
Int J Game Theory (2012) 41:885–898
DOI 10.1007/s00182-011-0316-4

Axiomatizing core extensions

Camelia Bejan · Juan Camilo Gómez

Accepted: 4 December 2011 / Published online: 6 January 2012
© Springer-Verlag 2012

Abstract We give an axiomatization of the aspiration core on the domain of all
TU-games using a relaxed feasibility condition, non-emptiness, individual rationality,
and generalized versions of the reduced game property (consistency) and superad-
ditivity. Our axioms also characterize the C-core (Guesnerie and Oddou, Econ Lett
3(4):301–306, 1979; Sun et al. J Math Econ 44(7–8):853–860, 2008) and the core
on appropriate subdomains. The main result of the paper generalizes Peleg’s (J Math
Econ 14(2):203–214, 1985) core axiomatization to the entire family of TU-games.
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1 Introduction

Cooperative game theory is ideally equipped to deal with issues regarding coalition
formation. Nevertheless, its two main solution concepts, the core (Gillies 1959) and
the Shapley value (Shapley 1953), assume that all players will work together in a single
group. Perhaps not surprisingly, the axiomatization literature typically restricts atten-
tion to solution concepts that select a way to distribute the worth of the grand coalition
among its members. Any payoff vector exceeding such amount is simply discarded
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as unfeasible.1 With such feasibility restriction, coalition formation becomes a mute
point. Moreover, the intuitive and appealing properties used to characterize the core
then lead to contradictions when applied to the domain of non-balanced games.

In this article we investigate the role of the feasibility condition in the axiomatiza-
tion of the core. We consider a larger class of solution concepts, those satisfying a
relaxed version of feasibility which allows for non-trivial coalition formation. Then,
we show that the aspiration core, a non-empty core extension (Bennett 1983; Cross
1967; Albers 1979), is the only solution in this class that satisfies non-emptiness, indi-
vidual rationality, and some appropriately-modified versions of superadditivity and
consistency on the domain of all transferable utility games.

The standard superadditivity and consistency properties (see, for example, Peleg
1986) implicitly depend on grand coalition feasibility. We replace them with simi-
lar axioms that are compatible with non-trivial coalition formation. First, traditional
reduced games (Davis and Maschler 1965) make an exception in their definition to
ensure that payoff vectors “add up” to the worth of the grand coalition. We use a more
general version of consistency (e.g. see Moldovanu and Winter 1994), one that treats
all coalitions in the same way. Second, following the lines of Aumann (1985) and Hart
(1985), we impose a feasibility requirement on superadditivity. Both axioms coincide
with their classical versions when applied to the family of balanced games.

On appropriate subdomains, our axioms uniquely characterize the C-stable solution
(Guesnerie and Oddou 1979) (also known as C-core in the work of Sun et al. 2008)
and the core. In particular, on the subdomain of balanced games our results replicate,
and thus generalize, Peleg’s (1986) core axiomatization. This also posits the aspiration
core as a very natural core extension, as it shares several intuitive properties with the
core. As opposed to core axiomatizations that hold on the entire domain of TU-games
(e.g. Hwang and Sudhölter 2001), our axioms are not incompatible on the domain of
non-balanced games. We characterize a solution concept, the aspiration core, which is
non-empty for every TU-game and coincides with the core on the domain of balanced
games.

This article is organized as follows. Notation and basic definitions are introduced
in Sect. 2 and axioms are listed in Sect. 3. The main results are given in Sect. 4,
Sect. 5 discusses axiom independence, and Sect. 6 concludes by relating our work
with previous literature.

2 Definitions and notation

2.1 TU-games

Given a finite set of agents U , a cooperative TU-game is an ordered pair (N , v) where
N is a non-empty subset of U and v : 2N −→ R is a function such that v(∅) = 0. �

denotes the space of all cooperative TU-games. Let N = {S ⊆ N | S �= ∅} be the
set of coalitions of (N , v). For every S ∈ N , we call v(S) the worth of coalition S.

1 Examples of this literature include Peleg (1985); Peleg (1986); Peleg (1989), Keiding (1986), Tadenuma
(1992), Serrano and Volij (1998), Voorneveld and Van Den Nouweland (1998), and Hwang and Sudhölter
(2001).
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Possible outcomes of a game (N , v) are described by vectors x ∈ R
N that assign a

payoff xi to every i ∈ N . For every S ∈ N and x ∈ R
N , define x(S) = ∑

i∈S xi

and let x S ∈ R
S be such that x S

i = xi for every i ∈ S. The generating collection of
x ∈ R

N is defined as GC(x) = {S ∈ N | x(S) = v(S)}. A payoff vector x is an
aspiration of the game (N , v) if x(S) ≥ v(S) for every S ∈ N and

⋃
S∈GC(x) S = N .

We denote the set of aspirations of (N , v) by Asp(N , v).

2.2 Feasibility

We define feasibility by taking into account all possible arrangements of agents devot-
ing fractions of their time to different coalitions, not just the grand coalition. Let (N , v)

be an arbitrary TU-game. Define a production plan for N as a vector λ ∈ [0, 1]N such
that

∑
S�i λS = 1 for every i ∈ N . We interpret λT as the fraction of time during

which coalition T is active. The requirement that
∑

S�i λS = 1 is a time-feasibility
condition, under the assumption that every agent is endowed with one unit of time. Let
�(N ) denote the set of all production plans for N .2 Define the worth of any production
plan λ ∈ �(N ) as

v(λ) =
∑

S∈N
λSv(S).

Definition 2.1 The set of feasible payoff vectors of (N , v) is

X∗
�(N , v) = {x ∈ R

N | x(N ) ≤ v(λ) for some λ ∈ �(N )}.
Classical axiomatization literature works with the set

X∗(N , v) = {x ∈ R
N | x(N ) ≤ v(N )},

which only contains payoff vectors that are feasible when the grand coalition forms.
Clearly, X∗(N , v) ⊆ X∗

�(N , v).
The following subset of X∗

�(N , v) contains payoff vectors that are feasible when
agents cannot divide their time among various coalitions, and thus only disjoint coali-
tions can form. A family of coalitions π ⊆ N is a partition of N if

⋃
P∈π P = N and

for every P, Q ∈ π such that P �= Q, P ∩ Q = ∅. Let �(N ) denote the family of all
partitions of N . For every partition π ∈ �(N ) define its worth as

v(π) =
∑

P∈π

v(P),

and for every TU-game (N , v) let

X∗
�(N , v) = {x ∈ R

N | x(N ) ≤ v(π) for some π ∈ �(N )}.

2 For every λ ∈ �(N ), the components of λ are known in the literature as balancing weights and the set
{S ∈ N | λS > 0} as a (strictly) balanced family of coalitions.
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Remark 2.2 Notice that every partition π ∈ �(N ) (in particular {N } ∈ �(N )) can be
naturally identified with the production plan λπ ∈ �(N ) defined as λπ

S = 1 if S ∈ π

and λπ
S = 0 otherwise. Thus, for every (N , v) ∈ �,

X∗(N , v) ⊆ X∗
�(N , v) ⊆ X∗

�(N , v).

2.3 Efficiency

The set of efficient payoff vectors for every (N , v) ∈ � is defined as

X�(N , v) = arg max{x(N ) | x ∈ X∗
�(N , v)}.

A production plan λ̂ ∈ �(N ) is efficient if v(λ̂) = max{v(λ) | λ ∈ �(N )}.
This definition of efficiency differs from the one typically used in the literature,

which implicitly assumes that forming the grand coalition is Pareto-optimal. Peleg
(1986), for example, defines the set of efficient payoff vectors of a TU-game (N , v)

as

X (N , v) = {x ∈ X∗(N , v) | x(N ) = v(N )} = arg max{x(N ) | x ∈ X∗(N , v)}.

2.4 Solution concepts

Fix a family of games �0 ⊆ �. A solution concept on �0 is a mapping σ that assigns to
every game (N , v) ∈ �0 a (possibly empty) set σ(N , v) ⊆ X∗

�(N , v). The following
are the definitions of the solution concepts that are our main object of study.

The core (Gillies 1959) is defined as

C(N , v) = {x ∈ X∗(N , v) | ∀S∈N x(S) ≥ v(S)}.

The subdomain of balanced TU-games is denoted by

�c = {(N , v) ∈ � | C(N , v) �= ∅}.

Bondareva (1963) and Shapley (1967) showed that (N , v) ∈ �c if and only if form-
ing the grand coalition is an efficient production plan. Therefore, outside of �c, it is
natural to consider production plans different from λ{N }. For example, changing the
definition of the core by using the sets X∗

�(N , v) and X∗
�(N , v) instead of X∗(N , v)

generates two different solution concepts.
The C-core (Sun et al. 2008) or C-stable set (Guesnerie and Oddou 1979) is defined

as

cC(N , v) = {x ∈ X∗
�(N , v) | ∀S∈N x(S) ≥ v(S)}.

This definition leads to a new family of games, those with a non-empty C-core. The
subdomain of C-balanced TU games is denoted by
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Axiomatizing core extensions 889

�cc = {(N , v) ∈ � | cC(N , v) �= ∅}.

The aspiration core or balanced aspiration set (Bennett 1983) (see also Cross 1967;
Albers 1979) is defined as3

AC(N , v) = {x ∈ X∗
�(N , v) | ∀S∈N x(S) ≥ v(S)}.

Remark 2.3 Given the new feasibility condition, it would be natural to define the set
AC ′(N , v) = {x ∈ X∗

�(N , v) | ∀S∈N ∀λ∈�(S) x(S) ≥ v(λ)} as the aspiration core.
Nevertheless, the two definitions are equivalent. Clearly AC ′(N , v) ⊆ AC(N , v).
Conversely, let us assume that x ∈ AC(N , v) and fix an arbitrary S ∈ N . For every
T ⊆ S we have x(T ) ≥ v(T ). Then, for every λ ∈ �(S), multiplying the inequality
by λT and adding over all the subsets of S yields x(S) ≥ v(λ). Thus, x ∈ AC ′(N , v)

as desired.

Remark 2.4 Coalitions formed must integrate in a production plan that makes a given
x ∈ AC(N , v) feasible, i.e., a production plan λ ∈ �(N ) such that x(N ) = v(λ).
Such coalitions necessarily belong to the generating collection GC(x).

Remark 2.5 Bennett (1983) shows that AC(N , v) �= ∅ for every (N , v) ∈ �.

Remark 2.6 Notice that Remark 2.2 and the previous definitions imply that, for every
(N , v) ∈ �,

C(N , v) ⊆ cC(N , v) ⊆ AC(N , v).

Proposition 2.7 If (N , v) ∈ �c, then X∗(N , v) = X∗
�(N , v) = X∗

�(N , v). Also, if
(N , v) ∈ �cc, then X∗

�(N , v) = X∗
�(N , v).

The proof of this proposition uses standard techniques and is left to the reader.

Remark 2.8 Applying Proposition 2.7 to the definition of the solution concepts implies
that whenever the C-core is not empty, it coincides with the aspiration core. Similarly,
whenever the core is not empty, it coincides with the aspiration core. Thus, Remark
2.5 implies that the aspiration core is a non-empty core extension.

3 The axioms

Let �0 be an arbitrary subset of �. The following are the axioms relevant to our results:

Non-emptiness (NE) A solution σ on �0 satisfies NE if for every (N , v) ∈
�0, σ (N , v) �= ∅.

3 Bennett (1983) originally defines the aspiration core (which she calls the set of balanced aspirations)
as the set of minimal sum aspirations and goes on to show the equivalence with the definition above.
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890 C. Bejan, J. C. Gómez

Individual rationality (IR) A solution σ on �0 satisfies IR if for every (N , v) ∈ �0,
every x ∈ σ(N , v), and every i ∈ N , xi ≥ v({i}).

We now present two versions of reduced games and their corresponding consistency
axioms. Fix (N , v) ∈ �, S ∈ N , and x ∈ R

N . Define the DM-reduced game (Davis
and Maschler 1965) of (N , v) with respect to S and x as (S, vx ) ∈ � such that

vx (T ) =
⎧
⎨

⎩

0 if T = ∅
v(N ) − x(N\S) if T = S
max{v(T ∪ Q) − x(Q) | Q ⊆ N\S} otherwise

DM-consistency (DM-CON) A solution σ on �0 satisfies DM-CON if for every
(N , v) ∈ �0, every S ∈ N , and every x ∈ σ(N , v), (S, vx ) ∈ �0 and x S ∈ σ(S, vx ).

Since we do not assume that the coalition of all players forms, we use a version of
reduced game that does not give special treatment to the grand coalition. The modified
reduced game of (N , v) with respect to S and x (used, among others, by Moldovanu
and Winter 1994; Hokari and Kibris 2003) is the game (S, vx∗ ) ∈ � such that

vx∗ (T ) =
{

0 if T = ∅
max{v(T ∪ Q) − x(Q) | Q ⊆ N\S} otherwise

MDM-consistency (MDM-CON) A solution σ on �0 satisfies MDM-CON if for
every (N , v) ∈ �0, every S ∈ N , and every x ∈ σ(N , v), it is true that (S, vx∗ ) ∈ �0
and x S ∈ σ(S, vx∗ ).

Remark 3.1 Note that if v ∈ �c and x ∈ C(N , v) then the two versions of reduced
game coincide. Indeed, for every S ∈ N , the games (S, vx ) and (S, vx∗ ) differ at
most on the worth assigned to S. To show that vx (S) = vx∗ (S), notice that vx (S) =
v(S∪(N \S))−x(N \S) ≤ max{v(S∪Q)−x(Q) | Q ⊆ N \S} = vx∗ (S). Conversely,
as x ∈ C(N , v), for every Q ⊆ N \ S we have vx (S) = x(S) ≥ v(S ∪ Q) − x(Q),
so vx (S) ≥ vx∗ (S). We conclude that the core satisfies MDM-CON on �c because, as
Peleg (1986) shows, the core satisfies DM-CON on �c.

The last axiom is an extension of the usual additivity for single-valued solution
concepts. The standard version follows.

Superadditivity (SUPA) A solution σ on �0 satisfies SUPA if every pair of games
(N , vA), (N , vB) ∈ �0, every xA ∈ σ(N , vA) and every xB ∈ σ(N , vB) satisfy
xA + xB ∈ σ(N , vA + vB) whenever (N , vA + vB) ∈ �0.

In a similar fashion to Aumann’s (1985) axiomatization of the NTU value, we add a
feasibility requirement. When working on the domain �c, such condition is redundant
as feasibility is trivially satisfied.

Conditional Superadditivity (C-SUPA) A solution σ on �0 satisfies C-SUPA if for
every (N , vA), (N , vB) ∈ �0, every xA ∈ σ(N , vA) and every xB ∈ σ(N , vB), then
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Axiomatizing core extensions 891

xA + xB ∈ σ(N , vA + vB) whenever (N , vA + vB) ∈ �0 and xA + xB is feasible for
(N , vA + vB).

Example 3.2 The aspiration core does not satisfy SUPA. For example, let N = {1, 2}
and define (N , vA), (N , vB) ∈ � as follows. For every S � N let vA(S) = vB(S) = 0.
Also, let vA(N ) = −vB(N ) = 2. Then, (1, 1) ∈ AC(N , vA) and (0, 0) ∈ AC(N , vB),
but (1, 1) + (0, 0) /∈ AC(N , vA + vB). In this sense, SUPA is a stronger axiom than
C-SUPA.

Remark 3.3 Notice that consistency axioms require the corresponding reduced game
to lie in the domain of games where the solution is defined. There is no such require-
ment for superadditivity axioms. Therefore, if a solution σ on �1 ⊆ � satisfies C-SUPA
(or SUPA), the axiom is immediately inherited by σ when defined on any subdomain
�0 ⊆ �1.

Remark 3.4 Peleg (1986) shows that the core satisfies SUPA on �c. Therefore, as
C-SUPA coincides with SUPA on �c by Proposition 2.7, the core satisfies C-SUPA on
�c.

4 Axiomatizations

Proposition 4.1 The aspiration core satisfies NE, IR, MDM-CON, and C-SUPA
on �.

Proof NE is satisfied by Remark 2.5, IR is satisfied by definition, and Hokari and
Kibris (2003) proved that the aspiration core satisfies MDM-CON on �. It is straight-
forward to verify that C-SUPA is also satisfied. ��
Proposition 4.2 Let σ be a solution concept defined on �0 ⊆ � satisfying IR and
MDM-CON. If (N , v) ∈ �0 and x ∈ σ(N , v), then x(S) ≥ v(S) for every S ∈ N .

Proof Let σ be a solution concept on �0 satisfying IR and MDM-CON. Let x ∈
σ(N , v), S ∈ N and choose any i ∈ S. By MDM-CON, xi ∈ σ({i}, vx∗ ), so IR implies

xi ≥ vx∗ ({i}) = max{v(Q ∪ {i}) − x(Q) | Q ⊆ N \ {i} } ≥ v(S) − x(S \ {i}).
This means that x(S) ≥ v(S), as desired. ��

The following proposition generalizes Lemma 5.5 in Peleg (1986) to the whole
family of TU games �.

Proposition 4.3 If σ is a solution concept defined on �0 ⊆ � that satisfies IR and
MDM-CON then, for every (N , v) ∈ �0, every payoff vector in σ(N , v) must be
efficient.

Proof Assume (N , v) ∈ �0 satisfies IR and MDM-CON, x ∈ σ(N , v) and y ∈
X∗

�(N , v). Then, there is a λy ∈ �(N ) such that y(N ) ≤ v(λy). Then, Proposition
4.2 implies that

x(N ) =
∑

R∈N
λ

y
R x(R) ≥

∑

R∈N
λ

y
Rv(R) = v(λy) ≥ y(N ),

so x is efficient. ��

123



892 C. Bejan, J. C. Gómez

Proposition 4.4 If the solution concept σ defined on �0 ⊆ � satisfies IR and MDM-
CON, then σ(N , v) ⊆ AC(N , v) for every (N , v) ∈ �0.

Proof This is an immediate consequence of combining Proposition 4.2 and feasibility.
��

Proposition 4.5 Let U have at least three elements. If a solution concept σ defined
on � satisfies NE, IR, MDM-CON and C-SUPA, then AC(N , v) ⊆ σ(N , v) for every
(N , v) ∈ �.

Proof Let x ∈ AC(N , v).

Case |N | ≥ 3: Define (N , w) ∈ �c as

w(S) =
{

x(S) if |S| ≥ 2
v(S) if |S| = 1

Note that C(N , w) = {x}. Then, by Proposition 4.4 and Remark 2.8, σ(N , w) ⊆
AC(N , w) = C(N , w) = {x}. NE then implies x ∈ σ(N , w).

Consider now the game (N , z) ∈ � defined as

z(S) = v(S) − w(S) for every S ∈ N (1)

The vector 0 ∈ R
N is in AC(N , z) because, by definition of (N , z), every S ∈ N

satisfies 0 ≥ z(S), and the production plan associated with partition {{i} | i ∈ N }
makes 0 feasible in (N , z). Furthermore, given 0 ∈ AC(N , z), Proposition 4.3 implies
y(N ) = 0 for every y ∈ AC(N , z). Then, as the aspiration core is individually rational
and z({i}) = 0 for every i ∈ N , AC(N , z) = {0}. Again, Proposition 4.4 implies
σ(N , z) ⊆ AC(N , z) = {0}, so NE implies 0 ∈ σ(N , z).

Note that x + 0 ∈ X∗
�(N , w+z) as x ∈ AC(N , v), so C-SUPA implies x ∈ σ(N , v)

as we wanted.

Case |N | = 2 and |AC(N , v)| > 1: In this case
∑

|S|=1 v(S) < v(N ). Let x =
(x1, x2) ∈ AC(N , v) and define x̃ = (x, 0) ∈ R

3. Let d ∈ U \ N , a non-empty set
because |U | ≥ 3. Consider the game (N ∪ {d}, ṽ) ∈ �c defined by

ṽ(S) =
⎧
⎨

⎩

v(S \ {d}) if |S| ≤ 2 and S �= N∑
i∈N v({i}) if S = N

v(N ) if S = N ∪ {d}

Using the case |N | ≥ 3 and Remark 2.8, conclude that x̃ ∈ C(N ∪ {d}, ṽ) =
AC(N ∪ {d}, ṽ) = σ(N ∪ {d}, ṽ). It is simple to verify that (N , ṽ x̃∗ ) = (N , v).
Then, use MDM-CON to conclude that x = x̃N ∈ σ(N , ṽ x̃∗ ) = σ(N , v) as we wanted.

Case |N | ≤ 2 and |AC(N , v)| = 1: By Proposition 4.4, σ(N , v) ⊆ AC(N , v) = {x},
so NE implies x ∈ σ(N , v). ��
We are now ready to state our main results.
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Axiomatizing core extensions 893

Theorem 4.6 Let U have at least three elements. The aspiration core is the only
solution concept on � that satisfies NE, IR, MDM-CON, and C-SUPA.

Proof Combine Propositions 4.1, 4.4, and 4.5. ��
Remark 4.7 The proof of our Theorem 4.6 is very similar to the one used by Peleg
(1986) to obtain his core axiomatization. The similarity of the arguments highlights
the importance of the definition of feasibility, the key to determining which solution
concept arises. It should also be emphasized that Peleg’s proof uses the converse con-
sistency of the core, while we do not. A solution σ on �0 ⊆ � satisfies modified
Davis–Maschler converse consistency (MDM-CC) if for every (N , v) ∈ �0 and every
x ∈ X∗

�(N , v), if T ∈ {S ⊆ N | |S| = 2} implies (T, vx∗ ) ∈ �0 and xT ∈ σ(T, vx∗ ),
then x ∈ σ(N , v). The aspiration core does not satisfy MDM-CC.

Relaxing the definition of feasibility implies that other solution concepts may sat-
isfy the axioms mentioned in Theorem 4.6. For example, define

X̃∗(N , v) = {x ∈ R
N | ∀i∈N ∃S∈N s.t. S � i and x(S) ≤ v(S)}

and substitute the set X∗(N , v) by X̃∗(N , v) when defining the terms “feasibility”
and “solution concept.” We argue then that the set of aspirations, which now can
be seen as a solution concept, complies with the axioms at hand. Indeed, Asp(N , v)

satisfies IR, NE (Bennett 1983), and MDM-CON (Hokari and Kibris 2003). To see that
it satisfies C-SUPA note that, if xA ∈ Asp(N , vA) and xB ∈ Asp(N , vB) are such that
xA + xB ∈ X∗

�(N , vA +vB), then xA + xB ∈ AC(N , vA +vB) ⊆ Asp(N , vA +vB).4

Consider now the following adaptation of C-SUPA to the new notion of feasibility.

Conditional* Superadditivity (C*-SUPA) A solution σ on �0 ⊆ � satisfies C*-
SUPA if for every (N , vA), (N , vB) ∈ �0, every xA ∈ σ(N , vA), and every
xB ∈ σ(N , vB), then xA + xB ∈ σ(N , vA + vB) whenever (N , vA + vB) ∈ �0
and xA + xB ∈ X̃∗(N , vA + vB).

The following result characterizes the set of aspirations in the relaxed feasibility
setting.

Theorem 4.8 Assume that feasibility is defined using the set X̃∗(N , v) and let U have
at least three elements. Then, the aspiration set is the only solution concept on � that
satisfies NE, IR, MDM-CON, C*-SUPA and MDM-CC.

Proof It is immediate to see that the aspiration set satisfies NE, IR and C*-SUPA on
�. In addition, the aspiration set also satisfies MDM-CON and MDM-CC (Hokari and
Kibris 2003). The uniqueness portion can be obtained by replicating the steps of the
proof of Theorem 4.6, with the following modifications. Using a reasoning similar to
that of Proposition 4.4, one can show that if a solution concept σ (defined as above)

4 If any vector in R
N is considered feasible, similar arguments show that the set of unblocked vectors,

U B(N , v) = {x ∈ R
N | ∀S∈N x(S) ≥ v(S)}, satisfies the four axioms.
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894 C. Bejan, J. C. Gómez

satisfies IR and MDM-CON then σ(N , v) ⊆ Asp(N , v). Conversely, in the case
|N | ≥ 3 of Proposition 4.5, the definition of the game w should be changed to

w̃(S) =
{

v(S) if |S| ≥ 2
x(S) if |S| = 1.

This guarantees that Asp(N , w̃) = {x} and thus x ∈ σ(N , w̃). MDM-CC is then used
in the next step to show that 0 ∈ σ(N , z̃) = σ(N , v− w̃).5 Note that, for every S ∈ N
with |S| = 2, Asp(S, z̃0∗) = AC(S, z̃0∗) = {0S} and thus, by NE, 0S ∈ σ(S, z̃0∗)
which, by MDM-CC implies that 0 ∈ σ(N , z̃). By C*-SUPA, 0 ∈ σ(N , v). Finally,
as Asp(N , v) = AC(N , v) whenever |N | ≤ 2, the proof concludes as in Proposition
4.5. ��
Remark 4.9 MDM-CC only plays a marginal role in the previous proof. This axiom
is only used at the end and can be replaced, for example, by the simple requirement
that σ(N , v) ∩ C(N , v) �= ∅ whenever C(N , v) �= ∅. Thus, one might suspect that
relaxing feasibility (using X̃∗(N , v)) implies that only the first four axioms of Theo-
rem 4.8 are needed to uniquely characterize the aspiration set.6 This issue remains an
open question.

In the rest of this section we study characterizations of solution concepts over
smaller families of games such as �c and �cc. Given that the aspiration core coincides
with the core on the class of balanced games, the following theorem shows that the
axioms that uniquely characterize the aspiration core on the domain of all games,
uniquely characterize the core on the domain of balanced games.

Theorem 4.10 Let U have at least three elements. The core is the unique solution
concept defined on �c that satisfies NE, IR, MDM-CON, and C-SUPA.

Proof By definition the core satisfies NE and IR. By Remark 3.1 the core satisfies
MDM-CON. By Proposition 4.1 the aspiration core satisfies C-SUPA on �, so Remarks
2.8 and 3.3 imply the core satisfies C-SUPA on �c. Now, let a solution σ on �c satisfy
the axioms and fix a game (N , v) ∈ �c. Then Proposition 4.4 and Remark 2.8 imply
σ(N , v) ⊆ AC(N , v) = C(N , v). On the other hand, in the proof of Proposition 4.5,
(N , v) ∈ �c implies the game z defined in (1) is in �c. Hence, the proof remains
valid on the domain of balanced games and C(N , v) = AC(N , v) ⊆ σ(N , v). Thus,
σ(N , v) = C(N , v). ��
We now show that, even if we use a weaker version of feasibility, the previous result
still holds.

Theorem 4.11 Assume that feasibility is defined using the set X̃∗(N , v) and let U
have at least three elements. Then, the core is the unique solution concept defined on
�c that satisfies NE, IR, MDM-CON, and C*-SUPA.

5 The previous proof does not work here because 0 is not the only element of Asp(N , z̃).
6 We thank an anonymous referee for suggesting this conjecture.
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Proof Let σ be a solution on �c satisfying NE, IR, MDM-CON and C*-SUPA. Given
the weaker feasibility, similar arguments to Propositions 4.2 and 4.4 show that, for
any (N , v) ∈ �c, σ (N , v) ⊆ Asp(N , v). Let x ∈ σ(N , v). Then, for every coali-
tion S ∈ N , MDM-CON implies that (S, vx∗ ) ∈ �c. In particular, if |S| = 2, x S ∈
σ(S, vx∗ ) ⊆ Asp(S, vx∗ ) = C(S, vx∗ ). As the core satisfies MDM-CC, we conclude
that x ∈ C(N , v). Once σ(N , v) ⊆ C(N , v), the proof concludes imitating Theorem
4.10. ��
Theorem 4.6 can also be used to obtain a characterization of the C-core on the domain
�cc as follows. To the best of our knowledge, this is the first axiomatization of the
C-core in the literature.

Theorem 4.12 Let U have at least three elements. The C-core is the unique solution
concept defined on �cc that satisfies NE, IR, MDM-CON, and C-SUPA.

Proof By definition the C-core satisfies NE and IR. Reasoning as in Theorem 4.10,
Proposition 4.1 and Remarks 2.8 and 3.3 imply the C-core satisfies C-SUPA on �cc. We
now show that the C-core satisfies MDM-CON on�cc. Let (N , v) ∈ �cc, x ∈ cC(N , v)

and S ∈ N . By definition, there must exist π ∈ �(N ) such that x(N ) ≤ v(π).
However, as x ∈ cC(N , v), x(N ) = ∑

P∈π x(P) ≥ ∑
P∈π v(P) = v(π). Hence,

x(N ) = v(π) and x(P) = v(P) for every P ∈ π . Let π̄ ∈ �(S) be defined by

π̄ = {P̄ ⊆ S | P̄ = P ∩ S for some P ∈ π}.

Then, for every P̄ = P ∩ S ∈ π̄ we have

x(P̄) = v(P̄ ∪ (P \ S)) − x(P \ S) ≤ vx∗ (P̄),

and

x(S) =
∑

P̄∈π̄

x(P̄) ≤
∑

P̄∈π̄

vx∗ (P̄) = vx∗ (π̄).

Hence, x S ∈ X�(S, vx∗ ). By Proposition 4.1 the aspiration core satisfies MDM-
CON on � and thus x(T ) ≥ vx∗ (T ) for every T ⊆ S. It follows that x S ∈ cC(S, vx∗ ).

Similar to the proof of Theorem 4.10, Propositions 4.4 and 4.5 are adaptable to
work on �cc, so every solution satisfying the axioms on this subdomain must coincide
with the C-core. ��

5 Independence of the axioms

The following examples show that no axiom in our aspiration core characterization,
Theorem 4.6, is implied by the others. They can be easily adapted to work on the sub-
domains �c and �cc, so the axioms in Theorems 4.10 and 4.12 are also independent
from each other.
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Example 5.1 Consider the solution concept σ1 on � such that σ1(N , v) = ∅ for every
(N , v) ∈ �.σ1 violates NE but vacuously satisfies IR, MDM-CON, and C-SUPA.
Therefore NE is independent of the other axioms.

Example 5.2 Consider the solution concept σ2 on � such that σ2(N , v) = X∗
�(N , v)

for every (N , v) ∈ �. It satisfies NE because AC(N , v) ⊆ X∗
�(N , v) is non-empty

by Proposition 4.1. It satisfies C-SUPA by definition. We now show that it satisfies
MDM-CON. For every (N , v) ∈ �, every S ∈ N and every x ∈ X∗

�(N , v), there
exists λ ∈ �(N ) such that x(N ) ≤ v(λ). Consider the vector λ̄ defined for every
∅ �= T ⊆ S as

λ̄T =
∑

R⊆N
R∩S=T

λR .

Then λ̄ ∈ �(S) as

∑

T ⊆S
T �i

λ̄T =
∑

T ⊆S
T �i

∑

R⊆N
R∩S=T

λR =
∑

R⊆N
R�i

λR = 1.

Additionally, xS ∈ X∗
�(S, vx∗ ) because

x(S) =
∑

T ⊆S

λ̄T x(T ) =
∑

T ⊆S

∑

R∈N
R∩S=T

λR x(T )

=
∑

R∈N
λR x(R ∩ S) +

∑

R∈N
λR x(R \ S) −

∑

R∈N
λR x(R \ S)

=
∑

R∈N
λR x(R) −

∑

R∈N
λR x(R \ S) = x(N ) −

∑

R∈N
λR x(R \ S)

≤ v(λ) −
∑

R∈N
λR x(R \ S) =

∑

R∈N
λR [v(R) − x(R \ S)]

≤
∑

R∈N
λR vx∗ (R ∩ S) =

∑

T ⊆S

∑

R∈N
R∩S=T

λR vx∗ (T )

=
∑

T ⊆S

λ̄T vx∗ (T ) = vx∗ (λ̄).

It is also clear that σ2 is not individually rational, so IR is independent of the other
axioms.

Example 5.3 Consider the solution concept σ3 on � such that σ3(N , v) = {x ∈
X∗

�(N , v) | xi ≥ v({i}) ∀i ∈ N } for every (N , v) ∈ �. σ3 clearly satisfies NE, IR,
and C-SUPA. Therefore our results imply that σ3 does not comply with MDM-CON.

Example 5.4 Following Schmeidler’s (1969) procedure on the set of aspirations
we now recall the definition of the aspiration nucleolus (Bennett 1981). For every
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(N , v) ∈ � and every x ∈ R
N , let e(v, x) ∈ R

N be defined by eS(v, x) = v(S)−x(S)

for every S ∈ N . Define also θ(e(v, x)) ∈ R
N as the non-increasing rearrangement

of the components of e(v, x). The aspiration nucleolus of (N , v) is then defined as

Asp ν(N , v) = {x ∈ Asp(N , v) | θ(e(v, x)) �L θ(e(v, y)) ∀y ∈ Asp(N , v)}

where �L denotes the lexicographic order. Bennett (1981) shows that the concept
satisfies NE, while Hokari and Kibris (2003) show that it complies with MDM-CON.
The aspiration nucleolus also satisfies IR as Sharkey (1993) shows it is a subsolution
of the aspiration core. Hence, our axiomatization implies that the aspiration nucleolus
is not conditionally superadditive.

6 Final comments and related literature

Keiding (2006) gives another axiomatization of the aspiration core. We share with his
work the use of MDM-CON. However, he adds a class of auxiliary non-transferable
utility games to the domain of TU-games, while our results hold within the family �

of TU-games.
Among the first core axiomatizations are Peleg (1986); Peleg (1989), Tadenuma

(1992), and Voorneveld and Van Den Nouweland (1998), (for TU games) and Peleg
(1985) (for NTU games). While important contributions to the literature, these papers
worked with the family of balanced games �c, so there is some circularity when they
use the core to define their domain of games.7 This is why it is of particular importance
that our aspiration core axiomatization holds on the entire domain of TU-games, �.
Hwang and Sudhölter (2001) solved an important difficulty by providing an axiom-
atic characterization of the core on the entire domain of TU-games, but their axioms
characterize the empty solution outside the domain of balanced games. Closer to our
work is Orshan and Sudhölter (2010) axiomatization of the positive core, a non-empty
core extension. However, they still assume that the grand coalition forms. Unlike
the concepts we study, if a game is not balanced every vector in the positive core
can be improved upon by some coalition. Modifying the feasibility constraint allows
us to characterize a natural extension of the core to non-balanced games while also
suggesting a family of coalitions that are likely to form.
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