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Abstract Absentmindedness is a special case of imperfect recall, in which a single
history includes more than one decision node in an information set. Put differently,
players, after making a decision, sometimes face it again without recalling having
‘been there before’. Piccione and Rubinstein (Game Econ Behav 20(1):3–24, 1997b)
have argued that absentmindedness may lead to time inconsistencies. Specifically, in
certain cases, a player’s optimal strategy as calculated when called to choose an action
(the action stage) deviates from the optimal strategy as calculated in a preceding plan-
ning stage, although preferences remain constant and no new information is revealed
between the two stages. An alternative approach assumes that the player maximizes
expected payoff in the action stage while considering his actions at other decision
nodes to be immutable. With this approach, no time inconsistencies arise. The present
paper explores this issue from a behavioral point of view. We elicit participants’ strate-
gies in an experimental game of absentmindedness, separately for a planning stage
and an action stage. We find systematic and robust time inconsistencies under four
variations of the experiment and using ten different parameterizations of the game.
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Fig. 1 The absentminded driver
problem

We conclude that real decisions under absentmindedness without commitment are
susceptible to time inconsistencies.

Keywords Imperfect recall · Absentmindedness · Dynamic inconsistency ·
Experiment

1 Introduction

Dynamic consistency is a compelling fundamental tenet of rational behavior: once
a decision maker makes a plan, he should carry it out as long as there is no rele-
vant change in the decision environment. Notwithstanding its normative appeal, the
principle of dynamic consistency has been systematically invalidated by empirical
evidence, therefore calling for a revision of the normative theories, as in the case of
decision-making under risk (e.g. Kahneman and Tversky 1979) or ambiguity (e.g.
Gilboa and Schmeidler 1989; Epstein and Schmeidler 2003). Conversely, Piccione
and Rubinstein (1997b, henceforth PR) have drawn attention to a particular case of
dynamic inconsistency that arises exactly from standard rational decision theory. PR
considered a specific type of imperfect recall, which they termed “absentmindedness”,
where a single history passes through two decision nodes in an agent’s information set.
They showed that considerations that would bear no impact on the analysis of decision
problems with perfect recall become crucial to the analysis when absentmindedness
(and, to a lesser extent, other forms of imperfect recall) is involved.

Absentmindedness and the paradoxical results associated with it are most usefully
illustrated by the problem of the “absentminded driver”, a simplified version of which
is presented in Fig. 1’s game tree.1

The absentminded driver starts his journey at intersection X (the first decision node
in the information set), where he can either “exit” (for a payoff of a) or “continue”
to intersection Y (the second decision node in the information set), where he faces an
identical choice. If at Y he exits, he gets a payoff of b; if he continues beyond Y , he
earns c. The driver suffers from absentmindedness in the sense that he is unable to
distinguish between nodes X and Y , both of them being in the same information set.

1 We speak of game (rather than decision) tree to stay in the framework of game theory.
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Imperfect recall and time inconsistencies 67

By using pure strategies, the decision maker can only obtain either payoff a or c.
Thus, by using mixed strategies, i.e., randomizing over pure strategies, the decision
maker can obtain any convex combination of a and c. It follows that if b > a, c, then
the highest payoff b can never be reached through either pure or mixed strategies.
Nonetheless, a higher expected payoff can be obtained through behavioral strategies,
by which the decision maker randomizes over his actions independently at X and at Y
(Kuhn 1953; Isbell 1957).2

PR demonstrated that, if the highest payoff is at the second exit, then an agent’s
plan before he starts his journey (the planning stage) is inconsistent with his beliefs
once he reaches a decision node (the action stage) as long as he assigns some positive
probability to being at Y . In other words, the decision maker is tempted to change his
initial plan when the time comes to execute it. This observation was termed by PR
“the absentminded driver paradox”.

PR suggested that the problem can be alternatively analyzed by applying a “modi-
fied multiself” approach, by which the decision maker is taken as be comprised of two
“selves”, each independently making a decision for one decision node in the informa-
tion set. In this interpretation, when the decision maker is called to make a choice, he
takes the decision (to be) made by his “twin self” as immutable. In this interpretation of
the problem, the symmetric equilibrium, in which the behavioral strategy taken at the
information set is a best response to itself, coincides with the planning-optimal strat-
egy so that the paradox vanishes. Thus, the analysis of the problem depends crucially
on whether the decision maker can commit to a strategy and whether he is assumed to
take his actions in future occurrences of the same information set as under his control.

Whereas PR presented both ways of reasoning about the problem as potentially
valid, Aumann et al. (1997a, henceforth AHP) took a more restrictive normative stand.
They argued that optimization at the information set must be carried out with respect to
the strategy at the current decision node while considering the rest of the play as fixed,
as in PR’s multiself approach. AHP showed that, in this case, the planning-optimal
decision is necessarily action-optimal, thus resolving the paradox.

While there exists an extensive normative debate on the subject of absentminded-
ness,3 little is known about actual behavior in such situations. In fact, absentminded-
ness is prevalent in real-world situations. Two of the authors’ mothers, for instance,
take prescriptions to moderate blood pressure on a daily basis. They are often faced
with the decision about whether to take a pill or not as they cannot remember if
they took the pill that day. This problem is exacerbated if many similar decisions
are to be made over time; for example, if there are several medications, each to be
administered according to a different schedule. Organizations are also susceptible to

2 To illustrate the difference between mixed and behavioral strategies in our game, compare the mixed
and the behavioral strategy that both specify a probability of 0.5 to continue. The former implies that the
same realized action is chosen at both X and Y , resulting in an expected payoff of 0.5a + 0.5c. With
the latter, the actions chosen at X and Y are determined independently, resulting in an expected payoff of
0.5a + 0.25b + 0.25c.
3 Theoretical discussions of the paradoxes arising under absentmindedness can be found in Battigalli
(1997), Gilboa (1997), Grove and Halpern (1997), Halpern (1997), Aumann et al. (1997b), and Lipman
(1997), which are summarized and countered in Piccione and Rubinstein (1997a), Binmore (1996), Kline
(2005) and Board (2003). The question of beliefs under absentmindedness spawned a prolific literature in
philosophy starting with Elga (2000).
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absentmindedness, for example when devising a decentralized policy that will be car-
ried out by different employees who do not know previous decisions of each other, or
even whether such decisions were made (Binmore 1996; see also Isbell 1957).

The prevalence of situations involving absentmindedness calls for a better under-
standing of how the theoretical debate reflects on actual behavior. This paper is aimed
at addressing the question of dynamic inconsistency under absentmindedness from
an empirical perspective. In particular, we aim to test whether the time inconsisten-
cies that emerge from the theoretical analysis inform actual behavior when people are
placed in a situation corresponding to the theoretical problem. That is, we compare
behavior in a planning stage and in an action stage of (a modified version of) the
absentminded driver problem.4

The existing experimental literature contains two studies of the absentminded
driver problem. In the first study, Huck and Müller (2002) constructed a situation of
absentmindedness by matching pairs of decision makers who, together, constitute the
absentminded driver. They essentially implemented the multiself approach as they put
different individuals in different decision nodes. However, Huck and Müller (2002)
did not elicit planning-stage strategies, but focused on comparing behavior in repeated
interactions with and without rematching.

More similar to our experiment is the innovative study by Deck and Sarangi (2009),
who created a situation of absentmindedness through information overload to find that
action-stage behavior deviates from the theoretically optimal strategy in the direction
predicted by the paradox.5 To draw conclusions about time inconsistencies from this
result, however, one must assume that behavior in the planning stage quantitatively
matches the optimal strategy, which is ultimately an empirical question.6 Deck and
Sarangi (2009) did ask for planning-stage strategies for a small set of parameters and
observed a significant difference between the elicited action-stage and planning-stage
strategies. However, the participants in their experiment were restricted to choosing
between two actions (either to exit or to continue). Hence, in the action stage they
were able to implement behavioral strategies by randomizing over the two actions
every time they were required to make a decision. Conversely, in the planning stage,
where participants chose a single action, which was then applied by the experi-
menters to both nodes, only mixed strategies were implementable. Since the theo-
retical predictions differ for behavioral and mixed strategies even within the planning
stage (Isbell 1957), this procedure does not provide an empirical test of the theoret-
ical time inconsistencies.7 In contrast, participants in our experiment can implement

4 Methodologically, the experiment can be taken as a test of the game-theoretical predictions. As such, our
goal was to construct a laboratory situation which is in the base domain of the theory. Consequently, the
universal nature of game theory places the experiment firmly within the test domain of the theory (Bardsley
et al. 2010).
5 We will discuss the details of their design in Sect. 3.
6 For example, presenting the decision as one of whether to exit to the right may create a bias to exit
(cf. Wilson and Nisbett 1978).
7 For example, with payoffs (a, b, c) = (1, 5, 2), the optimal mixed strategy is to continue with probability 1
for a payoff of 2, whereas the optimal behavioral strategy is to continue with probability 2

3 for a payoff of 2 1
3 .

Note that implementing the planning-optimal behavioral strategy as a mixed strategy yields a sub-optimal
payoff of 1 2

3 .
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Fig. 2 The modified
absentminded driver problem

behavioral strategies in both stages through the use of an identical exogenous
randomizing mechanism. This allows us to cleanly compare behavior in the two
stages.

To sum, our contribution is to provide an empirical comparison of behavior in a
planning stage and an action stage in a situation of naturally induced absentmind-
edness, where behavioral strategies are implemented through an exogenous random-
izing device. The hypothesis under consideration is that participants will exit more
often in the action stage than in the planning stage, as suggested by PR’s theoreti-
cal analysis. The data strongly support this hypothesis under four variations of the
experiment and using ten different parameterizations of the game. We conclude that
real decisions under absentmindedness without commitment are susceptible to time
inconsistencies.

The remainder of the paper is organized as follows. The next section pro-
vides a theoretical analysis of our modified experimental game. Section 3 details
the experimental design. Section 4 discusses our experimental results, and Sect. 5
concludes.

2 Theoretical analysis of the experimental game

In the original formulation of the game, the decision maker passes through the infor-
mation set either once or twice, depending on the action taken at X . We replace
the original game with the modified game of Fig. 2, in which decisions are being
made at a second decision node even if the action taken in the first decision node
was to exit, consistent with the procedure employed by Deck and Sarangi (2009).
Thus, in the modified game, the decision maker always passes through the infor-
mation set exactly twice. However, if the decision maker exits at the first node, the
payoff is the same as in the original game regardless of the action taken at the second
node. In this section, we analyze the modified game following the analysis of PR
and AHP.
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The behavioral strategy is defined by the probability of choosing “continue” at the
information set, denoted by p. The expected payoff at the planning stage is given by

(1 − p)a + p(1 − p)b + p2c.

The planning-optimal strategy is therefore

p∗ = b − a

2(b − c)
. (1)

When reaching the information set in the action stage, the decision maker forms beliefs
about the decision node he is in. Denote by αX , αY , and αY ′ the probabilities that the
decision maker assigns to being at X , Y , and Y ′, respectively. In line with PR’s analysis,
the expected payoff is given by

αX [(1 − p)a + p(1 − p)b + p2c] + αY [(1 − p)b + pc] + αY ′a. (2)

As noted above, since the driver passes through X and through either Y or Y ′ exactly
once, any consistent belief must be such that αX = αY + αY ′ = 0.5. Maximizing (2)
over p therefore yields the action-optimal strategy

p̄ = b − a

2(b − c)
− αY , (3)

which is strictly smaller than p∗ for any αY > 0.
AHP claim that the above analysis of action-optimal strategy is “flawed” (p. 102)

in its formulation. They argue for two normative requirements. First, “when at one
intersection, [the decision maker] can determine the action only there and not at the
other intersection” (emphasis in original). Second, “whatever reasoning obtains at
one [intersection] must obtain also at the other.” Denote by q the behavioral strategy
that the decision maker who reaches the information set expects to play at the other
intersection (equivalent to the strategy of the “twin-self” in PR’s multiself approach).
The expected payoff to be maximized is now

αX [(1 − p)a + p(1 − q)b + pqc] + αY [(1 − p)b + pc] + αY ′a. (4)

Substitute the consistent beliefs 0.5q and 0.5(1 − q) for αY and αY ′ , respectively,
and let q be the planning-optimal strategy derived in (1). It is easy to confirm that (4)
reduces to

a

2
+ b(b − a)

4(b − c)
, (5)

which does not depend on p. Hence p∗ maximizes (5) and is both planning-optimal
and action-optimal. Generally, any planning-optimal strategy must be action-optimal
(Proposition 3 of PR), although the opposite is not generally true (Section 5 of AHP).
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3 Experimental design

Deck and Sarangi (2009) have shown how absentmindedness can be induced in the
lab by means of cognitive overload resulting from information abundance.8 In their
experiment, participants were presented with a game tree in each period and had
five seconds to choose an action. In addition to the strict time constraint, cogni-
tive load was enhanced by including a simple matching task in each period. In the
action stage, each game tree was presented exactly twice, regardless of the choice
made in its first appearance. The actions chosen in the two occurrences were imple-
mented in order of appearance to determine payoffs. The time constraint and multiple
tasks are assumed to impair memory performance (see, e.g., the divided attention
model of Kahneman 1973). Participants are thus not likely to recognize whether any
occurrence of a specific game tree is the first or the second. As an indirect manipu-
lation check, Deck and Sarangi (2009) verified, in a second experimental stage, that
participants were unable to correctly identify the game trees included in the action
stage.

Following the procedure introduced by Deck and Sarangi (2009), we implemented
an environment in which many driving “maps” are presented to the participants. We
adapted the original procedure in several ways. First, an abundance of evidence
has shown that time pressure leads to intuitive decisions, whereas we are inter-
ested in testing whether time inconsistencies arise in deliberate decisions, which
are more likely to conform to fully rational analysis (Kahneman 2011). Therefore
we did not impose any time constraint. Second, to increase the difficulty of recall-
ing specific maps, each game tree (defined by the payoffs a, b, and c), appeared
in four distinct maps differing in background color (yellow, green, blue, or purple).
Furthermore, we provided a direct manipulation check by explicitly asking partic-
ipants in half of our treatments to guess at which decision node they are (first or
second).

We constructed five different treatments: a planning-stage treatment and four action-
stage treatments. The variations between the four action-stage treatments will be fully
described in Sect. 3.2. To provide a crisp comparison of a planning and an action stage,
we employed a within-subjects design in which each participant was exposed to both
the planning-stage treatment and one of the four action-stage treatments. Participants
chose behavioral strategies for the same maps in both treatments. The planning-stage
and action-stage treatments differed in that one choice of behavioral strategy per map
was elicited in the planning stage, whereas two choices per map were elicited in the
action stage. Thus, when called upon to make an action-stage (but not a planning-stage)
decision, participants could form beliefs about which node their current choice applies
to. The following subsections elaborate on the implementation of the two stages.
A translation of the full German instructions is available in the Supplementary
materials.

8 When people must process large amounts of information within a short time span, the limited capacity
of their short-term memory causes cognitive overload (see, e.g., Kareev and Warglien 2003). Short-term
memory capacity refers to the number of items that an individual can retain at one time and is classically
estimated to be 7±2 (Miller 1956; Shiffrin 1976; Kareev 2000); but see Cowan (2001), for a lower estimate.
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3.1 Planning stage

Participants made planning-stage decisions for a total of 56 maps constructed by
crossing 14 game trees of the type depicted in Fig. 1 with the four background colors.
To elicit (and allow for) behavioral strategies, we employed a mechanism similar to
that used by Huck and Müller (2002).9

Participants were asked to imagine an urn with 100 balls, each marked with either
“exit” or “continue”. They could determine the composition of the urn by choosing
the numbers of “exit” and “continue” balls. Their choices were restricted to integer
values between 0 and 100, and had to sum to 100. Once the composition of the urn
was decided, the computer randomly drew (with replacement) one ball from the urn.
A draw of an “exit” ball implied taking the first exit for a payoff of a. A draw of a
“continue” ball implied continuing to the second intersection and drawing a second
ball. If this was an “exit” ball, then the participant took the second exit for a payoff
of b; otherwise, he obtained a payoff of c. We made clear that the same behavioral
strategy (as chosen by the participant) would be implemented in both intersections.

Participants could familiarize themselves with the task—including both the game
form and the randomization mechanism—in a preliminary 15-minutes practice stage
using the following procedure. Participants filled in three payoffs in a blank tree and
chose a behavioral strategy. After clicking a confirm button, the resulting probability
distributions over the three payoffs and the expected payoff (based on the chosen strat-
egy) were presented on screen. Next, particular payoff realizations could be obtained
by pressing a “travel”-button repeatedly.

3.2 Action stage

The action stage commenced after the completion of the planning stage. The procedure
followed that of the planning stage, with the main exception that each map appeared
exactly twice within the stage. As noted above, there were four different treatment
variations in the action stage. We start by describing the basic treatment, followed by
a discussion of its variations.

The behavioral strategy chosen in the first encounter applied to the first decision
node (X in Fig. 2). The behavioral strategy chosen in the second encounter of the same
map applied to the second decision node (Y and Y ′ in Fig. 2).10 The same map was
never shown in two consecutive periods.

Sixteen filler maps (4 trees × 4 colors) were added to the 56 experimental maps
for a total of 72 maps or 144 game decisions (experimental periods). The filler maps
served the purpose of filling up the first ten periods when participants can be certain
to see a map for the first time. Additionally, initial maps are likely to be recalled later
due to the well-studied primacy effect (Murdock 1962; Deese and Kaufman 1957).

9 Recall that eliciting pure actions in this stage, as done by Deck and Sarangi (2009), effectively implements
mixed rather than behavioral strategies.
10 That is, in line with the analysis of Sect. 2 and the procedure used in Deck and Sarangi (2009), but
unlike the original game of Fig. 1, assigning a probability of 0 to continue in the first encounter of a map
did not preclude encountering it again.
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We term this procedure “induced absentmindedness without belief elicitation”
(henceforth IND-WITHOUT treatment). We complemented it with three additional
treatments created by manipulating two variables in a 2 × 2 between-subjects design
as explained in the following.

3.2.1 Induced versus imposed absentmindedness

In our baseline IND-WITHOUT treatment, the first decision node always preceded the
second decision node of the same map. The participants could utilize this information to
shape their strategies. Specifically, they could choose “continue” with high probability
in earlier periods, which were likely to correspond to the first node X , reducing this
probability in later periods of the experiment.

Hence, for a robustness check, we added a further treatment that we term “imposed
absentmindedness” (henceforth IMP treatment). In this treatment, the probabilities
chosen by the participants in the two occurrences of any map were randomly matched
to decision nodes. Either the natural order (X before Y/Y ′) or the reverse order (Y/Y ′
before X ) was implemented with equal probabilities.

Under this procedure, a participant who faced an action-stage map knew that with
probability 0.5 his current decision would apply to decision node X , with some proba-
bility αY ≤ 0.5 it would apply to decision node Y , and with the remaining probability
it would not affect his payoff, as in decision node Y ′. Thus, this procedure ensures
that the consistent belief assigned to X is 0.5, as assumed in the theoretical analysis.
Other possible interpretations exist for this procedure.11 While the interpretation we
provide above appears more likely to reflect the participants’ perceptions of the deci-
sion problem, it is not necessary to commit to it when testing for time inconsistencies,
since the theoretical approach that does not entail time consistencies (PR’s multiself
or AHP’s approach) is robust to the different interpretations.

In some respects, the IMP treatment could have been conducted by simply asking
participants for two behavioral strategies per map. While this avoids the extended
procedure involving memory overload, it would open the door to a different kind
of strategy: participants could coordinate their decisions by choosing “continue” at
one node and “exit” at the other. This would guarantee them an expected payoff of
a+b

2 , which is higher than the payoff obtainable by any behavioral strategy in all
of our experimental trees (albeit not generally, see Section 6(e) of AHP for further
discussion). This is equivalent to the asymmetric equilibria of the game that results
from letting two players play the role of the decision maker, with the decision of
each player randomly assigned to one of the two decision nodes (Gilboa 1997). Huck
and Müller (2002) found experimentally that players learn to coordinate on such an
equilibrium after repeated play. Memory overload hampers the possibility of carrying

11 One is that it gives rise to a game of absentmindedness with six decision nodes in the information set:
three corresponding to the ones in Fig. 2 and three for the reverse-order game. Another is that the game
form is the same as in Fig. 2, with the final payoffs being the expected payoffs over the two orders. While
the planning-optimal strategy remains the same in all interpretations, the action-optimal strategy can vary
substantially. In particular, the paradox does not necessarily hold for some (inconsistent) beliefs.
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Table 1 Measurement
of participants’ confidence
in their guesses

Your
choice

Option If your guess is correct If your guess is wrong

you WIN you LOSE

◦ A 1 1

◦ B 3 5

◦ C 5 15

out such a strategy that requires the identification of different occurrences of the same
map.12

3.2.2 Belief elicitation

In half of our sessions, we elicited (i) beliefs about the current decision node and
(ii) confidence in one’s own beliefs. The reason for introducing this design feature is
twofold. First, it allows us to check for the actual occurrence of absentmindedness in
the IND treatment. Second, since in the IMP treatment stating beliefs is tantamount
to guessing the outcome of a fair coin toss, comparing beliefs and bets in this treat-
ment with those in the IND treatment allows us to assess the subjective feeling of
absentmindedness in the latter.

The elicitation procedure was as follows. In each period, participants were asked
to guess whether they were at the first or second decision node and to place a bet
on their guess being correct. We measured participants’ confidence in their guesses
by letting them choose one of the three options depicted in Table 1. Each option is
associated with a gain and a loss depending on the guess being, respectively, correct or
incorrect. The possibility of gains should incentivize participants to remember maps,
even though the concomitant possibility of losses should urge those who suffer from
imperfect recall to select option A.13

Both IND and IMP treatments were conducted without and with eliciting beliefs to
control for the effect of belief elicitation. The resulting four action-stage treatments
are IND-WITHOUT, IMP-WITHOUT, IND-WITH, and IMP-WITH.

3.3 Experimental game trees

The game trees used in the experiment are shown in Table 2. Trees 1–14 were presented
to the participants in both the planning stage and the action stage. Trees 15–18 were

12 Our data confirm that participants in the IMP treatment did not follow this strategy, which would drive
the mean probability assigned to “continue” in the action stage towards 0.5.
13 The numbers in Table 1 are chosen so that the expected payoff from option A exceeds the expected
payoff from the other two options whenever the probability assigned to being correct is lower than 2/3.
Only if the probability of being correct is greater than 5/6, a risk neutral decision maker should opt for C . In
principle, the belief elicitation procedure gives participants an opportunity to diversify since they can play
according to their true beliefs and state the opposite beliefs. Our results, however, show that participants
actually play in line with their stated beliefs.
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Table 2 Experimental game
trees

Tree
number

a b c p∗ α = 1/(1 + p∗) Tree type

1 20 50 30 0.75 0.57 Paradox
2 10 80 30 0.70 0.59 Paradox
3 0 40 10 0.67 0.60 Paradox
4 10 50 20 0.67 0.60 Paradox
5 30 90 40 0.60 0.63 Paradox
6 30 70 30 0.50 0.67 Paradox
7 20 80 10 0.43 0.70 Paradox
8 30 60 20 0.38 0.73 Paradox
9 30 70 10 0.33 0.75 Paradox
10 30 50 10 0.25 0.80 Paradox
11 50 10 30 Optimal exit
12 60 40 20 Optimal exit
13 20 10 50 Optimal continue
14 10 30 60 Optimal continue
15 0 50 10 Filler
16 10 80 40 Filler
17 30 90 50 Filler
18 10 60 20 Filler

used to construct the filler maps that only appeared in the action stage and are excluded
from the analysis.

In addition to ten paradox trees, we included two optimal exit trees (in which a >

b, c) and two optimal continue trees (in which c > a, b). The planning-optimal,
as well as the action-optimal, behavioral strategy in the optimal exit and optimal
continue trees is to assign a probability of, respectively, 0 and 1 to continue. Hence,
no time inconsistencies are expected. Behavior in these trees will provide a check of
the participants’ understanding of the task.

3.4 Procedures

The computerized experiment was conducted in the experimental laboratory of the
Max Planck Institute of Economics (Jena, Germany) in April and December 2009. It
was programmed in z-Tree (Fischbacher 2007). The participants were undergraduate
students from the Friedrich Schiller University of Jena. They were recruited using
the ORSEE software (Greiner 2004). Upon entering the laboratory, the participants
were randomly assigned to visually isolated computer terminals. The initial instruc-
tions stated that the experiment consisted of two phases, and only included the rules
of the first phase (corresponding to the planning stage). Written instructions on the
second phase (corresponding to the action stage) were distributed after the first phase
was completed. Before starting the experiment, participants had to answer a control
questionnaire testing their comprehension of the rules.

We ran eight experimental sessions, two for each of the four between-subjects
treatments. Each session included 18 participants so that we have 36 participants per
between-subjects treatment, and 144 participants overall. In all sessions, participants
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did not know the number of maps (and thus periods) beforehand. Moreover, to avoid
wealth effects, they did not receive any feedback about the random draws determining
their period payoff (i.e., the realization of their strategy) and their earnings from the
guesses until the end of the session.

Each session lasted about two hours. Money in the experiment was denoted in ECU
(Experimental Currency Unit), where 10 ECU =e0.07. Final payoff was the sum of
all payoffs accumulated over the two stages.14 The average earnings per participant
were e35.40 (including a e2.50 show-up fee).

4 Experimental results

Before testing our main hypothesis that participants exit with higher probability in the
action stage than in the planning stage, we test the crucial auxiliary hypotheses. We
start by looking at the relation between choices and optimal strategies in the optimal
exit and optimal continue trees to check that participants understood the task and
behaved in line with the incentives. Next, we analyze behavior in the action stage to
verify that participants were indeed absentminded both objectively (as reflected by the
correlation between decisions and actual nodes) and subjectively (as reflected by the
elicited beliefs and bets). We conclude this section with the empirical test of the main
hypothesis.

4.1 Implementation of the game

For the optimal exit and optimal continue trees, we expect participants to behave
optimally in close to 100 % of the decisions. Table 3 shows that the majority of choices
for these trees conform to the optimal strategy in both stages. In the planning stage,
the proportion of optimal choices for trees 11–14 is above 90 % and the mean strategy
is to take the optimal action with over 0.95 probability.15 Although the proportion of
optimal choices is lower in the action stage, the mean strategies are close to optimal in
all but one case. The apparently odd behavior observed for tree 11 can be explained by
participants choosing as if they knew which node they are at. To see this, consider the
optimal strategies that would result from informing the participants about the actual
node. Formally, change the game in Fig. 2 to have two information sets, one including
node X and the other including nodes Y and Y ′.16 In trees 12–14, the optimal strategies
in the two new information sets coincide, as in the original game. Conversely, in tree 11,
the optimal strategies in the two information sets differ. We conjecture that participants
are sometimes swayed by the possibility of being at decision node Y . In tree 11, this
makes it optimal to continue (for a payoff of 30 rather than 10) even though the optimal
behavioral strategy in this tree is to exit.

14 By paying a small monetary amount over a large number of periods we try to induce risk neutrality.
15 As the planning-stage treatment is identical for all participants and the participants are unaware of the
following action stage, we pool the planning-stage data. We average choices for each participant over the
four instances of each tree (defined by background colors) to increase reliability.
16 This turns the game into a game with imperfect recall, but not absentmindedness.
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Table 3 Continue choices for the optimal exit (11,12) and optimal continue (13,14) trees

Tree Proportion of optimal choices Mean strategya

Planning (%) Action (%) Planning Action

11 92.01 56.16 2.07 22.56

(0.51) (2.13)

12 93.58 77.60 1.99 6.86

(0.55) (1.04)

13 92.36 84.03 96.78 94.77

(0.90) (0.91)

14 92.88 87.59 97.50 96.14

(0.67) (0.75)
a Standard errors (based on 144 observations) in parentheses

Turning to the paradox trees, we do not expect participants to be able to compute
the exact optimal strategy p∗ reported in Table 2 and derived from Eq. (1). However, if
participants are reacting correctly to the payoffs they can obtain from each tree, their
choices should be correlated with the optimal strategy across trees. Averaging over
the 144 participants for each of the 10 paradox trees, we find that choices in these trees
are strongly and significantly correlated with p∗ (r = 0.906, p < 0.001). Thus, we
conclude that the participants managed to cope with the complexity of the task and
understood the experimental incentives.

4.2 Implementation of absentmindedness

If participants in the IND treatments were able to recall that they had seen a map in a
previous period, we would expect them to choose a higher probability to continue in
the first node. The random-effects GLS models reported in the top panel of Table 4,
with the probability assigned to continue as the dependent variable and the actual node
as our main independent variable, reveal a weak effect in this direction. Model 1, con-
trolling for the theoretical p∗, establishes that, on average, the probability to continue
is roughly 0.07 higher in the first node than in the second one. In the IND-WITHOUT
treatment, the effect is lower, just above 0.03 (see Model 5).

Nonetheless, the effect of the actual node could be due to the correspondence
between actual node and period that rises from the experimental procedure. Recall
that participants in the IND treatments knew that, for each map, the first node always
appeared before the second one. Taking this into account, they could improve their
expected payoff by choosing to continue with higher probability at the beginning of the
session. Models 2 and 6 in Table 4 show that the coefficient of Period is significantly
negative, implying that participants indeed tend to decrease the probability to continue
as the experiment progresses in both IND treatments. Additionally, once the period
is included, the effect of the actual node drops from 0.07 to less than 0.03 in the
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Table 4 Generalized least-squares random-effects regressions on action-stage strategies

IND-WITH IND-WITHOUT

(1) (2) (3) (4) (5) (6)

Intercept 27.825∗∗∗ 27.814∗∗∗ 83.167∗∗∗ 82.702∗∗∗ 21.265∗∗∗ 21.262∗∗∗
(3.370) (3.340) (2.904) (2.918) (2.760) (2.777)

Actual node −6.901∗∗∗ −2.482∗∗ −2.251∗∗∗ −0.365 −3.231∗∗∗ −2.014∗
(0.999) (1.258) (0.823) (1.030) (0.892) (1.128)

p∗ 0.353∗∗∗ 0.378∗∗∗ 0.382∗∗∗ 0.392∗∗∗ 0.472∗∗∗ 0.479∗∗∗
(0.030) (0.030) (0.025) (0.025) (0.027) (0.027)

Belief −37.411∗∗∗ −37.099∗∗∗
(0.971) (0.975)

Period −0.110∗∗∗ −0.048∗∗∗ −0.303∗
(0.019) (0.016) (0.017)

Observations 2,880 2,880 2,880 2,880 2,880 2,880

N participants 36 36 36 36 36 36

IMP-WITH IMP-WITHOUT

(7) (8) (9) (10) (11) (12)

Intercept 7.387∗∗∗ 8.906∗∗∗ 22.270∗∗∗ 23.225∗∗∗ 5.744∗∗ 11.445∗∗∗
(2.563) (2.586) (2.779) (2.783) (2.492) (2.588)

Actual node −0.690 −0.676 −0.589 −0.580 −0.249 −0.232

(0.725) (0.725) (0.703) (0.703) (0.726) (0.717)

p∗ 0.770∗∗∗ 0.775∗∗∗ 0.776∗∗∗ 0.780∗∗∗ 0.804∗∗∗ 0.825∗∗∗
(0.022) (0.022) (0.021) (0.021) (0.022) (0.026)

Belief −11.202∗∗∗ −11.121∗∗∗
(0.822) (0.823) (0.745) (0.746)

Period −0.026∗∗ −0.018∗ −0.093∗
(0.011) (0.011) (0.011)

Observations 2,880 2,880 2,880 2,880 2,880 2,880

N participants 36 36 36 36 36 36

Note. Numbers in parentheses are estimated standard errors.
∗,∗∗,∗∗∗ Significance at the 10, 5, and 1 %, respectively

IND-WITH treatment and from around 0.03 to 0.02 in the IND-WITHOUT treatment.
In the latter case, the coefficient of Actual node is only significant at the 10 % level.

In the IND-WITH treatment, an additional control is provided by including the
beliefs (Models 3 and 4 in Table 4) because participants are likely to base their beliefs
on the period in the same way as they base their game decisions on it. Including
the beliefs in the model has a similar effect to including the period, and once both
independent variables are taken into account, the effect of the actual node, reflecting
true recall, completely disappears. Although this is not a clean control (as the beliefs
could also indicate lack of absentmindedness), the limited effect size of Actual node
in Models 2 and 6 as well as the statistical insignificance of its coefficient in the full
Model 4 suggest that true recall is strongly limited. Furthermore, true recall is ruled

123



Imperfect recall and time inconsistencies 79

Table 5 Beliefs and bets
in IND-WITH

Bet Overall (%) By belief

X Y
62.8 % 37.2 %

A 85.2 87.1 % 84.4 %

B 9.7 10.2 % 9.5 %

C 5.1 2.7 % 6.1 %

out by design in the IMP treatments, as reflected in Models 7–12. These treatments
can thus serve to complement the analysis conducted on the IND treatments in the
next section.

We proceed to look at the bets made on the beliefs in the IND-WITH treatment,
which we use as a proxy for the subjective absentmindedness experienced by the par-
ticipants. The safest bet A is the optimal bet not only for risk-neutral and absentminded
participants, but also for less-than-absentminded participants who are sufficiently risk-
averse. To control for risk attitudes, we compare bets made in the IND-WITH treatment
to bets made in the IMP-WITH treatment, where participants lack any knowledge of
the actual node they are at, so that only risk attitudes can affect their betting choices.

In the IMP-WITH treatment, the safest bet A (indicating lack of confidence in the
beliefs) was chosen 80.7 % of the time. The riskier bets B and C were chosen 18.4
and 1.0 % of the time, respectively. In comparison, participants in the IND-WITH
treatment chose bets A and C more often (85.2 and 5.1 %, respectively), while they
choose the intermediate bet B less frequently (9.7 %). As can be seen in Table 5,
betting behavior was similar regardless on which decision node participants guessed
to be at. Thus, participants were not systematically more confident about their bets in
the IND-WITH treatment than they were in the IMP-WITH treatment, indicating that
they indeed felt absentminded.

To conclude, on the whole, participants in the IND treatments were and felt mostly,
though not perfectly, absentminded. The degree to which they were able to recall the
previous occurrence of a current map is estimated at approximately 2–3 %, reflecting
the coefficient of Actual node in Models 2 and 6 in Table 4 as well as the increase in
the risky bets C compared to in the IMP-WITH treatment. To account for this small
degree of true recall, we test the robustness of the results reported in the next section
using two measures. First, by analysing participants’ decisions in the periods in which
participants indicated low confidence in their memory by choosing bet A. Second,
by analysing behavior in the IMP treatments, which are free from issues of induced
absentmindedness.

4.3 Planning versus action

We turn now to the main hypothesis. Did our participants exit with higher probability
in the action stage compared to the planning stage? The mean strategies by paradox
tree and stage are summarized in Tables 6 and 7. A graphical representation of the
same data is provided in Fig. 3, where the trees are ordered on the horizontal axis
by ∼p∗.
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The mean strategies are lower in the action stage than in the planning stage for
all 10 paradox trees and in all four treatments (compare column (1) with (2) and
column (7) with (8) in Tables 6 and 7).17 This difference is statistically significant
in all but 3 cases according to Wilcoxon signed rank tests with continuity correction
relying on 36 independent observations (see columns (3) and (9) in the tables). Overall,
the probability assigned to continue in the action stage is, on average, 69.0 % (85.1 %)
of that assigned in the planning stage, in the IND (IMP) experiment.

Columns (4) and (5) in Tables 6 and 7 list the mean strategies by beliefs (β) elicited
in the WITH treatments. The comparison of the two columns reveals that participants’
strategies are strongly aligned with their beliefs (namely participants continue with
lower probability when they believe to be at Y rather than at X ).18 In the IND-WITH
treatment, this can (partly) reflect true recall. In the IMP-WITH treatment, however,
beliefs are mere guesses, so that payoff maximization cannot explain the observed
contingency. This result supports our interpretation of the observed behavior in the
optimal-exit game tree 11, i.e., that participants sometimes behave as if they were not
absentminded.

To complement the non-parametric tests, we computed the planning-action gap to
use as a dependent variable in a regression analysis. The planning-action gap is defined
as the difference between the probability that a participant assigned to continue in an
action-stage decision and the average probability that he assigned to continue over the
four instances of the same game tree that appeared in the planning stage. A negative
gap indicates that the participant chose to exit with a higher probability in the action
stage.

Table 8 reports the results of a series of regressions on the planning-action gap.
The models in columns (1)–(3) include the treatment variables IMP and WITH and
the planning-optimal strategy p∗, gradually adding its second and third powers.
Since the IND and IMP treatments employ inherently different procedures, columns
(4) and (5) add the interactions of the procedure with the other independent variables.
Columns (6) and (7) replace the belief-elicitation variable WITH by the three lev-
els of confidence A, B, and C and their interactions with the procedure, taking the
WITHOUT treatment as the baseline.

The results of the regressions can be best understood by looking at Fig. 4. The figure
plots the predicted planning-action gap according to the full (and most comprehensive)
model of column (7) against the different p∗’s. Several conclusions can be drawn from
the figure and the accompanying regressions. First, the predicted gap is negative across
the four treatments and range of game-trees, reflecting the paradox as predicted by PR’s
analysis. Second, belief elicitation does not appear to affect behavior in any substantial
way, as reflected in the insignificant coefficient of WITH in models (1)–(5). Third, the
higher the confidence in one’s own beliefs, the larger the planning-action gap. Since in
the IND-WITH treatment this may reflect true recall, it is important to note that, even
for low-confidence decisions, the planning-action gap is far from being negligible. The
small degree of true recall apparent in the data does not, therefore, provide a satisfactory

17 The connecting lines in Fig. 3 were added to visually emphasize this fact.
18 Note that diversification in order to reduce risk implies the opposite.
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Fig. 3 Mean continue choices in the four treatments
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Table 8 Generalized least-squares random-effects regressions on the planning-action gap

(1) (2) (3) (4) (5) (6) (7)

Intercept −15.53*** −7.792** −29.05*** −66.46*** −64.61*** −65.96*** −63.92***

(2.048) (3.133) (7.575) (10.44) (10.50) (10.41) (10.44)

IMP 10.61*** 10.61*** 10.61*** 85.43*** 81.74*** 86.05*** 81.90***

(2.229) (2.229) (2.244) (14.68) (14.85) (14.63) (14.77)

WITH −0.853 −0.853 −0.853 −0.853 −4.542

(2.229) (2.229) (2.244) (2.237) (3.144)

IMP × WITH 7.378*

(4.447)

p∗
100 −3.823*** −38.04*** 108.9** 407.4*** 407.4*** 396.1*** 393.2***

(1.294) (10.56) (48.81) (68.39) (68.39) (68.21) (68.28)

p∗
100

2
33.75*** −281.2*** −948.2*** −948.2*** −908.2*** −899.8***

(10.34) (102.7) (143.9) (143.9) (143.5) (143.7)

p∗
100

3
211.7*** 655.0*** 655.0*** 619.6*** 612.7***

(68.67) (96.22) (96.22) (96.03) (96.18)

IMP × p∗
100 −597.0*** −597.0*** −593.1*** −588.2***

(96.72) (96.72) (96.43) (96.56)

IMP × p∗
100

2
1,334*** 1,334*** 1,309*** 1,296***

(203.5) (203.5) (202.9) (203.2)

IMP × p∗
100

3 −886.6*** −886.6*** −861.0*** −851.5***

(136.1) (136.1) (135.7) (135.9)

A 0.367 −2.960

(2.222) (2.889)

B −4.890** −10.36***

(2.460) (3.221)

C −15.58*** −19.98***

(2.887) (3.521)

IMP × A 6.303

(4.098)

IMP × B 11.64**

(4.618)

IMP × C 10.09

(6.324)

Obervations 11,520 11,520 11,520 11,520 11,520 11,520 11,520

N participants 144 144 144 144 144 144 144

Note. Numbers in parentheses are estimated standard errors
∗,∗∗,∗∗∗ Significance at the 10, 5, and 1 %, respectively
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Fig. 4 Planning-action gap for the four between-subjects treatments with 95 % confidence intervals. In the
WITH treatments, the gap is displayed by confidence level

explanation for the observed time inconsistencies. In the IMP-WITH treatment, on
the other hand, bets are pure gambles and, as such, should be independent of the
game choices. The apparent deviation from this principle suggests that, even when
participants are exogenously forced to be absentminded, they sometimes feel as if
they knew which decision node they are at. This is reflected in both the willingness
to take the risky bet C and, when it is indeed taken, to assign a significantly higher
probability to exit.

5 Conclusion

Imperfect recall surrounds us wherever we go. We often fail to recall where we left
our keys or parked our car. At times we struggle to remember whether we actually
got around to paying that pending electricity bill or registering for the upcoming
conference. The situation might be even worse when we think of decisions taken by
organizations, such as firms or countries, where frequently ‘the right hand doesn’t
know what the left hand is doing’. Nonetheless, the vast majority of theoretical and

123



86 M. V. Levati et al.

experimental research conducted to understand rational decision making has so far
been confined to situations of perfect recall.

Some important issues arising from imperfect recall are well illustrated by the
paradox of the absentminded driver.19 This paper joins and complements the theoret-
ical efforts devoted to the paradox by providing a positive analysis of the problem.
Specifically, we report on an experiment designed to compare behavior in a plan-
ning stage and an action stage of a decision problem featuring absentmindedness. We
find that participants tend to exit more in the action stage than in the planning stage.
This planning-action gap is robust to different parameterizations of the problem, and
is apparent in situations where participants’ choices indicate that they feel absent-
minded and in an environment that guarantees absentmindedness by imposing beliefs
in the information set exogenously. Overall, our data are in line with the provisional
conclusion reached by Deck and Sarangi (2009) based on a comparison of behavior
in an action stage and the theoretical benchmark, and strongly support our hypothesis
as derived from PR’s theoretical discussion.

Several regularities in our data are not captured by PR’s analysis, and point at a
behavioral principle which states that, although absentminded, people are affected
by what they would have done in a similar situation that does not involve absent-
mindedness. In other words, people behave as if they knew the decision node they
are at. These regularities are the following. First, when a > c > b, as in our game
tree 11, the optimal strategy is to exit. Nevertheless, some participants were partly
swayed by what they would have done had they known themselves to be in the second
decision node, namely choose to continue. Second, in the paradox maps, participants
were more likely to exit when they guessed to be in the second node. This was true
even in the IMP-WITH treatment, where guesses were simple gambles. Moreover, this
behavior was more pronounced when participants expressed high confidence in their
guess. Again, these seemingly irrational regularities can be explained by participants
sometimes behaving as if they know themselves to be in the second node.20

We see several avenues for future experimental research in the realm of absent-
mindedness. First, additional studies are required to test the conjectured behavioral
principle outlined in the previous paragraph and its relationship to PR’s analysis of
behavior under absentmindedness. Second, we focus on individual decision making
under absentmindedness induced by information load. It would be interesting to extend
our results to other manifestations of absentmindedness, and in particular absentmind-
edness in organizations. Finally, there are now sundry theoretical papers dealing with
the fact that the expected payoff differs between the planning stage and the action
stage (in addition to PR’s initial effort, notable studies include Aumann et al. 1997b;
Elga 2000; Hitchcock 2004). These provide a fertile ground for studying how people
form beliefs in situations involving imperfect recall.

Acknowledgments Financial support from the Max Planck Society is gratefully acknowledged. We thank
the members and students of the Center for the Study of Rationality in Jerusalem and the Max Planck Institute

19 Other directions of research focus on the analysis of players with bounded complexity (see, e.g., Abreu
and Rubinstein 1988; Lehrer 1988; Rubinstein 1986).
20 These patterns can be rationalized as risk-seeking behavior. We find this explanation to be implausible.
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