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Abstract A bid-offer–counteroffer mechanism is proposed to solve a fundamental
two-person decision choice problem with two alternatives. It yields a unique subgame
perfect equilibrium outcome, and leads to an intuitive overall solution that offers a rec-
onciliation between egalitarianism and utilitarianism. We then investigate the axiom-
atic foundation of the solution. Furthermore, we compare it with several conventional
strategic approaches to this setting.
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1 Introduction

Two agents have conflicting interests in two decision alternatives but only one will
be adopted. How to resolve the conflicts such that both agree on an efficient alterna-
tive? This situation captures a wide range of decision making problems in real life.
While such examples are abundant, below we present a local public good problem for
illustration.

A university is opening a new campus and will relocate two colleges there. Due to
the capacity constraint as well as the construction process, the relocation can only be
done sequentially. Both colleges prefer moving to the new campus earlier rather than
later. The costs and benefits of the relocation are different to the two colleges, which
can be clearly monitored and therefore are common knowledge. Which college should
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be relocated first? By which criterion? If a mechanism can help resolve the conflict by
compensating the college that moves secondly, then how much is the compensation?

The underlying feature of the example is that there are two alternatives with one
being more favorable to an agent and the other alternative more favorable to the other
agent, and finally one alternative is supposed to be chosen.

While such a two-agent two-alternative situation has a bargaining flavor, it cannot
be directly modeled into a standard bargaining problem a la Nash (1950) because
it has no well specified disagreement point.1 Then, if one would like to analyze the
problem from the standard bargaining point of view, a possible way is to specify the
likely disagreement point by imposing further conditions or information (e.g., using
a lottery or taking an outside option such as with zero payoffs to both players to
generate a disagreement point), but this may change the nature of the problem. Chun
and Thomson (1990a,b,c) introduce bargaining problems with uncertain disagreement
points and study the egalitarian solutions and Nash solution in such environments from
an axiomatic perspective. Among others, Peters and van Damme (1991) also studies
the role of disagreement point in characterizing bargaining solutions. Their seminal
work provides important insights and a well established axiomatic framework to study
bargaining problems, and hence, offers a useful perspective for one to analyze the cur-
rent problem in the spirit of Nash. For a recent research along this line, we refer to
Kıbrıs and Tapkı (2010).

A general binary choice problem with side payments and quasi-linear utilities has
been axiomatically investigated by Moulin (1987), where two social choice functions,
the egalitarian rule and the laissez-faire rule, are characterized. Specific public decision
problems, mainly in the context of public good provision and cost sharing, have also
been extensively studied in, among others, Moulin (1981, 1984, 1985), and Jackson
and Moulin (1992). In particular, the current research is well inspired by and closely
related to the ‘auctioning the leadership with differentiated bids’ mechanism in Moulin
(1981). Recently, Green (2005) studies a family of solutions to such problems with
two players, from an axiomatic perspective. Chambers and Green (2005) pushes this
analysis further.

The current paper is primarily taking a strategic perspective towards a decentralized
mechanism for the binary choice problem, and meanwhile we do explore the axiomatic
foundations of the solution resulted from the mechanism.2 To this end, we propose a
bid-offer–counteroffer mechanism that naturally fits the context of the problem and
explicitly allows players chances to fully exert their strength in negotiation. In the
literature, attention has been well paid to a fair way of choosing a proposer, such as
the ‘auctioning the leadership’ rule proposed by Moulin (1981) and the multi-bidding
approach proposed by Pérez-Castrillo and Wettstein (2001, 2002). And we preserve

1 More discussion on this issue can be found in Green (2005). We like to further note that while negotiation
situations without disagreement point are common and numerous such examples can be seen from the
literature mentioned in this section, there is an often neglected one: queueing problems (cf. Maniquet 2003)
are one of such, as illustrated in the above example, where it is assumed that a queue has to be organized
but no specific order is taken as a predetermined disagreement point.
2 As Nash (1953) suggests, these two approaches are complementary. And as argued by Serrano (2005),
the normative side of a solution forms a more appropriate ‘foundation’ as it studies the independent (from
game forms) principles.
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this nice design to endogenously select a proposer in our mechanism. However, the
negotiation after that is usually set to be an ultimatum game where if an offer is
rejected the game ends with a certain scenario. This does not cause problems in situa-
tions without externalities. But for binary choice problems, where externalities exist,
such a design may not suffice any more. We then incorporate a full fledged round
of negotiation into the mechanism such that players can reach an efficiently compro-
mised outcome by offer and counteroffer, no matter who is selected to be proposer.
We show that this intuitive mechanism yields a unique subgame perfect equilibrium
(SPE) outcome for generic cases, and leads to a reasonable overall solution to all types
of problems. Furthermore, in SPE the mechanism implements the efficient alternative
and each player obtains a payoff no worse than the ‘flip-a-coin’ payoff (the average
payoff of the two alternatives).

As a distinct feature of the mechanism, it solves an open problem in the literature
by offering a natural reconciliation between egalitarianism and utilitarianism defined
by Moulin (1985).3 Moulin (1985) argues in favor of a utilitarian social choice func-
tion for situations where agents have no conflicting interests, and an egalitarian social
choice function for other situations. Indeed here these two perspectives are reconciled
within the bid-offer–counteroffer mechanism. The dominant alternative will be chosen
in SPE when the mechanism is applied to the no-conflict situation, and the mechanism
will generate an egalitarian outcome in SPE when it is applied to the conflicting cases.
Apart from other interesting aspects of the mechanism, we view this property as a
major one that selects the mechanism out of the others.

While the paper is mainly driven by a strategic consideration, we also investigate
the underlying axiomatic foundation of the solution obtained. When the overall solu-
tion is restricted to the no-conflict situations, it is characterized by the properties of
efficiency and no transfer when no conflict. When it is restricted to the conflicting
cases, the solution is characterized by four properties: efficiency, balanced threat, no
influence, and additivity. When we focus on the fact that the bid-offer–counteroffer
mechanism implements the overall solution in SPE, this paper can also be seen as a
specific concretization of the result (by analyzing a very abstract stage mechanism) in
Moore and Repullo (1988) with respect to two players. With complete information,
Moore and Repullo (1988) shows that any social choice function is subgame perfect
implementable even with two agents if both of them have quasi-linear utilities, and the
corresponding mechanism needs no more than three stages.4 Here, the current paper
exactly meets these conditions.

The rest of the paper is structured as follows. The formal model and related defini-
tions are given in the next section. In Sect. 3, we introduce the bid-offer–counteroffer
mechanism and show it has a unique SPE outcome, which gives rise to the overall
solution. Axiomatic characterizations are discussed in the following section. Section 5
analyzes and compares with several conventional strategic approaches to our problem.
The final section concludes by discussing possible extensions for future work.

3 I am grateful to Hervé Moulin for an inspiring comment regarding this issue, pointing out that egalitari-
anism and utilitarianism are reconciled within one mechanism, and also thank him for suggesting the term
of overall solution.
4 See also Cremer and McLean (1987) and Maskin (1999) for related results in implementation.
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2 The model of a two-person decision problem

Formally, a two-person decision choice problem with two alternatives (in short, two-
person decision problem) is given by a pair (d A, d B) where d A = (d A

1 , d A
2 ), decision

alternative A, is a vector in R
2 (here d A

1 represents the payoff of decision alternative
A to player 1), and so is d B . The set of two-person decision problems is denoted by
2DP. A two-person decision problem (d A, d B) in matrix form is expressed as follows.

Player 1’s payoff Player 2’s payoff

Decision alternative A d A
1 d A

2
Decision alternative B d B

1 d B
2

The current paper focuses on the set of generic problems, which, for simplicity, is still
denoted by 2DP. The basic assumptions we impose to the two-person decision prob-
lems are the following: complete information, transferable utility (agents are allowed
to make monetary transfers), quasi-linear utilities, risk neutrality, and agents’ utilities
are unknown to the social planner.

An efficient alternative (in terms of the total welfare of the two players), e ∈ {A, B},
is such that de

1 + de
2 = max{d A

1 + d A
2 , d B

1 + d B
2 }.

A general type of two-person decision problems is that the two players have con-
flicting interests over the two decision alternatives. Formally, a problem (d A, d B) ∈
2DP is undominated if either d A

1 > d B
1 and d B

2 > d A
2 or d A

1 < d B
1 and d B

2 < d A
2 .

In addition, we have the decision problems with a dominant alternative. If d A > d B ,
i.e., d A

1 > d B
1 and d A

2 > d B
2 , then we say alternative A is a (strictly) dominant alter-

native. Similarly, if d B > d A, then alternative B is (strictly) dominant.
In some special cases, a decision problem may have a weakly dominant alternative.

Decision alternative A is weakly dominant to alternative B if d A ≥ d B but d A �= d B ,
that is, either d A

1 = d B
1 while d A

2 > d B
2 or d A

1 > d B
1 while d A

2 = d B
2 . Since this is a

non-generic case (the event happens with probability zero), we ignore such problems.
Below we provide two numerical examples for the undominated and dominant

cases.

Example 2.1 (Undominated) Players, 1 and 2 face two decision alternatives, A and B.

Player 1’s payoff Player 2’s payoff

Decision alternative A 100 2
Decision alternative B 0 10

Example 2.2 (Dominant) Here, decision alternative B is dominant.

Player 1’s payoff Player 2’s payoff

Decision alternative A 60 2
Decision alternative B 100 10
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A solution concept on 2DP is a function f : 2DP → R
2, where f1 and f2 are the

payoffs of players 1 and 2, respectively, according to solution f . A solution concept
f is efficient if, for any (d A, d B) in 2DP f1(d A, d B) + f2(d A, d B) = max{d A

1 +
d A

2 , d B
1 + d B

2 }. Below we define two solutions. For any (d A, d B) ∈ 2DP, the balanced
threat solution β is defined by

β1(d
A, d B) = d A

1 + d B
1

2
+ max{d A

1 + d A
2 , d B

1 + d B
2 } − d A

1 +d B
1

2 − d A
2 +d B

2
2

2
;

β2(d
A, d B) = d A

2 + d B
2

2
+ max{d A

1 + d A
2 , d B

1 + d B
2 } − d A

1 +d B
1

2 − d A
2 +d B

2
2

2
.

This is a type of equal surplus solution, as both players first get their respective aver-
age payoffs of the two alternatives, and then equally share the surplus from the total
payoffs of the efficient alternative. For any (d A, d B) ∈ 2DP, the overall solution o is
defined by

o(d A, d B) =
{

(β1(d A, d B), β2(d A, d B)) if (d A, d B) is undominated;
(de

1, de
2) if (d A, d B) is dominant.

Note that the efficient alternative e ∈ {A, B} is also the dominant alternative in a
dominant problem. That is, when we apply the overall solution to a problem (d A, d B),
it will generate the balanced threat solution if the problem is undominated, and will
yield the dominant payoffs (de

1, de
2) if it is a dominant problem.

3 The bid-offer–counteroffer mechanism

In this section we propose the bid-offer–counteroffer mechanism. The key construct of
the mechanism, learned from real-life negotiations, lies in the offer and counter-offer
processes, where players can effectively bargain over the right of choosing a decision
alternative, which generates an efficient outcome no matter who becomes the proposer.
Bid–offer–counteroffer mechanism The mechanism is played by two players, 1 and
2, and consists of three stages.

Stage 1 (bid) Both players simultaneously bid to each other. So, b1 ∈ R is
the bid made by player 1 to player 2, and b2 ∈ R is the bid
made by player 2 to player 1. The player with the higher bid
becomes the proposer, denoted as i , who pays the bid to the
other player denoted as j . In case of equal bids, one player
will be randomly selected as the proposer.

Stage 2 (offer) The proposer i makes an offer xi ∈ R to the other player j .
Stage 3 (counteroffer) The non-proposer j decides to accept the offer, or reject it

by making a counter-offer higher than the offer xi .

Case 1: j Accepts the offer xi . Then the proposer i pays the offer xi to j and wins
the right of choosing a decision alternative. Hence, the final payoff to the
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proposer equals the payoff of the chosen decision alternative less the bid
bi and offer xi made to the non-proposer j , whereas the final payoff to the
non-proposer is the payoff of the chosen decision alternative plus the bid bi

and offer xi . The game stops.
Case 2: j Rejects the offer xi by making a counter-offer y j ∈ R such that y j > xi

to the proposer i . As a result, j wins the right of choosing an alternative by
paying y j to i . Hence, the final payoff to i equals her payoff of the chosen
decision alternative less the bid bi but plus the counteroffer y j made by j ,
whereas the final payoff to j is his payoff of the chosen alternative plus the
bid bi made by i and less the counteroffer y j made to i . The game stops.

Here, we shall make it clear that throughout the paper only pure strategies are
considered when players make transfers like bids and offers.

The basic idea underlying the mechanism is that using a bidding stage to decide
(endogenously) who will initiate an offer. The offer and counteroffer stages are to
decide who will choose a decision alternative. Stage 1 is a simultaneous competition,
while stages 2 and 3 constitute a sequential competition to allocate the right of choos-
ing an alternative to the player with a higher willingness to pay for this right. The
argument for the proposer to accept the higher counteroffer is strengthened by the fact
that she was already given the opportunity to offer first. The offer was aimed for the
non-proposer to accept. Thus, it seems legitimate for her to accept a counteroffer that
is higher than her offer. If she does not want to lose the right to the non-proposer, then
she should have offered higher up to a level that the non-proposer would not compete.
Moreover, such a design of competition ensures the mechanism is budget balanced:
since offer and counteroffer are made to opponent players rather than outsiders like a
social planner, there is no welfare loss.

The design of only one round of offer and counteroffer is inspired by real life obser-
vations. Quite often negotiations end after one round of offer and counteroffer. This
happens even more frequently in housing and job markets when an outside option or
a time constraint prevails. For business joint ventures, there is a popular exit mecha-
nism called ‘Texas Shootout’ (cf. Brooks et al. 2010), a provision where one owner
proposes a price and the other owner is compelled to either purchase the proposer’s
shares or sell her own shares at the proposed price. This clause, widely included in
business contracts, and the ‘divide-and-choose’ mechanism in fair division problems
are similar examples accommodating only one round of negotiation, where the pro-
poser’s offering strategy is constrained by the other player’s choices, and no one is
allowed for any space of improvement by making ‘trial’ offer or counteroffer. Note
that the one time counteroffer idea is in the same spirit of the bilateral trading model
of Myerson and Satterthwaite (1983) and especially their double auction mechanism
where only one round of bargaining is allowed, and the one with higher price gets the
good.

Winning to be proposer does not automatically lead the player to choose a deci-
sion alternative. But this right of ‘speaking’ first is still rather important. Like in the
standard ultimatum bargaining game, the proposer here has the advantage of making
an offer in her best interest at stage 2. Yet this advantage is sufficiently restricted as
the non-proposer can counteroffer. Hence, these two forces together result in a unique
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equilibrium outcome while adequately reflect players’ overall strength in negotiation.
One can establish the logic in an alternative way. At the intermediate level, player 1
(also 2) wants to choose a favorable alternative, and therefore may like to pay player
2 to buy his agreement. But if player 2 does not agree, he can pay a higher amount to
player 1 to win the right of choosing an alternative. Then, at the upper level, players
bid to decide who can propose first.

By assuming a smallest money unit θ used in making transfers such that bids b1, b2,
offer xi and counteroffer y j are divisible by θ ,5 we obtain the following main result.

Theorem 3.1 For any (d A, d B) ∈ 2D P with θ → 0, the bid-offer–counteroffer
mechanism yields a unique SPE outcome as prescribed by o(d A, d B).

Proof We first focus on the case of undominated problems.
Undominated problem Consider an undominated two-person decision problem
(d A, d B) with d A

1 > d B
1 , d B

2 > d A
2 , and d A

1 − d B
1 > d B

2 − d A
2 (so d A

1 − d B
1 ≥

(d B
2 − d A

2 ) + θ ). Thus, we know that max{d A
1 + d A

2 , d B
1 + d B

2 } = d A
1 + d A

2 . (Note
that other cases such as d A

1 − d B
1 < d B

2 − d A
2 or d A

1 − d B
1 = d B

2 − d A
2 can be proved

along the same line as follows and are therefore omitted.) We first construct a strategy
profile as follows and show it is an SPE and it leads to the SPE payoffs as specified in
Theorem 3.1.

At stage 1, player 1 makes bid b1 = 1
2

((
d A

1 − d B
2 −d A

2
2

)
−

(
d A

1 − d A
1 −d B

1
2

))
=

d A
1 −d B

1
4 − d B

2 −d A
2

4 to player 2, and player 2 makes bid b2 = 1
2

((
d A

2 + d A
1 −d B

1
2

)

−
(

d A
2 + d B

2 −d A
2

2

))
= d A

1 −d B
1

4 − d B
2 −d A

2
4 .

At stage 2, if player 1 is chosen as the proposer, player 1 offers x1 = d B
2 −d A

2
2 to

player 2; if player 2 becomes the proposer, player 2 offers x2 = d A
1 −d B

1
2 −θ to player 1.

At stage 3, if player 2 is the non-proposer, player 2 accepts x1 if x1 ≥ d B
2 −d A

2
2

and, otherwise, rejects it by making a counteroffer y2 = x1 + θ ; if player 1 is the

non-proposer, player 1 accepts x2 if x2 ≥ d A
1 −d B

1
2 and otherwise, if x2 ≤ d A

1 −d B
1

2 − θ ,
player 1 rejects the offer, and then makes a counteroffer y1 = x2 + θ to player 2.

To see this strategy profile does constitute an SPE, we firstly look at the subgame

with respect to stage 3. If player 1 is the proposer offering x1 ≥ d B
2 −d A

2
2 at stage 2,

then at stage 3, player 2, the non-proposer, will accept it and finally get d A
2 + b1 + x1.

He has no incentive to reject it by making a higher counteroffer because that would at

5 Such ‘smallest money unit’ assumptions have been widely used in literature and particularly in auction
models such as Ausubel (2006), Sun and Yang (2009), and Roth and Sotomayor (1990, p.171), as contin-
uous bids often lead to no equilibrium. A detailed investigation on this assumption in bargaining literature
has been given in van Damme et al. (1991). For ease of exposition, we assume that all payoffs da

k , where
a = A, B and k = 1, 2, are integers (like main units of denominations such as Euro, Dollar and Pounds)
whereas θ is a sufficiently small number (like subunits of cent or penny). This guarantees all the involved
transfers are divisible by θ .
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most yield d B
2 + b1 − (x1 + θ) to player 2, which is strictly less than d A

2 + b1 + x1 as
shown below.

d B
2 + b1 − (x1 + θ) ≤ d B

2 + b1 −
(

d B
2 − d A

2

2
+ θ

)

< b1 + d B
2 + d A

2

2
= d A

2 + b1 + d B
2 − d A

2

2
≤ d A

2 + b1 + x1.

On the contrary, if x1 is lower than
d B

2 −d A
2

2 , implying that x1 ≤ d B
2 −d A

2
2 −θ , then player

2’s best response is to reject it by making the counteroffer y2 = x1 + θ . The resulting
final payoff d B

2 +b1 − (x1 + θ) is higher than that (i.e., d A
2 +b1 + x1) of accepting x1:

d B
2 + b1 − (x1 + θ) ≥ d B

2 + b1 −
(

d B
2 − d A

2

2
− θ + θ

)

> b1 + d B
2 + d A

2

2
− θ = d A

2 + b1 + d B
2 − d A

2

2
− θ ≥ d A

2 + b1 + x1.

Now suppose that player 2 is the proposer offering x2 ≤ d A
1 −d B

1
2 − θ to player 1. At

stage 3, player 1, as the non-proposer, will reject the offer by making a counteroffer
y1 = x2+θ to player 2. The final payoff to player 1 for her to do so is d A

1 +b2−(x2+θ),
which can be readily shown, in a similar way as above, that it is higher than her final
payoff d B

1 + b2 + x2 if she simply accepts x2. Note that here player 1 cannot do better
because θ is the minimal allowable transfer unit. On the other hand, if player 2’s offer

is higher than
d A

1 −d B
1

2 − θ , which implies that x2 ≥ d A
1 −d B

1
2 , then player 1 will accept

the offer and obtain the final payoff d B
1 + b2 + x2. Also similar to the above, one can

readily show that any deviation by making a higher counteroffer y1 ≥ x2 + θ can only
make her worse off.

We now turn to the subgame starting from stage 2. Given the above analysis of the
subgame with respect to stage 3, we see that if player 1 is chosen as the proposer,

at stage 2 player 1 will indeed offer x1 = d B
2 −d A

2
2 to player 2. Player 1 would not

increase the offer as otherwise, her final payoff would be reduced because player 2

will accept any offer from player 1 that is no less than
d B

2 −d A
2

2 . Meanwhile, player 1
has no incentive to lower the offer, either, because that would not increase her final

payoff. Any offer x ′
1 that is lower than

d B
2 −d A

2
2 would incur a rejection and counteroffer

x ′
1 + θ from player 2, which will then result in the final payoff d B

1 − b1 + x ′
1 + θ to

player 1. We can show as follows that this payoff is less than d A
1 − b1 − x1 that is the

final payoff when player 1 offers x1 = d B
2 −d A

2
2 to player 2.

d B
1 − b1 + (x ′

1 + θ) ≤ d B
1 − b1 +

(
d B

2 − d A
2

2
− θ + θ

)
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= d B
1 − b1 + d B

2 − d A
2

2
< d A

1 − b1 − d B
2 − d A

2

2
= d A

1 − b1 − x1.

The second inequality follows from the fact that d A
1 − d B

1 > d B
2 − d A

2 .
On the other hand, if player 2 is the proposer, at stage 2 player 2 will indeed offer

x2 = d A
1 −d B

1
2 − θ to player 1 in equilibrium. Given the equilibrium strategies with

respect to stage 3, it is obvious to see that player 2 has no incentive to lower the offer
as that would make him worse off finally. Player 2 has no incentive to increase the

offer to x ′
2 that is higher than

d A
1 −d B

1
2 − θ either, as otherwise player 1 will accept the

offer made by player 2, which will result in the final payoff d B
2 − b2 − x ′

2 to player
2. Below we show that this payoff cannot be higher than d A

2 − b2 + x2 + θ that is the
final payoff when player 2 does not deviate.

d B
2 − b2 − x ′

2 < d B
2 − b2 −

(
d A

1 − d B
1

2
− θ

)

≤ d A
2 − b2 +

(
d A

1 − d B
1

2
− θ

)
+ θ = d A

2 − b2 + x2 + θ.

The second inequality follows from the fact that d A
1 − d B

1 ≥ (d B
2 − d A

2 ) + θ .
Hence, the SPE of the subgame starting from stage 2 will generate the following final

payoffs: if player 1 is the proposer, player 1 receives the final payoff d A
1 −b1 − d B

2 −d A
2

2 ,

and player 2 obtains d A
2 + b1 + d B

2 −d A
2

2 finally. On the other hand, if player 2 is the

proposer, then player 1 receives the final payoff d A
1 +b2 − d A

1 −d B
1

2 , and player 2 obtains

d A
2 − b2 + d A

1 −d B
1

2 finally.
Then, we check the equilibrium strategy of each player at stage 1. One can read-

ily see that by taking such bidding strategy, player 1 will get the same final payoff

d A
1 +d B

1
2 + d A

1 +d A
2 − d A

1 +d B
1

2 − d A
2 +d B

2
2

2 irrespective of who is selected as proposer. So will

player 2:
d A

2 +d B
2

2 + d A
1 +d A

2 − d A
1 +d B

1
2 − d A

2 +d B
2

2
2 . No one would like to deviate from the bid-

ding strategy: lowering the bid cannot increase the final payoff, whereas increasing
the bid can only make the player worse off although it will guarantee the player to be
the proposer.

Thus, we have shown this strategy profile indeed constitutes an SPE, and the SPE
payoffs are as specified in the theorem.

Next, we show that the mechanism has one unique SPE payoff vector by a series
of claims.

Claim (a) In any SPE at stage 3, if player 2 is the non-proposer, player 2 accepts any

offer x1 from player 1 if x1 ≥ d B
2 −d A

2
2 and rejects it by making a counterof-

fer y2 = x1 + θ if x1 ≤ d B
2 −d A

2
2 − θ ; if player 1 is the non-proposer, player

1 accepts x2 if x2 ≥ d A
1 −d B

1
2 and otherwise, if x2 ≤ d A

1 −d B
1

2 − θ , player 1
rejects it by counteroffering y1 = x2 + θ to player 2.

123



510 Y. Ju

The proof of this claim is the same as above to show that the strategies at
stage 3 are indeed an SPE of the subgame.

Claim (b) In any SPE at stage 2, if player 1 is the proposer, player 1 offers x1 = d B
2 −d A

2
2

to player 2; if player 2 becomes the proposer, player 2 offers x2 = d A
1 −d B

1
2 −θ

to player 1.
There does not exist any other SPE strategy at this stage and the proof is
the same as above to show that the strategies at stage 2 are indeed an SPE
of the subgame.

Claim (c) In any SPE at stage 1, the bidding profile (b1, b2) of the two players must be
one of the following four forms: (b∗, b∗), (b∗, b∗ − θ), (b∗ − θ, b∗), (b∗ −
θ, b∗ − θ), where b∗ = d A

1 −d B
1

4 − d B
2 −d A

2
4 .

We will show that these four bidding profiles are indeed SPE strategies and
there exists no other SPE bidding profiles. There are two cases: b1 = b2 or
b1 �= b2. Moreover, here recall that following stages 2 and 3, if player 1 is

the proposer, the final payoffs to players 1 and 2 are d A
1 − b1 − d B

2 −d A
2

2 and

d A
2 + b1 + d B

2 −d A
2

2 , respectively; and if player 2 is the proposer, the final

payoffs to players 1 and 2 are d A
1 + b2 − d A

1 −d B
1

2 and d A
2 − b2 + d A

1 −d B
1

2 ,
respectively.

Case 1: b1 = b2, that is, (b1, b2) = (b, b). If this is an SPE bidding profile, it
requires that no player has incentive to make any deviation of the bid-
ding. This implies that the following four inequalities must hold. The first
inequality means that player 1 has no incentive to increase the bid; the
second means she has no incentive to decrease the bid; the third inequality
means that player 2 has no incentive to increase the bid; and the final one
means he has no incentive to lower the bid.

d A
1 −(b+θ)−d B

2 −d A
2

2
≤ 1

2

(
d A

1 −b−d B
2 −d A

2

2
+d A

1 +b−d A
1 −d B

1

2

)
;

d A
1 +b−d A

1 −d B
1

2
≤ 1

2

(
d A

1 −b−d B
2 −d A

2

2
+d A

1 +b−d A
1 −d B

1

2

)
;

d A
2 −(b+θ)+d A

1 −d B
1

2
≤ 1

2

(
d A

2 +b+d B
2 −d A

2

2
+d A

2 −b2+d A
1 −d B

1

2

)
;

d A
2 +b+d B

2 −d A
2

2
≤ 1

2

(
d A

2 +b+d B
2 −d A

2

2
+d A

2 −b2+d A
1 −d B

1

2

)
.

Solving these four inequalities, we have

d A
1 − d B

1

4
− d B

2 − d A
2

4
− θ ≤ b ≤ d A

1 − d B
1

4
− d B

2 − d A
2

4
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⇒ b∗ ∈
{

d A
1 − d B

1

4
− d B

2 − d A
2

4
− θ,

d A
1 − d B

1

4
− d B

2 − d A
2

4

}
.

Case 2: b1 �= b2. Then the only possibility is either (b1, b2) = (b, b − θ) or
(b1, b2) = (b − θ, b). The difference between their bids cannot be higher
than θ as otherwise the one who bids higher would lower the bid. Consider
(b1, b2) = (b, b − θ). If this is in equilibrium, the following two inequal-
ities must hold: player 1 has no incentive to lower the offer and player 2
has no incentive to increase the offer. (we already know that player 1 has
no incentive to raise the offer, and obviously player 2 has no incentive to
lower the offer).

1

2

(
d A

1 − (b − θ) − d B
2 − d A

2

2
+ d A

1 + (b − θ) − d A
1 − d B

1

2

)

≤ d A
1 −b−d B

2 −d A
2

2
;

1

2

(
d A

2 + b + d B
2 −d A

2

2
+ d A

2 −b + d A
1 −d B

1

2

)

≤ d A
2 + b + d B

2 − d A
2

2
.

Solving these two inequalities, we obtain

d A
1 − d B

1

4
− d B

2 − d A
2

4
≤ b ≤ d A

1 − d B
1

4
− d B

2 − d A
2

4
⇒

b∗ = d A
1 − d B

1

4
− d B

2 − d A
2

4
.

For the case that (b1, b2) = (b − θ, b), one can show it in a similar way as
above and get

b∗ = d A
1 − d B

1

4
− d B

2 − d A
2

4
.

Claim (d) In any SPE, the final payoff to player 1 is
d A

1 +d B
1

2 + d A
1 +d A

2 − d A
1 +d B

1
2 − d A

2 +d B
2

2
2

and the final payoff to player 2 is
d A

2 +d B
2

2 + d A
1 +d A

2 − d A
1 +d B

1
2 − d A

2 +d B
2

2
2 .

This follows from claims (a), (b) and (c).

Dominant problem Consider a problem (d A, d B) with B being a dominant alterna-
tive. (the opposite case that A is dominant can be proved analogously.) One can readily
show that the following strategy profile is an SPE and leads to the SPE payoff vector
specified in Theorem 3.1.
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At stage 1, both players bid 0. At stage 2, the proposer offers 0 to the non-proposer.
At stage 3, if player 2 is the non-proposer, player 2 accepts x1 if x1 ≥ 0 and, otherwise,
rejects it by making a counteroffer y2 = x1 + θ ; if player 1 is the non-proposer, player
1 accepts x2 if x2 ≥ 0 and, otherwise, rejects it by making a counteroffer y1 = x2 + θ .

Next, to show the uniqueness of the SPE outcome, one can readily verify the above
described SPE with respect to stage 3 is the unique SPE at this stage. There are two
types of SPE at stage 2. One is that a proposer can offer 0, and the other is to offer −θ .
And at stage 1, there are four SPE bidding profiles: (0, 0), (0,−θ), (−θ, 0), (−θ,−θ).
All these SPE yield the same SPE payoffs that player 1 gets d B

1 finally and player 2’s
final payoff is d B

2 . It can be readily checked that there exists no other SPE. 
�
Following Theorem 3.1, one can immediately see that in any SPE of the bid-offer–

counteroffer mechanism the efficient alternative always emerges as the chosen alter-
native, and no transfer is made to outside the game. Hence, without proof we state the
following corollary with two important properties of the mechanism.

Corollary 3.2 The bid-offer–counteroffer mechanism is efficient and budget bal-
anced.

Next, we show that the bid-offer–counteroffer mechanism is superior to a ‘flip-a-
coin’ mechanism. Hence, active negotiation is Pareto improving over this expected
outcome.

Corollary 3.3 The SPE outcome of the mechanism yields a payoff that is no less than
the average payoff of the two alternatives for every player.

Proof By Theorem 3.1, for an undominated problem, in SPE player 1 (analogous

for player 2) receives β1(d A, d B) = d A
1 +d B

1
2 + max{d A

1 +d A
2 ,d B

1 +d B
2 }− d A

1 +d B
1

2 − d A
2 +d B

2
2

2 . If

d A
1 + d A

2 ≥ d B
1 + d B

2 , we have max{d A
1 + d A

2 , d B
1 + d B

2 } ≥ d A
1 +d A

2
2 + d B

1 +d B
2

2 , which

implies that β1(d A, d B) ≥ d A
1 +d B

1
2 . This also holds when d A

1 + d A
2 ≤ d B

1 + d B
2 . For

dominant problems, it is obviously true. 
�
This corollary has an intuitive implication. Since for any decision choice problem

both players have equal a priori rights of choosing an alternative, a natural and fair
(despite inefficient) benchmark is to give both players equal chances to choose. Hence,

taking player 1 for example,
d A

1 +d B
1

2 is her expected payoff under this random assign-
ment mechanism. Then, it seems reasonable to require any ‘real’ solution (in the sense
that players could actively negotiate to resolve the conflict via a mechanism) to be no
worse than these expected payoffs.

To highlight the result of Theorem 3.1, we note a desirable feature of the bid-offer–
counteroffer mechanism that it offers a natural reconciliation between egalitarianism
and utilitarianism defined by Moulin (1985). That is, for an undominated problem,
the solution we get in SPE is in the same spirit of Moulin’s egalitarian social choice
function (one concrete case is referred to as the equal sharing above a convex decision
social choice functions, cf. Chun (1986, 2000)), whereas the solution for the dominant
problems is in the same spirit of a utilitarian social choice function by Moulin (1985).
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4 Characterization

In this section, we study a solution from the axiomatic perspective. Note that the
undominated and dominant problems, as two different types, may require different
properties due to their own distinctive features. For dominant problems, since players
have no conflict with the dominant alternative (as any rational player will act so), we
require a solution to simply select the dominant alternative such that the players get
the respective payoffs.
Dominance: A solution concept f on 2DP is of dominance if for any (d A, d B) in 2DP
f (d A, d B) = (d A

1 , d A
2 ) when d A > d B , and f (d A, d B) = (d B

1 , d B
2 ) when d B > d A.

One readily verifies that the overall solution suggested in Theorem 3.1 satisfies the
property of dominance. In addition, one can take a slightly different perspective to
characterize the solution by using efficiency and the property of no transfer when no
conflict.
No transfer when no conflict: A solution concept f on 2DP satisfies no trans-
fer when no conflict if for any (d A, d B) in 2DP

(
f1(d A, d B), f2(d A, d B)

) ∈{
(d A

1 , d A
2 ), (d B

1 , d B
2 )

}
when d A > d B or d B > d A.

Here we provide an intuitive discussion on dominance and no transfer when no
conflict. In real-world negotiations, when a dominant alternative (hence a uniquely
efficient one) is available, we can understand that an agent may renounce the privi-
lege of being the proposer (conditional on the second agent agreeing to be proposer,
otherwise, she would reclaim it) and leave the right of making a choice to the sec-
ond agent. In that case, the second agent will choose the efficient alternative anyway,
whereas it is not credible for him to demand any transfer from the first agent by
threatening to adopt the dominated alternative. Of course, in case he does not make
a choice but gives the right back to the first agent, she will be happy to choose the
efficient alternative, too. Both agents would strictly prefer avoiding the intervention
of the chance of nature as the expected outcome is strictly dominated by the effi-
cient alternative. Alternatively, one can consider a mechanism that a social planner
asks the agents to reveal their preferences and then implement the efficient alternative
without any transfer. In this case, no agent would have incentive to misrepresent his
or her preference. The reason we specifically studied the bid-offer–counteroffer with
respect to this situation is not only for completeness of analysis, but also to show
that the same mechanism can apply to both types of problems and obtain reasonable
solutions.

Below we offer properties that seem relevant to a solution for the type of undomi-
nated problems where conflict arises between the players.
Balanced threat (or equal impact): A solution concept f satisfies the balanced threat
property if for any (d A, d B) in 2DP with d A

1 −d A
2 = d B

2 −d B
1 (which is equivalent to the

condition of d B
1 −d B

2 = d A
2 −d A

1 or d A
1 +d B

1 = d A
2 +d B

2 ), f1(d A, d B) = f2(d A, d B).
An intuitive interpretation of this property can be as follows. Suppose player 1

prefers alternative A while player 2 prefers B. Then, d A
1 −d A

2 measures the relative (to
player 2) well-off of player 1 if her preferred choice is adopted; similarly, d B

2 − d B
1 is

for player 2. When these two relative well-offs are equal, it implies that both players
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can generate equal impact to the other following their choices on alternatives. Hence,
they should get the same payoff.
No influence: A solution concept f is said of possessing the no influence property
if for any (d A, d B) in 2DP where d A

1 = d B
1 and d A

2 = d B
2 , f1(d A, d B) = d A

1 and
f2(d A, d B) = d B

2 .
This is a rather weak property. Since every player will get the same payoff whichever

alternative is chosen, the two alternatives are essentially identical. Consequently, no
player can effectively threaten the other by adopting a ‘different’ alternative. Hence,
each player will just get what an alternative generates to him and cannot demand any
transfer.
Additivity: A solution concept f on 2DP is additive if for any two problems (d A, d B)

and (d̄ A, d̄ B) in 2DP such that max{(d A
1 +d̄ A

1 )+(d A
2 +d̄ A

2 ), (d B
1 +d̄ B

1 )+(d B
2 +d̄ B

2 )} =
max{d A

1 + d A
2 , d B

1 + d B
2 } + max{d̄ A

1 + d̄ A
2 , d̄ B

1 + d̄ B
2 }, f (d A + d̄ A, d B + d̄ B) =

f (d A, d B) + f (d̄ A, d̄ B).
Like the standard additivity axiom in the literature, here it simply means that the

solution of a third problem as the sum of two given problems should be equal to the
sum of the solutions of the two given problems. The condition we imposed there basi-
cally implies that the two given problems have the same efficient alternative: if A is
the efficient alternative for the first problem, so is for the second, and hence for the
third. This condition therefore ensures that all these three problems are the same in
structure, which makes the property weaker than without the condition.

Theorem 4.1 The balanced threat solution is the unique solution concept on 2DP
that satisfies the properties of efficiency, balanced threat, no influence, and additivity.

Proof It is easy to verify that the balanced threat solution β satisfies these four prop-
erties. Now we show if a solution concept f satisfies these four properties, then f
necessarily is β. Suppose (d A, d B) is given as follows.

(d A, d B) =
(

d A
1 d A

2
d B

1 d B
2

)
.

Suppose that (d A
1 −d A

2 )−(d B
2 −d B

1 ) = z. Thus, d A
1 −(d A

2 + z
2 ) = (d B

2 + z
2 )−d B

1 . Then,
we construct a second problem (d̄ A, d̄ B) and a third problem (d A + d̄ A, d B + d̄ B) as
follows,

(d̄ A, d̄ B) =
(

0 z
2

0 z
2

)
, (d A + d̄ A, d B + d̄ B) =

(
d A

1 d A
2 + z

2
d B

1 d B
2 + z

2

)
.

By efficiency and balanced threat, for the problem (d A + d̄ A, d B + d̄ B) we have

f1(d
A+d̄ A, d B+d̄ B) = f2(d

A+d̄ A, d B+d̄ B) = max{d A
1 +d A

2 + z
2 , d B

1 +d B
2 + z

2 }
2

.

By no influence, for the second decision problem (d̄ A, d̄ B) we have f1(d̄ A, d̄ B) =
0 and f2(d̄ A, d̄ B) = z

2 . According to efficiency, for the first decision problem
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(d A, d B) we know that f1(d A, d B) + f2(d A, d B) = max{d A
1 + d A

2 , d B
1 + d B

2 }. Us-
ing additivity, we have f1(d A + d̄ A, d B + d̄ B) = f1(d A, d B) + f1(d̄ A, d̄ B). Since
f1(d̄ A, d̄ B) = 0, we obtain that

f1(d
A, d B) = f1(d

A+d̄ A, d B+d̄ B)

= max{d A
1 +d A

2 + z
2 , d B

1 +d B
2 + z

2 }
2

= max{d A
1 +d A

2 , d B
1 +d B

2 }+ z
2

2

= d A
1 +d B

1

2
+max{d A

1 +d A
2 , d B

1 +d B
2 } − d A

1 +d B
1

2 − d A
2 +d B

2
2

2
= β1(d

A, d B).

By efficiency, one can readily verify that f2(d A, d B) = β2(d A, d B). 
�

5 Comparison with conventional approaches

In this section we examine and compare several conventional methods in the literature
that could be applied to our model. Given the purpose for comparison only, the detailed
and complete proofs of the related results are skipped but can be obtained from the
author.

Consider a simple simultaneous bidding mechanism where the player with the
higher bid chooses an alternative by paying the bid to the other player. (Winner is
randomly selected in case of equal bids.) Unfortunately, this mechanism has multiple
SPE outcomes when the smallest money unit θ applies. This indeterminacy is due to
that the bid mingles the right of suggesting a proposal with the right of finally choosing
an alternative. Below we construct a mechanism to separate the two components.
The bid-offer mechanism The mechanism consists of three stages. Stage 1 is the
same bidding stage, where the winner is denoted by i , and the other one is denoted
by j . At stage 2, i makes an offer xi ∈ R to j . At stage 3, j accepts or rejects the
offer. In case of acceptance, i pays xi to j , and then chooses an alternative. Hence,
both players receive the payoffs corresponding to the chosen alternative. If j rejects
the offer, then an alternative will be randomly chosen, and leads to the corresponding
payoffs.

Theorem 5.1 For any (d A, d B) ∈ 2D P, with smallest money unit θ , the bid-offer
mechanism yields multiple SPE outcomes.

Why again indeterminacy arises? See that an alternative will be randomly chosen in
case of rejection. So the reservation payoff for each player is his or her expected payoff
of the two alternatives happening with equal probability. Suppose d A

1 −d B
1 > d B

2 −d A
2 ,

then if player 2 is the proposer, he would rather make an offer be rejected and leave the
choice to nature. Thus, the efficient alternative may not be chosen. If player 1 is the
proposer, she would make an offer be accepted and implement the efficient alternative.
Such asymmetric outcomes make it impossible to obtain a unique SPE outcome if the
bids are discrete in θ .
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Hence, a successful mechanism to the problem implies that the efficient outcomes
should be realized no matter who is the proposer. One way to achieve it is to allow for
more interaction between both players after the bidding stage a la Rubinstein (1982).
Alternating-offer bargaining Players 1 and 2 alternate offers. In round one, player 1
proposes an alternative and offers x ∈ R to player 2. Player 2 then accepts or rejects.
If he accepts, then the alternative is chosen such that payoffs are realized and the
offer is paid to player 2. In case of rejection, the game breaks down with probability
γ ∈ (0, 1) and nature randomly chooses an alternative; and with probability 1 − γ it
enters the second round where player 2 suggests an alternative and offers y ∈ R to
player 1. Then player 1 accepts or rejects. Rejection will incur the same break-down
probability. The game continues in this fashion until an agreement is reached.

Theorem 5.2 For any (d A, d B) ∈ 2D P, in the limit, as γ → 0, the payoffs obtained
by the two players 1 and 2 respectively in the unique SPE of the alternating-offer game

converge to the following,
d A

1 +d B
1

2 + 1
2

(
max{d A

1 + d A
2 , d B

1 + d B
2 } − d A

1 +d B
1

2 − d A
2 +d B

2
2

)

for player 1 and
d A

2 +d B
2

2 + 1
2

(
max{d A

1 +d A
2 , d B

1 +d B
2 }− d A

1 +d B
1

2 − d A
2 +d B

2
2

)
for player 2.

When applying to dominant problems like Example 2.2, this alternating-offer bar-
gaining approach has a restriction, as it violates the property of no transfer when no
conflict: the SPE payoffs (92, 18) requiring player 1 to transfer eight to player 2 when
dominant alternative B is finally chosen. This is due to the specification of the model
where in case of breakdown, the chance of nature takes effect, and ‘perturbed’ the
interaction between the two players.6

In a similar setting as the current paper, Moulin (1981) has commented on the issue
of using a lottery in determining a disagreement point. He pointed out that implement-
ing an efficient and just (anonymous and neutral) decision could be more difficult when
no decision or lottery can play the role of a status quo (i.e., a disagreement point). To
tackle the problem, he constructed the ‘auctioning the leadership with differentiated
bids’ (ALDB) mechanism, which is of rich implication to our context and can well be
applied here.
The ALDB mechanism It has three stages. At stage 1, players bid, but the one with a
lower bid becomes the proposer, and the other player pays this bid to the proposer. So
the bid here is actually a demand.7 In case of equal bids, a proposer will be selected
randomly. At stage 2, the proposer makes an offer to the non-proposer. At stage 3,
the non-proposer accepts or rejects the offer. If accepting it, then the proposer pays
the offer, chooses an alternative so that the final payoffs are realized, and the game
stops. Rejection leads the non-proposer to choose an alternative such that its payoffs
are realized. The game stops.

6 The SPE payoffs of the alternating-offer game can be obtained via a mechanism involving no repetition
of making offers. That is, one can modify the bid-offer mechanism such that after the bidding stage, the
proposer suggests a combination of an alternative and a monetary transfer, which the other player can accept
or reject, and still nature chooses an alternative at random in case of rejection.
7 The equilibrium outcome will not change if we use the protocol that the player with higher bid becomes
the proposer and pays the bid to the opponent. Then, in equilibrium players will make negative bids.
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Theorem 5.3 For any (d A, d B) ∈ 2D P, the ALDB mechanism yields a unique SPE
payoff vector, called the ALDB solution, μ(d A, d B), which is defined by

μ1(d
A, d B) = max

{
d A

1 , d B
1

}
+ 1

2

(
max

{
d A

1 + d A
2 , d B

1 + d B
2

}
− max

{
d A

1 , d B
1

}

− max
{

d A
2 , d B

2

} )
;

μ2(d
A, d B) = max

{
d A

2 , d B
2

}
+ 1

2

(
max

{
d A

1 + d A
2 , d B

1 + d B
2

}
− max

{
d A

1 , d B
1

}

− max
{

d A
2 , d B

2

} )
.

A solution concept f satisfies equal concession if for any (d A, d B) in 2D P,

max{d A
1 , d B

1 } − f1(d A, d B) = max{d A
2 , d B

2 } − f2(d A, d B).

Theorem 5.4 The ALDB solution is the unique solution concept for all two-person
decision problems that satisfies efficiency and equal concession.

The ALDB mechanism conveniently overcomes the issues present in the previ-
ous mechanisms of this section. Its well-characterized solution serves for a bench-
mark for other explorations. As an important feature, this mechanism and its solution
favor the player with a higher payoff of the alternatives: irrespective of min{d A

1 , d B
1 }

and min{d A
2 , d B

2 }, so long as max
{
d A

1 , d B
1

} ≥ max
{
d A

2 , d B
2

}
, then μ1(d A, d B) ≥

μ2(d A, d B). Hence, this naturally gives rise to its opposite variant, called the equal
well-being solution, following an idea making players equally well off based on their
respective least payoffs. The equal well-being solution ν(d A, d B) of a decision prob-
lem (d A, d B) ∈ 2D P is defined by

ν1(d
A, d B) = min

{
d A

1 , d B
1

}
+ 1

2

(
max

{
d A

1 + d A
2 , d B

1 + d B
2

}

− min
{

d A
1 , d B

1

}
− min

{
d A

2 , d B
2

} )
;

ν2(d
A, d B) = min

{
d A

2 , d B
2

}
+ 1

2

(
max

{
d A

1 + d A
2 , d B

1 + d B
2

}

− min
{

d A
1 , d B

1

}
− min

{
d A

2 , d B
2

} )
.

Apparently, both the ALDB solution and the equal well-being solution take polar
views. Thus, the average of these two solutions offers a natural compromise. Indeed,
this will lead to and further help justify the balanced threat solution introduced earlier
in the paper.

6 Conclusion

This paper studies a fundamental decision choice problem using both strategic and
axiomatic approaches. The bid-offer–counteroffer mechanism consists of three ele-
ments that work well and cohere logically: bid to initiate an offer, offer to win decision
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right, and counteroffer to rule out unreasonable offers. Offer and counteroffer work
together in making a solution reflect the comparison of negotiation strength between
the two players, while guaranteeing the efficient outcome. Among those desirable fea-
tures discussed in the paper, we highlight that the mechanism leads to a reconciliation
between egalitarianism and utilitarianism introduced in Moulin (1985).

For possible extensions of the model, one interesting direction is about the scenario
with more decision alternatives. There may exist two ways to address it. One is that all
the alternatives are available to both players so that either player can choose any alter-
native should she win the right of making a choice. Then, to get a similar result as in
the current paper, our conjecture for constructing a relevant mechanism is to appropri-
ately play the bid-offer–counteroffer mechanism twice, with the first time generating
the second best outcome dependent on each player’s highest possible payoff, and the
second time leading to the efficient solution built on this second best outcome. The
other way is in a similar spirit as in de Clippel and Eliaz (2011) such that each player
will have a set of alternatives that the other player cannot choose from. Then, the prob-
lem becomes even more strategic. An immediately related extension along this line
is to introduce cooperation, with which the alternatives become essentially variable
disagreement points. That is, on top of those disagreement points there is an efficient
payoff for players to negotiate.

No doubt that generalizing the analysis to situations with more than two players is
interesting as well, but can be highly challenging. Here we offer a very preliminary
idea, based on three players for illustration, which might be useful for future inves-
tigation. Players firstly participate in a multi-bidding stage a la Pérez-Castrillo and
Wettstein (2001, 2002) to select the first proposer. Suppose player 1 wins and then
she waits. Next, the remaining two players, 2 and 3, play the bid-offer–counterof-
fer mechanism. Here, they use offer and counteroffer to compete for becoming the
representative of the coalition {2, 3}, rather than directly for the right of choosing
an alternative. And then, player 1 makes offer to player 2 (suppose he becomes the
representative) and if he rejects, he can make a counteroffer to player 1. The winner
at this stage will have the right to finally choose an alternative. The other players will
receive the payoff associated to this alternative besides the transfers (bid and offer)
made at the relevant stages.

Naturally one may consider studying all such problems with incomplete informa-
tion. Here please note that while one can tackle the problem from a mechanism design
point of view,8 there is an increasingly interesting and demanding analytical frame-
work, i.e., axiomatic studies under incomplete information (cf. de Clippel 2010 and
de Clippel et al. 2010), which would help us to gain further insights.

Finally, concerning applications, the suggested mechanism may apply to the stra-
tegic studies for the bankruptcy problem and the NIMBY problem,9 as well as
queueing problems. It can also be used to analyze concrete economic settings like
industrial organization and the competition policy. In particular, it will shed light
on the research of endogenous timing in duopoly markets from both theoretical

8 One possible way seems to apply the idea of Qin and Yang (2009) to this context, where now the essential
challenge is to handle the externalities of decision alternatives.
9 Surveys for these two problems can be found in Thomson (2003) and Thomson (2010), respectively.
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(cf. Hamilton and Slutsky 1990 and van Damme and Hurkens 1999) and experimental
(Fonseca et al. 2006) perspectives.
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