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Abstract Recently there has been a growing interest in evolutionary models of play
with endogenous interaction structure. We call such processes co-evolutionary dynam-
ics of networks and play. We study a co-evolutionary process of networks and play
in settings where players have diverse preferences. In the class of potential games we
provide a closed-form solution for the unique invariant distribution of this process.
Based on this result we derive various asymptotic statistics generated by the co-evo-
lutionary process. We give a complete characterization of the random graph model,
and stochastically stable states in the small noise limit. Thereby we can select among
action profiles and networks which appear jointly with non-vanishing frequency in the
limit of small noise in the population. We further study stochastic stability in the limit
of large player populations.

Keywords Potential games · Network evolution · Heterogeneous populations ·
Inhomogeneous random graphs · Large deviations

1 Introduction

A co-evolutionary process of networks and play (Staudigl 2010b) is a stochastic
dynamic process, where the interaction structure of the players evolves over time
as a function of their chosen actions, which are themselves dynamic variables. These
processes combine elements from evolutionary game theory with dynamic random
graph theory. As such, any co-evolutionary model consists of a specification what
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180 M. Staudigl

the players do in the event of action adjustments and network adjustments.1 These
two events combined gives rise to a stochastic process on the product set of action
profiles and networks. Studying these stochastic processes is in general complicated.
However, Staudigl (2011) presents a model where analytical results can be obtained.
In this previous paper we have focused on potential games (Hofbauer and Sigmund
1988; Monderer and Shapley 1996), combined with evolutionary game dynamics of
the logit form.2 The present paper provides an extension of this model along various
lines.

1.1 Outline of the model and main results

First, we present an evolutionary process where players have heterogeneous prefer-
ences. Since (exact) potential games require a strong form of symmetry in game–the-
oretic models, this provides a significant extension to the setting of Staudigl (2011).
We introduce payoff heterogeneity, by allowing players to have an idiosyncratic util-
ity term, which is randomly determined before the co-evolutionary process starts. In
a certain sense, this model can be interpreted as a Bayesian population game in the
sense of Ely and Sandholm (2005). However, our population game is formulated on
the individual player level, while a Bayesian population game is an aggregated ver-
sion thereof. We will make this connection precise in Sect. 4.2 of this paper.3 Second,
our network formation dynamics is dependent of the size of the population. This is
achieved by allowing the rates at which players create the network to depend on the
population size. The idea is that, in a large population, not all players will be able
to connect to everybody else, but only to a small subset of the population. Given
these extensions, the present paper presents some new results, which are outside the
framework of Staudigl (2011). We sketch these results briefly, before we start with the
formal model.

As in Staudigl (2011), our analysis of the co-evolutionary process is focused on the
long-run (or ergodic) properties of the stochastic process. Hence, our starting point is
the characterization of the invariant distribution of the process, which is unique thanks
to the presence of behavioral noise (or simply noise). Building on a theorem proved
in Staudigl (2011), we provide a closed-form expression for this invariant probability
measure. However, in the present model the invariant measure has to be interpreted
as a random element of a set of invariant measures. This is because the realized type

1 Related co-evolutionary models are Jackson and Watts (2002) and Goyal and Vega-Redondo (2005). The
textbook by Vega-Redondo (2007) provides some alternative models in this direction. A recent survey of
random graph models can be found in Durrett (2007).
2 The logit dynamics is a very attractive alternative to the best-response with mutations model pioneered
by Kandori et al. (1993) and Young (1993). The seminal reference in game theory seems to be Blume
(1993), although this decision model has a long tradition in the discrete-choice literature. See, Anderson
et al. (1992) for a discussion and references.
3 Allowing for payoff heterogeneity allows us to define co-evolutionary processes for concrete economic
phenomena. In an implementation problem Sandholm (2007) studies such games, assuming that players
care about the population average behavior of the opponents. Our model is formulated in different lines,
but we extend it to general random interaction structures. Young (2003) considers the diffusion of a new
technology in exactly the class of games we study here, but he assumes a given fixed interaction structure.
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Co-evolutionary dynamics and Bayesian interaction games 181

profile affects the shape of the invariant distribution, so that every possible realization
of the type profile induces a new invariant distribution.

Next we prove a general representation theorem, stating that a co-evolution-
ary process of networks and play generates so-called inhomogeneous, or gener-
alized random graphs. This type of random graph has been studied in physics
and mathematics intensively (see, e.g. Söderberg 2002 and Bollobás et al. 2007).4

This result is an extension of Staudigl (2011), where player heterogeneity was
ignored. We establish this fact by proving a rather general characterization theo-
rem, to be found in Appendix A of the present paper. This result establishes an
interesting and new connection with random graph theory and evolutionary game
dynamics.

We then proceed by studying more in detail the role of the noise level, and
the population size, on the structure of the invariant distribution. This kind of
analysis of weak limits of the invariant measure is well established in evo-
lutionary game theory as stochastic stability analysis.5 Our stochastic stability
analysis is divided into two categories:6 First, we investigate stochastic stabil-
ity in the small noise limit. In this analysis we want to characterize the sup-
port of the invariant distribution as the behavioral noise parameter vanishes. A
population state contained in the support of this limiting measure is an action
profile and a network, which is observed with a non-vanishing relative fre-
quency in the limit of small noise. Under mild assumptions on the transition
rates, stochastically stable states in the small noise limit coincide with the set
of potential maximizers of a suitably defined potential function. Although this
result is similar to the findings in Staudigl (2011), it provides an extension,
as the potential function has to take care of the player heterogeneity in the
population.

The dependence on the size of the population allows us to perform a stochastic
stability analysis in the large population limit. A complication arises in this limit
since the state space varies with the number of players. Thus, if we take this limit
seriously we would have to define (i) a model of limit graphs, and (ii) a definition
of limit action profiles describing the population with countably many players. In
principle the characterization of the limit properties of the random graph model gen-
erated by the co-evolutionary process can be done, using the characterization results
obtained for the finite model, and combining results from the literature on random
graphs (see Remark 3). We will not pursue this analysis in this paper explicitly,
but refer to the relevant literature. In this paper we are much more interested in
characterizing the probability law of aggregate behavior, captured by the empiri-
cal distribution of actions and types among the players. This setting provides the

4 In the field of social and economic networks this random graph has been used by Golub and Jackson
(2010) (who call it a multi-type random network) to study the influence of homophily in models of social
learning.
5 This literature originated in the seminal papers by Kandori et al. (1993) and Young (1993). Blume (1993)
is the seminal reference for stochastic stability in games with a fixed local interaction structure. The recent
textbook Sandholm (2010b) provides a state of the art description of this technique.
6 We follow the terminology used by Sandholm (2010a).
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finite-population analogue of the the Bayesian population games introduced by Ely
and Sandholm (2005). We study in detail the long-run probability law of action-type
distributions, which is derived by a careful aggregation procedure from the invariant
distribution of the co-evolutionary process. In the limit of large player populations
we want to determine the limit of this sequence of laws, in the sense of weak con-
vergence of probability measures. Instead of characterizing the weak limit of this
sequence of laws explicitly, we use the theory of large deviations to give a charac-
terization of the support of the limiting measure. In the language of large deviations
theory, this requires the identification of a rate function, measuring the exponential
rate of decay of the stationary distribution weights. We provide such a characteriza-
tion, and describe the set of maximizers of the rate function, which corresponds to
the set of action-type distributions on which the limiting measure tends to concen-
trate.

The organization of the paper is as follows: In Sect. 2 we describe the game theoretic
model and the dynamic evolutionary process of networks and play. Sect. 3 contains
the characterization of the invariant distribution of the co-evolutionary process, and
we provide the representation theorem for the random graph model. Sect. 4 contains
the stochastic stability analysis. Sect. 4.1 is devoted to stochastic stability in the small
noise limit, while Sect. 4.2 contains the large population limit results. Some technical
details and proofs are provided in Appendices A and B.

2 The model

2.1 Interaction games

An interaction game consists of a finite number of players [N ] = {1, 2, . . . , N } and a
finite set of actions Ai for each player i ∈ [N ]. We assume that all players make choices
from the same common action set Ai ≡ A = {1, . . . , n}. We denote by ai the action of
player i . Types of the players are contained in the finite set� := {θ1, . . . , θK }, where
each element of this set is a function from A to R. Thus, each type can be identified
with a vector θk ∈ R

n , so that a probability distribution over types is an element of the
unit simplex spanned by the K vectors θ1, . . . , θ K .7 The type of a player is a realiza-
tion of a�-valued random variable τ̃i . A realization is denoted by τi . An action profile
is a list a := (a1, . . . , aN ), and a (realized) type profile is a list τ := (τ1, . . . , τN ).
For a given number of players N , we call G[N ] the set of undirected simple graphs
(networks) on the vertex set [N ]. We identify a network with a list of {0, 1}-valued
functions denoted by g = (gi j )(i, j)∈[N ]2 . If gi j = 1 then there is an edge connecting

7 To make this set sufficiently rich, we assume that the collection of types {θ1, . . . , θ K } is an affinely
independent set, i.e. for every collection of scalars λ1, . . . , λK ∈ R not all zero, we have

K∑

k=1

λkθk = 0 and
K∑

k=1

λk = 0 ⇒ λk = 0 ∀k = 1, 2, . . . , K .

As is well-known, this assumption guarantees that the simplex�(�) is a set of K − 1 dimensions, and just
requires that the elements of the type space are identifiable as distinct points.
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Co-evolutionary dynamics and Bayesian interaction games 183

vertex i with j , and vice versa. Finally, we denote by g ⊕ (i, j) the graph obtained
from g by adding the edge between vertex i and j , and g � (i, j) is the graph obtained
from g by deleting the edge (i, j).

We consider games in which the utility function of the players consists of two parts.
The first component is a common utility term, which one may think of as the external-
ities the players exert on each other. The second component is an idiosyncratic payoff
term which depends on the player’s own choice, but varies from player to player in a
random way. Given an action profile a and a profile of types τ , the (ex-post) payoff of
player i is assumed to be

Ui (a, g, τi ) =
∑

j �=i

gi jv(ai , a j )+ τi (ai ).

In many applications it is conceivable that the common utility displays a symmetry
property of the form

v(a, b) = v(b, a) ∀a, b ∈ A.

Interaction games with such a partnership structure capture situations where all agents
have the same reward function, and the payoff function of every player is the sum of
all per-interaction rewards. However, having the partnership structure does not imply
that all agents earn the same payoff in the interaction game since the interaction model
will in general prescribe different interactions to different players.

An interaction game is played as follows: First we fix the number of players N ∈ N.8

Then each player learns his own type τi independently of any other player. The inde-
pendent probability that player i will be of type θk is exogenously fixed, and given
by some scalar qk ∈ (0, 1). The probability vector q := (q1, . . . , qk) ∈ int�(�)
is called the common prior.9 It is regarded as a parameter of the model. Given the
realized type profile τ ∈ �N , players choose their actions and form the interaction
network according to a co-evolutionary process of networks and play, as described
below.

2.2 Co-evolution with noise

Following Staudigl (2011), we introduce a co-evolutionary process as a time-homo-
geneous Markov jump process {Xβ,τN (t)}t≥0, taking values on the finite state space
X N ≡ AN × G[N ].10 An element of this space is denoted by x = (a, g) and is
called a population state. The process must be specified for the events of action
revision, link creation and link destruction. The process of action revision is a

8 The case N = 1 is trivial, but technically allowed.
9 The set int�(�) are those elements of �(�) with full support. The assumption that the common prior
lies in this set is without loss of generality.
10 The construction of such a process is standard, so that we omit technical details. For a thorough account
of Markov processes in continuous time see, e.g., Ethier and Kurtz (1986).

123



184 M. Staudigl

random process defined for a given configuration of the network. It is the stan-
dard component of an evolutionary model, where agents receive randomly revi-
sion opportunities, and update their actions given the actions of their opponents
and the network of the previous period. The other two processes model the evo-
lution of the network. For these dynamics we take the action profile of the agents
of the previous period as given and let the links in the network be created or
destroyed. As is natural in the context of jump processes, we assume that in each
updating step only one player may revise his action, or one link will be created or
destroyed. The rates at which these events take place are described by the generator
η
β,τ
N = [ηβ,τN (x, x′)]x,x′∈X N . The initial population state Xβ,τN (0) is chosen according

to some arbitrary probability law on the set X N . We now introduce the generator of
the process.

Action adjustment: In case of a revision opportunity we assume that the agent
switches to action a ∈ A with probability determined by the log–linear response
function

(∀a ∈ A) : 	i,β
a (x|τi ) = exp

[
β−1Ui (a, a−i ), g, τi )

]
∑

b∈A exp
[
β−1Ui [(b, a−i ), g, τi ]

] . (1)

The rate of the transition x → x′ = [(a, a−i ), g] is

η
β,τ
N (x, x′) = λ1	

i,β
a (x|τi ),

where λ1 is a non-negative constant, interpreted as the rate of the action revision
process.

Link creation: A process of link creation describes the rates at which the indicator
functions (gi j ) j>i flip from 0 to 1. These rates are defined via an attachment mech-
anism. An attachment mechanism is a n×n matrix Cβ,N = [cβ,N (a, b)](a,b)∈A×A,
where the scalar cβ,N (a, b) is interpreted as the rate that a player who is using
action a meets a player who is playing action b. We make the assumption that
these rates are of the form

cβ,N (a, b) = 2

N
exp[v(a, b)/β] ∀(a, b) ∈ A × A. (2)

The rate of a transition x = (a, g) → x′ = [(a, g ⊕ (i, j)] is then given by

η
β,τ
N (x, x′) = λ2(1 − gi j )

2

N
exp[v(ai , a j )/β],

where λ2 is the rate of the network formation process.
Link destruction: A process of link destruction describes the rates at which the indica-

tor functions (gi j ) j>i flip form 1 to 0. These rates define a volatility mechanism.
For each pair of players (i, j) we define the rate of link destruction as

w
β,N
i j (τ ) = ξβ,Nτi ,τ j

(3)
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Co-evolutionary dynamics and Bayesian interaction games 185

where ξβ,Nθk ,θl
≡ ξ

β,N
k,l is the volatility rate of a link between a player of type θk

and a player of type θl . We identify the volatility mechanism with the K × K

matrix �β,N =
(
ξ
β,N
k,l

)

1≤k,l≤K
. We assume that the following conditions are

satisfied:
(SYM) ξβ,Nkl = ξ

β,N
lk for all 1 ≤ k, l ≤ K ;

(SNB) There exists a function ξ̄ β,N : � × � → R+ ∪ {∞} which satisfies
limβ→0 βξ̄

β,N
k,l = 0 for all 1 ≤ k, l ≤ K such that

0 < ξ N ≤ ξ
β,N
k,l ≤ c exp(ξ̄ β,Nk,l ) (4)

holds uniformly in β ∈ (0,∞) for some constants ξ N and c > 0.
The rate of the transition x → x′ = (a, g � (i, j)) is then given by

η
β,τ
N (x, x′) = λ2gi jw

β,N
i j (τ ).

For positive β the Markov process {Xβ,τN (t)}t≥0 is easily seen to be ergodic.

Hence, it possesses a unique invariant distribution μ
β,τ
N , whose full character-

ization will be given in the next section. We close this section with a few
remarks.

Remark 1 – For several properties of the model we have analytical answers without
assuming the specific form for the attachment mechanism (2). In Staudigl (2010c)
we present a much more general family of stochastic processes. However, the
closed form of the stationary distribution relies heavily on this assumption. Since
we make use of this closed-form in our equilibrium selection exercise we present
here the more restrictive version.

– We have modeled the link creation process as only depending on the actions of
the players, whereas the link destruction process depends only on the types of
players. This modeling strategy is useful in order to disentangle the effect player
heterogeneity has on the long-run network structure.

– To be fully clear, the rates of action adjustments (λ1) and network formation
(λ2) are constant. Hence, although the rate of a meeting of players i and j ,
Eq. (2), is decreasing in the population size N , the frequency that the pro-
cess undertakes a network adjustment step is independent of the population
size. The interpretation of the dynamics is that with uniform rate λ2 an edge
(i, j) is selected. If the edge does not currently exist, it is created with rate
cβ,N (ai , a j ). Otherwise it becomes destroyed with rate wβ,Ni j (τ ). Note that if
we set λ2 = 0 then the network is never updated, and the co-evolutionary pro-
cess reduces to a model of action adjustments on a fixed network (the initial
graph). Similarly if λ1 = 0 the actions of the individuals are frozen and we
obtain a pure network formation dynamics with heterogeneous players. In this
sense a co-evolutionary model can be regarded as an extension of an evolutionary
model.
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186 M. Staudigl

3 Asymptotic properties of the process

For positive levels of noise β and finite player population, the co-evolutionary process
{Xβ,τN (t)}t≥0 defined in the previous section is ergodic. In Sect. 3.1 we give a complete
characterization of its unique invariant distribution, and compare this measure to previ-
ous results in evolutionary game theory. Using this result, section 3.2 gives a complete
characterization of the long-run interaction structure generated by the co-evolutionary
process.

3.1 The invariant distribution

The main result of this section is the following Theorem.

Theorem 1 The unique invariant distribution of the Markov jump process {Xβ,τN
(t)}t≥0 is the Gibbs measure

μ
β,τ
N (x) = exp(β−1 Hβ

N (x, τ ))∑
x′∈X N exp(β−1 Hβ

N (x
′, τ ))

= μ
β,τ
0,N (x) exp

(
β−1V (x, τ )

)

∑
x′∈X N μ

β,τ
0,N (x

′) exp
(
β−1V (x′, τ )

) ,

(5)

where, for all x = (a, g) ∈ X N ,

Hβ
N (x, τ ) := V (x, τ )+ β logμβ,τ0,N (x),

μ
β,τ
0,N (x) :=

N∏

i=1

∏

j>i

(
2

Nξβ,Nτi ,τ j

)gi j

,

V (x, τ ) := 1

2

∑

j �=i

gi jv(ai , a j )+
∑

i

τi (ai ).

Proof It is easy to verify that the detailed balance conditions

μ
β,τ
N (x)ηβ,τN (x, x′) = μ

β,τ
N (x′)ηβ,τN (x′, x)

are satisfied for all x, x′ ∈ X N . See Theorem 4.1 and Proposition 4.1 in Staudigl
(2011). ��
The function Hβ

N , called the graph Hamiltonian in Park and Newman (2004), pro-
vides a complete description of the invariant distribution weights. The structure of
the invariant distribution is game–theoretically interesting, as it allows us to split the
measure into two part: The weight at population state x is first influenced by graph
weight function μβ,τ0,N , which only depends on data concerning the network forma-

tion dynamics. Second we find the term exp[β−1V (x, τ )], which both depends on the
game and the network structure prevailing at state x. The function V (·, τ ) aggregates
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Co-evolutionary dynamics and Bayesian interaction games 187

the individual players’ utilities. In particular, it is a potential function for the normal
form game [Ui (·, g, τi )]i∈[N ], where the players have learned their own types and
the network is fixed at some graph g ∈ G[N ]. More precisely, one can easily check
that

V [(a, a−i ), g, τ ] − V [(b, a−i ), g, τ ] = Ui [(a, a−i ), g, τi ] − Ui [(b, a−i ), g, τi ]

holds for all i ∈ [N ], a, b ∈ A, a−i ∈ AN−1, g ∈ G[N ] and τ ∈ �N . Hence, one
can view the stationary distribution as a perturbation of the invariant measure found
by Blume (1997) in the context of interaction games on fixed networks.

Remark 2 Since the types of the players are determined exogenously, they are
independent from the co-evolutionary process of networks and play (but cer-
tainly shape the structure of the invariant distribution of the process). Conse-
quently, one should interpret the invariant distribution μβ,τN as a random measure,
as it depends on the realized type profile. We will elaborate on this point fur-
ther when we study the large population limit of the co-evolutionary process in
Sect. 4.2.

3.2 The random graph

The probability measure μβ,τN collects all information about the long-run behavior
of the evolutionary process for a given type profile τ ∈ �N . Hence, it measures the
probability that a network g ∈ G[N ] appears together with an action profile a ∈ AN .
We now ask the question what graph topologies are most likely to be observed in the
long run, when we fix the actions of the players (and their types). An answer to this
question would give us information on all network topologies that may arise, when
we have data on the behavior of the agents and their types. To answer this question we
have to condition the process on an a-section of the state space. An a-section is the
set X N

a := {a} × G[N ], where a = (a1, . . . , aN ) ∈ AN is a given action profile. All
population states in the a-section differ only in the interaction network. Thus, if we
constrain the process {Xβ,τN (t)}t≥0 to take values in this set only, we obtain a random

graph process Gβ,τ
N = {Gβ,τ

N (t)}t≥0 whose generator describes a birth-death process
with “birth rates” of the link (i, j) given by 2 exp(v(ai , a j )/β), and “death-rates”

w
β,N
i j (τ ). It will be useful to introduce the rate ratio

ϕ
β,N
kl (a, b) = 2β exp(v(a, b)/β)

ξ
β,N
kl

,

for a, b ∈ A and 1 ≤ k, l ≤ K . The main result of this section is the following
characterization theorem, categorizing the class of random graphs generated by the
co-evolutionary process. The proof of the theorem is actually a corollary of a more
general result, which we present in Appendix A.
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Theorem 2 Consider a random graph process Gβ,τ
N with attachment rates Cβ,N and

volatility rates �β,N , whose components are defined by Eqs. 2 and 3. This process is
ergodic with unique invariant graph measure

μ
β,τ
N (x|X N

a ) =
N∏

i=1

∏

j>i

pβ,Ni j (a, τ )gi j
(

1 − pβ,Ni j (a, τ )
)1−gi j

1X N
a
(x), (6)

which gives rise to the random graph G[N , (pβ,Ni j (a, τ )) j>i ] with interaction proba-
bilities

pβ,Ni j (a, τ ) = ϕ
β,N
kl (a, b)

ϕ
β,N
kl (a, b)+ Nβ

if ai = a, a j = b, τi = θk, τ j = θl (7)

for all i, j ∈ [N ].
Theorem 2 allows us to define for each pair of players a conditional probability

that they will be matched in the long run for a given action and type profile. In fact,
the particular form of the interaction probabilities in Eq. 7, allows us to character-
ize the interaction model without conditioning on any a-section at all. The matri-
ces

pβ,Nkl :=
(

pβ,Nkl (a, b)
)

(a,b)∈A2
, pβ,N :=

(
pβ,Nkl

)

1≤l,k≤K

with

pβ,Nkl (a, b) := ϕ
β,N
kl (a, b)

ϕ
β,N
kl (a, b)+ Nβ

always give us a complete characterization of the random graph. This is an interesting
results, as it couples a random graph model with the game theoretic model in a simple
and transparent way. Observe that the random graph is essentially independent of the
labels of the individual players. Only their types and their used actions identify an
agent in the model.

Remark 3 Based on Theorem 2, one can study the large population properties of
the random graph ensemble. We shall not pursue such an analysis explicitly in this
paper, since it can be done by applying known results from random graph theory.
We refer the reader to Bollobás et al. (2007) for a detailed study of this ques-
tion.

4 Stochastic stability analysis

Having worked out the ergodic properties of the co-evolutionary process, we now
investigate the structure of several limiting measures of the invariant distributionμβ,τN .
We start with the conceptually simpler case concerning the small noise limit.
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Co-evolutionary dynamics and Bayesian interaction games 189

4.1 The small noise limit

For the small noise limit, we use the following notion of stochastic stability (cf. Sand-
holm 2010b)11:

Definition 1 A population state x ∈ X N is called stochastically stable in the small
noise limit if

lim
β→0

β logμβ,τN (x) = 0.

We have the following characterization of small noise stochastically stable states.

Theorem 3 The family of invariant measures {μβ,τN }β>0 satisfies a large deviations
principle with rate function R(x, τ ) := maxx′∈X N V (x′, τ )− V (x, τ ), i.e.

lim
β→0

β logμβ,τN (x) = −R(x, τ )

for all x ∈ X N and τ ∈ �N .

Proof Under our assumptions on the volatility mechanism it is true that

lim
β→0

max
x∈X N

β| logμβ,τ0,N (x)| = 0.

Hence, the Hamiltonian function Hβ
N converges uniformly to the game potential func-

tion as β → 0. Thus,

− lim
β→0

β logμβ,τN (x) = max
x′∈X N

lim
β→0

Hβ
N (x

′, τ )− lim
β→0

Hβ
N (x, τ )

= max
x′∈X N

V (x′, τ )− V (x, τ ) = R(x, τ )

for all x ∈ X N , completing the proof. ��

An immediate corollary of this theorem is the following:

Corollary 1 The set of stochastically stable states in the small noise limit is the set
of population states which maximize the game potential function, i.e.

{x ∈ X N |R(x, τ ) = 0} = arg max
x∈X N

V (x, τ ).

11 The small noise limit has been emphasized in the early literature on evolutionary equilibrium selection
in the seminal papers by Kandori et al. (1993) and Young (1993). The differences between these papers and
our definition of small noise stochastic stability is explained in detail in Chapter 12 of Sandholm (2010b).
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This results has the pleasant property that stochastically stable states in the small noise
limit are socially efficient states, taking the sum of utilities of the players as an indica-
tor for welfare, for every realization of types. Further, small noise stochastically stable
states give us a joint prediction of action profiles and networks, which are mutually
consistent in the sense that the action profile played on the corresponding network
must be a Nash equilibrium, given the types of the players.

4.2 The large population limit

In a large population, it is natural to consider situations where each individual player
has a minor impact on the evolution of the population state. Hence, it is natural to
focus on aggregative properties of the model. Thus, in this section of the paper we
shift our interest from the micro-level of the process to macroeconomic phenomena.
Therefore we have to introduce several aggregation operators, which allow us to trans-
port the mass the the invariant distribution puts on subsets of the set of type-action
profiles to the subsets of type-action distributions. Moreover, we are interested in the
weak-convergence properties of this law as the number of players becomes large. As
this is rather technical, no proofs will be given in this section. Instead we try to convey
the main motivation and intuition for our results, referring the interested reader to
Appendix B for all the mathematical details.

4.2.1 Aggregation operators and notation

Recall that in our co-evolutionary process, before the dynamics starts to unfold, each
player randomly receives his private type τi , which is the realization of an i.i.d. random
variable with law q ∈ int�(�). A realized type profile τ ∈ �N defines an (empirical)
distribution over types, defined as

M N
k (τ ) := 1

N

N∑

i=1

1θk (τi ) ∀k ∈ {1, 2, . . . , K }.

The components of the (random) distribution MN (τ ) := (M N
1 (τ ), . . . ,M N

K (τ )) ∈
�(�) measure the frequency of players of type k = 1, 2, . . . , K , when the type pro-
file is τ ∈ �N . This empirical type distribution is a (random) element of the set
LN := {MN (τ )|τ ∈ �N }. Conversely, we can also consider the set of type realiza-
tions which result in a targeted distribution m ∈ �(�). This is done by defining the
type class set T N (m) := {τ ∈ �N |MN (τ ) = m}. Hence, T N (m) �= ∅ if and only if
m ∈ LN . Given that each player receives his type independently and with the same
law q, the joint law of a profile τ ∈ T N (m) is given by

Pq(τ̃ N = τ ) =
K∏

k=1

q Nmk
k .

This probability is seen to be constant on a type class set T N (m), which implies
that
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Pq(τ̃ N ∈ T N (m)) ≡ PN
q (m) := |T N (m)|

K∏

k=1

q Nmk
k ,

where |T N (m)| = N !∏K
k=1(Nmk )! is the number of type profiles τ ∈ �N which generate

the type distribution m ∈ LN .
Denote by 
 := �(A)K the K -fold copy of the mixed strategy simplex, and K :=


×�(�) the space of action-type distributions. Finally, denote by�N := AN ×�N

the set of action-type profiles. We now come to our definition of a Bayesian strategy.

Definition 2 A finite population Bayesian strategy is a distribution SN = (SN
1 , . . . ,

SN
K ) ∈ 
, where SN

k : �N → �(A) is the distribution over pure actions chosen in
aggregate by the players of type θk , i.e.

SN
b,k(a, τ ) := 1

N M N
k (τ )

N∑

i=1

1(b,θk )(ai , τi )

for all (a, τ ) ∈ �N , b ∈ A, 1 ≤ k ≤ K .

Every component SN
k = (SN

a,k)a∈A is formally equivalent to a mixed strategy, the

mixed strategy chosen by a “representative” player of type θk .12

Remark 4 Our definition of a Bayesian strategy is the appropriate finite-population
version of the continuum population model of Ely and Sandholm (2005). Let us stress
again that, although players belonging to the same population share the same prefer-
ences, their payoff in the game will in general not be the same, since their personal
interaction network may be different. This is an important difference to the Bayesian
population game model of Ely and Sandholm (2005), where players of the same type
have the same (expected) payoff, and henceforth the same incentives in the game.

4.2.2 The law of action-type distributions

Once we have specified the common prior of the types, we can define an invariant
distribution on the set X N ×�N = AN × G[N ] ×�N as

μ
β
N ({(a, g, τ )}) := Pq(τ̃ N = τ )μ

β,τ
N ({(a, g)}),

where μβ,τN is the invariant measure over population states characterized in Theorem
1. In our large population investigations, we would like to extract from this measure
information on the joint law of the random pair (SN ,MN ) under the co-evolutionary
process. In order to get this information, we need to transport the mass which the
invariant distribution assigns to subsets of X N ×�N to the space�N , and then to the
space K. We proceed step-by-step by transporting first the mass from X N × �N to
�N . The following proposition is the first result along these lines.

12 With this interpretation in mind, calling the empirical measure SN a Bayesian strategy is justified by the
same logic as the population-based interpretation of mixed strategies in evolutionary games.
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Proposition 1 For all (a, τ ) ∈ �N , define the conditional measure

ν
β
N (a|τ ) := μ

β,τ
N (X N

a ).

Then we can compute

ν
β
N (a|τ ) = 1

ZβN (τ )

K∏

k=1

n∏

a=1

�a
k (S

N (a, τ ), β, N )Nmk SN
a,k (a,τ ) (8)

where, for all types 1 ≤ k < l ≤ K , and actions 1 ≤ a ≤ n, the function�a
k (·, β, N ) :


 → R+ is defined as

�a
k (σ , β, N ) :=

∏

l≥k

�a
kl(σ , β, N ),

�a
kk(σ , β, N ) := exp

(
θk(a)

β

)∏

b≥a

(
1 + 1

Nβ
ϕ
β,N
kk (a, b)

) Nmkσk (b)−δa,b
1+δa,b

,

�a
kl(σ , β, N ) :=

n∏

b=1

(
1 + 1

Nβ
ϕ
β,N
kl (a, b)

)Nmlσl (b)

.

The factor ZβN (τ ) is the normalization constant.

Proof See, Appendix B.1. ��

The measure νβN (·|τ ) is defined conditional on the type realization τ . Given

this tuple, the mass νβN (a|τ ) is the mass that the stationary distribution μ
β,τ
N (·)

puts on all action-network configurations, where the action profile of the players
is a, but the network topologies vary. In other words it is the marginal distribution∑

g∈G[N ] μ
β,τ
N (a, g).13 A formal application of the rules of conditional probability

gives us the joint law of the pair (a, τ ) ∈ �N as

ν
β
N (a, τ ) := Pq(τ̃ N = τ )ν

β
N (a|τ ) = μ

β
N (X

N
a × {τ }). (9)

Instead of explicitly writing down this rather cumbersome expression, we introduce
some new concepts, which will turn out to be very useful in the sequel. We define the
interaction potential functions

13 As an interpretation for this measure, think of the case with mean-field interactions (Horst and
Scheinkman 2006), i.e. a situation where the utility functions of the agents only depend on the average
behavior of all other players. Then a strategy revision process for a fixed type profile τ ∈ �N with the

logit dynamics (1) would produce an invariant distribution on AN of the form of νβN (·|τ ) (see, Sandholm
2010b, Exercise 11.5.17). Proposition 1 goes beyond the case of mean-field interactions, since it results
from an aggregation procedure where we aggregate over all possible network structures for a given profile
of actions and types.
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(1 ≤ k ≤ K ) : f βN ,k(σ ,m) :=
∑

a∈A

σk(a)
∑

l≥k

log�a
kl(σ , β, N ),

f βN (σ ,m) :=
K∑

k=1

mk f βN ,k(σ ,m).
(10)

Using these mappings, it is a simple matter of rewriting terms in Eq. 9 to see that

ν
β
N (a, τ ) ∝ Pq(τ̃ N = τ )eN f βN (S

N (a,τ ),MN (τ )) ∀(a, τ ) ∈ �N .

Now we have obtained an expression for the weight of an action-type profile (a, τ ),
which actually only depends on the induced action-type distribution. Thus, all pairs
of action-type profiles which give rise to the same action-type distribution, receive
the same mass under the distribution νβN . This simple observation allows us to derive
a probability measure on the set of action-type distributions K = 
 × �(�), as
follows. Since the mapping (SN ,MN ) maps action-type profiles in �N to action-
type distributions in K, we can define the pre-image of a couple (σ ,m) ∈ K as
(SN ,MN )−1(σ ,m) := {(a, τ ) ∈ �N |SN (a, τ ) = σ ,MN (τ ) = m}. An element
of this set is called a distributionally equivalent action-type profile. Now, since all
distributionally equivalent action-type profiles must receive the same mass under the
measure νβN , we need to count the number of elements in the set (SN ,MN )−1(σ ,m).
This is a straightforward exercise in combinatorics. By its very definition, the set
(SN ,MN )−1(σ ,m) is nonempty if and only if the type distribution is contained in
the set LN , and σ is an element of the set 
N (m) = ×K

k=1

N
k (m), where each set


N
k (m) is defined as the discrete grid�(A)∩ 1

Nmk
Z

n if mk > 0, and�(A) otherwise.
Consider a pair (σ ,m) which satisfies these conditions. Then the array of numbers
{{Nmkσk(a)}a∈A}1≤k≤K sums up to N . The number of distributionally equivalent
action-type profiles is given by the number of all possible permutations of action
profiles and type profiles which give rise to the distribution (σ ,m). Elementary com-
binatorics tells us that the number of distributionally equivalent action-type profiles
is given by

N !
∏K

k=1
∏n

a=1(Nmkσk(a))!
=

K∏

k=1

(Nmk)!∏
a∈A(Nmkσk(a))!

N !
∏K

k=1(Nmk)!
.

Hence, we can define a measure

γ
β
N ({(σ ,m)}) := N !

∏K
k=1

∏n
a=1(Nmkσk(a))!

exp

{
N [ f βN (σ ,m)+

K∑

k=1

mk log(qk)]
}

for all couples (σ ,m) in range of the random pair (SN ,MN ).14 The interpretation of
this measure is given by the following lemma, whose straightforward proof we omit.

14 Thus, this measure is a counting measure on K, which puts mass γ βN ({(σ ,m)}) on the individual points

in the range of (SN ,MN ). See, Appendix B.1 for the details.
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Lemma 1 For all couples (σ ,m) ∈ K we have

γ
β
N ({(σ ,m)}) = PN

q (m)e
N f βN (σ ,m). (11)

Note that γ βN ({(σ ,m)}) > 0 if and only if m ∈ LN and σ is an action distribution such
that Nmkσk(a) is an integer for all 1 ≤ k ≤ K , 1 ≤ a ≤ n. Thus, only those pairs
(σ ,m) have positive mass, which are in the range of the pair (SN ,MN ). Normalizing
the finite measure (11) leaves us with a probability measure on the set K, defined as

PβN (�) := γ
β
N (�)

γ
β
N (K)

, ∀� ⊂ K. (12)

This probability measure is a joint law on the set of action-type distributions K. A law
for Bayesian strategies, for a given type distribution m ∈ LN is then obtained from
the conditional distribution induced by PβN on the set 
N (m), which is characterized
by the probability mass function

ψ
β
N (σ |m) = eN f βN (σ ,m)

∑
σ ′∈
N (m) eN f βN (σ

′,m)
.

4.2.3 The large deviations principle

In this section we prove that the sequence of laws {PβN }N∈N, under some mild assump-
tions on the data of the co-evolutionary process, satisfies a large deviations principle
(LDP) in the limit of large player populations. From the representation of the proba-
bility measure PβN via the measures γ βN , it is clear that convergence properties of the
interaction potential functions will play a decisive role here. It turns out that, in order
to establish such a convergence, we need to make some assumptions on the population
dependence of the volatility rates of the network formation dynamics. Specifically,
we require the following.

Theorem 1 The array of volatility rates satisfies large population boundedness:

lim
N→∞ ξ

β,N
kl = ξ

β
kl ∈ (0,∞) 1 ≤ k, l ≤ K , (LPB)

Under this assumption, we can prove that the sequence of interaction potential func-
tions {{ f β,Nk }K

k=1}N≥1 converges to a well-defined sequence of (continuous) limit

functions { f βk }K
k=1.

Lemma 2 Assume that the volatility rates satisfy (LPB). Then, for all 1 ≤ k ≤ K
and along any sequence

{
(σ N ,mN )

}
N≥1 , σ N ∈ 
N (mN ),mN ∈ LN , with limit

(σ ,m) ∈ 
 × int�(�), we have

lim
N→∞ f β,Nk (σ N ,mN ) = 1

β
f βk (σ ,m),
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where f βk : 
 ×�(�) → R is the continuous function

f βk (σ ,m) := 〈σ k, θk〉 +
∑

l≥k

ml

1 + δkl

〈
σ k,ϕ

β
klσ l

〉
.

Proof See, Appendix B.2. ��
Given this convergence result, we define

f β(σ ,m) :=
K∑

k=1

mk f βk (σ ,m) ∀(σ ,m) ∈ 
 ×�(�).

For a full statement of the the large deviations principle, we still need one more piece
of notation. Given that the measure γ βN involves a combinatorial factor which depends
on the number of players, we will need to take care of the large N properties of this
combinatorial term. To do this, we will need to introduce the (relative) entropy of a dis-
crete probability measure. Given a type distribution m we define the relative entropy
of this distribution with respect to the prior q as

h(m||q) :=
K∑

k=1

mk log
mk

qk
.

Similarly, and with an abuse of notation, we define the entropy of an action distribution
σ k ∈ �(A) as

h(σ k) := −
∑

a∈A

σk(a) log(σk(a)).

These functions will show up in the large deviations estimate combined with the lim-
iting interaction potential function f β in form of the perturbed interaction potential
function

f̃ β(σ ,m) := f β(σ ,m)+ β

K∑

k=1

mkh(σ k). (13)

Remark 5 Perturbed potential functions of the form (13) play an important role in mod-
els of noisy evolution in games. Hofbauer and Sandholm (2007) identify functions of
the form (13) as strict Lyapunov functions for an appropriately defined “mean-field”
dynamics, arising in their model of stochastic evolution in potential games (see in
particular their Theorem 3.2). Our analysis shows that perturbed potential functions
play an important role in understanding the long-run properties of the co-evolutionary
process in the limit of large populations.

The next Theorem uses the perturbed interaction potential function (13) to establish
the large deviations principle for the measures PβN .
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Theorem 4 The family of measures {PβN }N∈N satisfies a large deviations principle
with speed N and rate function

Rβq (σ ,m) := max
(σ ′,m′)∈K

[
1

β
f̃ β(σ ′,m′)− h(m′||q)

]
−
[

1

β
f̃ β(σ ,m)− h(m||q)

]
.

(14)

Hence, we have the large-deviations lower bound

lim inf
N→∞

1

N
log PβN (G) ≥ − inf

(σ ,m)∈G
Rβq (σ ,m)

for all open G ⊂ K, and the large deviations upper bound

lim sup
N→∞

1

N
log PβN (F) ≤ − inf

(σ ,m)∈F
Rβq (σ ,m)

for all closed F ⊂ K.

The proof of this Theorem is given in Appendix B.3. This result shows how one can
estimate the probability that the generated action-type distribution falls into a certain
subset � ⊂ K, by using the rate function (14). Writing � for asymptotic equivalence
on an exponential scale, the content of Theorem 4 is that

PβN (�) � exp

(
−N inf

(σ ,m)∈� Rβq (σ ,m)
)

for all � ⊆ K. Hence, action-type distributions which are close to the global optimum
of the function (σ ,m) �→ 1

β
f̃ β(σ ,m)− h(m||q) are going to be observed with non-

vanishing probability on an exponential scale. This relation between this concentration
tendency of the sequence of laws PβN and the rate function Rβq will be exploited in the
next section, to relate the large-deviations principle to a well-known game theoretic
concept.

4.2.4 Logit equilibria

The strong law of large numbers implies that MN → q almost surely. Thus, let us
specialize the setting in this section by assuming right away that m = q is fixed deter-
ministically. This allows us to get rid of the relative entropy function appearing in the
rate function (14), since h(q||q) = 0. Under this assumption, the Bayesian strategies
which describe the most likely distribution of play in the population (aggregated over
all networks) are the maximizers of the perturbed interaction potential function f̃ β .
We are therefore naturally led to investigate the structure of the set of solutions of the
optimization problem

max
σ ′∈


f̃ β(σ ′,q).
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It is well known (see for instance Fudenberg and Levine 1998) that solutions of this
program are logit equilibria, i.e. Bayesian strategies which are defined by the fixed-
point condition

σ ∗
k (a) = exp

(
β−1(πk

a (σ
∗,q)+ θk(a))

)
∑

b∈A exp
(
β−1(πk

b (σ
∗,q)+ θk(b))

) ,

where

πk
a (σ ,q) :=

K∑

l=1

ql

∑

b∈A

ϕ
β
kl(a, b)σl(b) ≡

K∑

l=1

ql

(
ϕ
β
klσ l

)

a

for all a ∈ A and 1 ≤ k ≤ K . To show this, introduce the Lagrangian

L(σ ,λ) := f̃ β(σ ,q)−
K∑

k=1

λk

(
∑

a∈A

σk(a)− 1

)
,

where λ := (λ1, . . . , λK ) are the Lagrangian multipliers corresponding to the state-
space constraints. First order conditions will give necessary and sufficient conditions
for an optimum, which will be interior and unique for β sufficiently large and positive.
Straightforward algebra shows that the the first-order conditions are

∂ f̃ β(σ ,q)
∂σk(a)

− ∂ f̃ β(σ ,q)
∂σk(b)

= 0

for all 1 ≤ k ≤ K and a, b ∈ A. By symmetry of the matrices ϕ
β
kl , we have

∂ f βl (σ ,q)

∂σk(a)
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if l > k,

θk(a)+∑
l ′≥k ql ′

(
ϕ
β

kl ′σ l ′
)

a
if l = k,

qk

(
ϕ
β
klσ l

)

a
if l < k.

From this we obtain

∂ f̃ β(σ ,q)
∂σk(a)

= qk

[
θk(a)+

K∑

l=1

ql

(
ϕ
β
klσ l

)

a
− β(log σk(a)+ 1)

]
.

Using this expression for the first-order conditions shows that in an optimum we need
that

log
σk(a)

σk(b)
= 1

β

[
K∑

l=1

ql

(
ϕ
β
klσ l + θk

)

a
−

K∑

l=1

ql

(
ϕ
β
klσ l + θk

)

b

]

= β−1
[
(πk

a (σ ,q)+ θk(a))− (πk
b (σ ,q)+ θk(b))

]
.
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From this odds-ratio condition the rest follows immediately by using the constraint∑
a∈A σk(a) = 1. To interpret this result, note that πk

a (σ ,q) has actually a quite inter-
esting interpretation. In a dynamic choice model without network formation dynamics,
a logit equilibrium would correspond to a perturbed Nash equilibrium of the underly-
ing normal form game. Hence, instead of πk

a the logit equilibrium of a normal form
game would have to take the pure-strategy payoff function of the game into account.
Viewed from this angle, the network formation dynamic acts on the normal form game
as if the payoffs are (non-linearly) transformed, so that the (ex-post) payoff matrix of
a player of type θk meeting a player of type θl is ϕ

β
kl .

5 Conclusion

This paper presents an analytically solvable model on the co-evolution of networks
and play in settings where players have diverse preferences. We restrict the class of
games by assuming that players’ preferences can be additively decomposed into a
common utility term and a random idiosyncratic payoff term. If the common payoff
function is a game of common interest and the players use log–linear functions in
the action choice and linking choice, we give a closed-form solution of the (unique)
invariant distribution of the process. This in turn allows us to perform a stochastic
stability analysis in the limits of small noise and large populations, respectively. Many
results presented in the paper hinge on the specific assumptions made in order to
proceed with analytical methods. However, some qualitative features of the model
are quite robust to changes in the model setting. Among these is the creation of
inhomogeneous random graphs, as shown in Staudigl (2010b). It remains an open
problem to work out the fine details of a co-evolutionary model, outside the world of
exact potential games. This is, however, a general problem of stochastic evolutionary
dynamics, where little is known about the exact long-run behavior of the dynam-
ics once no closed-form solution of the invariant distribution is available. Extend-
ing our knowledge about co-evolutionary dynamics is a challenging task for future
research.
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Appendix A: The random graph model

Theorem 2 is a corollary of the following, more general, characterization theorem.

Theorem 5 Consider a random graph process {G(t)}t≥0 on G[N ] with symmetric
link creation rates C = (ci j )(i, j)∈[N ]2 and symmetric link destruction rates W =
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(wi j )(i, j)∈[N ]2 , where C and W are positive matrices. The generator of the process is
defined as

ηg,g⊕(i, j) = (1 − gi j )ci j , ηg,g�(i, j) = gi jwi j .

Define pi j := ci j
ci j +wi j

for all i, j ∈ [N ]. Then the unique invariant distribution of this

process is given by

μ(g) =
∏

i, j>i

(pi j )
gi j (1 − pi j )

1−gi j

Proof By positivity of C and W the graph-valued Markov process {G(t)}t≥0 is ergodic.
Since these matrices are also symmetric the Markov process is reversible in equilib-
rium. Consider the detailed balance conditions

μ(g)ηg,g⊕(i, j) = μ(g ⊕ (i, j))ηg⊕(i, j),g. (15)

for all g ∈ G[N ] and i, j ∈ [N ], j �= i . By force of normalization, given by a constant
Z , this system of equations has a unique solution

μ(g) = Z−1
N∏

i=1

∏

j>i

(
ci j

wi j

)gi j

. (16)

Define for all i =1, 2, . . . , N and j> i the numbers xi j := log
(

ci j
wi j

)
, and the function

H0(g) :=
N∑

i=1

∑

j>i

x
gi j
i j .

Direct substitution into Eq. 16 gives the alternative representation of the invariant
distribution as

μ(g) = exp(H0(g))∑
g′∈G[N ] exp(H0(g′)

. (17)

We can compute the numerator of Eq. 17 as

∑

g∈G[N ]
exp(H0(g)) =

∑

g∈G[N ]

N∏

i=1

∏

j>i

exp(x
gi j
i j ) =

N∏

i=1

∏

j>i

(1 + exp(xi j ))

=
N∏

i=1

∏

j>i

(
1 + ci j

wi j

)

=
N∏

i=1

∏

j>i

(
1 − pi j

)−1
.
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Further, for all g ∈ G[N ] we have

exp(H0(g)) =
N∏

i=1

∏

j>i

(
pi j

1 − pi j

)gi j

.

Combining these last two observations, we obtain the desired product measure

μ(g) =
N∏

i=1

∏

j>i

(
pi j
)gi j

(
1 − pi j

)1−gi j .

��
Proof of theorem 2 On x ∈ X N

a the actions of the players are frozen. If ai = a and

a j = b on x, we set ci j = 2
N exp(v(a, b)/β) and wi j = ξ

β,N
τi ,τ j . All the conditions for

Theorem 5 are clearly satisfied, and the proof is complete. ��

Appendix B: Aggregation and the large population limit

In this appendix we give a rigorous analysis of the large population behavior of the
probability measure over Bayesian strategies. The analysis proceeds in three major
steps.

B.1 Proof of Proposition 1

For aggregation purposes it is useful to have a partition of the set of players at hand,
that categorizes them according to their action and their type. Let us define the sets

I τ
k (a)(a, g) := {i ∈ [N ]|ai = a & τi = θk}

for all 1 ≤ k ≤ K and a ∈ A. This is the set of players, who play action a at state
x and are of type θk . Clearly, for a given type profile τ ∈ �N the family of sets{{I τ

k (a)}a∈A
}K

k=1 is a partition on [N ]. We call this collection of sets the action-type-
partition of the population. The random graph measure (6) treats all edges between
players i ∈ I τ

k (a) and j ∈ I τ
l (b) as i.i.d. random variables. Therefore, we can define

a Binomially distributed random variable (with parameter pβ,Nkl (a, b))

E N ,τ
kl (a, b)(x) := 1

1 + δabδlk

∑

i∈I τ
k (a)

∑

j∈I τ
l (b)

gi j .

Given a type profile τ and an a-section X N
a we denote by E N ,τ

kl (a, b) the maximal
number of edges that can be formed between agents of type k who play action a and
agents of type l who play action b. ekl(a, b) denotes a particular realization of the
random variable E N ,τ

kl (a, b)(·).
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Proof of Proposition 1 For notational simplicity let us drop the dependence of β, τ
and N from the involved functions and distributions, whenever no confusion can arise.
Let us denote the absolute number of a-players of type θk as zk(a) := Nmkσk(a). Item
(i) of the Proposition is obvious. We therefore turn immediately to part (i i). Define
for all 1 ≤ k, l ≤ K and a, b ∈ A

xkl(a, b) := 1

β
v(a, b)+ log

(
2

Nξkl

)
,

and

ρ(x, τ ) = μ0(x) exp(V (x, τ )/β).

For all x ∈ X N
a the action-type partition is fixed by definition, and therefore

I τ
k (a)(x) = I τ

k (a) for all 1 ≤ k ≤ K , a ∈ A and x ∈ X N
a . Thus, we can write

the function ρ(x, τ ) as15

ρ(x, τ ) =
K∏

k=1

n∏

a=1

exp

(
θk(a)zk(a)

β

)∏

b≥a

exp [xkk(a, b)]Ekk(a,b)(x)

×
∏

k,l>k

∏

a,b∈A

exp [xkl(a, b)]Ekl (a,b)(x)
(18)

which is seen only to depend on the population state via the number of edges the net-
work at x has. Now we aggregate this expression over all states x ∈ X N

a . This requires
integrating over all possible edges that connect players playing a specific action and
being of a specific type. The integration procedure can be performed iteratively by
running the following algorithm:

Initialization: Set k = 1 and a = 1.
Loop 1: Consider l = k. Integrate over all possible edges ekl(a, b) for b ≥ a. If b = n

set l → l + 1 and go to Loop 2.
Loop 2: Integrate over possible edges ekl(a, b) for b ∈ A. If l ≤ K − 1 set l → l + 1

and repeat this procedure; otherwise go to Loop 3.
Loop 3: If a ≤ n − 1 and k ≤ K − 1 go to Loop 1 with the same k and a → a + 1.

If a = n and k ≤ K − 1 go to Loop 1 with k → k + 1 and a → 1. If a = n and
k = K STOP.

To illustrate what this algorithm does we present the result after the initialization
step and Loop 1 has been executed. Loop 1 starts with integrating over all pos-
sible edges connecting agents belonging to action class I τ

1 (1) with itself. To per-
form this summation exercise, note that the only factor affected by the aggregation is
exp[x11(1, 1)]E11(1,1)(x), x ∈ X N

a . Hence, if we collect terms unaffected by the aggre-
gation under the placeholder B1, we see that ρ(x, τ ) = B1 exp[x11(1, 1]E11(1,1)(x).

15 The notation
∏

k,l>k should be read as
∏K

k=1
∏

l>k .
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Next, we have to take care of combinatorial identities since there are many possibil-
ities to connect agents in the respective action classes in order to produce the event
{E11(1, 1) = e11(1, 1)}. Adjusting for this we see that the output of the algorithm after
the first round is

B1

E11(1,1)∑

e11(1,1)=0

(
E11(1, 1)
e11(1, 1)

)
exp(x11(1, 1))e11(1,1) = B1 (1 + exp(x11(1, 1)))E11(1,1)

= B1

(
1 + 1

Nβ ϕ11(1, 1)
) z1(1)(z1(1)−1)

2

where zk(a) = Nmkσk(a) for 1 ≤ k ≤ K and a ∈ A. The next step performed by the
algorithm inside Loop 1 will be to sum over all possible connections between players
in the action cells I τ

1 (1) and I τ
1 (2). Therefore we have to take the relevant factor out

of the placeholder B1 and perform the integral as above. This gives the intermediate
result

B2

(
1 + 1

Nβ
ϕ11(1, 1)

) z1(1)(z1(1)−1)
2

(
1 + 1

Nβ
ϕ11(1, 2)

)z1(1)z1(2)

.

Repeating this, as prescribed by the algorithm, we obtain after n steps the function

�1
11(σ , β, N )z1(1) = exp

(
θ1(1)z1(1)

β

)∏

b≥1

(
1 + 1

Nβ
ϕ11(1, b)

) z1(1)(z1(b)−δ1,b)
1+δ1,b

.

Recalling that zk(a) = Nmkσk(a), we see that this agrees with the definition of the
function �1

11(σ , β, N ) in the text of the Proposition. Executing the remaining steps
of the algorithm gives the desired result. ��

B.2 Some large N approximation results

Bayesian strategies are defined as empirical distributions over actions used by the
players of the several types and given the realized type distribution m ∈ LN . Recall
that, for any realized type distribution m ∈ LN , the space of Bayesian strategies is
the finite set 
N (m) = ×K

k=1

N
k (m), where 
N

k (m) = �(A) ∩ 1
Nmk

Z
n if mk > 0,

and �(A) otherwise. Consequently, calling K := 
 × �(�), the finite set KN :=
{(σ ,m) ∈ K|σ ∈ 
N (m),m ∈ LN } is the set of action-type statistics which are in the
range of the random pair (SN ,MN ). It is clear that any sequence (σ N ,mN ) ∈ KN pos-
sesses a convergent subsequence with limit in K. The following Lemma provides the
converse to this result, by showing that we can arbitrarily well approximate any given
pair (σ ,m) ∈ K with a sequence {(σ N ,mN )}N∈N, chosen such that σ N ∈ 
N (mN )

for all N ∈ N.

Lemma 3 For every Bayesian strategy σ ∈ 
 and type distribution m ∈ int�(�)
there exists a sequence {(σ N ,mN )}N∈N, with σ N ∈ 
N (mN ) and mN ∈ LN for all
N , such that (σ N ,mN ) → (σ ,m) as N → ∞.
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Proof The proof proceeds in two steps. First we show that we can find a sequence
mN ∈ LN that converges to m in total variation distance as N → ∞. Then we use
this sequence to construct the sequence of Bayesian strategies.

(i) On �(�) define the total variation distance between two distributions x, y ∈
�(�) as16

||x − y||T V,� := 1

2

K∑

k=1

|xk − yk |,

If mN ∈ LN then each coordinate m N
k ∈ {0, 1

N , . . . ,
N
N }. Thus, if m ∈ �(�) then

for every 1 ≤ k ≤ K there is a m N
k ∈ {0, 1

N , . . . ,
N
N } such that |mk − m N

k | ≤ 1
N .

Thus, for every N we find a vector mN such that ||mN − m||T V,� ≤ K
2N . Hence

mN → m in total variation distance as N → ∞.
(ii) Given the sequence of empirical type distribution (m N )N≥N0 identified in item

(i), let σ N ∈ 
N (mN ) for all N ≥ N0. On the product space 
 we measure
distance via the maximum-norm, that is

||σ − σ ′||T V,
 := max
1≤k≤K

||σ k − σ k
′||T V .

for all σ , σ ′ ∈ 
. As in (i) we see that for all 1 ≤ k ≤ K one can bound the
distance between σ N

k and σ k by

||σ N
k − σ k ||T V ≤ n

2Nm N
k

Consequently for all N sufficiently large we have

||σ − σ N ||T V,
 ≤ n

2N
max

1≤k≤K

1

m N
k

.

Since mN → m ∈ int�(�) it follows that for all ε > 0 there exists a N
sufficiently large so that ||σ − σ N ||T V,
 ≤ ε. This completes the proof. ��

B.2.1 Proof of Lemma 2

Proof As a first step we have to determine the asymptotic behavior of the factors
determining the functions �a

k (·), i.e. the large population behavior of the numbers

ϕ
β,N
k,l (a, b) = 2β exp(v(a,b)/β)

ξ
β,N
kl

. Assuming that the volatility rates satisfy (LPB), then,

for all 1 ≤ k, l ≤ K and a, b ∈ A,

lim
N→∞

1

N
ϕ
β,N
k,l (a, b) = 0, lim

N→∞ϕ
β,N
k,l (a, b) = 2 exp(v(a, b)/β)

ξ
β
kl

.

16 The choice of norm is, of course, not essential here.
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This implies that the first-order approximation

log

(
1 + ϕ

β,N
kl (a, b)

Nβ

)
= ϕ

β,N
kl (a, b)

Nβ
+ O(N−2β−1)

gives the right asymptotic behavior for sufficiently large N . For all a ∈ A and 1 ≤
k < l ≤ K observe that

log
[
�a

kk(σ
N , β, N )

]
= 1

β
θk(a)+

∑

b≥a

(
Nm N

k σ
N
k (b)− δa,b

1+δa,b

)
log

(
1+ ϕ

β,N
kk (a, b)

Nβ

)

= 1

β

[
θk(a)+ 1

2
m N

k σ
N
k (a)ϕ

β,N
kk (a, a)+

∑

b>a

m N
k σ

N
k (b)ϕ

β,N
kk (a, b)+ O(1/N )

]
,

and

log
[
�a

kl(σ
N , β, N )

]
= 1

β

[
m N

l

∑

b∈A

σ N
l (b)ϕ

β,N
kl (a, b)+ O(1/N )

]
.

Thus, for all 1 ≤ k ≤ K we see that

f β,Nk (σ N ,mN ) =
∑

a∈A

σ N
k (a)

∑

l≥k

log�a
kl(σ

N , β, N )

= 1

β

⎡

⎣
〈
σ N

k , θk

〉
+
∑

l≥k

m N
l

1 + δkl

〈
σ N

k ,ϕ
β,N
kl σ N

l

〉
+ O(1/N )

⎤

⎦

= 1

β

(
f βk (σ

N ,mN )+ O(1/N )
)
.

All the functions appearing in the definition of f βk (σ
N ,mN ) have a well defined limit

as N → ∞, and therefore the proof is completed. ��
Corollary 2 The sequence of functions { f β,N }N≥N 0 converges uniformly to the limit
function f β .

Proof This follows from Lemma 3 together with Lemma 2. ��

B.3 The large deviations principle

The proof of the large deviations principle for the family of measures {PβN }N∈N pro-
ceeds in two steps. We first introduce a simple reference probability space for which a
large deviations principle can be obtained by an application of Sanov’s Theorem in a
quite straightforward way (Lemma 4). We will use this result in order to reformulate
the law PβN in terms of this reference measure, so that we can derive the LDP for PβN
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from Sanov’s theorem proved for the reference measure, by applying a theorem from
den Hollander (2000).17

B.3.1 An auxiliary probability space

We start with the construction of an auxiliary sequence of probability spaces
{(�N ,F N ,PN )}N∈N, where the family of probability measures {PN }N∈N will be
used as reference measures. The state space is the set of action-type profiles �N :=
AN × �N . The sigma-algebra is simply the set of subsets 2�

N
. On this measurable

pair (�N ,F N ), we define the probability measure

P
N ({ω}) := e−N Iq (MN (ω)) ∀ω = (a, τ ) ∈ �N ,

where the function Iq : �(�) → R is defined as

m �→ Iq(m) := log(n)−
K∑

k=1

mk log(qk).

Under this probability measure the types of the players are i.i.d distributed with law q,
and the players choose actions with uniform probability 1/n. Thus, the marginal dis-
tribution on AN implied by this measure is n−N = e−N log(n). The law of the empirical
processes (SN ,MN ), under the measure P

N , is denoted by P̂ N := P
N ◦ (SN ,MN )−1,

so that

P̂ N (σ ,m) :=
{

N !∏K
k=1

∏n
a=1(Nmkσk (a))!e

−N Iq (m) if (σ ,m) ∈ KN ,

0 otherwise.

Our first result, Lemma 4, is a version of Sanov’s Theorem (see e.g. den Hollander
2000). This Lemma is needed as it characterizes the rate function implied by the large
deviations principle satisfied by the law P̂ N as N → ∞. This rate function will then
be used to state and proof a large deviations principle for the family {PβN }N∈N. To state
this lemma, we need slightly more notation. Let P and Q be two probability measures
defined on a common discrete set X . The relative entropy of P with respect to Q is
defined as

h(P||Q) :=
∑

x∈X

P(x) log
P(x)

Q(x)
.

The entropy of P is defined as

h(P) := −
∑

x∈X

P(x) log P(x).

17 I am deeply indebted to an anonymous referee for suggesting this proof strategy.
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Remark 6 In the following we will always use the letter h to denote the (relative)
entropy of a probability measure, independent of the underlying space. This abuse of
notation should cause no confusion.

Lemma 4 The sequence {P̂ N }N∈N satisfies a large deviations principle with rate
function

Fq(σ ,m) := log(n)+ h(m||q)−
K∑

k=1

mkh(σ k).

That is, for an arbitrary set A × B =: � ⊂ K, we have

− inf
(σ ,m)∈�o

Fq(σ ,m) ≤ lim inf
N→∞

1

N
log P̂ N (�)

lim sup
N→∞

1

N
log P̂ N (�) ≤ − inf

(σ ,m)∈� Fq(σ ,m),

where �o is the relative interior of � in K.

Proof For any set A × B ⊆ K its P̂ N -probability is given by

P̂ N (A × B) = P
N
(

SN ∈ A,MN ∈ B
)
.

We have the elementary lower bound

max
(σ ,m)∈A×B∩KN

P̂ N (σ ,m) ≤ P̂ N (A × B),

From the formal computation

P̂ N (A × B) =
∑

m∈B∩LN

∑

σ∈A∩
N (mN )

P̂ N (σ ,m)

=
∑

m∈B∩LN

PN
q (m)

⎛

⎝
∑

σ∈A∩
N (m)

P̂ N (σ |m)
⎞

⎠

≤ |LN ∩ B| max
m∈LN ∩B

⎧
⎨

⎩PN
q (m)

⎛

⎝
∑

σ∈A∩
N (m)

P̂ N (σ |m)
⎞

⎠

⎫
⎬

⎭

≤ |LN | max
m∈LN ∩B

{
PN

q (m)|
N (m)| max
σ∈
N (m)

P̂ N (σ |m)
}

we obtain the upper bound

P̂ N (A × B) ≤ |LN | max
m∈LN ∩B

{
PN

q (m)|
N (m)| max
σ∈
N (m)

P̂ N (σ |m)
}
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Observe that |LN | =
(

N + K − 1
K − 1

)
= O(N K−1) and |
N

k (m)|

=
(

Nmk + n − 1
n − 1

)
= O(N n−1) for every k ∈ {1, 2, . . . , K }. Hence |
N (m)| =

O(K N n−1). Therefore, for the upper bound, we get

1

N
log P̂ N (�) ≤ O(log(N )/N )+ 1

N
log

(
max

(σ ,m)∈�∩KN
P̂ N (σ ,m)

)
. (19)

The lower bound gives us in turn

1

N
log P̂ N (�) ≥ 1

N
log

(
max

(σ ,m)∈�∩KN
P̂ N (σ ,m)

)
. (20)

To estimate the probability in the brackets, pick a sequence (σ N ,mN ) → (σ ,m) ∈ K
with (σ N ,mN ) ∈ KN for each N , and assume that m ∈ int�(�). Then, an iterative
application of Stirling’s formula gives us

1

N
log P̂ N (σ N ,mN ) = −Iq(mN )+ h(mN )+

K∑

k=1

m N
k h(σ N

k )+ O(log(N )/N )

= − log(n)− h(mN ||q)+
K∑

k=1

m N
k h(σ N

k )+ O(log(N )/N )

= −Fq(σ
N ,mN )+ O(log(N )/N )

as N → ∞. Hereby we have used the continuity of the involved functions and the
fact that the sequence of type distributions is assumed to be interior. Hence, for the
upper bound (19), we get that

lim sup
N→∞

1

N
log P̂ N (�) ≤ − lim inf

N→∞

{
inf

(σ ,m)∈�∩KN
Fq(σ ,m)

}

Since � ∩ KN ⊂ � for all N , it follows that inf(σ ,m)∈�∩KN Fq(σ ,m) ≥
inf(σ ,m)∈� Fq(σ ,m) for all N . Hence,

lim sup
N→∞

1

N
log P̂ N (�) ≤ − inf

(σ ,m)∈� Fq(σ ,m).

To finish with the lower bound, fix a point (σ ,m) ∈ �o and pick an interior sequence
(σ N ,mN ) ∈ � ∩ KN converging to this point. This is possible by Lemma 3. Then,
using the estimate (20), we see that
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lim inf
N→∞

1

N
log P̂ N (�) ≥ − lim sup

N→∞

{
inf

(σ ,m)∈�∩KN
Fq(σ ,m)

}

≥ − lim
N→∞ Fq(σ

N ,mN )

= −Fq(σ ,m) ≥ − inf
(σ ,m)∈�o

Fq(σ ,m).

��

B.3.2 An expression for the law of action-type distributions

We will now use the constructions from the previous section to reformulate the law of
action-type distributions PβN defined in eq. (12). From this reformulation, a large devi-
ations principle will follow immediately. First, we define a measure on the set K, by

γ
β
N ({(σ ,m)}) :=

∫

(SN ,MN )−1(σ ,m)

eN [ f βN (S
N (ω),MN (ω))+log(n)]dP

N (ω),

where (SN ,MN )−1(σ ,m) := {ω ∈ �N |(SN (ω),MN (ω)) = (σ ,m)} for (σ ,m) ∈
K. Given the definition of the reference measure P

N , it is straightforward to verify that
this measure agrees with the one introduced in Eq. 11. Based on this, we recover (12) by

PβN ({(σ ,m)}) = γ
β
N ({(σ ,m)})
γ
β
N (K)

∀(σ ,m) ∈ K.

Using this formula we prove Theorem 4, which we restate here for the readers’
convenience, using Lemma (4).

Theorem 6 The family of measures {PβN }N∈N satisfies a large deviations principle
with speed N and rate function

Rβq (σ ,m) := max
(σ ′,m′)∈K

[
1

β
f̃ β(σ ′,m′)− h(m′||q)

]
−
[

1

β
f̃ β(σ ,m)− h(m||q)

]
.

Proof Define first a measure γ̂ βN on the set K, absolutely continuous with respect to
the probability measure P

N , as

γ̂
β
N ({(σ ,m)}) :=

∫

(SN ,MN )−1(σ ,m)

eN [ 1
β

f β(SN (ω),MN (ω))+log(n)]dP
N (ω),

for all (σ ,m) ∈ K. Then, we can define a probability measure on K as

Qβ
N (�) := γ̂

β
N (�)

γ̂
β
N (K)

, � ⊆ K.
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From Lemma 4 we know that the reference measure P
N satisfies a large-deviations

principle with rate function Fq. Applying Theorem III.17 in den Hollander (2000),

we conclude that the sequence of probability measures {Qβ
N }N∈N satisfies a “tilted”

large deviations principle with rate function Rβq . The only remaining step is to show

that the family of measures {PβN }N∈N satisfies the same LDP. This follows, how-
ever, from the uniform convergence of the interaction potential function. Specifically,
by Lemma 2, for every ε > 0 there exists a population size N0, such that for all
N ≥ N0 we have | f βN (σ ,m) − 1

β
f β(σ ,m)| < ε for all (σ ,m) ∈ KN . Hence,

PβN ({(σ ,m)}) = Qβ
N ({(σ ,m)})eo(N ), where o(N ) is a remainder term satisfying

o(N )
N → 0 uniformly (everything takes place on the compact set K) as N → ∞. ��
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