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Abstract We first provide the complete characterization of mechanisms that satisfy
weak group strategy-proofness and queue-efficiency in the multiple machine queueing
problem with two agents. For any such mechanism, there can be at most one point
of discontinuity in the transfer map. We then state a necessary condition for mecha-
nisms to satisfy queue-efficiency, weak group strategy-proofness and continuity, with
more than two agents. Finally, we provide a class of mechanisms that satisfy queue-
efficiency, weak group strategy-proofness and continuity.
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1 Introduction

We address the queueing problem with possibly multiple, possibly non-identical
machines from a group incentive point of view when agents have quasilinear pref-
erences over positions in queue and monetary transfers. A queueing problem involves
a set of agents wanting to consume a service provided by one or many machines, and
a set of machines which can only serve the agents sequentially (one by one). Such
a problem with n agents and m machines has the following features: (i) each agent
has exactly one job to complete using any one of these machines, (ii) each machine
can process only one job at a time, (iii) the jobs are identical across agents so that
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for a given machine, they take the same time to get processed, (iv) the machines are
non-identical with respect to the time taken to complete the job.

This model captures a multitude of real life situations; a typical example would be
the problem of provision of the quickest possible service to n customers waiting at m
cashier windows. Similar situations arise in a printing press, truckload transportation,
people waiting on ATM machines, amateur astronomers waiting to use public tele-
scopes and whole host of other possibilities. Maniquet (2003) discusses many other
interesting applications of this problem in the single machine context. Apart from the
aforementioned practical relevance, queueing models are also important from a theo-
retical point of view. Mitra and Sen (2010) show that for any heterogenous goods allo-
cation problem with unit demand, convex valuations and equal number of goods and
agents; implementation of efficient outcome in dominant strategies and balanced trans-
fers is possible only if the domain is one-dimensional (as in the present queueing prob-
lem). Such wide applicability of the queueing model has led to an extensive literature.1

The planner wants to ensure queue-efficiency, that is, to minimize the aggregate
waiting cost of provision of the service to the agents. This requires the agents to reveal
their waiting costs to the planner. In doing so, they have the incentive to misreport so
as to ensure a favorable outcome (distinct from the socially optimal one). Thus, the
planner runs into a problem of information extraction; and so needs to apply a cost rev-
elation mechanism. Such a mechanism should ideally rule out the possibility of agents
colluding amongst themselves to misreport, and therefore, be group strategy-proof.

Such an information extraction problem has been analyzed by Vickrey (1961),
Clarke (1971) and Groves (1973) leading to the formulation of VCG mechanisms,
which are sufficient for queue-efficiency and (individual) strategy-proofness. For
smoothly connected domains Holmström (1979) established the uniqueness of VCG
mechanisms in this regard.

Our goal is to identify the class of mechanisms that satisfy queue-efficiency, group
strategy-proofness and continuity in the multiple machine queueing problem. Any
such mechanism must be strategy-proof. Hence, we try to identify the VCG mecha-
nisms that satisfy group strategy-proofness and continuity. As discussed in Postlewaite
and Wettstein (1989), continuity of mechanisms ensures that they are robust to small
misspecifications of the characteristics of agents.

As discussed in Mitra and Mutuswami (2011), there can be two variants of group
strategy-proofness, weak and strong. The former requires that no group of agents be
able to misreport so that all of them are strictly better off. The latter requires that no
group of agents be able to misreport so that at least one member is strictly better off
and no other member is strictly worse off. It follows from the definitions that the latter
implies the former, not conversely.

Mitra and Mutuswami (2011) show that there does not exist any mechanism that
satisfies queue-efficiency and strong group strategy-proofness, in a single machine
queueing context. They further argue that the notion of strong group strategy-proof-
ness presumes the ability of agents to arrange credible side payments. This is not always

1 Dolan (1978), Suijs (1996), Mitra (2001), Moulin (2008), Hashimoto and Saitoh (forthcoming), Kayi and
Ramaekers (2010), Maniquet (2003), Chun (2006a), Katta and Sethuraman (2005), Kar et al. (2009), Chun
and Heo (2008), Mitra and Mutuswami (2011).
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Q-EFF & WGS mechanisms in single machine queueing problem 133

reasonable as reporting honestly is a weakly dominant strategy for VCG mechanisms.
Hence, we focus on weak group strategy-proof mechanisms.2

Mitra and Mutuswami (2011) investigate mechanisms immune to coalitional mis-
reports with single machine and identify a necessary condition for mechanisms to sat-
isfy queue-efficiency, pairwise strategy-proofness and weakly linearity. They remark
that for two or four agents, no mechanism satisfies the aforementioned properties and
budget-balancedness. They also completely characterize the class of mechanisms that
satisfy queue-efficiency, pairwise strategy-proofness, weakly linearity and the fairness
property of equal treatment of equals. They call this class k-pivotal mechanisms and
show that they satisfy weak group strategy-proofness.

This paper extends the single machine queueing problem in Mitra and Mutuswami
(2011), to multiple machines. With multiple machines, more than one agents may have
to wait the same time to get service.

We completely characterize the mechanisms that satisfy queue-efficiency and weak
group strategy-proofness for two agents. When there are two agents, queue-efficiency
and weak group strategy-proofness imply lower semi-continuity of the transfer map.
By considering all possible deviations three possible cases emerge; (a) flat straight
line, (b) positively sloped straight line, and (c) initially positively sloped but later flat
straight line (a kink occurs in the map). We see that discontinuity in map can only
occur for case (c), that too at the kink point with the only possibility of a sudden fall in
value at that point. Thus, there can be at most one point of discontinuity in the transfer
map, that too with both side limits being equal (at that point). Further, such a point of
discontinuity, if present, can only occur for one agent.

For n agents, we provide a necessary condition for mechanisms to satisfy queue-
efficiency, weak group strategy-proofness and continuity, when no two agent has to
wait the same time to get service. This result is shown to be a generalization of the
necessity result Theorem 3.7 of Mitra and Mutuswami (2011). We also provide a class
of mechanisms that satisfy queue-efficiency, weak group strategy-proofness and con-
tinuity. This class contains the k-pivotal mechanisms of Mitra and Mutuswami (2011),
as a special subclass.

Section 2 states the model. Section 3.1 states the two agent results while the Sect. 3.2
states the n > 2 results. Section 4 discusses possible extensions. Section 5 states the
conclusion and Sect. 6 is the Appendix.

2 The model

Let N = {1, . . . , n}, n ≥ 2 be the set of agents with identical jobs3 and M =
{1, . . . ,m} be the set of machines. Each machine j is identified with a speed of

2 This notion of group strategy-proofness has also been used in different contexts by Barbera et al. (2010)
and Hatsumi and Serizawa (2009).
3 If agents have non-identical jobs that are private information, then an agent’s utility from the service
depends directly on the announcements of processing times of other agents. Then, strategy-proofness is
not possible and is replaced by “implementation in ex-post equilibrium”, which is Bayesian incentive com-
patibility under all priors (Hain and Mitra 2004). However, in most cases, processing times are public
information (the planner may easily check them once machines process jobs).
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s j ∈ (0, 1] which is the time taken by the machine to process one job. W.l.o.g. we
assume s1 ≤ s2 ≤ · · · ≤ sm . Each agent i is identified with θi ∈ R+ which denotes
the disutility incurred by i per unit of waiting time. Let θ = (θi )i∈N denote the profile
of waiting costs and θ−i denote the cost vector (θ1, . . . , θi−1, θi+1, . . . , θn). The cost
of waiting on machine j , to agent i , in position k is given by ks jθi .4 Agents have
quasilinear preferences over positions and money. So an agent i waiting on machine
j in kth position with money ti ∈ R gets a utility −ks jθi + ti .

The planner wants to ensure queue-efficiency, which means that the n jobs need
to be scheduled in such a way that the aggregate waiting cost is minimized. To attain
queue-efficiency, the planner needs to pick the smallest n numbers from the set of all
possible waiting times {{ks j }k∈N } j∈M , arrange them in a non-decreasing order and then
assign these waiting times to agents in such a way that queue-efficiency is achieved.
Let (z(1), . . . , z(n)) denote the smallest n waiting times arranged in such an order.

Any ranking of n agents can be represented by an injection σ̂ : N → N, where
agent i is ranked σ̂i . Let � be the set of all such injections. For any profile of wait-
ing costs θ , the planner picks an efficient ranking of agents σ(θ) = (σi (θ))i∈N such
that σ(θ) ∈ argmin σ̂∈�

∑n
i=1 σ̂iθi ; and then assigns to each agent i a waiting time

z(σi (θ)). This efficient ranking is unique if and only if no two agents have the same
waiting cost per unit time. To ensure that efficient ranking be a single valued selec-
tion, a tie-breaking rule is required. A strict order � is defined on N , for this pur-
pose. This relation is used to break ties in the following manner; if any two agents
i and j have same waiting cost per unit time, then σi (θ) < σ j (θ) iff i � j . Also
define for any profile of waiting costs θ, P ′

i (θ) := {k ∈ N |σk(θ) > σi (θ)} and
Pi (θ) := {k ∈ N |σk(θ) < σi (θ)}. Therefore, P ′

i (θ) and Pi (θ) denote the set of agents
ranked after agent i and before agent i , respectively, in the efficient ranking. Also note
that ∀θ ∈ R

n+,∀ i 	= j ∈ N , σi (θ− j ) denotes the efficient rank of agent i in the profile
of costs θ− j .

If waiting costs are private information, agents may have incentive to misreport.
Under incomplete information, planner has to design a mechanism to extract infor-
mation. A mechanism associates to any profile of waiting costs θ ∈ R

n+, a pair
(σ̂ (θ), τ (θ)) ⊂ N × R

n where σ̂ (θ) ∈ � and τ(θ) = (τi (θ))i∈N . Under this mech-
anism, any agent i gets rank σ̂i (θ) and a transfer τi (θ). The utility to agent i for any
reported profile of costs θ is u(σ̂i (θ), τi (θ); θ ′

i ) = −z(σ̂i (θ))θ
′
i +τi (θ), where θ ′

i is the
true waiting cost of agent i .5 We assume that τi (0, 0, . . . , 0) = 0 irrespective of the
tie-breaking rule chosen, ∀ i ∈ N . This means that transfers are independent of agent
specific constants no matter what the tie-breaking rule. It reinforces the fairness per-
ception that agents should incur zero disutility, if all of them have zero waiting costs.
We also assume that ∀ n ∈ N, there exists s = 1, . . . , n − 1 such that z(s) 	= z(s + 1).

4 An agent incurs a cost of waiting until a machine ends processing its job; unlike in Mitra and Mutuswami
(2011) where an agent incurs a cost of waiting until a machine starts processing it. This allows for situations
where an agent prefers the kth (some k > 1) position on the queue of a faster machine then the first position
on the queue of a slower machine.
5 For notational simplicity, we make an implicit efficiency assumption that an agent is allocated any one
of the n smallest waiting times (z(1), . . . , z(n)). As we shall restrict our attention to mechanisms verifying
such a property, it has no incidence.
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Otherwise, the planner does not require any information about waiting costs to attain
queue-efficiency.

Definition 1 A mechanism (σ̂ , τ ) is queue-efficient (Q-EFF) if ∀ θ ∈ R
n+,

σ̂ (θ) ∈ argminσ̃∈�
n∑

i=1

z(σ̃i )θi

In other words, a mechanism (σ̂ , τ ) is Q-EFF if σ̂ (θ) = σ(θ),∀ θ ∈ R
n+.

Definition 2 A mechanism (σ̂ , τ ) is strategy-proof if ∀i ∈ N ,∀θi , θ
′
i ∈ R+ and

∀θ−i ∈ R
n−1+ ,

u(σ̂i (θi , θ−i ), τi (θi , θ−i ); θi ) ≥ u(σ̂i (θ
′
i , θ−i ), τi (θ

′
i , θ−i ); θi )

A strategy-proof mechanism guarantees that revealing the true waiting cost is a weakly
dominant strategy for every agent. If a mechanism achieves queue-efficiency and strat-
egy-proofness, then we say that the queue-efficient decision is implementable in dom-
inant strategies. However, there remains the possibility of agents forming coalitions
and misreporting together. Ideally a mechanism should also be immune to such coa-
litional misreporting. Hence, we define a stronger incentive compatibility criterion.
First, we introduce the following notation. For any θ, θ ′ ∈ R

n+; θ ′ is an S-variant of θ
if ∀ i 	∈ S, θi = θ ′

i , for any non-empty S ⊆ N . The profile of waiting costs θ ′ is said
to be an order preserving S-variant of θ if ∀ i ∈ S, σ̂i (θ) = σ̂i (θ

′).

Definition 3 A mechanism (σ̂ , τ ) is weak group strategy-proof (WGS) if ∀ θ ∈
R

n+,∀ S ⊆ N , there exists i ∈ S such that

u(σ̂i (θ), τi (θ); θi ) ≥ u(σ̂i (θ
′), τi (θ

′); θi )

where θ ′ is an S-variant of θ .

Thus, WGS property ensures that any coalition misreporting together would have at
least one member who would not be strictly better off. For any singleton coalition this
condition reduces to strategy-proofness. For any coalition with no more that 2 mem-
bers, this condition reduces to pairwise strategy-proofness (e.g. Mitra and Mutuswami
2011) defined below.

Definition 4 A mechanism (σ̂ , τ ) is pairwise strategy-proof if ∀θ ∈ R
n+ and ∀S ⊆ N

such that |S| ≤ 2, there exists i ∈ S such that

u(σ̂i (θ), τi (θ); θi ) ≥ u(σ̂i (θ
′), τi (θ

′); θi )

where θ ′ is an S-variant of θ .

The following definition specifies a fairness property for mechanisms. It requires
that any two agents with same waiting costs must get same utility.
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Definition 5 A mechanism (σ̂ , τ ) satisfies equal treatment of equals if ∀ θ ∈ R
n+ and

∀ i 	= j ∈ N ,

θi = θ j �⇒ u(σ̂i (θ), τi (θ); θi ) = u(σ̂ j (θ), τ j (θ); θ j )

Implementing queue-efficiency should not entail wastage of resources. The follow-
ing definition captures this aspect by requiring that sum of transfers, for any profile
of costs, never exceeds zero.

Definition 6 A mechanism (σ̂ , τ ) is feasible if ∀ θ ∈ R
n+,

∑

i∈N

τi (θ) ≤ 0

Result 1 A Q-EFF mechanism (σ, τ ) is strategy-proof if and only if ∀ θ ∈ R
n+ and

∀ i ∈ N ,

τi (θ) = −
∑

j 	=i

z(σ j (θ))θ j + hi (θ−i )

Proof Since the domain of cost profiles R
n+ is convex, the result follows from Theorem

2 of Holmström (1979). ��
Any Q-EFF mechanism with transfers given by Result 1 is known as a Vickrey-

Clarke-Groves (VCG) mechanism.

Result 2 A Q-EFF mechanism (σ, τ ) is strategy-proof if and only if ∀ θ ∈ R
n+ and

∀ i ∈ N ,

τi (θ) = −
∑

j∈P ′
i (θ)

[
z(σ j (θ))− z(σ j (θ−i ))

]
θ j + gi (θ−i )

Proof The result follows from Result 1 by substituting hi (θ−i ) = ∑
j 	=i z(σ j (θ−i ))θ j

+ gi (θ−i ). ��
This paper attempts to specify the class of mechanisms that satisfy Q-EFF, WGS

and continuity. From definition it follows that WGS mechanisms are necessarily strat-
egy-proof. Thus, we need to search the class of transfers given by Result 2 for a WGS
and continuous transfer map. Effectively, the additional restrictions of WGS and con-
tinuity impose a structure on gi (θ−i ) function. The latter imposes what follows.

Definition 7 A Q-EFF and WGS mechanism (σ, τ ) is upper semi continuous (USC)
if ∀ i ∈ N and ∀ α ∈ R+, the set {x ∈ R

n−1+ : gi (x) ≥ α} is closed in R+.

Definition 8 A Q-EFF and WGS mechanism (σ, τ ) is lower semi continuous (LSC)
if ∀ i ∈ N and ∀ α ∈ R+, the set {x ∈ R

n−1+ : gi (x) ≤ α} is closed in R+.

Definition 9 A Q-EFF and WGS mechanism (σ, τ ) is continuous if it is USC as well
as LSC.
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3 Results

3.1 Prelude to main results

We discuss the 2 agent case first, because it is the building block of n agent result. Sup-
pose N = {1, 2}. To keep the incentive problem non-trivial, we assume z(1) 	= z(2).

Theorem 1 In a 2 agent multiple machine queueing problem, a Q-EFF mechanism
(σ, τ ) is WGS if and only if there exists η ∈ [0,∞] and α1, α2 ∈ R such that

• ∀ θ ∈ R
2+ and ∀ i 	= j ∈ {1, 2},

gi (θ j ) =
{
(z(2)− z(1))min{θ j , η} if θ j 	= η

αi (z(2)− z(1))η if θ j = η

• max{α1, α2} = 1

Sketch of the Proof: Consider a Q-EFF and WGS mechanism (σ, τ ). Let g(.) be
the maps associated with τ(.). For each θ, θ ′ ∈ R

2+ such that θ ′ is an order-preserv-
ing {1, 2}-variant of θ , the following holds. W.l.o.g. assume that σ1(θ) = σ1(θ

′) =
1, σ2(θ) = σ2(θ

′) = 2 and 1 � 2. Therefore, θ1 ≥ θ2 and θ ′
1 ≥ θ ′

2. Consider the
{1, 2}-deviation from true profile θ to misreport θ ′. WGS requires either

g1(θ2)− g1(θ
′
2) ≥ [z(2)− z(1)][θ2 − θ ′

2] (1)

or

g2(θ1)− g2(θ
′
1) ≥ 0. (2)

Consider the {1, 2}-deviation from true profile θ ′ to misreport θ . WGS requires either

g1(θ2)− g1(θ
′
2) ≤ [z(2)− z(1)][θ2 − θ ′

2] (3)

or

g2(θ1)− g2(θ
′
1) ≤ 0. (4)

If any of these equations hold with equality, WGS is ensured by the mechanism irre-
spective of whether {1, 2} deviates from θ to θ ′ or from θ ′ to θ . Such a situation will be
referred to as WGS holding with equality. If from each of the two pairs of equations,
one holds with strict inequality, WGS requires that the two equations thus chosen must
have their inequalities in the opposite direction. Such a situation will be referred to
as WGS holding with strict inequality. E.g. if (1) & (4) hold with inequality, we can
rewrite the equations as follows.

g1(θ2)− g1(θ
′
2) > [z(2)− z(1)][θ2 − θ ′

2] (5)

g2(θ1)− g2(θ
′
1) < 0 (6)
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Fig. 1 Theorem 1 with positive and finite η and α2 < 1

The first step of the proof (Proposition 1 in Sect. 6.1.1 of Appendix) is to prove that if
there is a pair of profiles θ and θ ′ such that WGS holds with strict inequality, w.l.o.g.
θ and θ ′ such that (5) and (6) hold, then θ2 ≤ θ1 < θ ′

2 ≤ θ ′
1 and the g(.) maps are

such that they have a kink in their graphs at some point η ∈ [θ1, θ
′
2]. Only at this point

there can be a discontinuity for at most one agent, that too with both side limits being
equal. The second step of the proof (Proposition 2 in Sect. 6.1.2 of Appendix) is to
prove that if there is no pair θ, θ ′ ∈ R

2+ such that WGS holds with strict inequality,
then the g(.) maps are such that; either ∀ i 	= j ∈ {1, 2} and ∀ θ j ∈ R+, gi (θ j ) = 0
or ∀ i 	= j ∈ {1, 2} and ∀ θ j ∈ R+, gi (θ j ) = [z(2)− z(1)]θ j . Necessity follows from
Propositions 1 and 2.

Since all the logical arguments involved in proving these propositions are revers-
ible, sufficiency for order preserving deviations follows. We prove the sufficiency for
order interchanging deviations in the last step of the proof (Sect. 6.1.2 of Appendix).

��
Figure 1 shows the graphical representation of Theorem 1 when η ∈ (0,+∞) and

α2 < 1. The η value decides the position of the kink point while α value decides
whether there is any discontinuity at the kink point or not. Also Theorem 1 implies
that there cannot be discontinuity in both g(.) maps. We interpret the values of α and
η in the following way;

(1) If αt = 1,∀ t = 1, 2, then there is no discontinuity in either of the g(.), no matter
what the value of η.
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(2) If η = 0 then the g(.) maps are horizontal straight lines along the x-axis, irre-
spective of the values of α.

(3) If η = ∞ then the values of α become immaterial since then g(.) maps will
simply be upward sloping straight lines with the slope z(2)− z(1).

Remark 1 In the single machine setting, we may normalize the speed of the machine
to be equal to 1, that is, z(2)− z(1) = 1 (as e.g. Mitra and Mutuswami 2011). Then,
the expression in Theorem 1 reduces to the following. There exists η ∈ [0,∞] and
α1, α2 ∈ R such that

• ∀ θ ∈ R
2+ and ∀ i 	= j ∈ {1, 2},

gi (θ j ) =
{

min{θ j , η} if θ j 	= η

αiη if θ j = η

• max{α1, α2} = 1.

Remark 2 From Theorem 1 it follows that when the number of agents is 2; any mech-
anism will satisfy Q-EFF and WGS only if the number of discontinuities in the mech-
anism does not exceed one. Moreover, any discontinuity, if present, can occur for only
one of the two agents. Such discontinuity must occur at the kink point of the transfer
map and must have equal both side limits.

Corollary 1 In a 2 agent multiple machine queueing problem, a Q-EFF and WGS
mechanism is Lower Semi-Continuous.

From the Corollary 1, it is obvious that in a two agent case, imposition of the USC
property, leads to Continuity of the mechanism. Hence, the following result;

Result 3 In a 2 agent multiple machine queueing problem, a Q-EFF mechanism (σ, τ )

is WGS and USC if and only if there exists η ∈ [0,∞] such that ∀ θ ∈ R
2+ and

∀ i 	= j ∈ {1, 2},

gi (θ j ) = (z(2)− z(1))min{η, θ j }.

The discontinuity in the two agent result is ‘mild’, in the sense that the both side
limits at the only possible point of discontinuity (the kink point), are equal. Also, if
we impose the fairness requirement of equal treatment of equals on Theorem 1, the
possibility of discontinuity gets eliminated (as α1 = α2) and we get the continuous
mechanism specified by Result 3. Hence, the axiom of continuity has technical as well
as fairness justifications in a 2 agent multiple machine queueing problem.

3.2 Main results

Suppose N = {1, 2, . . . , n}. Let ∀ i = 1, 2, . . . , n − 1,�z(i)
de f= z(i + 1)− z(i).

We use Theorem 1 to obtain the n agent g(.)maps associated with queue-efficient,
weak group strategy-proof and continuous mechanisms. However, proof of Theorem 1
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requires that each agent have a different waiting time (that is, z(2) 	= z(1)). Therefore,
any n agent g(.)map obtained by aggregating the 2 agent g(.)maps given by Theorem
1, must implicitly assume that for all i = 1, . . . , n − 1,�z(i) 	= 0. For the rest of the
paper, we assume the same.

Theorem 2 In a multiple machine queueing problem, a Q-EFF mechanism (σ, τ )

satisfies WGS and continuity only if there exist non-negative
(
(ηi j (s)) j 	=i

)
s=1,...,n−1

such that ∀ i ∈ N and ∀ θ−i ∈ R
n−1+ ,

gi (θ−i ) =
∑

j 	=i

�z(σ j (θ−i ))min{θ j , ηi j (σ (θ−i ))}

Proof Pick a θ ∈ R
n+ such that σ1(θ−2) = σ2(θ−1), that is, agents 1 and 2 are adja-

cently ranked in the efficient ranking for profile θ . While analyzing the impact of
change in 2’s report on the g1(.) function; we assume that the announcements of other
agents, that is, the vector θ−1−2 is constant. The impact of θ−1−2 can be deemed to
enter the g1(.) function through a constant intercept term F12(θ−1−2). Also upfront,
we cannot rule out the possibility of this F12(.) depending on σ2(θ−1), that is, the rank
of agent 2 when 1 is not around. We can then invoke Result 3 to write that

g1(θ−1) = �z(σ2(θ−1))min{θ2, η12(σ2(θ−1); θ−1−2)} (7)

+ F12(σ2(θ−1); θ−1−2)

Consider a profile θ ′ = (θ ′
1, θ−1) such that σ1(θ

′−3) = σ3(θ
′−1), that is, agents 1

and 3 are adjacently ranked in the efficient ranking. Again invoking Result 3, now for
agents {1, 3}, we can write

g1(θ−1) = �z(σ3(θ−1))min{θ3, η13(σ3(θ−1); θ−1−3)} (8)

+F13(σ3(θ−1); θ−1−3)

The left hand side of both the above equations are the same. This means that the F13(.)

must contain�z(σ2(θ−1))min{θ2, η12(.)}. This in turn implies that (i) the η12(.) func-
tion may contain σ3(θ−1) as its argument, (ii) the η12(.) does not depend on θ3, (iii) the
F13(.) term may contain σ2(θ−1) as its argument and (iv) the F13(.) does not depend
θ2 as argument.

Arguing similarly for the terms F12(.) and�z(σ3(θ−1))min{θ3, η13(.)} in the right
hand side of (7) and (8), respectively; we can write that

g1(θ−1) = �z(σ2(θ−1))min{θ2, η12(σ2(θ−1), σ3(θ−1); θ−1−2−3)}
+�z(σ3(θ−1))min{θ3, η13(σ2(θ−1), σ3(θ−1); θ−1−2−3)}
+F123(σ2(θ−1), σ3(θ−1); θ−1−2−3)
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Continuing this recursion for all j 	= 1, we get that

g1(θ−1) =
∑

j 	=1

�z(σ j (θ−1))min{θ j , η1 j (σ (θ−1))} + C(σ (θ−1))

Note that τ1(0, 0, . . . , 0) = 0 irrespective of what tie-breaking rule we use. Hence,
it must be that C(σ (θ−1)) = 0 and η1 j (σ (θ−1)) ∈ [0,∞],∀ j ∈ N − {1} and
∀ θ−1 ∈ R

n−1+ . Arguing similarly, we can establish the result for all i ∈ N . ��

Remark 3 In the single machine setting, we may normalize the speed of the machine
to be equal to 1, that is, ∀ i = 1, 2, . . . , n−1,�z(i) = 1 (as e.g. Mitra and Mutuswami
2011). Therefore, the expression in Theorem 2 reduces to the following. There exist
non-negative

(
(ηi j (s)) j 	=i

)
s=1,...,n−1 such that ∀ i ∈ N and ∀ θ−i ∈ R

n−1+ ,

gi (θ−i ) =
∑

j 	=i

min{θ j , ηi j (σ (θ−i ))}.

Remark 4 In proving Theorem 2, we check only for 2 agent coalitional deviations.
Therefore, in statement of Theorem 2, we can substitute the WGS axiom with the
pairwise strategy-proofness axiom of Mitra and Mutuswami (2011). This implies that
Theorem 2 is a generalization of Theorem 3.7 in Mitra and Mutuswami (2011). This
becomes clear when (i) we assume weak linearity instead of continuity in Theorem
2 and (ii) consider the single machine setting. Indeed, weak linearity implies that for
all i 	= j ∈ N and for all possible ranking s̄ among the agents other than i (or j),
ηi j (s̄) ∈ {0,∞}. For all such s̄, it follows from Theorem 1 that ηi j (s̄) = η j i (s̄).
Further, for all θ ∈ R

n+ with θ1 > θ2 > · · · > θn and ∀ i 	= k ∈ N , θi > θk �⇒
ηik(σ (θ−i )) ≥ ηki (σ (θ−k)).6 Therefore, in the single machine setting (that is, when
∀ i = 1, . . . , n − 1,�z(i) = 1), the necessity result Theorem 2 implies Theorem 3.7
in Mitra and Mutuswami (2011); not conversely.

The complete characterization of mechanisms that satisfy queue-efficiency, weak
group strategy-proofness and continuity, would require proving that the transfers in
Theorem 2 along with queue-efficiency, satisfy weak group strategy-proofness. This
turns out to be difficult since the η terms depend on identity of agents, as well as the
σ(θ−i ) vector. Instead, in the following theorem, we generate a class of continuous
mechanisms that satisfy Q-EFF and WGS, by allowing the η terms to depend only on
the rank σ j (θ−i ) (instead of the vector of ranks σ(θ−i )).

Theorem 3 In a multiple machine queueing problem, a Q-EFF mechanism (σ, τ )

satisfies WGS and continuity if there exists (η(s))s=1,...,n−1 such that ∀ i ∈ N and
∀ θ−i ∈ R

n−1+ ,

6 Suppose ∃ θ such that θ1 > · · · > θi > θ j > θk > · · · > θn and ηik (σ (θ−i )) = 0 < ηki (σ (θ−k )) = ∞.
Then, WGS is violated in an order preserving {i, k} deviation from θ to (θ ′

i , θ
′
k , θ−i−k ) where θ ′

i > θi and
θ ′

k < θk .
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gi (θ−i ) =
∑

j 	=i

�z(σ j (θ−i ))min{θ j , η(σ j (θ−i ))} (9)

∀ s = 1, 2, . . . , n − 2, η(s + 1) ≥ η(s) (10)

Proof See Appendix. ��

The following set of graphs capture the implication of Theorem 3 when n = 3.
(9) and (10) imply that 3 agent g(.) maps must look like one of the following five
figures.7

7 The second map is drawn with a positive intercept to emphasize the flat curvature.
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The following is a queue-efficient, weak group strategy-proof and continuous mech-
anism, in a 3 agent single machine queueing setting, which does not belong to the class
of mechanisms specified by (9) and (10) in Theorem 3.

Example 1 Let N = {1, 2, 3} and�z(1) = �z(2) = 1. Therefore, the σ(θ−i ) term in
Theorem 2 can be either (1, 2) or (2, 1). Let η12(1, 2) = 0 and ηi j (1, 2) = ηi j (2, 1) =
∞ for all i j 	= 12. Using the expression in Remark 3, we can write that ∀ θ ∈ R

3+,

• if θ1 > θ2 > θ3 then τ1(θ) = −θ2, τ2(θ) = 0, τ3(θ) = θ1 + θ2
• if θ1 > θ3 > θ2 then τ1(θ) = 0, τ2(θ) = θ3, τ3(θ) = θ1
• if θ2 > θ1 > θ3 then τ1(θ) = 0, τ2(θ) = −θ1, τ3(θ) = θ1 + θ2
• if θ2 > θ3 > θ1 then τ1(θ) = θ3, τ2(θ) = 0, τ3(θ) = θ2
• if θ3 > θ1 > θ2 then τ1(θ) = θ3, τ2(θ) = θ1 + θ3, τ3(θ) = 0
• if θ3 > θ2 > θ1 then τ1(θ) = θ2 + θ3, τ2(θ) = θ3, τ3(θ) = 0

It can easily be checked that these continuous transfers along with queue-efficiency
satisfy weak group strategy-proofness.

Remark 5 In the single machine setting, we may normalize the speed of the machine
to be equal to 1, that is, ∀ i = 1, 2, . . . , n−1,�z(i) = 1 (as e.g. Mitra and Mutuswami
2011). Therefore, the expression in Theorem 3 reduces to the following. There exist
non-negative (η(s))s=1,...,n−1 such that ∀ i ∈ N and ∀ θ−i ∈ R

n−1+ ,

• gi (θ−i ) = ∑
j 	=i min{θ j , η(σ j (θ−i ))}

• ∀ s = 1, . . . , n − 2, η(s + 1) ≥ η(s).

We can easily show that k-pivotal mechanisms introduced by Mitra and Mutuswami
(2011) is a special subclass of the class of mechanisms given by Theorem 3. Indeed,
∀ k = 1, . . . , n, (9) reduces to the k-pivotal mechanism when
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η(s) =
{∞ if s ≥ k

0 if s < k

From this arrangement of η values, we may formulate a generalization of k-pivotal
mechanism for the multiple machine setting. For this purpose, we need the following
notation: ∀ s = 1, . . . , n, let θ(s) := {θ j |σ j (θ) = s}. Then, ∀ k = 1, . . . , n,∀ θ ∈ R

n+
and ∀ i ∈ N ,

τ k
i (θ) =

⎧
⎨

⎩

∑
s=σi (θ)+1,...,k �z(s − 1)θ(s) if σi (θ) < k

0 if σi (θ) = k∑
s=k,...,σi (θ)−1�z(s)θ(s) if σi (θ) > k

Remark 6 An interesting subclass of the mechanisms described by Theorem 3 are the
feasible mechanisms. For all such mechanisms, ∀ θ ∈ R

n+,

∑

i∈N

τi (θ) = −
∑

s=2,3,...,n

(s − 1)�z(s − 1)θ(s)

+
∑

s=1,2...,n

[(n − s)�z(s)min{θ(s), η(s)}

+(s − 1)�z(s − 1)min{θ(s), η(s − 1)}]

It can easily be seen that feasible mechanisms in the class provided by Theorem 3
must have η(1) = 0. This means that; in the panel of graphs before, the third and
fourth possibilities are ruled out.

Remark 7 The class of mechanisms given by (9) and (10) in Theorem 3 continue
to satisfy queue-efficiency, weak group strategy-proofness and continuity, even when
there exists s = 1, . . . , n − 1 such that z(s) = z(s + 1) (that is, there are agents who
have to wait the same time to get service).

Remark 8 The class of mechanisms specified by (9) and (10) in Theorem 3 is quite
large. These mechanisms also satisfy the fairness property of equal treatment of equals.
We hope that these are the only mechanisms that satisfy queue-efficiency, weak group
strategy-proofness, equal treatment of equals and continuity, but cannot say for sure.

4 Discussion

The queueing problem assumes that (i) machine speeds are constant across jobs, and
(ii) per unit time waiting cost of each agent is constant over time. Relaxing assump-

tion (i) would mean that each machine j is associated with a sequence
{

st
j

}∞
t=1

where

st
j > 0,∀ t . Any agent placed on kth position in the queue for machine j would have

to wait
∑k

t=1 st
j to get his job completed. Since these speeds are known to the planner;

123



Q-EFF & WGS mechanisms in single machine queueing problem 145

the planner can choose the n smallest numbers out of the set
{{∑k

t=1 st
j

}n

k=1

}m

j=1
and

arrange them in a non-decreasing order to get the z ≡ (z(1), . . . , z(n)) vector. The
rest of the analysis would remain same as above.

Relaxing the assumption (ii) is more difficult. If we measure time as a discrete
variable and assume the waiting cost to vary with time t ; we get that the cost to agent
i upon being assigned the rank k is

[z(k)]∑

t=1

θi (t)+ {z(k)− [z(k)]} θi ([z(k)] + 1)

where [x] is the integer nearest to x but smaller than x,∀x > 0. This leads to a different
definition of queue-efficiency and may well lead to different results. Identifying the
necessary and sufficient conditions for mechanisms to satisfy Q-EFF and WGS in this
setting, would be an interesting but very difficult problem. The other alternative is to
consider time as a continuous variable. Mitra (2002) proves that implementing queue-
efficiency in dominant strategies with balanced budget, requires the cost function to
be linear in time.

As in Theorems 2 and 3, kinked mechanisms may also be obtained in analysis of
group strategy-proofness in related fields like the indivisible good (single and multiple)
allocation problem and the public good provision problem.

5 Conclusion

We analyze queueing problem with multiple machines and identical jobs. The crucial
aspect here is how the gi (θ−i ) function (which can be any arbitrary function if we
require only strategy-proofness) behaves when we require weak group strategy-proof-
ness. We assume continuity, which is weaker than weak linearity (unlike in Mitra and
Mutuswami (2011)) and this results in transfer maps having kinks. Continuity is not
demanding in this structure from technical perspective because the 2 agent queue-
efficient and weak group strategy-proof mechanism is lower semi-continuous. The
same holds true from a fairness perspective, too, because any such 2 agent mechanism
satisfying equal treatment of equals is continuous.

Our results show that if we restrict the gi (.) function to be continuous then it must be
that (i) it is piecewise linear and (ii) if θ j ( j 	= i) changes without changing the queue
order then it cannot have a flat stretch followed by an increasing stretch. This feature
prevails even in the single machine case. We also provide a class of mechanisms sat-
isfying queue-efficiency, weak group strategy-proofness and continuity. The k-pivotal
mechanisms introduced by Mitra and Mutuswami (2011), are a special subclass of
this class.
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6 Appendix

6.1 Proof of Theorem 1:

∀ S ⊆ N ,∀ θ, θ ′ ∈ R
n+ such that θ ′ is an S-variant of θ , and ∀ i ∈ S, let li (θ, θ ′) :=

u(σ̂i (θ), τi (θ); θi )− u(σ̂i (θ
′), τi (θ

′); θi ) capture the change in utility to member i of
the misreporting coalition S as they deviate from (truth) profile θ to (misreport) profile
θ ′. In what follows, we prove the required necessity and sufficiency.

6.1.1 Proof of only if in Theorem 1:

Consider a Q-EFF and WGS mechanism (σ, τ ). If a pair of order preserving {1, 2}-
variants exists such that WGS amongst them holds with strict inequality then from
Proposition 1 (below) we can obtain the g(.) maps. The expression in theorem cap-
tures this case, when η takes a finite positive value. If for all pairs of order preserving
{1, 2}-variants, WGS holds with equality, then from Proposition 2 (below), we obtain
the corresponding g(.)maps. The expression in theorem captures these two subcases,
when η = 0 or when (with a slight abuse of notation) η = ∞. Since we are proving
necessity in this subsection, we need not consider the order interchanging deviations.

Proposition 1 If there is a pair θ, θ ′ ∈ R
2+ such that WGS holds with strict inequal-

ity, w.l.o.g. θ and θ ′ are such that (5) and (6) hold, then there are η ∈ [θ1, θ
′
2] and

α1, α2 ∈ R such that

• ∀ i 	= j ∈ {1, 2},

gi (θ j ) =
{
(z(2)− z(1))min{θ j , η} if θ j 	= η

αi (z(2)− z(1))η if θ j = η

• max{α1, α2} = 1.

Proof Let θ, θ ′ ∈ R
2+ such that WGS holds with strict inequality. W.l.o.g. assume θ

and θ ′ are such that (5) and (6). Claims 1 to 10 (below) prove the proposition. ��
Claim 1 θ2 ≤ θ1 < θ ′

2 ≤ θ ′
1.

Proof Let us eliminate the other possibilities, namely the following five cases;

Case 1: θ ′
1 ≥ θ2, θ1 ≥ θ ′

2
Design a {1, 2} deviation from α ≡ (θ1, θ

′
2) to β ≡ (θ ′

1, θ2). By (5) and (6),
lt (α, β) < 0,∀ t = 1, 2 and thus WGS is violated.

Case 2: θ ′
2 = θ ′

1 < θ2 < θ1
Design a {1, 2} deviation from β ≡ (θ2, θ

′
2) to α ≡ (θ ′

1, θ2). By (5),
−z(2)θ2 +g1(θ2) > −z(1)θ2 −[z(2)− z(1)]θ ′

2 +g1(θ
′
2) �⇒ l1(β, α) < 0.

Thus, W GS �⇒ l2(β, α) ≥ 0 which means −z(1)θ ′
2 − [z(2)− z(1)]θ ′

1 +
g2(θ

′
1) ≤ −z(2)θ ′

2 + g2(θ2) �⇒ (a) g2(θ
′
1) ≤ g2(θ2). In a {1, 2} devi-

ation from β̃ ≡ (θ1, θ
′
2) to α̃ ≡ (θ2, θ2); from (5), l1(β̃, α̃) < 0 and so

W GS �⇒ l2(β̃, α̃) ≥ 0 �⇒ (b) g2(θ1) ≥ g2(θ2). Combining condi-
tions (a) and (b) we get that g2(θ1) ≥ g2(θ

′
1) which contradicts (6).
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Case 3: θ ′
2 = θ ′

1 < θ2 = θ1
In a {1, 2} deviation from α ≡ (θ1, θ

′
2) to β ≡ (θ ′

1, θ2); (5) implies that
−z(2)θ2 + g1(θ2) > −z(1)θ2 − [z(2)− z(1)]θ ′

2 + g1(θ
′
2) ⇒ l1(α, β) < 0.

Similarly (6) implies that g2(θ
′
1) − [z(2) − z(1)]θ ′

1 − z(1)θ ′
2 > g2(θ1) −

z(2)θ ′
2 ⇒ l2(α, β) < 0 which violates WGS.

Case 4: θ ′
2 < θ ′

1 < θ2 = θ1
Design a {1, 2} deviation from β ≡ (θ1, θ

′
1) to α ≡ (θ ′

1, θ2). (6) implies that
g2(θ

′
1) − z(1)θ ′

1 − [z(2) − z(1)]θ ′
1 > g2(θ1) − z(2)θ ′

1 ⇒ l2(β, α) < 0. So
W GS �⇒ l1(β, α) ≥ 0 �⇒ (c) g1(θ2)−g1(θ

′
1) ≤ [z(2)−z(1)][θ2−θ ′

1].
For an {1, 2} deviation from β̃ ≡ (θ1, θ

′
2) to α̃ ≡ (θ ′

1, θ
′
1); (6) implies that

l2(β̃, α̃) < 0, and so W GS �⇒ l1(β̃, α̃) ≥ 0 which implies that (d)
g1(θ

′
1) − g1(θ

′
2) ≤ [z(2) − z(1)][θ ′

1 − θ ′
2]. Then, (5) minus (d) we get that

g1(θ2)− g1(θ
′
1) > [z(2)− z(1)][θ2 − θ ′

1] which contradicts (c).
Case 5: θ ′

2 < θ ′
1 < θ2 < θ1

Consider four profiles (θ2, θ
′
2), (θ1, θ2), (θ1, θ

′
2), and (θ2, θ2). Given (5), if

g2(θ2) < g2(θ1) then a {1, 2} coalition deviation from the first profile to the
second makes both agents strictly better off; and if g2(θ2) > g2(θ1) then a
{1, 2} coalition deviation from the third profile to the fourth leads to both
agents being strictly better off. Therefore, W GS �⇒ (e) g2(θ2) = g2(θ1).
For a pair of profiles α ≡ (θ2, θ

′
1) and β ≡ (θ ′

1, θ2); from (6) and (e) it
follows that g2(θ

′
1) > g2(θ2) �⇒ g2(θ

′
1) − [z(2) − z(1)]θ ′

1 − z(1)θ ′
1 >

g2(θ2) − z(2)θ ′
1 �⇒ l2(α, β) < 0. So W GS �⇒ l1(α, β) ≥ 0 �⇒

(f) g1(θ2)− g1(θ
′
1) ≤ [z(2)− z(1)][θ2 − θ ′

1].
Consider four profiles (θ1, θ

′
2), (θ

′
1, θ

′
1), (θ1, θ

′
1), and (θ ′

1, θ
′
2). If g1(θ

′
1) − g1(θ

′
2) >[z(2) − z(1)](θ ′

1 − θ ′
2), then in a {1, 2} deviation from the first profile to the second;

from (6) it follows that both agents are strictly better off. Again if, g1(θ
′
1)− g1(θ

′
2) <[z(2)− z(1)](θ ′

1 − θ ′
2), then in a deviation from the third profile to the fourth; from (6)

it follows that both agents are strictly better off. Thus, W GS �⇒ g1(θ
′
1)− g1(θ

′
2) =

[z(2)− z(1)](θ ′
1 −θ ′

2). Using (f), we can say that g1(θ2)−g1(θ
′
2) ≤ [z(2)− z(1)][θ2 −

θ ′
2], which then, contradicts (5). ��

By Claim 1 we know that θ2 ≤ θ1 < θ ′
2 ≤ θ ′

1. W.l.o.g., assume θ2 < θ1 < θ ′
2 < θ ′

1
and continue the proof.8

Claim 2 A: ∀ x, y ≤ θ1, g1(x)− g1(y) = [z(2)− z(1)][x − y]
B: ∀ x, y < θ1, g2(x)− g2(y) = [z(2)− z(1)][x − y]
C: ∀ x, y ≥ θ ′

2, g2(x)− g2(y) = 0
D: ∀ x, y > θ ′

2, g1(x)− g1(y) = 0
E: ∀ x ∈ (θ1, θ

′
2), g2(x) ≤ g2(θ

′
1)

F: If ∃ x ∈ (θ1, θ
′
2) such that g2(x) < g2(θ

′
1), then

g1(θ1)− g1(y) = [z(2)− z(1)][θ1 − y],∀ y ∈ (θ1, x]

8 This rules out the possibility that θ1 = 0. We will discuss the implications of that possibility in
Remark 9.
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Proof A: For any x, y ≤ θ1, x 	= y; consider the profiles (θ1, x), (θ ′
1, y)(θ1, y),

(θ ′
1, x). If g1(x)− g1(y) > [z(2)− z(1)][x − y] then consider a {1, 2} deviation

from the third profile to the fourth; and if g1(x)− g1(y) < [z(2)− z(1)][x − y]
then consider a deviation from the first profile to the second. In both cases, by
(6), WGS is violated.

B: Pick any x, y, ρ, x ′ such that x < y < ρ < x ′ ≤ θ1. If g2(x) − g2(y) >
[z(2) − z(1)][x − y] then in a {1, 2} deviation from β ≡ (y, ρ) to α ≡ (x, x ′);
l2(β, α) < 0. From case A, g1(x ′) − g1(ρ) > 0 �⇒ l1(β, α) < 0 which
violates WGS. If g2(x)− g2(y) < [z(2)− z(1)][x − y], then in a {1, 2} deviation
from (x, ρ) to (y, x ′), as before, WGS is violated.

C: Pick any x, y ≥ θ ′
2. If g2(x) > g2(y) then in a {1, 2} deviation from β ≡ (y, θ ′

2)

to α ≡ (x, θ2), given (5); lt (β, α) < 0,∀ t = 1, 2. If g2(x) < g2(y) then in a
deviation from (x, θ ′

2) to (y, θ2), using (5), lt (β, α) < 0,∀ t = 1, 2. In both cases
WGS is violated.
item[D:] Pick any x, y, x ′, ρ such that x > y > x ′ > ρ ≥ θ ′

2. From the case C,
we get that g2(ρ)− g2(x ′) = 0 > [z(2)− z(1)][ρ − x ′]. If g1(x) > g1(y), then
lt ((x ′, y), (ρ, x)) < 0,∀t = 1, 2; and if g1(x) < g1(y), then lt ((x ′, x), (ρ, y)) <
0,∀ t . In both cases WGS is violated.

E: Say ∃ x ∈ (θ1, θ
′
2) such that g2(x) > g2(θ

′
1). Then, in a deviation from profile

α ≡ (θ ′
1, θ

′
2) to β ≡ (x, θ2), l2(α, β) < 0; while by (5), l1(α, β) < 0. Thus,

WGS is violated.
F: For any y ∈ (θ1, x], if g1(θ1)− g1(y) > [z(2)− z(1)][θ1 − y] then l1(α, β) < 0

where α ≡ (x, y) to β ≡ (θ ′
1, θ1) while g2(x) < g2(θ

′
1) �⇒ l2(α, β) < 0.

If g1(θ1) − g1(y) < [z(2) − z(1)][θ1 − y], then similarly, it can be shown that
lt ((x, θ1), (θ

′
1, y)) < 0,∀ t = 1, 2. ��

The implications of all the subcases of Claim 2 is depicted in the Figs. 2, 3, 4, 5, 6, 7.

Claim 3 Either (i) ∀ y ≥ θ ′
2, g1(y) = g1(θ

′
2), or (ii) there is K ∈ R such that

∀ y > θ ′
2, g1(y) = K > g1(θ

′
2).

Proof If ∃y > θ ′
2 such that g1(y) < g1(θ

′
2) then l1(α, β) < 0 where α ≡ (x ′, y) and

β ≡ (θ1, θ
′
2) with x ′ ∈ (θ ′

2, y). Then, W GS �⇒ l2(α, β) ≥ 0 �⇒ g2(θ1) ≤
g2(x ′) − [z(2) − z(1)][x ′ − θ1]. By Claim 2C; g2(x ′) is constant, ∀ x ′ ≥ θ ′

2. Since
there is no upper bound on y and so, on x ′; there can be no lower bound on the value
g2(θ1). Therefore, g2(θ1) < 0 and so, there can be no upper bound on |g2(θ1)|. Since

Fig. 2 Claim 2A
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Fig. 3 Claim 2B

Fig. 4 Claim 2C

Fig. 5 Claim 2D

Fig. 6 Claim 2E �⇒ interior
of zone Z is vacant

∀ i = 1, 2, gi : R+ �→ R, |g2(θ1)| ∈ R. However, from the archimedean property
of R, it follows that there exists n ∈ N such that |g2(θ1)| < n and so, contradiction.
Therefore, ∀ y > θ ′

2, g1(y) ≥ g1(θ
′
2). Using Claim 2D the result follows. ��

The graphical implication of Claim 3 is given by Fig. 8. In the following Claim 4 we
analyze the implication of Claim 3i.

123



150 C. Mukherjee

Fig. 7 Claim 2F

Fig. 8 Claim 3 �⇒ interior of
zone Z is vacant �⇒ either (i)
or (ii) must hold

Fig. 9 Claim 4 �⇒ [Claim 3i
�⇒ interior of zone Z is vacant]

Claim 4 If ∀ y ≥ θ ′
2, g1(y) = g1(θ

′
2), then g1(x) ≤ g1(θ

′
2),∀ x ∈ [θ1, θ

′
2]

Proof If ∃x ∈ [θ1, θ
′
2) such that g1(x) > g1(θ

′
2) then consider a {1, 2} deviation from

profile α ≡ (δ, y) to β ≡ (θ2, x) where θ ′
2 ≤ δ < y. Therefore, g1(y) = g1(θ

′
2) <

g1(x), which implies that l1(α, β) < 0. Then, W GS �⇒ l2(α, β) ≥ 0 �⇒
g2(θ2) ≤ g2(δ)− [z(2)− z(1)][δ − θ2]. Since there is no upper bound on y, and so,
on δ; using Claim 2C and arguing as in Claim 3, we arrive at a contradiction. ��
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The graphical implication of Claim 4 is given by Fig. 9. Claim 4 states that if Claim
3i holds, then g1(θ1) ≤ g1(θ

′
2). Therefore, Claims 3 and 4 imply three possibilities;

(1) For all y ≥ θ ′
2, g1(y) = g1(θ

′
2) and g1(θ1) = g1(θ

′
2).

(2) For all y ≥ θ ′
2, g1(y) = g1(θ

′
2) and g1(θ1) < g1(θ

′
2).

(3) There is K ∈ R such that ∀ y > θ ′
2, g1(y) = K > g1(θ

′
2).

Claims 5 and 6 state the implications of possibility (1), Claims 7 and 8 state the impli-
cations of possibility (2) and Claims 9 and 10 state the implications of possibility
(3). All three possibilities imply the map in Fig. 1. However, the kink point η varies.
Possibility (1) implies that η = θ1 (shown in Fig. 11) while possibility (2) implies that
for some ω ∈ (θ1, θ

′
2), η = ω (shown in Fig. 13). Finally, possibility (3) implies that

η = θ ′
2 (shown in Fig. 15).

Claim 5 If ∀ y ≥ θ ′
2, g1(y) = g1(θ

′
2) and g1(θ1) = g1(θ

′
2), then ∀ x ∈ (θ1, θ

′
2),∀ t ∈

{1, 2},

gt (x) = gt (θ
′
2)

Proof If ∃ x ∈ (θ1, θ
′
2) such that g2(x) < g2(θ

′
2), then l2(α, β) < 0 when α ≡ (x, x ′)

and β ≡ (θ ′
2, θ1)with x ′ ∈ (θ1, x). Since x ′ ∈ (θ1, θ

′
2), by Claim 4, g1(x ′) ≤ g1(θ

′
2) =

g1(θ1) �⇒ g1(θ1) − g1(x ′) > [z(2) − z(1)][θ1 − x ′] �⇒ l1(α, β) < 0. There-
fore, W GS �⇒ g2(x) ≥ g2(θ

′
2). Then, from Claim 2C and 2E, it follows that (a)

g2(x) = g2(θ
′
2),∀ x ∈ (θ1, θ

′
2).

If ∃ x ∈ (θ1, θ
′
2) such that g1(x) < g1(θ

′
2) then l1(α′, β ′) < 0 where α′ ≡ (δ, x)

and β ′ ≡ (ε, θ ′
2) with θ1 < ε < δ < x . Since δ, ε ∈ (θ1, θ

′
2), by condition (a), we get

g2(ε) − g2(δ) = 0 > [z(2) − z(1)][ε − δ] �⇒ l2(α′, β ′) < 0. Thus, W GS �⇒
g1(x) ≥ g1(θ

′
2) which coupled with Claim 4 implies that g1(x) = g1(θ

′
2). ��

The graphical implication of Claim 5 is given by Fig. 10.

Claim 6 If ∀ y ≥ θ ′
2, g1(y) = g1(θ

′
2) and g1(θ1) = g1(θ

′
2), then ∀ t ∈ {1, 2},

lim
x→θ1−

gt (x) = gt (θ
′
2)

Proof If ∃ν ∈ [θ2, θ1) such that g2(ν) > g2(θ
′
2), then l2(α, β) < 0 where α ≡ (θ ′

2, θ
′
2)

and β ≡ (ν, θ2). From (5) it follows that l1(α, β) < 0.9 Therefore, W GS �⇒
g2(ν) ≤ g2(θ

′
2). By Claim 2B; ∀ ν2 < ν1 < θ1, g2(ν1) > g2(ν2). Thus, g2(ν) ≤

g2(θ
′
2),∀ ν < θ1 which in turn implies that lim

x→θ1−
g2(x)

de f= T ≤ g2(θ
′
2). Given

Claim 2B, if T < g2(θ
′
2) then ∃ ε > 0 such that g2(θ

′
2) − g2(x) > ε,∀ x < θ1.

Then, ∃ δ < θ1 and ρ ∈ (θ1, θ
′
2) such that ρ − δ < ε

(z(2)−z(1)) . Therefore, by Claim
5 g2(ρ) = g2(θ

′
2) �⇒ g2(ρ) − g2(δ) > ε > [z(2) − z(1)][ρ − δ]. This implies

that l2(α′, β ′) < 0 when α′ ≡ (δ, ξ) and β ′ ≡ (ρ, θ ′
2) with ξ ∈ (δ, θ1). By Claim

9 In case θ2 = θ1, we choose any ν, ν′ < θ1 such that ν < ν′. Claim 2A and (5) imply that
l1((θ

′
2, θ

′
2), (ν, ν

′)) < 0. The rest of the proof remains same.
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Fig. 10 Claim 5

2A, g1(ξ) < g1(θ1) = g1(θ
′
2), since ξ < θ1. Therefore, l1(α′, β ′) < 0 and so

W GS �⇒ T = g2(θ
′
2).

For t = 1; from Claim 2A and the condition g1(θ1) = g1(θ
′
2) we get that g1(θ

′
2)−

g1(x) = [z(2)− z(1)][θ ′
2 − x]. Therefore, as x tends to θ ′

2, the result is established.��
Claims 2, 5 and 6 imply that if Claim 3i holds true and g1(θ1) = g1(θ

′
2) then g(.)

map for each agent will look like in Fig. 11 where the kink point η = θ1. Note that
there is only one point of discontinuity and that too for a single agent, here agent 2.

Let us now consider the other possible implication of Claim 3i, that is, g1(θ1) <

g1(θ
′
2). Given Claim 2A; (5) implies that g1(θ1) − g1(θ

′
2) > [z(2) − z(1)][θ1 − θ ′

2].
Since g1(θ1) < g1(θ

′
2); we can extend the straight line with slope z(2)− z(1) passing

through the (θ2, g1(θ2)) point in the g1(.)map; on the right side of θ1, to find a number
ω ∈ (θ1, θ

′
2) such that10

g1(θ2)+ [z(2)− z(1)][ω − θ2] = g1(θ
′
2) (11)

By Claim 4 and (11) above;

g1(θ2)− g1(x) > [z(2)− z(1)][θ2 − x],∀ x > ω (12)

Claim 7 If ∀ y ≥ θ ′
2, g1(y) = g1(θ

′
2) and g1(θ1) < g1(θ

′
2), then

A: ∀ t ∈ {1, 2}, gt (x) = gt (θ
′
2),∀ x ∈ (ω, θ ′

2].
B: ∀ t ∈ {1, 2},∀ x < ω, gt (θ2)− gt (x) = [z(2)− z(1)][θ2 − x].
C: For some t ∈ {1, 2}, gt (ω) = gt (θ

′
2).

10 We are not assuming continuity; but simply extending the line continuously to locate the value ω.
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Fig. 11 Claims 2, 5 and 6 put
together

Proof A: For t = 2; pick any x, x ′ such that ω < x ′ < x < θ ′
2. Then, by (12),

l1(α, β) < 0 when α ≡ (x, x ′) and β ≡ (θ ′
2, θ2). Therefore, by Claim 2E,

W GS �⇒ (a) g2(x) = g2(θ
′
2),∀ x ∈ (ω, θ ′

2).
For t = 1; if ∃ x ∈ (ω, θ ′

2) such that g1(x) < g1(θ
′
2) then consider a deviation

from α′ ≡ (ρ, x) and β ′ ≡ (δ, θ ′
2) where ω < δ < ρ < x . By condition (a);

g2(δ) − g2(ρ) = 0 > [z(2) − z(1)][δ − ρ] �⇒ l2(α′, β ′) < 0. Therefore, by
Claim 4, W GS �⇒ g1(x) = g1(θ

′
2),∀ x ∈ (ω, θ ′

2).
B: For t = 2, from Claim 2B it follows that the statement is satisfied for any x < θ1.

If g2(θ2)− g2(θ1) > [z(2)− z(1)][θ2 − θ1] then l2(α, β) < 0 when α ≡ (θ1, ψ)

and β ≡ (θ2, θ
′
2), where ψ ∈ (θ1, ω). Hence, by Claim 4, W GS �⇒ g1(ψ) =

g1(θ
′
2),∀ ψ ∈ (θ1, ω). This coupled with (11), implies that g1(ψ) − g1(θ2) >

[z(2)− z(1)][ψ−θ2] �⇒ l1(β ′, α′) < 0 where α′ ≡ (θ ′
1, ψ) and β ′ ≡ (θ1, θ2).

Then, from (6), it follows that l2(β ′, α′) < 0 and so WGS is violated. Thus,
W GS �⇒ g2(θ2)−g2(θ1) ≤ [z(2)− z(1)][θ2 −θ1]. If this equation holds with
strict inequality then l2(α′′, β ′′) < 0 when α′′ ≡ (θ2, θ1) and β ′′ ≡ (θ1, θ

′
2)while

g1(θ1) < g1(θ
′
2) �⇒ l1(α′′, β ′′) < 0. Therefore, W GS �⇒ (b) g2(θ2) −

g2(θ1) = [z(2)− z(1)][θ2 − θ1].
We now show that (b) holds even if θ1 is replaced by any real number lying
in the open interval (θ1, ω). If ∃ψ ∈ (θ1, ω) such that g1(ψ) = g1(θ

′
2) then

(11) implies that g1(ψ) − g1(θ1) > [z(2) − z(1)](ψ − θ1) and so, from (6);
lt ((θ1, θ1), (θ

′
1, ψ)) < 0,∀t = 1, 2. Hence, by Claim 4, W GS �⇒ (c)g1(ψ) <

g1(θ
′
2). But from (c) it follows that l1((θ2, ψ), (x, θ ′

2)) < 0 where x ∈ (θ1, ψ);
and so W GS �⇒ (d) g2(θ2) − g2(x) ≥ [z(2) − z(1)][θ2 − x]. If (d) holds
with strict inequality then (c) �⇒ lt ((x, ψ), (θ2, θ

′
2)) < 0,∀ t = 1, 2 which

violates WGS. Therefore, (d) must hold with equality. Using (b) and Claim 2B,
then, we complete the proof for t = 2.
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Fig. 12 Claim 7 with
g1(ω) = g1(θ

′
2)

For t = 1, pick any ψ, ε such that θ1 < ψ < ε < ω. As proved in the par-
agraph above, we can say that g2(ε) − g2(ψ) = [z(2) − z(1)][ε − ψ] > 0
which implies that l2((ψ, x), (ε, θ1)) < 0 where x ∈ (θ1, ψ). Then, W GS �⇒
(e) g1(x) − g1(θ1) ≥ [z(2) − z(1)][x − θ1]. If (e) holds with strict inequality
then l1((x, θ1), (ε, x)) < 0. Again, from the statement proved in the previous
paragraph ε > x �⇒ g2(ε) > g2(x) �⇒ l2((x, θ1), (ε, x)) < 0 and so WGS
is violated. Therefore, (e) must hold with equality. Claim 2A, then, completes the
proof for t = 1.

C: If g1(ω) < g1(θ
′
2) then from (11) it follows that g1(ω) < g1(θ

′
2) �⇒ g1(θ2)−

g1(ω) > [z(2) − z(1)][θ2 − ω] �⇒ l1((ω, ω), (θ ′
2, θ2)) < 0 and so by Claim

2E, W GS �⇒ g2(ω) = g2(θ
′
2). Therefore, given Claim 4, we can say that there

always exists t ′ ∈ {1, 2} such that gt ′(ω) = gt ′(θ ′
2). ��

The graphical implications of Claim 7 are given by Fig. 12.

Claim 8 If ∀ y ≥ θ ′
2, g1(y) = g1(θ

′
2) and g1(θ1) < g1(θ

′
2), then ∀ t =

1, 2, limx→ω− gt (x) = gt (θ
′
2)

Proof From Claim 7C, w.l.o.g. assume that g1(ω) = g1(θ
′
2). Then, from (11) and

Claim 7B we get that g1(θ
′
2)− g1(x) = [z(2)− z(1)][ω− x],∀ x ≤ ω. Therefore, as

x tends to ω, the result is established for t = 1.
For t = 2; Claim 2E and Claim 7B imply that g2(x) ≤ g2(θ

′
2),∀ x < θ ′

2. Thus,

lim
x→ω− g2(x)

de f= T ′ ≤ g2(θ
′
2). As in Claim 6, the possibility of T ′ < g2(θ

′
2) can be

ruled out. ��
Claims 2, 7 and 8 imply that if Claim 3i holds true with g1(θ1) < g1(θ

′
2) then discon-

tinuity in the g(.)maps, if present, shall occur only at a single point (at the kink point)
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Fig. 13 Claims 2, 7 and 8 put
together, with g1(ω) = g1(θ

′
2)

and for at most one agent out of the two. The g(.)map for each agent will look like in
Fig. 13 where the kink point η = ω ∈ (θ1, θ

′
2).

Now that the consequences of two possible implications of Claim 3i have been
analyzed, let us move to the implications of Claim 3ii.

Claim 9 If there is K ∈ R such that ∀ y > θ ′
2, g1(y) = K > g1(θ

′
2), then

A: ∀ x, x ′ < θ ′
2,∀ t ∈ {1, 2}, gt (x)− gt (x ′) = [z(2)− z(1)][x − x ′].

B: ∀ x ≤ θ ′
2, g2(θ

′
2)− g2(x) = [z(2)− z(1)][θ ′

2 − x].
Proof A: For t = 2, pick any x, x ′ < θ ′

2. If g2(x)− g2(x ′) > [z(2)− z(1)][x − x ′],
then consider the deviation from l2((x ′, θ ′

2), (x, y)) < 0, where y > θ ′
2. Also

g1(y) = K > g1(θ
′
2) �⇒ l1((x ′, θ ′

2), (x, y)) < 0. Hence, W GS �⇒
g2(x) − g2(x ′) ≤ [z(2) − z(1)][x − x ′]. If this holds with strict inequality then
again lt ((x, θ ′

2), (x
′, y)) < 0,∀ t = 1, 2. Thus, W GS �⇒ (a)g2(x)−g2(x ′) =

[z(2)− z(1)][x − x ′].
For t = 1, pick any ν, ε such that ε < ν < θ ′

2 and any x, x ′ < ε. By (a),
g2(ν) − g2(ε) = [z(2) − z(1)][ν − ε] > 0. By checking the deviation from
(ε, x ′) to (ν, x) and then the deviation from (ε, x) to (ν, x ′), we see that WGS is
violated unless g1(x ′)− g1(x) = [z(2)− z(1)][x ′ − x].

B: Pick any ε, y such that θ ′
2 < ε < y. By assumption, g1(y) = K > g1(θ

′
2) �⇒

l1((θ2, θ
′
2), (ε, y)) < 0. Then, W GS �⇒ (a) g2(θ2) − g2(ε) ≥ [z(2) −

z(1)][θ2−ε],∀ε > θ ′
2. Also by Claim 2C, g2(θ

′
2) = g2(ε), which coupled with (a)

implies that g2(θ2)−g2(θ
′
2) ≥ [z(2)−z(1)][θ2−ε]. Since εwas chosen arbitrarily,

this equation must hold for all ε > θ ′
2. This implies that (b) g2(θ2) − g2(θ

′
2) ≥

[z(2)− z(1)][θ2 − θ ′
2] (otherwise, g2(θ2)− g2(θ

′
2) = [z(2)− z(1)][θ2 − θ ′

2] − ν
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Fig. 14 Claim 9

for some ν > 0, and so we can find some ε′ ∈
(
θ ′

2, θ
′
2 + ν

z(2)−z(1)

)
such that (a)

is violated).
If (b) holds with strict inequality, then there exists ζ < θ ′

2 such that g2(ζ ) >

g2(θ
′
2). We can say this because, if ∀ ζ < θ ′

2, g2(ζ ) ≤ g2(θ
′
2), then by invoking

case A for t = 2, we get that g2(θ2)− g2(ζ ) = (θ2 − ζ ) �⇒ g2(θ2)− g2(θ
′
2) ≤

(θ2 − ζ ),∀ ζ < θ ′
2. Then, as ζ tends to θ ′

2, in limit this violates condition (b)
holding with strict inequality. Therefore, l2((θ ′

2, θ
′
2), (ζ, x ′)) < 0 where x ′ < ζ .

From case A (for t = 1) and (5), l1((θ ′
2, θ

′
2), (ζ, x ′)) < 0. Thus, WGS requires

that condition (b) hold with equality. This along with case A (for t = 2) completes
the proof.

��
The graphical exposition of this Claim 9 is given by Fig. 14.

Claim 10 If ∀ y > θ ′
2, g1(y) = K > g1(θ

′
2), then ∀ t = 1, 2, limx→θ ′

2− g2(x) =
g2(θ

′
2) and limx→θ ′

2− g1(x) = K

Proof Given Claim 9B, as {x} → θ ′
2, the result is established for t = 2.

For t = 1; if ∃ x ∈ (θ1, θ
′
2) such that g1(x) > K then as in Claim 4, WGS is

violated. Again from Claim 9A, ∀ ζ < θ ′
2, g1(.) is an increasing in ζ . Therefore,

g1(x) ≤ K ,∀ x < θ ′
2 �⇒ lim

x→θ ′
2−

g1(x)
de f= T ′′ ≤ K . If T ′′ < K then as in Claim 6,

we can design a violation of WGS. ��
Claims 2, 9 and 10 imply that if g1(y) = K > g1(θ

′
2),∀ y > θ ′

2, then there is only
one point of discontinuity (at the kink point η = θ ′

2) and that too for a single agent,
here agent 1 (as shown in Fig. 15).
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Fig. 15 Claims 2, 9 and 10 put
together

Proposition 2 If there is no pair θ, θ ′ ∈ R
2+ such that WGS holds with strict inequal-

ity, then either ∀ i 	= j ∈ {1, 2} and ∀ θ j ∈ R+, gi (θ j ) = 0 or ∀ i 	= j ∈ {1, 2} and
∀ θ j ∈ R+, gi (θ j ) = [z(2)− z(1)]θ j .

Proof Assume that there is no pair θ, θ ′ ∈ R
2+ such that WGS holds with

strict inequality. Let θ, θ ′, θ ′′ ∈ R
2+ be such that θ ′, θ ′′ are order preserving {1, 2}-

profiles of θ . W.l.o.g. assume that 1 precedes 2 in the efficient ranking for all three
profiles. By assumption, WGS holds with equality for both pairs θ, θ ′ and θ, θ ′′.
W.l.o.g. suppose that for the pair θ, θ ′, (ai) g1(θ2)− g1(θ

′
2) = [z(2)− z(1)](θ2 − θ ′

2)

and (aii) g2(θ1) − g2(θ
′
1) > 0; while for the pair θ, θ ′′, (bi) g1(θ2) − g1(θ

′′
2 ) >[z(2)−z(1)](θ2−θ ′′

2 ) and (bii) g2(θ1)−g2(θ
′′
1 ) = 0. (ai) & (bi) �⇒ g1(θ

′
2)−g1(θ

′′
2 ) >[z(2) − z(1)](θ2 − θ ′′

2 ) �⇒ l1(θ ′′, θ ′) < 0 while (aii) & (bii) �⇒ g2(θ
′′
1 ) >

g2(θ
′
1) �⇒ l2(θ ′′, θ ′) > 0. Therefore, WGS holds with strict inequality for the pair

θ ′, θ ′′ and hence, contradiction. In the same way, for any other combination of > and
< amongst the inequalities (aii) and (bi); either WGS is violated or WGS holds with
strict inequality. Therefore, if (ai) holds with equality then (bi) holds with equality;
and if (aii) holds with equality then (bii) holds with equality. Since θ, θ ′, θ ′′ are chosen
arbitrarily, this means that either (c) ∀x, y ∈ R+, g1(x)−g1(y) = [z(2)−z(1)][x−y]
or (d) ∀ x, y ∈ R+, g2(x) = g2(y).11

If (c) holds, then it can be shown, as in Claim 2B that ∀ x ′, y′ ∈ R+g2(x ′) −
g2(y′) = [z(2) − z(1)][x ′ − y′]. If (d) holds then it can be shown, as in Claim 2D

11 It may be that WGS holds with equality in such a way that g1(θ2)− g1(x) = [z(2)− z(1)][θ2 − x] &
g2(θ1) − g2(y) = 0 where x ∈ {θ ′

2, θ
′′
2 } and y ∈ {θ ′

1, θ
′′
1 } respectively. Then, arguing as above we could

say that ∀ m, n > 0, g1(m) − g1(n) = [z(2) − z(1)][m − n] and g2(m) − g2(n) = 0. Then, it is easy to
check that li ((m, n), (m − ε, n + ε)) < 0, ∀ i = 1, 2 when 0 < ε < m < n.
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that ∀ x ′, y′ ∈ R++g1(x ′) = g1(y′). There remains a possibility that lim
x→0+ g1(x)

de f=
T̄1 	= g1(0) = 0. Pick any ζ, ζ ′ such that 0 < ζ ′ < ζ . If T̄1 > 0 then g1(ζ ) >

0 �⇒ l1((0, 0), (ζ ′, ζ )) < 0 while from (d) we know that g2(ζ
′) = g2(0) �⇒

l2((0, 0), (ζ ′, ζ )) > 0. If T̄1 < 0 then g1(ζ ) < g1(0) �⇒ l1((ζ ′, ζ ), (0, 0)) < 0
while g2(ζ ) = g2(0) �⇒ l2((ζ ′, ζ ), (0, 0)) > 0. Thus, in both cases WGS holds
with strict inequality and hence, contradiction. Therefore, T̄1 = 0 which implies that
gt (x) = 0,∀ x ≥ 0,∀ t = 1, 2. ��

6.1.2 Proof of if in Theorem 1:

Consider a mechanism (σ, τ ) such that the g(.) maps associated with τ(.) are as in
Theorem 1. Assume there exists a {1, 2}-deviation such that WGS is violated. All the
logical arguments involved in proving Propositions 1 and 2 are reversible. Thus, this
deviation is not order preserving. Since there are only two agents, there is only one
type of order interchanging deviation. Pick any such deviation, say, from β ≡ (ζ1, ζ2)

to α ≡ (ρ1, ρ2)where ρ1, ρ2, ζ1, ζ2 are any four arbitrary non-negative numbers such
that (w.l.o.g.)ρ1 ≥ ρ2 and ζ1 < ζ2. Therefore, 1 precedes 2 in the efficient ranking forα
while 2 precedes 1 in the efficient ranking forβ. Then, (i) l1(β, α) = [z(2)−z(1)][ρ2−
ζ1] − g1(ρ2)+ g1(ζ2) and (ii) l2(β, α) = [z(2)− z(1)][ζ2 − ζ1] + g2(ζ1)− g2(ρ1).
It will be shown that for any possible values of the arbitrarily chosen four numbers;
there exists one agent t∗ ∈ {1, 2} such that t∗ is not strictly better off in a deviation
from β to α.
There are two possible cases, namely;

Case A: ρ2 < η

If ζ2 < η then g1(ρ2)− g1(ζ2) = [z(2)− z(1)][ρ2 − ζ2] which means that
(i) �⇒ l1(β, α) = [z(2)− z(1)][ζ2 − ζ1] > 0. Hence, t∗ = 1.
If ζ2 ≥ η then g1(ρ2) − g1(ζ2) = [z(2) − z(1)][ρ2 − η] �⇒ l1(β, α) =
[z(2)− z(1)](η − ζ1). If ζ1 ≤ η then t∗ = 1. If ζ1 > η, then l1(β, α) < 0;
but g2(ζ1) = [z(2) − z(1)]η and the fact that g2(ρ1) ≤ [z(2) − z(1)]η
imply that g2(ζ1) − g2(ρ1) ≥ 0. From (ii), it then follows that l2(β, α) ≥
[z(2)− z(1)][ζ2 − ζ1] > 0 and so t∗ = 2.

Case B: ρ2 ≥ η

If ζ2 < η then g1(ρ2)− g1(ζ2) = [z(2)− z(1)][η− ζ2] �⇒ l1(β, α) > 0
and so t∗ = 1.
If ζ2 ≥ η then g1(ρ2)−g1(ζ2) = 0 �⇒ l1(β, α) = [z(2)− z(1)][ρ2 −ζ1].
If ζ1 ≤ ρ2 then t∗ = 1. If ζ1 > ρ2 then l1(β, α) < 0; but ζ1 > ρ2 ≥ η and so,
as in case g2(ζ1)− g2(ρ1) ≥ 0 �⇒ l2(β, α) ≥ [z(2)− z(1)][ζ2 − ζ1] > 0
and so t∗ = 2.
Thus, given the g(.) maps, no order interchanging {1, 2} deviation violates
WGS. ��
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Remark 9 It is possible that in (5); θ1 = 0.12 In that case all the Claims other than 2A,
2B and 6 go through. Since g1(0) = 0; in case Claim 3i holds with g1(θ1) = g1(θ

′
2),

the g1(.) map is a horizontal straight line along the x-axis. As in Claim 2D, it can be
proved that the g2(.)map, too, is a horizontal straight line. There remains a possibility
of jump discontinuity at the origin in g2(.) map. It can further be shown that such a
jump, if present, can only occur in an upward direction.13 To capture this possibility
we would need to assume that τt (0, 0, . . . , 0) = Ct > 0 in the expression for the gt (.)

map for all t . The relevant map containing the implications of θ1 = 0 would then
be given by η = 0 and α2 < 1. Hence, our assumption of transfers independent of
agent specific constants, that is τi (0, 0, . . . , 0) = 0,∀ i ∈ N , rules out the case where
θ1 = 0.14

6.2 Proof of Theorem 3:

First we need to prove the following lemma, which says that given (9) and (10) there
will always be an agent whose transfer turns out be independent of the announce-
ments of all other agents. Recall that ∀ θ ∈ R

n+ and ∀ r = 1, 2, . . . , n, θ(r) denotes
the waiting cost of the agent ranked r in the efficient ranking for profile θ .

Lemma 1 If (9) and (10) hold then ∀ θ ∈ R
n+, ∃ m(θ) ∈ N such that τm(θ)(θ) =

Constant.

Proof of Lemma: Define s′= min{s = 1, 2, . . . , n − 1 : θ(s) ≤ η(s)},∀ θ ∈ R
n+.

Then, choose the agent m(θ) so that

σm(θ)(θ) =
{

n when {s′} = ∅
s′ when {s′} 	= ∅

We will show that τm(θ)(θ) = Constant in each of the following two cases;

Case 1: {s′} = ∅
In this case σm(θ)(θ) = n which implies that (i) τm(θ)(θ) = gm(θ)(θ−m(θ))

and (ii) θ−m(θ)(s) = θ(s) > η(s) for all s = 1, 2, . . . , n − 1. Therefore,

12 Recall that 1 precedes 2 in both profiles θ and θ ′. Therefore, θ1 = 0 �⇒ θ2 = 0 so that σ1(0, 0) <
σ2(0, 0).
13 If the jump is in downward direction then lt ((x, y), (0, 0)) < 0 where 0 < y < x .
14 If θ1 = 0 then σ1(θ) = 1 �⇒ θ2 = 0 Putting gt (0) = 0 for all t in (5) and (6) we get that (i)
g1(θ

′
2) < θ ′

2 and (ii) g2(θ
′
1) < 0. Then, WGS gets violated in a deviation from θ ′ to θ ≡ (0, 0) and so,

contradiction.
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using (i) & (ii) we can write that

τm(θ)(θ) =
∑

j 	=m(θ)

�z(σ j (θ−m(θ)))min
{
θ j , η(σ j (θ−m(θ)))

}

=
∑

k=1,2,...,n−1

�z(k) min
{
θ−m(θ)(k), η(k)

}

=
∑

k=1,2,...,n−1

�z(k).η(k) = Constant

Case 2: {s′} 	= ∅
In this caseσm(θ)(θ) = s′ < n; which implies that (a) θ−m(θ)(k) = θ(k) > η(k),∀k =
1, 2, . . . , s′ − 1. From (10) we get that η(s′) ≤ η(k),∀ k = s′ + 1, s′ + 2, . . . , n − 1
and so we can say that (b) θ−m(θ)(k) = θ(k + 1) ≤ θ(s′) ≤ η(s′) ≤ η(k),∀ k =
s′, s′ + 1, . . . , n − 1. Note that ∀ j ∈ P ′

m(θ)(θ), z(σ j (θ))− z(σ j (θ−i )) = z(σ j (θ−i )+
1)− z(σ j (θ−i )) = �z(σ j (θ−i )). Using (a) and (b), we can write that

τm(θ)(θ) = −
∑

j∈P ′
m(θ)(θ)

�z(σ j (θ−m(θ)))θ j +
∑

j 	=m(θ)

�z(σ j (θ−m(θ)))

min
{
θ j , η(σ j (θ−m(θ)))

}

= −
∑

k=s′,s′+1,...,n−1

�z(k)θ−m(θ)(k)+
∑

k=1,2,...,n−1

�z(k)

min
{
θ−m(θ)(k), η(k)

}

=
∑

k=1,2,...,s′−1

�z(k)η(k) = Constant

��
Pick any non-empty S ⊆ N and θ, θ ′ ∈ R

n+ such that θ is an S-variant of θ ′. Sup-
pose coalition S deviates from θ ′ to θ and this deviation violates WGS. For notational
simplicity we suppress the argument θ in the term m(θ) and write just m.

Claim 11 m 	∈ S

Proof of Claim: Say m ∈ S. Lemma 1 implies that τm(θ) is independent of the
announcements of its coalition partners. Therefore, for agent m, this coalitional devi-
ation is only as good as a unilateral deviation. But then strategy-proofness contradicts
WGS being violated. ��
Identify the agent a

def= argmax{σ j (θ)| j ∈ S ∩ Pm(θ)} and the rank ra
de f= σa(θ).

Similarly, agent b
de f= argmax{σ j (θ)| j ∈ S ∩ P ′

m(θ)} and the rank rb
de f= σb(θ).

Therefore, a is the last ranked member of S preceding agent m and b is the first ranked
member of S succeeding agent m; in the efficient ranking for profile of costs θ . Also
note that if not both, either of the agents a and b, must exist.
From the definition of m, there are two possible cases;
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Case 1: σm(θ) = n
Here, only a is well defined. As before we can write

τa(θ) = −
∑

k=ra ,ra+1,...,n−1

�z(k)θ−a(k)

+
∑

k=1,2,...,n−1

�z(k)min {θ−a(k), η(k)}

Note that σm(θ) = n �⇒ either {s′} = ∅ or s′ = n �⇒ θ(k) > η(k),∀ k =
1, 2, . . . , n − 1. Therefore, since a′ < n; (i) θ−a(k) = θ(k) > η(k),∀ k =
1, 2, . . . , ra − 1 and from (10); (ii) θ−a(k) = θ(k + 1) > η(k + 1) ≥ η(k),∀ k =
ra, ra +1, . . . , n −2. Also (iii) θ−a(n −1) = θm . Using (i), (ii) and (iii), we can write
that;

τa(θ) =
∑

k=1,2,...,ra−1

�z(k)η(k)+
∑

k=ra ,ra+1,...,n−2

�z(k) [η(k)− θ(k + 1)]

+�z(n − 1) [min {θm, η(n − 1)} − θm]

By the definition of a; the numbers {θ(k + 1)}n−2
k=ra

are waiting costs of agents who
are not members of S. Given m 	∈ S, this means that τa(θ) does not depend on the
misreports of members of S − {a}. Therefore, arguing as in Claim 11, we can arrive
at a contradiction.

Case 2: σm(θ) = s′ < n Once again, if a exists;

τa(θ) = −
∑

k=ra ,ra+1,...,n−1

�z(k)θ−a(k)

+
∑

k=1,2,...,n−1

�z(k)min {θ−a(k), η(k)}

=
∑

k=a,ra+1,...,s′−2

�z(k)
[
min {θ−a(k), η(k)} − θ−a(k)

]

+
∑

k=s′,s′+1,...,n−1

�z(k)
[
min {θ−a(k), η(k)} − θ−a(k)

]

+�z(s′ − 1)
[
min

{
θ−a(s

′ − 1), η(s′ − 1)
} − θ−a(s

′ − 1)
]

+
∑

k=1,2,...,ra−1

�z(k)min {θ−a(k), η(k)}

By definition; (a) s′ < n �⇒ θ(k) > η(k),∀ k = 1, 2, . . . , s′ − 1. By construc-
tion, ra < s′ and so (i) θ−a(s′ − 1) = θ(s′) = θm . Then, using (a) we can say that
(ii) θ−a(k) = θ(k) > η(k),∀ k = 1, 2, . . . , ra − 1. From the construction of the
rank s′ and (10), it follows that (iii) θ−a(k) = θ(k + 1) > η(k + 1) ≥ η(k),∀ k =
ra, ra + 1, . . . , s′ − 2 and (iv) θ−a(k) = θ(k + 1) ≤ θ(s′) ≤ η(s′) ≤ η(k),∀ k =
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s′, s′ + 1, . . . , n − 1. Using conditions (i)–(iv), we can write that

τa(θ) =
∑

1,2,...,ra−1

�z(k)η(k)+
∑

ra ,ra+1,...,s′−2

�z(k) [η(k)− θ(k + 1)]

+�z(s′ − 1)
[
min

{
θm, η(s

′ − 1)
} − θm

]

Arguing as in Case 1; we can see that τa(θ) in independent of reports of members of
S − {a}. Therefore, as in Claim 11, we reach a contradiction.
Similarly, if b exists;

τb(θ) = −
∑

k=rb,rb+1,...,n−1

�z(k)θ−b(k)+
∑

k=1,2,...,n−1

�z(k)min {θ−b(k), η(k)}

=
∑

k=1,2,...,rb−1

�z(k)min {θ−b(k), η(k)}

+
∑

k=rb,rb+1,...,n−1

�z(k)
[
min {θ−b(k), η(k)} − θ−b(k)

]

By definition rb > s′. Then, using (10) and the condition (a) we get that (v) θ−b(s′) =
θ(s′) = θm ≤ η(s′); (vi) θ−b(k) = θ(k) > η(k),∀ k = 1, 2, . . . , s′ − 1; (vii)
θ−b(k) = θ(k) ≤ θ(s′) ≤ η(s′) ≤ η(k),∀ k = s′ + 1, s′ + 2, . . . , rb − 1 and (viii)
θ−b(k) = θ(k + 1) ≤ θ(s′) ≤ η(s′) ≤ η(k),∀ k = rb, rb + 1, . . . , n − 1. Conditions
(v)–(viii) then imply that

τb(θ) = −
∑

k=1,2,...,s′−1

�z(k)η(k)+�z(s)θm +
∑

k=s′+1,s′+2,...,rb−1

�z(k)θ(k)

By definition of b, the numbers {θ(k)}rb−1
k=s′+1 are waiting costs of members of N − S.

Since m 	∈ S, it can therefore be said that τb(θ) is independent of misreports of
members of S − {b}. Thus, as in Claim 11, we reach a contradiction. ��

References

Barbera S, Berga D, Moreno B (2010) Individual versus group strategy-proofness: when do they coincide?.
J Econ Theory 145:1648–1674

Chun Y (2006) A pessimistic approach to the queueing problem. Math Soc Sci 51:171–181
Chun Y, Heo EJ (2008) Queueing problems with two parallel problems. Int J Econ Theory 4:299–315
Clarke EH (1971) Multipartpricing of public goods. Public Choice 11:17–33
Dolan RJ (1978) Incentive mechanisms for priority queueing problems. Bell J Econ 9:421–436
Groves T (1973) Incentives in team. Econometrica 41:617–631
Hain R, Mitra M (2004) Simple sequencing problems with interdependent costs. Games Econ Behav

48:271–291
Hashimoto K, Saitoh H (forthcoming) Strategy-proof and anonymous rule in queueing problems: a rela-

tionship between equity and efficiency. Soc Choice Welf
Hatsumi K, Serizawa S (2009) Coalitionally strategy-proof rules in allotment economies with homogenous

indivisible goods. Soc Choice Welf 33:423–447
Holmström B (1979) Groves’ schemes on restricted domains. Econometrica 47:1137–1144

123



Q-EFF & WGS mechanisms in single machine queueing problem 163

Kar A, Mitra M, Mutuswami M (2009) On the coincidence of prenucleolus and the shapley value. Math
Soc Sci 57:16–25

Katta A, Sethuraman J (2005) Cooperation in queues. Working Paper, Columbia University
Kayi C, Ramaekers E (2010) Efficiency, fairness, and strategy-proofness in queueing problems. Games

Econ Behav 68:220–232
Maniquet F (2003) A characterization of Shapley value in queueing problems. J Econ Theory 109:90–103
Mitra M (2001) Mechanism design in queueing problems. Econ Theory 17:277–305
Mitra M (2002) Achieving the first best in sequencing problems. Rev Econ Des 7:75–91
Mitra M, Mutuswami S (2011) Group strategy-proofness in queueing models. Games Econ Behav 72:

242–254
Mitra M, Sen A (2010) Efficient allocation of heterogenous commodities with balanced transfers. Soc

Choice Welf 35:29–48
Moulin H (2008) Proportional scheduling, split-proofness, and merge-proofness. Games Econ Behav

63:567–587
Postlewaite A, Wettstein D (1989) Feasible and continuous implementation. Rev Econ Stud 56:603–611
Suijs J (1996) On incentive compatibility and budget balancedness in public decision making. Econ Des

2:193–209
Vickrey W (1961) Counterspeculation, auctions and competitive sealed tenders. J Financ 16:8–37

123


	Weak group strategy-proof and queue-efficient mechanisms for the queueing problem with multiple machines
	Abstract
	1 Introduction
	2 The model
	3 Results
	3.1 Prelude to main results
	3.2 Main results

	4 Discussion
	5 Conclusion
	Acknowledgments
	6 Appendix
	6.1 Proof of Theorem 1:
	6.1.1 Proof of only if in Theorem 1:
	6.1.2 Proof of if in Theorem 1:

	6.2 Proof of Theorem 3:

	References


