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Abstract A matching game is a cooperative game (N , v) defined on a graph G =
(N , E) with an edge weighting w : E → R+. The player set is N and the value of
a coalition S ⊆ N is defined as the maximum weight of a matching in the subgraph
induced by S. First we present an O(nm +n2 log n) algorithm that tests if the core of a
matching game defined on a weighted graph with n vertices and m edges is nonempty
and that computes a core member if the core is nonempty. This algorithm improves
previous work based on the ellipsoid method and can also be used to compute stable
solutions for instances of the stable roommates problem with payments. Second we
show that the nucleolus of an n-player matching game with a nonempty core can be
computed in O(n4) time. This generalizes the corresponding result of Solymosi and
Raghavan for assignment games. Third we prove that is NP-hard to determine an
imputation with minimum number of blocking pairs, even for matching games with
unit edge weights, whereas the problem of determining an imputation with minimum
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total blocking value is shown to be polynomial-time solvable for general matching
games.

Keywords Matching game · Nucleolus · Cooperative game theory

1 Introduction

Consider a group N of tennis players that will participate in a doubles tennis tourna-
ment. Suppose that each pair of players can estimate the expected prize money they
could win together if they form a pair in the tournament. Also suppose that each player
is able to negotiate his share of the prize money with his chosen partner, and that each
player wants to maximize his own prize money. Can the players be matched together
such that no two players have an incentive to leave the matching in order to form a
pair together? This is the example Eriksson and Karlander (2001) used to illustrate
the stable roommates problem with payments.

We consider the situation in which groups of possibly more than two players in a
doubles tennis tournament can distribute their total prize money among each other.
Now the question is whether the players can be matched together such that no group of
players will be better off when leaving the matching. For instance, suppose that (i1, i2)

and (i3, i4) are pairs in the matching. Then players i1, i2, i3, and i4 may decide to leave
the matching if (i1, i3) forms a better pair than (i1, i2). They may even decide to do so
if i2 and i4 cannot play together (for whatever reason). Contrary to the previous setting,
i1 and i3 may compensate i2 and i4 for their loss of income. This scenario is an example
of a matching game. Matching games are well studied within the area of Cooperative
Game Theory. In order to explain these games and how they are related to the first
problem setting, we first state the necessary terminology and formal definitions.

1.1 Cooperative game theory: definitions and terminology

A cooperative game (N , v) is given by a set N of n players and a value function
v : 2N → R with v(∅) = 0. A coalition is any subset S ⊆ N . We refer to v(S) as the
value of coalition S, i.e., the maximal profit or the minimal costs that the players in S
achieve by cooperating with each other. The v-values of many cooperative games are
derived from solving an underlying discrete optimization problem (cf. Bilbao 2000).
It is often assumed that the grand coalition N is formed, because in many games the
total profit or costs are optimized if all players work together. The central problem is
then how to allocate the total value v(N ) to the individual players in N . An alloca-
tion is a vector x ∈ R

N with x(N ) = v(N ), where we adopt the standard notation
x(S) = ∑

i∈S xi for S ⊆ N . A solution concept S for a class of cooperative games
� is a function that maps each game (N , v) ∈ � to a set S(N , v) of allocations for
(N , v). These allocations are called S-allocations.

The choice of a specific solution concept S not only depends on the notion of
“fairness” specified within the decision model but also on certain computational
aspects, such as the computational complexity of testing nonemptiness of S(N , v), or
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computing an allocation in S(N , v). Here we take the size of the underlying discrete
structure as the natural input size, instead of the 2n v-values themselves.

We will now define two solution concepts that are well known and that have been
studied for matching games. We assume that profits must be maximized, because this
is the case for matching games. We refer to Owen (1995) for a general survey. First,
the core of a game (N , v) consists of all allocations x with x(S) ≥ v(S) for all S ∈ 2N .
Core allocations are fair in the sense that every nonempty coalition S receives at least
its value v(S). Therefore, players in a coalition S do not have any incentive to leave
the grand coalition (recall the doubles tennis tournament). However, for many games,
the core might be empty. Therefore, other solution concepts have been designed, such
as the nucleolus, defined below.

Let (N , v) be a cooperative game. The excess of a nonempty coalition S � N
regarding an allocation x ∈ R

N expresses the satisfaction of S with x and is defined as
e(S, x) := x(S)−v(S). We order all excesses e(S, x) into a non-decreasing sequence
to obtain the excess vector θ(x) ∈ R

2n−2. The nucleolus of (N , v) is then defined as
the set of allocations that lexicographically maximize θ(x) over all imputations, i.e.,
over all allocations x ∈ R

N with xi ≥ v({i}) for all i ∈ N . The nucleolus is not defined
if the set of imputations is empty. Otherwise, it consists of exactly one imputation as
shown by Schmeidler (1969). Note that, by definition, the nucleolus lies in the core if
the core is nonempty. The standard procedure for computing the nucleolus proceeds
by solving up to n linear programs, which have exponential size in general. We refer
to Maschler et al. (1979) for more details.

Matching games. In a matching game (N , v), the underlying discrete structure is
a finite undirected graph G = (N , E) that has no loops and no multiple edges and
that is weighted, i.e., on which an edge weighting w : E → R+ has been defined.
The players are represented by the vertices of G, and for each coalition S we define
v(S) = w(M) = ∑

e∈M w(e), where M is a maximum weight matching in the sub-
graph of G induced by S. If w ≡ 1, then v(S) is equal to the size of a maximum
matching and we call (N , E) a simple matching game. Matching games defined on a
bipartite graph are called assignment games.

1.2 Existing results on matching games

The core of a matching game can be empty. In order to see this, consider a sim-
ple matching game (N , v) on a triangle with players a, b, c. An allocation x in the
core must satisfy xa + xb ≥ 1, xa + xc ≥ 1, and xb + xc ≥ 1, and consequently,
x(N ) = xa + xb + xc ≥ 3

2 . However, this is not possible due to x(N ) = v(N ) = 1.
Shapley and Shubik (1971) show that the core of an assignment game is always non-
empty.

We will now discuss complexity aspects of solution concepts for matching games.
First we recall a result of Gabow (1990) which we will need later on.

Theorem 1 (Gabow 1990) A maximum weight matching of a weighted graph on n
vertices and m edges can be computed in O(nm + n2 log n) time.
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The following observation is easy to verify and can be found in several papers, see
e.g. (Deng et al. 1999; Eriksson and Karlander 2001, Paulusma 2001). Here, a cover
of a graph G = (N , E) with edge weighting w is a vertex mapping c : N → R+
such that c(u) + c(v) ≥ w(uv) for each edge uv ∈ E . The weight of c is defined
as c(N ) = ∑

u∈N c(u). Note that c(N ) ≥ v(N ) for the corresponding matching
game (N , v), while c(N ) > v(N ) is possible. Hence, a cover does not have to be an
allocation of (N , v).

Observation 1 Let (N , v) be a matching game on a weighted graph G = (N , E).
Then x ∈ R

N is in the core of (N , v) if and only if x is a cover of G with weight v(N ).

Observation 1 and Theorem 1 imply that testing core nonemptiness can be done
in polynomial time for matching games by using the ellipsoid method for solving
linear programs (Khachiyan 1979). Deng et al. (1999) characterize when the core of
a simple matching game is nonempty. In this way they can compute a core allocation
of a simple matching game in polynomial time, without having to rely on the ellipsoid
method. Eriksson and Karlander (2001) characterize the extreme points of the core of
a matching game.

We will briefly survey the existing work on the nucleolus of a matching game. Note
that an allocation x of a matching game (N , v) is an imputation if and only if x is non-
negative, because v({i}) = 0 for all i ∈ N . This means that the set of imputations is
nonempty, because it contains the n allocations that assign v(N ) to exactly one player
and 0 to all the other players. Consequently, every matching game has a nucleolus.

Observation 1 implies that the size of the linear programs involved in the proce-
dure of Maschler et al. (1979) is polynomial in the case that the matching game has
a nonempty core (Paulusma 2001). Hence the nucleolus of such matching games can
be computed in polynomial time by using the ellipsoid method at most n times.

Solymosi and Raghavan (1994) compute the nucleolus of an assignment game with-
out making use of the ellipsoid method. We state their result below, as we need it later
on. For computing the nucleolus of assignment games defined on bipartite graphs that
are unbalanced, a faster algorithm has been given by Matsui (1998).

Theorem 2 (Solymosi and Raghavan 1994) The nucleolus of an n-player assignment
game can be computed in O(n4) time.

It is known (Kern and Paulusma 2003) that the nucleolus of a simple matching game
can be computed in polynomial time by using the standard procedure of Maschler
et al. (1979), after reducing the size of the involved linear programs to be polynomial.
This result has been extended to node matching games (Paulusma 2001), i.e., match-
ing games defined on a graph G = (N , E) with an edge weighting w that allows a
weighting w∗ : N → R+ such that w(uv) = w∗(u)+w∗(v) for all uv ∈ E ; note that
every simple matching game is a node matching game by choosing w∗ ≡ 1

2 .
Determining the computational complexity of finding the nucleolus for general

matching games is an outstanding open problem, although there is still some hope
for an efficient algorithm. This hope stems from the observation that the minimum
excess of a matching game can be computed in polynomial time. This condition is
sufficient to compute the nucleolus of a cooperative game in polynomial time if the
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core is nonempty (Faigle et al. 2001). It also stems from the result that an imputation
in the nucleon can be computed in polynomial time for matching games, as shown by
Faigle et al. (1998). The nucleon is a solution concept similar to the nucleolus. It is
obtained by taking multiplicative excesses e′(S, x) = x(S)/v(S) instead of additive
excesses e(S, x) = x(S) − v(S).

Connection to the stable roommates problem. We refer to a survey (Biró 2007) for
more on this problem. Here, we only define the variant with payments. Let G = (N , E)

be a graph with edge weighting w. We say that a pair of adjacent vertices (u, v) is a
blocking pair of a vector x ∈ R

N if xu + xv < w(uv), and we define their blocking
value with respect to x as ex (u, v)+ = max{0, w(uv) − (xu + xv)}, which is to be
interpreted as follows. If (u, v) is not blocking x then its blocking value ex (u, v)+
is zero. Otherwise, its blocking value expresses to which extent (u, v) is blocking x .
Let B(x) = {(u, v) | xu + xv < w(uv)} denote the set of blocking pairs of a vector
x ∈ R

N and let b(x) = ∑
uv∈E ex (u, v)+ denote the total blocking value of x .

A vector p ∈ R
N with pu ≥ 0 for all u ∈ N is said to be a payoff with respect to a

matching M in G if pu + pv = w(uv) for all uv ∈ M , and pu = 0 for each u that is
not incident to an edge in M . Note that p(N ) ≤ v(N ) for the corresponding matching
game (N , v), while p(N ) < v(N ) is possible. Hence, a payoff does not have to be an
allocation of (N , v).

The problem Stable Roommates with Payments tests if a weighted graph
allows a stable solution, i.e., a pair (M, p), where p is a payoff with respect to
matching M such that B(p) = ∅, or equivalently, b(p) = 0. We also call such a pair
stable. This problem is polynomially solvable by the following observation which is
well known (cf. Eriksson and Karlander 2001) and easy to verify.

Observation 2 A vector x is a core allocation of the matching game defined on a
weighted graph G if and only if there exists a matching M in G such that (M, x) is
stable.

1.3 Our results

In Sect. 2, we give a new characterization of the core of a matching game. We also
present an O(nm + n2 log n) time algorithm that tests if the core of a matching game
on a weighted n-vertex graph with m edges is nonempty and that computes a core allo-
cation if it exists. By Observation 2 we can use our algorithm to find a stable solution
for instances of Stable Roommates with Payments in O(nm + n2 log n) time if
such a solution exists.

Like the algorithm of Deng et al. (1999) for simple matching games, our algorithm
for general matching games does not rely on the ellipsoid method. Instead it is based
on the linear programming relaxation of the standard integer programming formula-
tion for finding a maximum weight matching in a graph. Deng et al. (1999) show that
the core of a matching game is nonempty if and only if the integrality gap is zero.
Solving the dual of the relaxation yields a minimum weight cover. A classic result of
Egerváry (1931) shows that the maximum weight of a matching in a bipartite graph
G is equal to the minimum weight of a cover of G. Consequently, the integrality gap
is zero for bipartite graphs, and matching games on bipartite graphs, i.e., assignment
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games have a nonempty core as shown already by Shapley and Shubik (1971). In par-
ticular, minimum weight covers are core allocations in the case of assignment games
due to Observation 1. Our approach for matching games is to make a translation from
general graphs to bipartite graphs by using the well-known duplication technique of
Nemhauser and Trotter (1975).

In Sect. 3 we use the aforementioned duplication technique to show that the nucleo-
lus of an n-player matching game with a nonempty core can be computed in O(n4)

time. This generalizes the corresponding result of Solymosi and Raghavan (1994) on
computing the nucleolus of assignment games (Theorem 2).

We note that Klaus and Nichifor (2010) investigate the relation of the core with
other solution concepts for matching games. In particular, they express the need of a
comparison of matching games with a nonempty core to assignment games and ask
to which extent properties of assignment games are carried over to matching games
with a nonempty core. As the results in Sects. 2 and 3 are based on a duplication
technique yielding bipartite graphs, our paper gives such a comparison with regards
to computing a core allocation and the nucleolus.

Every core allocation of a matching game is an imputation with no blocking pairs,
or equivalently, with total blocking value zero. In the final two sections of our paper, we
consider matching games with an empty core. There, we try to minimize the number
of blocking pairs and the total blocking value, respectively. This leads to the following
two decision problems, which are trivially solvable for assignment games, because
these games have a nonempty core (Shapley and Shubik 1971). For both problems
we are only interested in imputations. This is justified by the fact that no player i will
accept an allocation x with xi < 0 = v({i}).
Blocking Pairs

Instance: a matching game (N , v) and an integer k ≥ 0.
Question: does (N , v) allow an imputation x with |B(x)| ≤ k?

Blocking Value

Instance: a matching game (N , v) and a rational number k ≥ 0.
Question: does (N , v) allow an imputation x with b(x) ≤ k?

Our results on these two problems are as follows. In Sect. 4 we show that the
Blocking Pairs problem is NP-complete, even for simple matching games. We
note that, in the context of stable matchings without payments, minimizing the num-
ber of blocking pairs is NP-hard as well (Abraham et al. 2006). This problem setting
is quite different from ours, and we cannot use the proof of this result for our pur-
poses. On the positive side, we show in Sect. 5 that the Blocking Value problem is
solvable in polynomial time for general matching games.

2 The core of a matching game

As mentioned in the previous section, Shapley and Shubik (1971) showed that every
assignment game has a nonempty core. However, they did not analyze the computa-
tional complexity of finding a core allocation. In this section we consider this question
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but in a broader setting, namely for matching games after presenting a new character-
ization of their core, which may be empty. First we introduce some terminology.

Let G = (N , E) be a graph with edge weighting w : E → R+. We write v ∈ e if
v is an end vertex of edge e. A fractional matching is an edge mapping f : E → R+
such that

∑
e:v∈e f (e) ≤ 1 for each v ∈ N . The weight of a fractional matching f

is defined as w( f ) = ∑
e∈E w(e) f (e). We call f a matching if f (e) ∈ {0, 1} for all

e ∈ E , and we call f a half-matching if f (e) ∈ {0, 1
2 , 1} for all e ∈ E . In this context,

the integrality gap is defined as as the difference between the maximum weight of a
fractional matching and the maximum weight of a matching.

2.1 The characterization

Solving the linear programming relaxation of the standard integer programming for-
mulation for finding a maximum weight matching in a graph yields a maximum weight
fractional matching. Solving the dual of the relaxation yields a minimum weight cover.
These well-known observations lead us to two lemmas, both of which we need to
prove our characterization. The first lemma is an application of the Duality Theorem
(cf. Schrijver 2003). The second lemma is a special case of Theorem 1 from Deng
et al. (1999). It shows that the core of a matching game is nonempty if and only if the
integrality gap is zero.

Lemma 3 Let G = (N , E) be a graph with edge weighting w. Let f be a fractional
matching of G and let c be a cover of G. Then w( f ) ≤ c(N ), with equality if and only
if f has maximum weight and c has minimum weight.

Lemma 4 (Deng et al. 1999) Let (N , v) be a matching game on a weighted graph
G = (N , E). Then the core of (N , v) is nonempty if and only if the maximum weight
of a matching in G equals the maximum weight of a fractional matching in G.

For our core characterization we also make use of the following theorem, which is
a straightforward consequence of a result by Balinski (1965). In Sect. 2.2 we explain
how his result can also be obtained by using the duplication technique of Nemhauser
and Trotter (1975).

Theorem 3 (Balinski 1965) Let G be a weighted graph. Then the maximum weight
of a half-matching of G is equal to the minimum weight of a cover of G.

Lemmas 3 and 4 together with Theorem 3 characterize the core of a matching game.

Proposition 1 Let (N , v) be a matching game on a weighted graph G = (N , E). The
core of (N , v) is nonempty if and only if the maximum weight of a matching in G is
equal to the maximum weight of a half-matching in G.

Eriksson and Karlander (2001) characterize stable solutions for instances of the
problem Stable Roommates with Payments in terms of forbidden minors. By
Observation 2 we can apply Proposition 1 to find an alternative characterization,
namely that a weighted graph G has a stable solution if and only if the maximum
weight of a matching in G is equal to the maximum weight of a half-matching in G.
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2.2 The algorithm

Proposition 1 tells us that we can decide whether the core of a matching game is
nonempty by checking if the maximum weight of a matching equals the maximum
weight of a half-matching. Due to Theorem 1 we can compute a maximum weight
matching of a weighted n-vertex graph with m edges in O(nm + n2 log n) time. What
about computing the maximum weight of a half-matching? We will explain how to
combine results from the literature in order to find an O(nm + n2 log n) running time
algorithm for computing the maximum weight of a half-matching and for comput-
ing a core allocation if the core is nonempty. The approach for doing this is based
on a natural translation from general graphs to bipartite graphs introduced by Nem-
hauser and Trotter (1975). This translation is motivated by the following result of
Egerváry (1931).

Theorem 4 (Egerváry 1931) Let G be a weighted bipartite graph. Then the maximum
weight of a matching in G is equal to the minimum weight of a cover of G.

Theorem 4 is immediately useful for bipartite graphs. Combining it with Lemma 3
yields that the integrality gap is zero for bipartite graphs. As a matter of fact, combin-
ing it with Observation 1 yields that every minimum weight cover is a core allocation
in the case of an assignment game.

Theorem 4 is useful for general graphs as well. It is well known how to use it
for computing the maximum weight of a half-matching in O(n3) time for weighted
graphs on n vertices (cf. Theorem 30.3 of Schrijver (2003)). Nevertheless we explain
this in detail below, because we need the arguments for improving the running time
to O(nm + n2 log n) and for computing a core allocation in the same time if the core
is nonempty. We also need the arguments in the proof of Lemma 5 of Sect. 3.

Let (N , v) be a matching game defined on a graph G = (N , E) with an edge weight-
ing w. Let n and m denote the number of vertices and edges of G, respectively. First we
construct a bipartite graph from G according to the duplication technique introduced
by Nemhauser and Trotter (1975) for finding a maximum weight independent set in a
graph. We replace each vertex u by two copies u′, u′′ and each edge e = uv by two
edges e′ = u′v′′ and e′′ = u′′v′. We define edge weights wd(e′) = wd(e′′) = 1

2w(e)
for each e ∈ E . This yields a weighted bipartite graph Gd = (N d , Ed) with 2n verti-
ces and 2m edges. We call Gd the duplicate of G. Note that Gd can be constructed in
O(n + m) time.

We now compute a maximum weight matching f d of Gd . Because Gd has 2n edges
and 2m vertices, this takes O(2n · 2m + (2n)2 log 2n) = O(nm + n2 log n) time due
to Theorem 1. Given f d , we compute a minimum weight cover cd of Gd in the same
time (cf. Theorem 17.6 from Schrijver (2003)). We compute the half-matching f in

G defined by f (e) := f d (e′)+ f d (e′′)
2 for each e ∈ E in O(m) time and note that

w( f ) =
∑

e∈E

w(e) f (e) =
∑

e∈E

(
wd(e′) f d(e′) + wd(e′′) f d(e′′)

)
= wd( f d).
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We define c : N → R+ in O(n) time by c(u) := cd(u′) + cd(u′′) for all u ∈ N and
deduce that c(u)+c(v) = cd(u′)+cd(u′′)+cd(v′)+cd(v′′) ≥ wd(u′v′′)+wd(u′′v′) =
1
2w(uv)+ 1

2w(uv) = w(uv). This means that c is a cover of G with c(N ) = cd(N d),
and by Theorem 4, we deduce that

w( f ) = wd( f d) = cd(N d) = c(N ). (1)

Then f is a maximum weight half-matching due to Lemma 3, as desired. It took us
O(nm+n2 log n) time in total to compute f . As a side effect, we observe that equation
(1) implies Theorem 3.

Recall that by Theorem 1 we can compute a maximum weight matching f ∗ of G
in O(nm + n2 log n) time, and that by Proposition 1 we just need to check whether
w( f ∗) = w( f ) in order to determine whether the core of (N , v) is nonempty.

Suppose that the core of (N , v) is nonempty, so w( f ∗) = w( f ). Because w( f ) =
c(N ) and w( f ∗) = v(N ), we obtain that

c(N ) = v(N ). (2)

Hence, c is a core member due to Observation 1. It costed O(nm + n2 log n) time in
total to compute c. Summarizing, we have obtained the following result.

Theorem 5 There exists an O(nm + n2 log n) time algorithm that tests if the core
of a matching game on a graph with n vertices and m edges is nonempty and that
computes a core allocation in the case that the core is nonempty.

For a simple matching game (N , v) defined on a n-vertex graph G = (N , E) with m
edges, we can improve the running time of the algorithm in Theorem 5 as follows. We
use the O(

√
nm) time algorithm of Micali and Vazirani (1980) to compute a maximum

matching f ∗ of G instead of using Theorem 1. We observe that every edge weight
in the duplicate Gd of G is equal to 1

2 . This means that every maximum matching
of Gd is a maximum weight matching of Gd . Hence, we can compute a maximum
weight matching f d of Gd in O(

√
nm) time by using the algorithm of Micali and

Vazirani (1980) again. Given f d we can compute the required cover cd in O(m) time
(cf. Theorem 16.6 of Schrijver (2003)). The rest of the algorithm stays the same.

The above leads to the following. If G has no isolated vertices, then m = �(n) and
the overall running time becomes O(

√
nm). Otherwise, we first remove every isolated

vertex from G. In the case that we find a core allocation x of the remaining game, we
can extend x by setting xv := 0 for every isolated vertex v that we removed. We may
do so because of the following. Let S be a coalition of players forming a maximum
weight matching M of G. This means that v(N ) = w(M). Let x be a core allocation
of (N , v). Then x(N ) = v(N ) and x(S) ≥ w(M) = v(N ) imply that xu = 0 for
every u ∈ N\S.

3 The nucleolus of a matching game with a nonempty core

We start with some extra terminology. For a matching game (N , v) defined on a
weighted graph G = (N , E) we define its duplicate as the assignment game (N d , vd)
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defined on Gd with edge weights wd . The duplicate of a vector x ∈ R
N is the vector

x given by xu′ = xu′′ = 1
2 xu for all u ∈ N .

Lemma 5 Let (N , v)be a matching game with a nonempty core. Then a vector x ∈ R
N

is an imputation of (N , v) if and only if x is an imputation of (N d , vd).

Proof By definition, xu ≥ 0 if and only if xu′ = xu′′ = 1
2 xu ≥ 0 for all u ∈ N .

Hence, we are left to show that x(N ) = v(N ) if and only if x(N d) = vd(N d).
Because x(N ) = x(N d) by the definition of x , this means that we must show that
v(N ) = vd(N d).

Because Gd is bipartite, (N d , vd) is an assignment game. This means that (N d , vd)

has a nonempty core (Shapley and Shubik 1971). Let yd be a core allocation of
(N d , vd). Observation 1 implies that yd is a cover of Gd with weight yd(N d) =
vd(N d) = wd( f d), where f d is a maximum weight matching of Gd . We apply
Lemma 3 and find that yd is a minimum weight cover of (N d , vd). Then the vector
y ∈ R

N+ given by yu = yd
u′ + yd

u′′ for all u ∈ N satisfies y(N ) = v(N ) due to
Eq. 2. By the definition of y, we have that y(N ) = yd(N d). Because yd(N d) =
vd(N d), we then obtain that v(N ) = v(N d), as desired. This completes the proof
of Lemma 5. �

Lemma 6 Let (N , v) be a matching game with a nonempty core. Then the nucleolus
of (N d , vd) is the duplicate of the nucleolus of (N , v).

Proof Let ηd be the nucleolus of (N d , vd). Define η∗ by η∗
u′ = ηd

u′′ and η∗
u′′ = ηd

u′ for
all u ∈ N . Then θ(ηd) = θ(η∗). Because ηd is unique as shown by Schmeidler (1969),
we find that ηd

u′ = ηd
u′′ for all u ∈ N . This makes it possible to define the vector η with

η = ηd .
By the definition of the nucleolus, ηd is an imputation of (N d , vd). We apply

Lemma 5 and find that η is an imputation of (N , v). Let x be an arbitrary imputation
of (N , v). Suppose that θ(x) � θ(η), i.e., θ(x) is lexicographically greater than θ(η).
By Lemma 5, we find that x is an imputation of (N d , vd). However, θ(x) � θ(η)

implies that θ(x) � θ(η) = θ(ηd). This is not possible, because ηd is the nucleolus
of (N d , vd). Hence, θ(η) � θ(x). This means that η is the nucleolus of (N , v). This
completes the proof of Lemma 6. �

Theorem 6 The nucleolus of an n-player matching game with a nonempty core can
be computed in O(n4) time.

Proof Let (N , v) be an n-player matching game with a nonempty core that is defined
on a graph G with edge weighting w. We create Gd and wd in O(n2) time. Note that
|N d | = 2n. By Theorem 2 we compute the nucleolus ηd of (N d , vd) in O((2n)4) =
O(n4) time. Let η be the nucleolus of (N , v). By Lemma 6 we find that ηd = η. This
means that we can construct η in O(n2) time from ηd . Hence, the total time that we
used is O(n4). This finishes the proof of Theorem 6. �
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4 Blocking pairs in a matching game

Fixing parameter k makes the Blocking Pairs problem polynomially solvable. This
can be seen as follows. We choose a set B of k blocking pairs. Then we use the
ellipsoid method to check in polynomial time whether there exists an imputation x
with xu + xv ≥ w(uv) for all pairs uv /∈ B. Because k is fixed, the total number of
choices is bounded by a polynomial in n. What happens when k is part of the input?
Before we present our main result, we start with a useful lemma.

Lemma 7 Let K be a complete graph with vertex set {1, . . . , �} for some odd integer
� and with unit edge weights. Let x ∈ R

K+ . If x(K ) < �
2 then |B(x)| ≥ �−1

2 .

Proof Write � = 2q + 1 and use induction on q. If q = 0 the statement holds. Sup-
pose q ≥ 1. We assume without loss of generality that x1 ≤ x2 ≤ · · · ≤ x2q+1.
Because x(K ) < �

2 , we have that x1 < 1
2 . If x1 + x2q+1 < 1 then x1 + xi < 1 for

2 ≤ i ≤ 2q + 1. Hence, we have at least 2q blocking pairs. Suppose x1 + x2q+1 ≥ 1.
Then x2 + · · · + x2q <

2q−1
2 . By induction this yields q − 1 blocking pairs. Note that

x2 < 1
2 . Hence x1 + x2 < 1, and we have at least q blocking pairs. �

Theorem 7 Blocking Pairs is NP-complete, even for simple matching games.

Proof Clearly, this problem is in NP. To prove NP-completeness, we reduce from
Independent Set, which is to test whether a graph G = (V, E) contains an inde-
pendent set of size at least k, i.e., a set U (with |U | ≥ k) such that there is no edge
in G between any two vertices of U . Garey et al. (1976) show that the Independent
Set problem is already NP-complete for the class of 3-regular connected graphs, i.e.,
graphs in which all vertices are of degree three. So we may assume that G is 3-regular
and connected. Let n = |V |.

From G we construct the following graph. First, we introduce a set Y of np new
vertices for some integer p, the value of which we will determine later. We denote the
vertices in Y by yu

1 , . . . , yu
p for each u ∈ V . We connect each yu

i (only) to its associated
vertex u. This yields a graph G∗, in which all vertices of G now have degree 3 + p,
and all vertices of Y have degree one. The vertices of Y form “pendant stars”, and we
have added them to the vertices of G for the following two reasons. The first reason
is to make it easier to compute the value of the grand coalition, as G∗ has a maximum
matching of size n. The second reason is that by choosing p sufficiently large we can
ensure that we do not have to assign fractions to the vertices in G when minimizing
the number of blocking pairs.

Now let K be a complete graph on � vertices where � is some odd integer larger
than np, the value of which will be made clear later on. We add 2(n − k) copies
K 1, . . . , K 2(n−k) of K to G∗ without introducing any further edges. This results in a
graph G ′ = (N , E ′), which consists of 2(n−k)+1 connected components, namely G∗
and the 2(n − k) complete graphs K 1, . . . , K 2(n−k). We need these complete graphs
for the following reason. By choosing � large enough, no K i will contain a blocking
pair when we try to minimize the number of blocking pairs (cf. Lemma 7). Because �

is odd, each K i will have to take away 1
2 from what is available for distribution to the

vertices of G∗. Consequently, what remains for G∗ drops down from n to k. Because
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each vertex in G gets allocated either 0 or 1 due to the pendant stars, we can show that
the number of blocking pairs is below a certain threshold if and only if the vertices
that get allocated 1 unit form an independent set of size k. We explain this in detail
below.

We denote the simple matching game on G ′ by (N , v). We observe that {uyu
1 | u ∈

V } is a maximum matching in G∗ of size n. Because of this and because � is odd, we
obtain that v(N ) = 1

2 (�− 1)2(n − k)+ n = �(n − k)+ k. We show that the following
statements are equivalent for suitable choices of � and p, thereby proving Theorem 7.

(i) G has an independent set U of size |U | ≥ k.
(ii) |B(x)| ≤ (n − k)p + 3

2 n − 3k for some imputation x of (N , v).

“(i) ⇒ (ii)” Suppose G has an independent set U of size |U | ≥ k. We define an
imputation x as follows: x ≡ 1

2 on each K h, x ≡ 1 on U ′ for some subset U ′ ⊆ U
of size |U ′| = k and x ≡ 0 otherwise. Then the set of blocking pairs is

B(x) = {(u, yu
i ) | u ∈ V \U ′, 1 ≤ i ≤ p} ∪ {(u, v) | u, v ∈ V \U ′ and uv ∈ E}.

We now determine |B(x)|. By construction, |{(u, yu
i ) | u ∈ V \U ′, 1 ≤ i ≤ p}| =

(n − k)p. Because G is 3-regular, |E | = 3
2 n. Because U ′ ⊆ U is an independent

set, we then find that |{(u, v) | u, v ∈ V \U ′ and uv ∈ E}| = 3
2 n − 3k. Hence,

|B(x)| = (n − k)p + 3
2 n − 3k, as desired.

“(ii) ⇒ (i)” Suppose |B(x)| ≤ (n −k)p+ 3
2 n −3k for some imputation x of (N , v).

We may assume without loss of generality that x has minimum number of blocking
pairs. We start by proving a number of claims to show that x can be taken to be of the
same form as the imputation that we constructed in the proof of the implication “(i)
⇒ (ii)”.

Claim 1 We may assume without loss generality that xy = 0 for each y ∈ Y .

We prove Claim 1 as follows. Suppose xy > 0 for some y ∈ Y . Let u be the
(unique) neighbor of y. We set xy := 0 and xu := xu + xy . The resulting imputation
has a smaller or equal number of blocking pairs. This proves Claim 1.

Claim 2 We may assume without loss of generality that x
( ⋃

j K j
) = �(n − k).

We prove Claim 2 as follows. First suppose x
( ⋃

j K j
)

> �(n − k). Then we set

xi := 1
2 for each i ∈ ⋃

j K j and redistribute the remainder over V . The resulting
imputation has a smaller or equal number of blocking pairs. Hence, we may assume
that x

( ⋃
j K j

) ≤ �(n − k) holds.

Suppose x
( ⋃

j K j
)

< �(n − k). Then there is some K j with x(K j ) < �
2 . By

Lemma 7, there are at least �−1
2 blocking pairs in K j . We choose � = 2np +2|E |+2.

Recall that |E | = 3
2 n, because G is 3-regular. Then we obtain that |B(x)| ≥ �−1

2 >

np + |E | = np + 3
2 n. Because |B(x)| ≤ (n − k)p + 3

2 n − 3k, this is not possible.
Hence, we have proven Claim 2.
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Combining Claims 1 and 2 leads to

x(V ) = x(N ) − x

⎛

⎝
2(n−k)⋃

j=1

K j

⎞

⎠ − x(Y )

= v(N ) − �(n − k) = �(n − k) + k − �(n − k) = k.

Claim 3 We may assume without loss of generality that xu ≤ 1 for all u ∈ V .

We prove Claim 3 as follows. Suppose that xu = 1 + α for some α > 0 for some
u ∈ V . We set xu := 1 and redistribute α over all vertices v ∈ V with xv < 1.
When doing this we ensure that we do not increase the value of some xv with more
than 1 − xv . This is possible, because x(V ) = k < n. The resulting imputation has a
smaller or equal number of blocking pairs. This proves Claim 3.

Claim 4 We may assume without loss of generality that xu ∈ {0, 1} for all u ∈ V .

We prove Claim 4 as follows. By Claim 3, xu ≤ 1 for all u ∈ V . Suppose that
0 < xu < 1 for some u ∈ V . Recall that x(V ) = k, which is an integer. This means
that there exist one or more vertices in V \{u} that are each allocated a fraction between
0 and 1 such that we can give their allocation to u in order to set xu := 1. By Claim 1,
xy = 0 for each y ∈ Y . Then the only extra blocking pairs that we introduce in this
way are formed by the edges of G. Recall that |E | = 3

2 n. Hence, we get at most 3
2 n

new blocking pairs. However, we lose the p blocking pairs (u, yu
h ) for h = 1, . . . , p.

Then, by choosing p > 3
2 n, the resulting imputation has a smaller number of blocking

pairs, which is not possible. This proves Claim 4.
We now continue with the proof. Let U consist of all vertices u ∈ V with xu = 1.

Recall that x(V ) = k. Then, by Claim 4, we find that |U | = k, and that xv = 0
for all v ∈ V \ U . Recall that |E | = 3

2 n. Then B(x) ≥ (n − k)p + 3
2 n − 3|U | =

(n − k)p + 3
2 n − 3k, with equality only if U is an independent set. However, equality

must hold because we assume that B(x) ≤ (n − k)p + 3n
2 − 3k. Hence, U is an

independent set of size k, as desired. This completes the proof of Theorem 7. �

5 The total blocking value

We show the following result.

Proposition 2 The Blocking Value problem can be solved in polynomial time.

Proof Let (N , v) be a matching game defined on a graph G = (N , E) with edge
weighting w. Recall that ex (u, v)+ = max{0, w(uv) − (xu + xv)} and b(x) =∑

i j∈E ex (i, j)+ for an imputation x . Hence, an optimal solution of the linear program
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(BV) min
∑

uv∈E
zuv

s.t. xu + xv + zuv ≥ w(uv) (uv ∈ E)

x(N ) = v(N )

xu ≥ 0 (u ∈ N )

zuv ≥ 0 (uv ∈ E)

is a solution (x, z) such that x is an imputation with minimum total blocking value b(x).
Because (BV) can be solved in polynomial time by the ellipsoid method (Khachiyan
1979), we find that the Blocking Value problem is polynomial-time solvable. �

The minimum blocking value of an imputation x can be interpreted as the total
utility that a higher power must supply to pairs of players in order to eliminate all
blocking pairs. From this viewpoint, we could also try to minimize the total utility that
such a power must supply to the individual players instead. We call this problem the
Blocking Pairs Elimination problem. For a matching game (N , v) defined on a
graph G = (N , E) with edge weighting w, it can be formulated as the linear program

(BPE) min
∑

u∈N
yu

s.t. xu + xv + yu + yv ≥ w(uv) (uv ∈ E)

x(N ) = v(N )

xu ≥ 0 (u ∈ N )

yu ≥ 0 (u ∈ N ).

Consequently, Blocking Pairs Elimination can be solved in polynomial time as
well by the ellipsoid method (Khachiyan 1979). Alternatively, we can compute an
optimal solution of (BPE) as follows. First we compute a minimum weight cover c of
G. Then we choose an imputation x∗ ≤ c, and we take y∗ = c − x∗. We claim that
(x∗, y∗) is an optimal solution of (BPE) with

∑
u∈N y∗

u = (x∗ + y∗)(N ) − x∗(N ) =
c(N ) − v(N ). In order to see this, let (x, y) be a solution of (BPE). Then x + y is a
cover by definition, which means that (x + y)(N ) ≥ c(N ). As a result we find that∑

u∈N yu = (x + y)(N ) − x(N ) ≥ c(N ) − v(N ) = ∑
u∈N y∗

u , as desired. Note that∑
u∈N y∗

u = c(N ) − v(N ) is the integrality gap due to Lemma 3.
In order to show the difference between the two problems, we show that for optimal

solutions (x, z) and (x ′, y) of (BV) and (BPE), respectively, the difference

min
∑

uv∈E

zuv − min
∑

u∈N

yu

can be made arbitrarily large. For this purpose, we consider the simple matching game
(N , v) defined on the graph that consists of two connected components, namely a
complete graph K2q+1 on vertices v1, . . . , v2q+1 for some integer q and a star K1,r

with center u0 and leaves w1, . . . , wr for some integer r . We choose q and r such that
q > r

2 . Below we explain this in detail.
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Let (x, z)be an optimal solution of (BV). Recall that x is an imputation of (N , v) that
has minimum total blocking value b(x) = ∑

uv∈E zuv . We will show that b(x) = 1
2r

for x defined as x ≡ 1
2 on V (K2q+1), xu0 = 1

2 and x ≡ 0 on V (K1,r ) \ {u0}.
First, we may assume without loss of generality that xw = 0 for all w ∈ V (K1,r ) \

{u0}; if not then we could increase xu0 and decrease xw without decreasing the total
blocking value. Second, we may assume without loss of generality that xu0 ≤ 1; if not
then we redistribute xu0 −1 over x(K2q+1) without decreasing the total blocking value.
Third, we may assume without loss of generality that x(K2q+1) ≤ q + 1

2 ; if not then
we assign 1

2 to each vi and redistribute what is left from x(K2q+1) over xu0 without
decreasing the blocking value. Note that we can do this without making xu0 larger than
1, because x(N ) = v(N ) = q + 1. Because of this, we find that there exists an ε ∈ R

with 0 ≤ ε ≤ 1
2 such that x(K2q+1) = q + ε, xu0 = 1 − ε and xw = 0 for all w ∈

V (K1,r )\{u0}. By definition, zuv ≥ 1−xu −xv for every edge uv, and we deduce that

b(x) = ∑

uv∈E
zuv = ∑

uv∈E(K2q+1)

zuv + ∑

w∈V (K1,r )\{u0}
zu0w

≥ ∑

uv∈E(K2q+1)

(1 − (xu + xv)) + ∑

w∈V (K1,r )\{u0}
ε

= (2q + 1)q − 2qx(K2q+1) + εr

= (2q + 1)q − 2q(q + ε) + εr

= q − 2qε + εr

= q + (r − 2q)ε.

Recall that q > r
2 . Then r − 2q < 0, and consequently, b(x) = q + (r − 2q)ε is

minimized for ε = 1
2 , which yields that the minimum b(x) = 1

2r is achieved by x
given by x ≡ 1

2 on V (K2q+1), xu0 = 1
2 and xw ≡ 0 on V (K1,r ) \ {u0}, as desired. In

contrast, the solution (x, y) of (BPE) that consists of the same imputation x and the
vector y defined by yu = 1

2 and y ≡ 0 on N \ {u} leads to
∑

u∈N yu = 1
2 , which is a

constant, and thus independent of q and r .
We leave the problem of finding a combinatorial proof for Proposition 2 as an open

problem.
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