice except receiving the zero
value. A general rule used in Okada (1996) allows sequential formation of coalitions in an n-person game.
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history of the game. Under the standard assumptions about v above, it is well known
that all responders accept a proposal with probability one in every SSPE of I'? (see
Lemma 3.1). A randomized action may occur only in proposing coalitions. For a
strategy combination o = (o7q, ..., 0y,), the expected (discounted) payoff for player i
in "% is defined in the usual way. A strategy o; for player i is stationary if the (possibly
mixed) action of player i at round ¢ is independent of the history before round 7.* In
what follows, the analysis is restricted to a stationary subgame perfect equilibrium
(SSPE), in which the equilibrium strategy of every player is stationary.

For an SSPE o of I'* and for every i € N, let v; be player i’s expected payoff;
let ¢; be his random choice of coalitions, a probability distribution over the set of all
coalitions S with i € §; let C; be the support of g;, which is the set of all coalitions
that g; assigns a strictly positive probability to; and let 6; be the conditional probability
that player i receives an offer from some other player, given that player i becomes a
responder. Note that 6; = (1/(1 — p;)) ZjeN’j# Pj Zsjekcj q;(S). We call the
profile ¢ = (v;, qi, Ci, 6;)icn the configuration of the SSPE o. Whenever we want to
emphasize the dependence of elements of ¢ on §, we shall add § to them, as in “v?”
and “qf .” In the following, the collection (C;);en of supports plays an important role;
we call it the support configuration of .

Definition 2.1 Let 0 = (oy, ..., 0,) be an SSPE of % with a configuration ¢ =

(vi, qi, Ci, 6)ien-

(1) An SSPE o of % is efficient if 3",y vi = v(N).

(2) A strategy combination 0* = (o, ..., 0;) of I is an asymptotically efficient
equilibrium with limit payoff v* = (v, ..., v}) if there exists a sequence (o)
of SSPEs of I such that {o®} converges to o* and the expected payoffs v° of o
converge to v* as § goes to one, and if >,y vF = v(N).

(3) AnSSPE o of I'? is subcoalition-inefficient if the probability of the grand coalition
is zero.

(4) Player i is a central player in o if 6; = 1, thatis, i € S forevery § € C; and
every j € N, j #1.

In the case of the random proposer model I'?, it is known that there is no delay
in the agreements in any of the SSPEs whenever § < 1 (see Lemma 3.1). Because
of this fact, the efficiency of an SSPE is determined solely by coalitions formed in
equilibrium. Under the regularity assumption v(N) > v(S) forevery S C N, S # N,
an SSPE is efficient if and only if the grand coalition N forms with probability one.
Thus, an efficient SSPE must be the grand-coalition SSPE. In an inefficient SSPE, the
probability of the grand coalition is strictly smaller than one. The notion of asymptotic
efficiency describes a situation where the probability of the grand coalition becomes
almost equal to one as players become sufficiently patient. Compte and Jehiel (2010)
proved that the limit payoff in an asymptotically efficient equilibrium is equal to
the coalitional Nash bargaining solution (the core allocation maximizing the Nash
product). Whereas an efficient SSPE is given by nonrandomized (pure) strategies,
there exists at least one player who uses a mixed strategy in an asymptotically efficient

4 The players’ responses depend surely on the proposal in the present round.
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(but not efficient) equilibrium when § < 1. The probability of any subcoalition S with
v(S) < v(N) converges to zero as § goes to one. In the limit in which § becomes
close to one, the asymptotically efficient equilibrium provides an efficient allocation
of payoffs. The limit of the efficient SSPE as 6 — 1 is obviously asymptotically
efficient.

In the next section, we shall show that the existence of a central player guarantees
asymptotic efficiency of an SSPE. A central player is a player who joins a coalition with
probability one. In the efficient SSPE, all players are central. The inefficient SSPEs
are divided into two types, according to whether or not the probability of the grand
coalition is zero. In a subcoalition-inefficient SSPE, the grand coalition never forms.

3 Lemmas

Here, we present several basic properties of an SSPE that are useful for our analysis.
First, we review some known results in the literature (Okada 1996, 2011).

Lemma 3.1 (1) An SSPE of T'% in behavior strategies exists for every § (0 < § < 1).
(2) For every SSPE o of T'®, every proposal is accepted in the initial round. In the
proposal, all responders j are offered their discounted expected payoffs dv;.

(3) A strategy combination ¢ = (o1, ..., 0y) is an SSPE of T'° if and only if its
configuration ¢ = (v, qi, Ci, 6;)icn satisfies the following conditions, for every
ieN:

(i) Every S € C; (i.e., qi(S) > 0) is a solution of

nax u(T)—_Z ;) (3.1)
JET, j#i
(ii) v; € Ry satisfies
v =pi max | o(T) - D v |+ = potisu:. (3.2)
JET j#i

(4) The grand-coalition SSPE exists if and only if v(N) > v(S)/(1 —§ ZjeN75 pj)
forevery S C N. In equilibrium, every player i € N receives the expected payoff
vi = piv(N).

In what follows, we call (3.1) the optimality condition of and (3.2) the payoff
equation of an SSPE.

The grand-coalition (efficient) SSPE is fully characterized by Lemma 3.1(4) for
an n-person cooperative game. The next lemma shows that the existence of a central
player guarantees asymptotic efficiency.

Lemma 3.2 Leto* be a strategy combination for T. If there exists some sequence {o°}
of SSPEs in T'® such that every o® has at least one central player and {c°} converges
to o* as 8 — 1, then the following properties hold.
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(1) o* is an asymptotically efficient equilibrium of T.

(2) The limit payoff v* = (v},...,vy) of o™ belongs to the core of (N, v), and
D ies Vi = v(S) holds for every S that may form with positive probability in of
for any sufficiently large §.

(3) For any central player k in o® where 8 is sufficiently large, v > prv(N).

Proof (1) Let ¢s = (vf, qlfS, Cf, Of),-eN be the configuration of an SSPE o%. We shall
omit § in the elements of ¢® whenever no confusion will arise. For every i € N
and every S; € Cj, ¢i(S;) denotes the positive probability that player i chooses
S; in 0%, Let x/(S;) = (x}(Si))jeN € Xi’ be the payoff allocation when player i
proposes to S;. Note that ZjeN x§ (S;) = v(S;). It then holds that

Su=>3p> aEdEn=>p D anD ) s)

ieN ieN jeN S;eCj JEN S;eC; ieN

=D pi D 4i(SHuS). (3.3)

JjeN SjECj

Let k € N be any central player in 0.5 By definition, 6 = 1. Let Sy € Cy. It
follows from the payoff Eq. (3.2) that

ve=pi (VSO — D v |+ (1 — pdug.
JESk.jk
This can be rewritten as
(=8 =pi [v(S)— D v | (3.4)
J €Sk

It follows from the optimality condition (3.1) that

v(SK) — D du; = v(N) — D bu;. (3.5)

JESK JEN

Noting (3.3), it follows from (3.4) and (3.5) that

=8 = pi [v(N) =8> pj D q;(SHv(S))

JEN SjeC;

5 For simplicity of notation, we assume without loss of generality that a central player & is the same in the
sequence {o%}. If not, choose such a subsequence of it. This is possible since the number of players is finite.
It does not matter for the proof whether or not k is always the same.

@ Springer



Three-person coalitional bargaining games 959

This can be rewritten as

p
W T Dy D 4i(SNEIN) = 5u(S)). (3.6)

JeN SjeC;

By way of contradiction, suppose that o* is not asymptotically efficient. Then,
there exists some j € N and some S; € C;, S; # N, such that

lim q5(8)) > 0.

Since S is a proper subset of N, v(N) > v(S;) by assumption. The right-hand
side of (3.6) then becomes infinite as § — 1. This contradicts the assertion that v}’
is bounded from above. This proves (1).

(2) Since o* is asymptotically efficient by (1), its limit payoff v* satisfies >, .y v =
v(N). Since qf(N) > 0 for every i € N and every sufficiently large &, the
optimality condition (3.1) for an SSPE o implies

v(N) = D~ 805 = v(S) — > 80} 3.7

JEN jes

forevery S C N. As 6 — 1, (3.7) implies that

0> v(S) — Zvj.

jes

Thus, v* = (v}, ..., v};) belongs to the core of (N, v). If the coalition S is
proposed with positive probability in o® for sufficiently large §, equality holds
in (3.7) by the optimality condition (3.1). Thus, as § — 1 in (3.7), we obtain
> ies v = 0(S).

(3) Finally, it follows from (3.6) that v,‘z > prv(N) for every §. This proves that
v > prv(N). Q.ED.

The intuition for the first part of the lemma can be explained as follows. By the
stationarity of an equilibrium, every player i can receive his discounted expected
payoff §v; whenever he is invited to join a coalition. When he is selected as a proposer,
player i exploits the excess e(S*, dv) of an equilibrium coalition S* in addition to his
discounted expected payoff §v;. Since a central player joins a coalition with probability
one, his expected payoff v; can be represented as

v; = 8v; + pie(S*, 8v) (3.8)
where p; is the probability that i becomes a proposer (see (3.4)). The first term of
(3.8) is the continuation payoff and the second one is interpreted as the proposer’s

rent. Since an equilibrium coalition S* maximizes the excess e(S, dv) over S including
i, it holds that (1 — §)v; > p;e(N, §v). Thus, as § goes to one, e(N, §v) converges
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to zero, equivalently, >, . v/ converges to v(N). This means that an equilibrium is
asymptotically efficient.

The second part of Lemma 3.2 can be easily obtained from asymptotic efficiency.
The grand coalition is agreed with positive probability in an asymptotically efficient
equilibrium, whoever becomes a proposer. Thus, it holds that e(N, dv) > e(S, 6v)
for every S. As § goes to one, it must be that 0 > e(S, v*). This means that the limit
payoff vector v* belongs to the core.

The lemma is closely related to the results of Compte and Jehiel (2010, Proposition
1 and Claim C). These authors introduced a concept of a “key” player who belongs to
all binding coalitions in the coalitional Nash bargaining solution, and showed that if
there exists at least one key player, then the maximal Nash product subject to the core
constraints increases as the values of all coalitions are increased by the same amount
(Property P1). They further proved that an asymptotically efficient equilibrium exists
if and only if the core is nonempty and Property P1 holds. Two notions of a central
player and a key player are closely related. Indeed, suppose (as in Lemma 3.2) that
i* be a central player in every SSPE o® where {¢-%} converges to 0 * as § — 1. Then,
Lemma 3.2.(2) shows that every coalition S that forms with positive probability in
o for any sufficiently large § must be a binding coalition in the coalitional Nash
bargaining solution and i * € S. Conversely, for a key player i * in the coalitional Nash
bargaining solution, it can be shown that there exists a sequence {o°} of SSPEs in
I'% such that (i) i* is a central player in every o® and (2) the expected payoffs of o
converge to the coalitional Nash bargaining solution. For the construction of an SSPE
0%, see Compte and Jehiel (2010, p.1611-1612). In a wage bargaining game where the
values of coalitions without the employer are zero, the employer is both a key player
and a central player (Compte and Jehiel 2010 and Okada 2011). Finally, we remark
that, in contrast to the notion of a key player, we define a central player in terms of the
support configuration of an SSPE. This approach enables us to classify all SSPEs for
n = 3 according to the number of central players.

The final lemma presented here demonstrates some useful properties of the excess
of a coalition with respect to the supports of an SSPE. We shall frequently use them
to analyze a three-person game in the following section.

Lemma 3.3 Let o be an SSPE of I'® with expected payoffs v; and supports C; for all
ie€N.ForS C N,lete(S, §v) be the excess of S with respect to §v = (Svy, ..., Svy).

(1) Forall S and T in C;, e(S, v) = e(T, év).
(2) Forje Se€Ciandi €T € Cj, e(S, 6v) = e(T, 6v).
(3) If there exists a way of relabeling the players such that every player i’s support
C; includes some S; satisfying
ieS_1NS;
(with So = S,,), then e(S1, 8v) = --- = e(S,, 6v).

Proof All of these results follow from the optimality condition (3.1) for an SSPE o
given in Lemma 3.1.
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Table 1 List of all possible

supports of three players’ Ci Cy C3

strategies 123, 12, 13 123, 12, 23 123, 13, 23
123, 12 123, 12 123, 13
123, 13 123, 23 123, 23
12, 13 12, 23 13, 23
123 123 123
12 12 13
13 23 23

(1) Since S, T € C;, we have

v(§)— D svy=uvT) - D v

JES. j#i JET, j#i

This yields e(S, §v) = e(T, §v).
(2) Since S € C; andi € T, we have

v(S)— D sy zuT) - D v

JES j#i JET, j#i

This yields e(S, v) > e(T, §v). Similarly, since T € C; and j € §, we have
e(T, sv) > e(S, 8v). Thus, e(S, Sv) = e(T, §v).

(3) Sincei € S;_1 and S; € Cj, it holds that e(S;_1, §v) < e(S;, 6v). By varying i
from 1 to n, we have

e(S;,0v) <e(S1,0v) <--- <e(S,,dv).

This proves (3). Q.E.D.

4 A classification of SSPEs: n =3

We can classify all SSPEs in a three-person coalitional bargaining game I'® according
to their support configurations C = (Cyp, Ca, C3). Table 1 gives a list of all seven
possible supports for each player’s equilibrium strategy.® There are 343 (=7 x 7 x
7) possible support configurations. We characterize the limit payoff of an SSPE for
each configuration of supports as the discount factor § converges to one. For the sake
of analysis, we assume the uniform distribution (1/3, 1/3, 1/3) for the recognition
probabilities p; for each player i = 1,2, 3. A similar analysis can be applied to a
general distribution.

We classify all possible support configurations into four cases, according to the
number s* of central players: s* = 3,2, 1, 0.

6 We have simplified the set notation {1, 2, 3} to 123 in Table 1. Similar notation is used in this section.
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Table 2 List of players’

supports when only players 1 “ e G

and 2 are central 123, 12 123, 12 123
123, 12 123 123
123 123, 12 123

Case 1. All three players are central (s* = 3): one type.

In this case, C; = C, = C3 = {123}. The SSPE is an efficient equilibrium
where the grand-coalition is agreed with probability one. From Lemma 3.1(4), the
grand-coalition SSPE exists if and only if v(123) > (3/(3 — §))v(S) for every two-
person coalition S. The expected payoff v; of every playeri = 1, 2, 3is v(123)/3. As
the discount factor § goes to one, the equilibrium allocation converges to the equity
allocation (v(123)/3, v(123)/3, v(123)/3), regardless of the proposer. The equity
allocation must belong to the core, i.e., v(123)/3 > v(S)/2 for every two-person
coalition S.

Case 2. Only two players are central (s* = 2): nine types.

Table 2 shows alist of all three possible configurations of supports when only players
1 and 2 are central. Notice that each player’s support C; must include the grand coalition
123, since the SSPE is asymptotically efficient by Lemma 3.2. For example, although
only players 1 and 2 are central in a configuration C; = C, = {12}, C3 = {123}, we
know that there exists no SSPE with such a configuration when § is sufficiently high.
In total, there are nine types of configurations, considering permutations of players.

We shall characterize SSPEs for all configurations in Table 2. In each type of SSPE,
the payoff Eq. (3.2) fori = 1, 2, 3 gives

3v; = v(123) — Svy — Svy + 28vy, “.1)
3vy = v(123) — Sv; — Suz + 281, 4.2)
3v3 = v(123) — Sv; — Sva + 28633, (4.3)

where 605 is the conditional probability that player 3 joins a coalition, given that that
player becomes a responder. Equations (4.1) and (4.2) solve v; = vy forany § < 1.
Since 123,12 € C; or C3 in every configuration in Table 2, Lemma 3.3(1) implies
e(123, 5v) = e(12, év). This yields

v(123) — v(12)

— 4.4
V3 5 4.4
Equations (4.1) and (4.4) with v; = v; solve
v(12)

v1=v2=3_8. 4.5)

Thus, the limit payoff v* = (v}, v3, v3) of an SSPE as § — 1 is given by

12

i =l = v(2 )= 0(123) — v(12). 4.6)
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m, = v(123)- v (13)

m;=v(123)- v (23)
core

SSPE

..
equity

2 / \
ms=v(123)- v (12)

Fig. 1 The SSPE allocation with two central players

The optimality conditions (3.1) for i = 1 and 2 imply e(123, §v) > e(13, §v) and
e(123, §v) > e(23, §v), respectively. As § — 1, these conditions yield

v(12) “(? < v(123) — v(23). @.7)

—5— = v(123) —v(13),

Substituting (4.4) and (4.5) into (4.3) solves

1

. 9 — 35 — 282
T 2v(123) — v(12))

533 —6)

3-6
03 [ 5 v(123) — v(12)] .

From 63 < 1, this yields ((3 — §)/3)v(123) < v(12). As § — 1, we obtain

v(123) — v(12) < ”(1323). (4.8)

In summary, (4.6), (4.7), and (4.8) show the following bargaining outcome in the
limit in which the discount factor § is almost equal to one. Two central players, 1 and 2,
split their coalitional value v(12) equally. Non-central player 3 receives his marginal
contribution m3 = v(123) — v(12) to the grand coalition {1, 2, 3}. It follows from
Lemma 3.2(2) that the limit payoff allocation (4.6) belongs to the core. This fact is
also obtained from (4.6) and (4.7). Namely, every player i’s payoff v;" is less than or
equal to his marginal contribution m; to {1, 2, 3}. The limit payoff allocation v* is
equal to the coalitional Nash bargaining solution of Compte and Jehiel (2010) which
maximizes the Nash product xjx;x3 over the core. It follows from (4.8) that the equity
allocation (v(123)/3, v(123)/3, v(123)/3) is outside the core, ignoring the degenerate
case that the equality holds in (4.8). Figure 1 illustrates the SSPE allocation. Finally,
it can be seen that m3 < v(123)/3 < m, m>. This inequality naturally shows that
central players 1 and 2 are more productive than non-central player 3.
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964 A. Okada

Table 3 All configurations of

players’ supports where only “ e G

player I is central 123, 12, 13 123, 12 123, 13
123, 12 123, 12 123, 13
123, 13 123, 12 123, 13
123 123, 12 123, 13
123, 12, 13 123 123, 13
123, 12 123 123, 13
123, 12, 13 123, 12 123
123, 13 123, 12 123
123, 12, 13 123 123

Case 3. Only one player is central (s* = 1): 27 types.

Table 3 shows a list of all possible configurations of supports when only player 1 is
central. Similarly to case 2, the support of each player must include the grand coalition
123, since the SSPE is asymptotically efficient. There are nine possible configurations
in this subcase. Considering permutations of players, there are 27 types in total.

In all nine possible configurations in Table 3, we have 123, 12 € C; and 123,13 €
Cj forsomei, j € N (including the case i = j). It then follows from Lemma 3.3 that
e(123, §v) = e(12, 6v) = e(13, 5v). These equations yield

Svy = v(123) — v(13), 4.9
vy = v(123) — v(12). (4.10)

Since player 1 is a central player, the payoff equations for an SSPE yield (4.1), (4.3),
and
3vy = v(123) — dv; — dvz + 2867 (4.11)

(instead of (4.2)) where 6, is the conditional probability that player 2 joins a coalition,
given that that player becomes a responder.
From (4.1), (4.9), and (4.10), it follows that

_v(12) +v(13) — v(123)

= 32 4.12)
It can be seen without much difficulty that (4.11) and 6, < 1 imply
B —=0)v(123) < sv(12) + (3 = §)v(13). (4.13)
Similarly, it follows from (4.3) and 63 < 1 that
(B —=48v123) < (3 —=35)v(12) + dv(13). (4.14)

For § < 1, the optimality condition (3.1) implies

v(123) — dv; — Svz > v(23) — dv3.
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Substituting (4.12) into this inequality, we have
(3 —=98)v(123) > sv(12) + sv(13) + (3 — 26)v(23). (4.15)
Finally, as § — 1, we obtain the limit payoff of an SSPE as

vl =v(12) +v(13) — v(123), v; =v(123) —v(13), v; =v(123) —v(12)

(4.16)
from (4.9), (4.10), and (4.12), and obtain
v(12)
v(123) —v(13) < > 4.17)
v(13)
v(123) —v(12) < 5 (4.18)
2v(123) > v(12) + v(13) + v(23) (4.19)

from (4.13), (4.14) and (4.15), respectively. Equation (4.19) is a well-known condition
for the core to be nonempty in a three-person game. Notice that (4.7) and (4.17) are
disjoint, ignoring the degenerate case that equalities hold.

The bargaining outcome is summarized as follows. Two non-central players 2 and
3 receive their marginal contributions my, m3 and the central player 1 exploits the
surplus v(123) — my — m3. The limit payoff (4.16) is the coalitional Nash bargaining
solution in the core. It follows from (4.17)—(4.19) that m| > my, m3. As in case 2, the
central player 1 is more productive than non-central players 2 and 3.

The last case has no central players, and it corresponds to a game with an empty core.
There are two subcases, cases 4 and 5, depending on whether or not the probability of
the grand coalition is positive. Case 4 deals with the case where the grand coalition
may form with positive probability. Case 5 examines a subcoalition-inefficient SSPE
where the grand coalition never forms.

Case 4. An SSPE without central players where the grand coalition may form with
positive probability (s* = 0): 162 types.

In this subcase, there are 162 possible types.” We shall show that all support con-
figurations satisfy

e(123, 6v) = e(12, §v) = e(23, 6v) = e(13, §v), (4.20)

except for the three configurations

Cy = {123,12,13}, C,={23}, C;={23}, 4.21)
C, = {13}, C,=1{123,12,23}, C;= {13}, (4.22)
Cy ={12), C,={12), C;={123,13,23}. (4.23)

7 The list of 162 possible configurations is available upon request.
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Without any loss of generality, we assume 123 € Cj, and shall show that (4.20)
holds for all possible configurations except (4.21). (4.22) and (4.23) are obtained
by similar arguments in other cases, where 123 € C, and 123 € Cs, respectively.
Consider four possible cases about Cy. In the following arguments, we frequently use
Lemma 3.3.

(1) C1 = {123,12,13}. In this case, e(123,6v) = e(12,6v) = e(13,6v) by

Lemma 3.3(1). Suppose that 23 € C,. Except the case of Cy = {23}, it can be
seen that (4.20) holds. Let C, = {23}. If 13 € C3, then e(12, v) = (23, §v) =
e(13, év) since 12 € C1,23 € C; and 13 € C3 (applying Lemma 3.3(3) with
the order (1, 2, 3)). Thus (4.20) holds. If 123 € C3, then e(123, 6v) = ¢(23, §v),
since 23 € Cy, and thus (4.20) holds. Thus, (4.21) remains.
Suppose that 23 ¢ C>. We must then have 23 € C3 so that player 1 is not a
central player. If 123 € C», then e(123, dv) = e(23, §v) from Lemma 3.1.(2),
and thus (4.20) holds. If 12 € C3, then e(13, §v) = e(12, v) = e(23, v) from
Lemma 3.3(3), and thus (4.20) holds.

(i) C1 = {123, 12}. In this case, (123, §v) = e(12, dv). Suppose that 23 € C,. We

must have 13 € Cjz, so that player 2 is not a central player. Then e(12, §v) =
e(23, 6v) = e(13, §v) by Lemma 3.3(3). Thus, (4.20) holds.
Suppose that 23 ¢ C,. In this case, we have C, = {123, 12}, C; = {123} or
Cp = {12}. In either case, we must have 13, 23 € C3 so that neither 1 nor 2 is a
central player. Thus, e(13, §v) = e(23, dv). If C, = {123, 12} or C; = {123},
then e(123, 6v) = e(23, 6v) by Lemma 3.3(2), and thus (4.20) holds. Finally,
consider the case C, = {12}. If C3 = {123, 13, 23}, then (4.20) holds, since
Ci = {123, 12}. If C3 = {13, 23}, then we have e(12, §v) > e(23,d5v) >
e(123, 6v) = e(12, v), and thus (4.20) holds.

(iii) C; = {123, 13}. We must have 12 € C», so that player 3 is not a central player.
This must induce 23 € C3 so that player 1 is not a central player. Then (4.20)
holds, from Lemma 3.3(3).

(iv) C; = {123}. In this case, Neither C, = {123}, C, = {23}, nor C, = {123, 23} is
possible, otherwise 3 would become a central player. Then, there are four possible
types of Ca: Cr = {123, 12, 23}, {12, 23}, {123, 12}, {12}.

Suppose that C, = {123, 12, 23}. It holds that e(123, §v) = e(12,6v) =
e(23,5v). We must have 13 € (3, so that 2 is not a central player. Thus,
e(123,5v) = e(13,5v) from Lemma 3.3(2), since C; = {123}. This yields
(4.20).

Suppose that C; = {12, 23}. We must have 13 € Cs, so that 2 is not a central
player. Then e(123, 6v) = e(12, §v) = e(13, dv) from Lemma 3.3(2). We have
e(12, 6v) = e(23, §v), since Cp = {12, 23}, and thus (4.20) holds.

Finally, suppose that Co» = {123, 12} or {12}. We must then have 13,23 € C3,
so that neither 1 nor 2 is a central player. We have e(123, év) = e(12, 5v)
and e(123, v) = e(13, dv), since 12 € C; and 13 € Cj3, respectively. Since
13,23 € C3, we have e(13, §v) = e(23, §v). Thus, (4.20) holds.
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Now, by solving (4.20), we obtain
vy = v(123) —v(23), dvy =v(123) —v(13), vz =v(123) —v(12).
(4.24)

All players’ discounted expected payoffs are equal to their marginal contributions. In
every SSPE where (4.20) applies, the optimality condition is trivially satisfied. As §
goes to one in (4.24), we have the limit payoff of an SSPE,

v =0(123) — v(23), v} =v(123) — v(13), v} = v(123) — v(12).
(4.25)

Let 6;(i = 1,2, 3) be the conditional probability that player i joins a coalition,
given that i becomes a responder. It must hold that 0 < 6; < 1 foreachi =1, 2, 3,
and

% <0 +6+0603 <33 (4.26)
The payoff equation for an SSPE fori = 1 is given by
3v1 = v(123) — dvy — dv3 + 2861 v;. (4.27)
Equations (4.24) and (4.27) solve

3+ 0)v(123) — 6v(12) — 3v(23) — Sv(13)

0 4.28
: 25(v(123) — v(23)) (4.28)

Letting 6 — 1, the constraints §; < 1 and 67 > 0 yield
2v(123) < v(12) + v(23) + v(13), (4.29)
4v(123) > v(12) + 3v(23) + v(13), (4.30)

respectively. Similarly to (4.30), we have

4v(123) > v(12) + v(23) + 3v(13), 4.31)
4v(123) > 3v(12) + v(23) + v(13). (4.32)

Notice that (4.19) in case 3 and (4.29) are disjoint except the degenerate case that
equalities hold.

The three cases (4.21)—(4.23) remain. Since the analysis is similar, we shall solve the
case of (4.21) only. When (4.21) holds, we have 6; = 0 and e(123, §v) = e(12, §v) =

8 The first inequality can be derived as follows. Let 1 and r{ be the probabilities that player 1 chooses
coalitions 12 and 13, respectively, let o and ré be the probabilities that player 2 chooses coalitions 12
and 23, respectively, and let r3 and ré be the probabilities that player 3 chooses coalitions 23 and 13,
respectively. Since 61 = 1 — (5 +713)/2, 00 = 1 — (r{ +75)/2, and 63 = 1 — (| + r2)/2, we have
014+62+062=3—(0r1 +r))+ (2 +75) + (3 +15))/2 > 3/2.
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e(13, év). Thus, dv, = v(123) — v(13) and vz = v(123) — v(12). Since 6; = O, the
payoff equation for i = 1 is 3v; = v(12) — dv,. This solves

_v(12) +v(13) —v(123)
= 3 .

(4.33)

The payoff equation for i = 2 is 3v, = v(23) — dv3 + 256,v,. Substituting vy, va,
and v3, this yields

5, _ B 9V123) — 5v(12) - 5v(23) — 3v(13)

’ 28(v(123) — v(13)) (4.34)

Letting 6 — 1 in (4.34), the constraints 6, < 1 and 6, > 1/2 (by (4.26)) yield (4.29)
and
3v(123) > v(12) + v(23) + 2v(13), (4.35)

respectively. Interchanging 2 with 3, we obtain

3v(123) > 2v(12) + v(23) + v(13). (4.36)
Finally, as § — 1, the optimality condition e(23, 6v) > e(123, §v) yields

4v(123) < v(12) + 3v(23) + v(13). (4.37)

We can summarize our analysis of case 4 as follows. In the limit as § goes to
one, every player i’s expected payoff is equal to that player’s marginal contribution
m; = v(123) — v(jk),i # j, k, in most configurations of supports (159 cases). It
holds that m; is greater than or equal to (v(123) —m ; —my) /3. In the remaining three
cases, two players receive their marginal contributions and the other player receives
(v(123) — m; — my)/3 more than his or her marginal contribution.

Case 5. An SSPE without central players where the grand coalition never forms
(s* = 0): 18 types.

Table 4 shows a list of all possible support configurations. The configurations in
Table 4 can be divided into four subcases according to the values of 6; (i =1, 2, 3).2
In this case, note that 91 + 6, + 63 = 3/2 (see footnote 8).

In every configuration, all two-person coalitions (i.e., 12, 23, and 13) belong to
the support of some players. Because of this fact, the condition for optimality of an
SSPE implies e(12, dv), e(23, §v), e(13, dv) > e(123, §v). Thus, the limit expected
payoff v; of every playeri = 1,2, 3 as § — 1 is greater than or equal to that player’s
marginal contribution m; = v(123) — v(jk) (i # j, k).

Subcase (i). 1 = 6, = 63 = 1/2 (Nos. 13 and 18).

9 Subcases (i) and (ii) are degenerate in the sense that the coalitional values v(S) satisfy some equality
constraint.
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Table 4 List of all possible

configurations of an SSPE < = G

e stand cotton never foms L2 B2 m o
2 12, 13 12, 23 13
3 12, 13 12, 23 23
4 12, 13 12 13, 23
5 12 13 12 23
6 12, 13 23 13, 23
7 12, 13 23 13
8 12, 13 23 23
9 12 12, 23 13, 23
10 12 12, 23 13
11 12 12 13, 23
12 12 23 13, 23
13 12 23 13
14 13 12, 23 13, 23
15 13 12, 23 13
16 13 12, 23 23
17 13 12 13, 23
18 13 12 23

From Lemma 3.3(3), e(12, 6v) = e(23, dv) = e(13, §v). Together with this, it can
be seen without much difficulty that the payoff equations

3v; = v(12) — dvy + vy, (4.38)
3vy = v(23) — Svz + v, (4.39)
3vy = v(13) — dvy + dv3 (4.40)

imply that v(12) = v(23) = v(13) and
1
Vv =Uv) =UV3 = §v(12). 4.41)

The optimality condition e(12, §v) > e(123, §v) implies v(12) > (3/(3 +6))v(123).
As § — 1, we obtain

v(12) =v(23) =v(13) > %v(123). (4.42)

An SSPE is possible in this case only in a symmetric game where each two-person
coalition is productive relative to the grand coalition. All players receive equal expected
payoffs v(12)/3, and thus the payoff allocation in each two-person coalition is unequal
in that a proposer receives a payoff twice as large as a responder.

Subcase (ii). 6; = 1/2 foronlyone i = 1, 2, 3 (Nos. 5, 7, 10, 12, 16, 17).
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We consider only the configuration C; = {12, 13}, C, = {12}, C3 = {23} (No. 5)
where 61 = 1/2 in Table 4. Other configurations can be solved in the same way. It
follows from Lemma 3.3 that e(12, §v) = e(23, §v) = e(13, dv). Together with this,
it can be seen without much difficulty that the payoff equations

3v; = v(12) — Svy + Sy, (4.43)
3vp = v(12) — §vy + 2626v,, (4.44)
3vy = v(23) — dvy + 2636v3 (4.45)
imply
v(12) + v(13) — v(23)
v = s
3
Sv(12) + 3 = 8)v(23) — (3 =) v(13)
V) = )
3
s -3 =56v12)+ 3 —5)v(23) + sv(13)
3 = s
3
0, — vy + 3vy —v(12)
2= 28vn ’
o — vy + 3v3 — v(23)
3T 2803 '

In the limit as § — 1, we examine the constraints 0 < §; < 1 (i = 2, 3)10 and the
optimality condition e(12, §v) > e(123, §v). It can be shown that

v(12) + v(13) > v(23),
v(12) 4+ 5v(23) — 5v(13) > 0,
—5v(12) + 5v(23) + v(13) > 0,
v(12) +2v(23) + v(13) > 3v(123).

The limiting expected payoffs for players are given by

v(12) +v(13) —v(23) |, v(12) +20(23) —20(13)
2 = 3 s

v =
1 — 3 ’
—20(12) + 20(23) + v(13)
3 .

*_
v3—

Subcase (iii). 6; = 0 for some i = 1, 2, 3 (Nos. 8, 11, 15).
Consider the configuration C1 = {12, 13}, C, = {23}, C3 = {23} (No. 8) in Table
4, where 01 = 0. From the payoff equation 3v; = v(12) — Sv, and the optimality

10 There is another constraint, 6 + 03 = 1, which we omit for simplicity of exposition.
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Table 5 Classification of SSPEs (n = 3)

Case Central Efficiency level Core Marginal contribution
players

1 3 Efficient Nonempty v; =v(123)/3 < m;

2 2 Asymptotically efficient Nonempty v; < m;: central

3 1 Asymptotically efficient Nonempty v; = m : noncentral

4 0 Inefficient Empty v =m;

5 0 Subcoalition-inefficient Empty v > m;

In case 4, the three allocations (vy, mp, m3), (m1, vy, m3), and (my, mp, v3) are possible, where v; > m;
fori = 1,2, 3. They correspond to (4.21), (4.22), and (4.23), respectively

condition e(12, §v) = e(13, §v), it follows that Svp = v(12) —3v; and dv3 = v(13) —
3v;. We obtain v| by solving a quadratic equation constructed from 6, + 03 = 3/2.11
Subcase (iv). Others (Nos. 1, 2, 3,4, 6,9, 14).
In all configurations, the optimality conditions e(12, §v) = e(23, 6v) = e(13, év)
hold. Thus, dv, = v(23) — v(13) + dv; and dv; = v(23) — v(12) + dv;. We obtain
v1 by solving a cubic equation constructed from 6y + 6, + 63 = 3/2.

We summarize the result of a three-person cooperative game in the following propo-
sition and Table 5.

Proposition Let (N, v) be a three-person superadditive game, where N = {1, 2, 3}
and m; = v(N) — v(N — {i}) is player i’s marginal contribution to the grand coali-
tion, and let T be the random proposer game for (N, v) with a uniform recognition
probability. The limit of the expected payoffs for an SSPE in T" when the discount
Jactor goes to one can be classified as follows.

1. The equal allocation, where the probability of the grand coalition is one.

2. The coalitional Nash bargaining solution, where the probability of the grand coali-
tion converges to one. In equilibrium, there exists at least one player who joins all
possible coalitions.

3. The marginal contributions (my, mz, m3), where m; > n; = (v({1,2,3}) —m; —
my)/3 foralli =1,2,3and j, k #i.

4. The vector (ny, ma, m3) (and two permutations), where ny > mjy, my > na, and
ms3 > nj.

5. Allocations within two-person coalitions.

In the first two cases, the limit of the SSPE payoff belongs to the core of the game.
In the remaining cases, the core is empty.

When the players are sufficiently patient, the SSPEs of the random proposer game
can be classified according to the level of efficiency, i.e., the equilibrium probability
of the grand coalition. The efficiency level is characterized by the number of cen-
tral players who join all equilibrium coalitions (Table 5). The efficient SSPE (Okada

11 We can compute 6 = Bv(12) +8v(13) —5v(23) — (94 38)v1)/(26v(12) —68v1) and 3 = (Sv(12) +
3v(13) —v(23) — (94 368)v1)/(26v(13) — 65v7). Since it is cumbersome to derive a general formula for
the expected equilibrium payoffs in subcases (iii) and (iv), we have omitted this derivation.
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1996) has the full number of central players, and an asymptotically efficient equilib-
rium (Compte and Jehiel 2010) has at least one central player. These (asymptotically)
efficient equilibria exist only when the core of a game is nonempty. When the core is
empty, an SSPE must be inefficient. There are two types of inefficient SSPE, depending
on whether or not the probability of the grand coalition is positive.

In a three-person game, the equal allocation v(123)/3 and the marginal contribu-
tions m; to the grand coalition for every player i play a critical role in the expected
payoffs for players in equilibrium. If the equal allocation v(123)/3 is smaller than all
players’ marginal contributions m; (or, equivalently, the equal allocation belongs to
the core), then the SSPE expected payoffs are given by the equal allocation. In this
case, all players are central. If the equal allocation exceeds the marginal contribution
for some player, then that player must be noncentral, and that player receives his or
her marginal contribution. The remaining players split the surplus equally. In an inef-
ficient SSPE where the probability of the grand coalition is positive, every player’s
expected payoff is equal to their marginal contribution m; if it exceeds the threshold
(v({1,2,3}) —mj; —my)/3 for j, k # i.In asubcoalition-inefficient SSPE where the
probability of the grand coalition is zero, all players’ expected payoffs are not less
than their marginal contributions.

The analysis of three-person games gives us the following insights into n-person
games. First of all, the existence of a central player plays a critical role in character-
izing an SSPE outcome. Lemmas 3.1 and 3.2 hold true for an n-person coalitional
bargaining game with general recognition probabilities. The existence of a central
player guarantees the (asymptotic) efficiency. Moreover. this result does not rely on
the stopping rule in this paper that the game stops whenever a coalition forms, and
can be generalized to the case that more than one coalition may form sequentially and
the game stops when all players join coalitions. In the general case, a central player
is defined to be a player who may join a coalition in the initial round with probability
one. The assumption that v(N) > v(S) for every S # N should be replaced with the
property that v(N) > v(S) + v(N — S) forevery S # N.

Second, the results of a three-person game provide us with a heuristics for the
analysis of an n-person game. Specifically, the classification of SSPEs in a three-person
game reveals a variety of the equilibrium outcomes, depending on the number of central
players, which covers the unconstrained and the core-constrained Nash bargaining
solutions and the marginal contribution payoffs to the grand coalition. This equilibrium
variety is carried over to an n-person game. The equilibrium probability distribution
over coalitions tends to be complicated in an n-person game. The analysis of an SSPE
without central players (in cases 4 and 5) implies that there may exist many types of
an inefficient SSPE in an n-person game where only a limited set of coalitions may
form with positive probability, and thus that the values of other coalitions never affect
the equilibrium payoffs of players. This is in contrast to the case of the Shapley value.

5 Concluding remarks

The classification of the SSPEs of the random proposer model for a three-person game
reveals a variety of bargaining outcomes regarding the level of efficiency. When the
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core is nonempty and the grand coalition is a unique efficient coalition, the grand
coalition forms almost surely, and the payoff allocation is characterized by the coali-
tional Nash bargaining solution (Compte and Jehiel 2010). When the core is empty, the
equilibrium is inefficient. Our analysis of a three-person game shows that although no
single cooperative solution appropriately describes bargaining behavior, the concepts
of the Nash bargaining solution, the core, and the marginal contribution are closely
related to an SSPE allocation of the random proposer model.
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