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Abstract We introduce a novel covering method to compute values for acyclic
digraph games, and we call the values obtained by this method the covering values.
These values may be considered as natural extensions of the component efficient solu-
tions for line-graph games studied by van den Brink et al. (Econ Theory 33:349–364,
2007), and the tree values studied by Khmelnitskaya (Theory Decis 69(4):657–669,
2010a). With the new method, we reinterpret the tree values proposed by Khmelnit-
skaya (2010a). Besides, we propose the covering values in the digraph game with
general acyclic digraph structures presenting flow situations when some links may
merge while others split into several separate ones. We give axiomatizations of these
values, and interpret these values in terms of dividend distributions.

Keywords TU game · Covering value · Efficiency · Harsanyi dividend ·
Acyclic digraph game

1 Introduction

A group of players form cooperation and obtain payoffs. If the utility can be transferred
costlessly between them, then we can describe this situation with a cooperative game
with transferable utility, or a TU game, which is a pair 〈N , v〉, where N = {1, . . . , n}
is a nonempty, finite set, called the player set, and v : 2N �→ R is a characteristic
function, defined on the power set 2N of N , satisfying v(∅) = 0. An element of N
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698 L. Li, X. Li

and a subset S of N are called a player and a coalition, respectively. The associated
real number v(S) is called the worth of a coalition S. We denote by GN the set of all
these TU-games with player set N . A payoff vector of an n-person TU-game is an
n-dimensional vector, giving a payoff to any player i ∈ N . A value is a function ξ that
assigns to any game 〈N , v〉 ∈ GN a payoff vector ξ(v) ∈ R

n .
In standard cooperative game theory it is usually assumed that any coalition of

players may form. However, in many practical situations the collection of feasible
coalitions is restricted by some social, economical, hierarchical, communicational,
or technical structure. Examples are, games with communication structure (Myerson
1977), games under precedence constraints (Faigle and Kern 1992), and games with
permission structure (Gilles et al. 1992; van den Brink 1997). In this paper we restrict
our consideration to classes of acyclic digraph games in which all players are partially
ordered and a possible communication via bilateral agreements between participants is
presented by an acyclic digraph. Many economic and social situations can be modeled
by means of a digraph. Transportation networks that are used to ship commodities
from their production centers to their markets can be most effectively analyzed when
viewed as digraphs that possess additional structure. Following Myerson (1977), we
assume that for a given game with cooperation structure, cooperation is possible only
among connected players.

van den Brink et al. (2007) restricted themselves to a special type of games with lim-
ited communication structure, called line-graph games, in which the communication
structure is given by a linear ordering on the set of players. We introduce a novel cov-
ering method to compute values for digraph games. These values may be considered
as natural extensions of the component efficient (CE) solutions for line-graph games
studied in van den Brink et al. (2007) and the tree values studied in Khmelnitskaya
(2010a, b). With the new method, we regain the rooted tree and sink tree values studied
in Khmelnitskaya (2010a, b). Furthermore, we extend the values in acyclic digraphs,
and study the distribution of Harsanyi dividends.

The structure of the paper is as follows. Basic definitions and notation are introduced
in Sect. 2. Section 3 introduces some CE solutions that we will use later. Section 4 intro-
duces flows and weights in acyclic digraphs. Section 5 shows that an acyclic digraph
can be covered by line-graphs, rooted trees or sink trees. Section 6 finds rooted and
sink covering values through two different approaches. In Sect. 7 we discuss the two
solutions in terms of distribution of the Harsanyi dividends.

2 Preliminaries

We refer a lot to Bondy and Murty (2008) for the definitions and notation from graph
theory. As introduced by Myerson (1977), a cooperation structure on a player set N
is specified by a an undirected graph D without loops. Later this notion is extended to
a directed graph, such as Khmelnitskaya (2010a, b) and van den Brink et al. (2007).
A directed graph, or digraph D, is an ordered pair (V (D), A(D)) consisting of a
set V := V (D) = N of vertices and a set A := A(D), disjoint from V (D), of
arcs, together with an incidence function ψD that associates with each arc of D an
ordered pair of vertices of D. If a is an arc and ψD(a) = (i, j), then we say that i
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Acyclic digraph games 699

dominates j . Vertex i is the tail of a and vertex j its head, or i is a parent of j , and
j is a child of i . The vertices in D which dominate vertex i are its inneighbors, those
that are dominated by the vertex its outneighbors. These sets are denoted by N−

D (i)
and N+

D (i), respectively. For a set S ⊆ N , we denote N−
D (S) = ∪i∈S N−

D (i)\S and
N+

D (S) = ∪i∈S N+
D (i)\S as the inneighbors and outneighbors of S, respectively. The

indegree d−
D(i) of vertex i in D is the number of arcs with head i , and the outdegree

d+
D(i) of i is the number of arcs with tail i . A vertex with indegree zero is called a

source, one with outdegree zero a sink. An undirected graph or a graph G is a digraph
ignoring the orders of vertices in arcs. In other words, we will not distinguish between
(i, j) and ( j, i), we denote them as {i, j}, and call it an edge of G. For each digraph
D, it is associated with an undirected graph G, whose vertex set is V (D) and edge set
E(G) = {{i, j}|(i, j) ∈ A(D)}. We call G the underlying graph of D.

A digraph E is called a subgraph of a digraph D if V (E) ⊆ V (D), A(E) ⊆ A(D),
and ψE is the restriction of ψD to A(E), that is, for every arc a ∈ A(E), we have
ψE (a) = ψD(a). A directed path P in a digraph D is a subgraph of D whose verti-
ces can be arranged in a linear sequence (i1, i2, . . . , ik), where i j 
= i j ′ , for j, j ′ =
1, 2, . . . , k, j 
= j ′, and A(P) = {(i j , i j+1)| j = 1, 2, . . . , k − 1}. In a digraph D we
say that i is a predecessor of j and j is a successor of i if there is a directed path from
i to j . For any vertex i ∈ N we denote by PD(i) the set of all predecessors of i in D,
and by SD(i) the set of all successors of i in D. Moreover, P D(i) := PD(i) ∪ i and
SD(i) := SD(i)∪ i . A directed cycle C in a digraph D is a subgraph of D whose ver-
tices can be arranged in a cyclic sequence (i1, i2, . . . , ik+1), k ≥ 2, where i1 = ik+1
and i j 
= i j ′ for j, j ′ = 1, 2, . . . , k, j 
= j ′, and A(C) = {(i j , i j+1)| j = 1, 2, . . . , k}.
A directed graph is acyclic, if it does not contain any directed cycle.

An undirected graph G is connected if, for every partition of its vertex set into two
nonempty sets X and Y , there is an edge with one end in X and the other end in Y ;
otherwise G is disconnected. A digraph is connected if its underlying graph is con-
nected. An acyclic connected graph is called a tree. A rooted tree (see Fig. 2b) T (r) is
a tree T with a specified vertex r , called the root of T , together with an orientation in
which every vertex but the root has indegree one. The root of a rooted tree is a source.
A digraph T is a sink tree, if the digraph T ′, formed by the same set of links with T
but with opposite orientation, appears to be a rooted tree; in this case the root of T ′
turns to a sink in T . A line-graph (see Fig. 2a) is a digraph that contains links only
between subsequent vertices.

The combination of a TU-game 〈N , v〉 ∈ GN and a communication graph D is a
so-called graph game or digraph game, depending on the graph D being directed or
not. The set of all games endowed with a cooperation structure D on a fixed player
set N is denoted as GD

N . A value of a game with a graph structure is called a G-value.
For any digraph D on N and any coalition S ⊆ N , the subgraph of D on S is

the digraph D|S with vertex set S and arc set {(i, j) ∈ A(D)|i, j ∈ S}, respectively.
Given a digraph D, a coalition S ⊆ N is said to be connected if the subgraph D|S

is connected. A coalition S ⊆ N is called a component of N if D|S is maximally
connected in D. A subcoalition S′ ⊆ S ⊆ N is called a component of S if D|S′ is
maximally connected in D|S . By S/D we denote the set of components of S and let
(S/D)i be the component of S containing player i ∈ S.
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Following Myerson (1977), we assume that for a given game with cooperation
structure 〈v, D〉, cooperation is possible only among connected players and consider
a restricted game vD ∈ GN defined as

vD(S) =
∑

C∈S/D

v(C), for all S ⊆ N .

3 Basic component efficient values

In this section we list some CE values in line-graph and tree games, which we will
apply later. The reason we call them “basic” values is that we can gain more com-
plex values by combinations of them in acyclic digraph games. We want to show that
acyclic digraph games can be covered by line-graph, rooted or sink tree games.

A G-value ξ is CE if, for any graph game 〈v, D〉, for all C ∈ N/D,

∑

i∈C

ξi (v, D) = v(C).

For a permutation π : N �→ N , assigning rank number π(i) ∈ N to a player i ∈ N ,
let π i = { j ∈ N |π( j) ≤ π(i)} be the set of all players with rank number smaller
or equal to the rank number of i , including i itself. Then the marginal value vector
mπ (v) ∈ R

n of game v and permutationπ is given by mπ
i (v) = v(π i )−v(π i\{i}), i ∈

N . By p we denote the permutation on N relevant to the natural ordering from 1 to
n, i.e., p(i) = i, i ∈ N , and by q the permutation relevant to the reverse ordering
n, n − 1, . . . , 1, i.e., q(i) = n + 1 − i, i ∈ N .

Different values for games with cooperation structure presented by line-graphs
are studied in van den Brink et al. (2007). Along with the Myerson value for graph
game 〈v, D〉, the authors consider three other solution concepts, namely, the upper
equivalent solution given by

ξU E
i (v, D) = m p

i (v), for all i ∈ N ,

the lower equivalent solution given by

ξ L E
i (v, D) = mq

i (v), for all i ∈ N ,

and the equal loss solution given by

ξ E L
i (v, D) = m p

i (v)+ mq
i (v)

2
, for all i ∈ N .

The previous three solutions for line-graph games are characterized via component
efficiency and one of the three link deletion axioms. Please refer to the original paper
to get the details.
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Acyclic digraph games 701

A G-value ξ is successor equivalent (SE) if, for any rooted tree digraph game
〈v, D〉, for every link (i, j) ∈ A(D), for all k ∈ SD( j),

ξk(v, D\(i, j)) = ξk(v, D).

A G-value ξ is predecessor equivalent (PE) if, for any sink tree digraph game
〈v, D〉, for every link (i, j) ∈ A(D), for all k ∈ P D(i),

ξk(v, D\(i, j)) = ξk(v, D).

The tree value was first introduced in Demange (2004) and later axiomatized in
Khmelnitskaya (2010a, b). It is the unique G-value that satisfies CE and SE. For any
rooted tree digraph game 〈v, D〉, it is given by

ti (v, D) = v(SD(i))−
∑

{ j |(i, j)∈A(D)}
v(SD( j)), i ∈ N . (1)

The sink value was introduced in Khmelnitskaya (2010a, b). It is the unique G-value
that satisfies CE and PE. For any sink tree digraph game 〈v, D〉, it is given by

si (v, D) = v(P D(i))−
∑

{ j |( j,i)∈A(D)}
v(P D( j)), i ∈ N .

4 Flows and weights in acyclic digraphs

We will analyze the structure of acyclic digraph games first. The analysis is similar to
that in a network in graph theory. For more about network flow please refer to Bondy
and Murty (2008). In an acyclic digraph game 〈v, D〉, we define two weight functions
u and w, which are called inweight and outweight function of i , respectively:

∑

j∈N−
D (i)

u( j i) = 1,
∑

j∈N+
D (i)

w(i j) = 1. (2)

In fact, the sums in Eq. 2 are not necessarily 1. It is sufficient if the sum of the weights
u( j i), j ∈ N−

D (i) (or w(i j), j ∈ N+
D (i)) is a fixed value. We let them be 1 for sim-

plicity. For every arc (i, j) ∈ A(D), the values u(i j), w(i j) represent the inweight
and outweight on the arc (i, j), respectively.

Given the total inflow ftotal and the weight functions u, w, we can define a non-
negative real-valued function f on the arc set A(D). For every arc (i, j) ∈ A(D),
the value f (i j) represents the flow on arc (i, j). We can simply assume that the total
inflow ftotal of D is 1, that is, let R(D) be the source set of D, then

ftotal =
∑

i∈R(D)

∑

j∈N+
D (i)

f (i j) = 1. (3)
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Fig. 1 A flow in an acyclic
digraph

In fact it does not matter how much the total inflow is. We just assume it is 1 for
simplicity. The thing that matters is that the flow is transferable, and the allocation
from one vertex i to its outneighbors is determinate. The total inflow is allocated first
among the vertices in the source set, then goes to the sinks from the sources, passing
through all the arcs in A(D) and all the vertices in V (D). Except the sources and
sinks, for every vertex i in V (D), the inflow of i equals the outflow of i , that is,

∑

j∈N+
D (i)

f (i j) =
∑

j∈N−
D (i)

f ( j i). (4)

For every vertex i ∈ V (D)which is not a source or sink, we use fi= ∑
j∈N+

D (i)
f ( j i)=

∑
j∈N−

D (i)
f (i j) to represent the inflow of i . And the inflows from j ∈ N−

D (i) to i are

proportional to the weight u( j i), the outflows from i to j ∈ N+
D (i) are proportional

to the weight w(i j), that is

f ( j i)

fi
= u( j i), for every vertex j ∈ N−

D (i);
f (i j)

fi
= w(i j), for every vertex j ∈ N+

D (i). (5)

Example 4.1 A flow in an acyclic digraph
In Fig. 1, a flow is indicated. The source set is {1, 2}, the total flow

ftotal = f (13)+ f (14)+ f (23) = 1

4
+ 1

4
+ 1

2
= 1.

Take vertex 3 as an example. The flow in 3 is f3 = 3
4 . The weight functions of vertex

3 are u(23) = 2
3 , u(13) = 1

3 and w(34) = 1. ��
Then, by Eq. 5 we know that in a digraph D, once the total inflow and the weight

functions u, w for every vertex i ∈ V (D) are given, we can calculate the flow on
every arc in A(D). In the following, all of the operations run with the condition that
the total flow ftotal and the weight functions u, w are given. Initially, all the coalitions
work in full power. When some edges or vertices are deleted, the flow will change,
and the worth of the coalitions will change correspondingly. For a coalition S ⊆ N ,
when the flow that comes from the source set of D to the source set of the subgraph
D|S changes, we assume that the worth of S changes proportionally.
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Acyclic digraph games 703

(a) (b)

(c) (d)

Fig. 2 A line-graph, a rooted tree, a sink tree and an acyclic digraph. a A line-graph, b a rooted tree,
c a sink tree and d an acyclic digraph

Fig. 3 The covering of a rooted tree with line-graphs

5 Coverings of trees and acyclic digraphs

In order to use the results in tree games in Khmelnitskaya (2010a, b) and line-graph
games in van den Brink et al. (2007), we need to study the relationship between them
and acyclic digraph games. In graph theory, a line-graph is actually a union of directed
paths, in which all the components contain consecutive linearly ordered players. A
line-graph is a special case of a rooted tree or sink tree, and a rooted or sink tree
is a special case of an acyclic digraph. We will define a covering to represent this
kind of relationship. A covering of a digraph D is a family F of subgraphs of D, not
necessarily arc-disjoint, such that

∪F∈F A(F) = A(D).

Under our definition, we can cover acyclic digraphs with rooted or sink trees, and
cover rooted or sink trees with line-graphs. First of all, let’s see the figures below.
They are a line-graph, a rooted tree, a sink tree and an acyclic digraph, respectively.

In a rooted tree T , there is a unique path from the root to each sink. For example, in
Fig. 2b, there is a unique path from the root 1 to each of the sinks in {3, 4, 5}. In Fig. 3,
the rooted tree in Fig. 2b is covered with three line-graphs. In this sense, we say that
a rooted tree can be covered by line-graphs. We can see that some vertices have been
used in the covering more than once. Immediately, we get the following lemma.
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Fig. 4 A covering of an acyclic digraph with rooted trees

Lemma 5.1 Let T be a rooted tree whose root is r , and let T have k sinks {s1, s2, . . . ,

sk}. Then T can be uniquely covered by k line-graphs, which are paths from r to
si (i ∈ {1, 2, . . . , k}), respectively. ��

For sink trees, we have a similar lemma. We will omit it here.

Remark 5.2 Using the depth-first search (DFS, see Bondy and Murty 2008) method,
we can get the covering of a rooted or sink tree in O(|V (T )|) time, which is propor-
tional to the number of vertices in the tree. Two or more links with the same pair of
ends are said to be parallel edges. In the definition of Khmelnitskaya (2010a, b), there
is a unique path from the root to any vertex in a rooted tree. In the sequel, we can
extend them to trees with parallel edges. Besides, there may be multiple paths from
one vertex to another, too. ��

Next we consider acyclic digraphs, see Fig. 2d. Arcs e1
34 and e2

34 are parallel edges
from vertex 3 to vertex 4. Besides, there are two paths from vertex 1 to vertex 5, which
are 145 and 15, respectively. For simplicity, we assume that the acyclic digraphs are
connected. Since we can cover trees with line-graphs, as long as we can cover acyclic
digraphs with rooted trees or sink trees, we are able to cover them with line-graphs.
See the covering of an acyclic digraph in Fig. 2d with rooted trees.

We can easily know that the covering is not unique. All the rooted trees in Fig. 4 can
be covered with smaller rooted trees. Although we do not have efficient algorithms to
find this covering, it does not matter. In fact, we do not care about what exactly the
covering is. We can define values as long as we make sure that such a covering exists.
Then, we have the following lemma.

Lemma 5.3 Let D be an acyclic digraph whose source set is R := {r1, r2, . . . , rm}
and sink set is S := {s1, s2, . . . , sn}. Then the digraph D can be covered by rooted
trees T := {Tri j }(i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , ki }), where ki (i ∈ {1, 2, . . . ,m})
is the number of different rooted trees with the root ri in the digraph D.

Proof We prove this lemma by induction on the number of vertices of the acyclic
digraph. If n = 1 or 2, the result holds obviously. Suppose that the covering exists
for acyclic digraphs with no more than n − 1 vertices. We now show that it holds for
acyclic digraphs with n vertices. In fact, choose a vertex r ∈ R, and let D′ := D\{r}.
Then D′ has n − 1 vertices. By the induction hypothesis, we know that D′ can be
covered by rooted trees. Let the rooted tree covering of D′ be T ′, and let T r := {T ∈
T ′|V (T ) ⊂ SD(r)}. For every j ∈ N+

D (r), SD( j) can be covered by a set of rooted
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trees T j . For every T ∈ T j , let T r j be the rooted tree obtained by adding one vertex
r to V (T ) and one arc (r, j) to A(T ). Let T r j := {T r j |T ∈ T j }. Then ∪ j∈N+

D (r)
T r j

is a rooted tree covering of SD(r). Let T := (T ′\T r ) ∪ (∪ j∈N+
D (r)

T r j ). Then T is a
rooted tree covering of D. The lemma is thus proved. ��

For convenience, we assume that any rooted tree T is not a subgraph of another tree
T ′ in the covering T , or we can delete T from T , and T ′ := T \T is still a covering.
We have a similar conclusion for the coverings of acyclic digraphs with sink trees. We
omit the details here. By Lemmas 5.1 and 5.3, we can easily see that every acyclic
digraph can be covered by line-graphs, too.

Now we have clarified the relationships among line-graphs, rooted trees, sink trees
and acyclic digraphs in structure. We are able to investigate the game values of acyclic
digraphs based on the study of line-graphs and trees.

6 Covering values of acyclic digraph games

Theorem 6.1 (Khmelnitskaya 2010a, b) On the class of rooted-tree digraph games
there is a unique G-value that satisfies CE and SE, and for any rooted tree digraph
game 〈v, D〉 it is given by Eq. 1.

From Theorem 6.1, we know that the two axioms of CE and SE uniquely define a
G-value for a rooted tree digraph game. In order to find values in an acyclic digraph
game, we have two kinds of ways. One way is to make use of Theorem 6.1 and Lemma
5.3, the other way is to modify the axioms for acyclic digraph games. We can uniquely
define a G-value for an acyclic digraph game in both ways. Besides, we can prove that
the two values are the same value in fact, and both are extensions of the tree values
in Khmelnitskaya (2010a, b). In the following we will determine the acyclic digraph
values in two ways, respectively.

6.1 The covering method

6.1.1 Explanations of rooted and sink tree values

By Lemma 5.1 we know that a rooted tree T can be covered by line-graphs. Let the
covering be L. For every L ∈ L, i ∈ V (L), we can compute the lower equivalent
solution

ξ L E
i (v, L) = mq

i (v), i ∈ N .

We define a solution of the game 〈v, T 〉,

ti (v, T ) : = ∑
{L∈L|i∈V (L)}

ξ L E
i (v, L)+�i ,
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where

�i :=
(
v(ST (i))−

∑

{L∈L|i∈V (L)}
v(SL(i))

)

−
∑

{ j |(i, j)∈A(T )}

(
v(ST ( j))−

∑

{L∈L| j∈V (L)}
v(SL( j))

)
.

Let

ai := v(ST (i))−
∑

{L∈L|i∈V (L)}
v(SL(i))

bi :=
∑

{ j |(i, j)∈A(T )}

(
v(ST ( j))−

∑

{L∈L| j∈V (L)}
v(SL( j))

)
,

we can rewrite �i = ai − bi . Then

ti (v, T ) =
∑

{L∈L|i∈V (L)}
mq

i (v)+�i

=
∑

{L∈L|i∈V (L)}
(v(qi )− v(qi\{i}))+�i

=
∑

{L∈L|i∈V (L)}
(v(SL(i))− v(SL(i)))+�i

= v(ST (i))−
∑

{ j |(i, j)∈A(T )}
v(ST ( j)),

which coincides with the tree value defined in Khmelnitskaya (2010a, b).
We may consider�i as the total benefit (possibly negative) of joining the different

line-graphs at player i .
When�i > 0, we can apply Burt’s structural hole theory (Burt 1992), which argues

that social capital is created by a network in which people can broker connections
among otherwise disconnected segments. The players in ST (i) scattered themselves
in SL(i), L ∈ L before. We may consider they were not themselves well connected or
organized. The lack of connections among them is the structural hole. The structural
hole provides player i with opportunities, the involvement of player i strengthens
the connections among them. Player i brokers connections among SL(i), L ∈ L, the
structure hole is “filled” by player i , and �i is thus created. The term ai is the differ-
ence between the worth of ST (i) before and after the involvement of player i . And the
term bi may be considered as some compensation to the children of player i .

When�i ≤ 0, the involvement of player i is not that successful, a loss is produced.
There may be many reasons for a loss to come into being. For example, maybe there
is not a structural hole among the players in ST (i); maybe player i is not good at bro-
kering; maybe this loss is temporary; maybe there exist conflicts among the players
in ST (i) that can not be resolved.
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Example 6.2 The explanation of the rooted tree value
We will explain the rooted tree value in the graph game with communication struc-

ture shown in Fig. 3. As shown in the covering, player 1 has three choices. He may
form three line-graph coalitions, L1 = {1, 2, 3}, L2 = {1, 2, 4}, or L3 = {1, 2, 5}. In
each line-graph coalition, he gets the marginal value ξ L E

1 (v, Li ), i = 1, 2, 3. If the
players in different line-graph coalitions can not cooperate, he can only earn the payoff
in one of the three line-graph coalitions. He is not satisfied, a greater coalition must
be better for him. Then he tries to form the grand coalition, with all the players in it.
In the grand coalition {1, 2, 3, 4, 5}, he gets the sum of the payoffs in the line-graphs,
i.e.,

∑3
i=1 ξ

L E
1 (v, Li ).

If �1 > 0, we may consider �1 as the gain. By Burt’s structural hole theory (Burt
1992), player 1 brokers connections among Li , i = 1, 2, 3, social capital is created.
In�1, a1 is the social capital created by “filling” the structural hole, and b1 is paid to
player 2 by player 1, since player 2 also contributes to the connections.

If �1 ≤ 0, we may consider �1 as the cost, where a1 is the cost of player 1, and
b1 is the compensation from player 2, since player 2 also earns more by forming the
grand coalition. We can see that

5∑

i=1

�i = v(ST (1))−
3∑

i=1

v(SLi (1)),

which equals a1 in �1. This means that the cost a1 in �1 is undertaken by all the
players. Players in {3, 4, 5} do not bear any cost since their payoffs do not increase.

��
Similarly, for a sink tree game 〈v, T 〉, and a line-graph covering L of T , we can

define another solution

si (v, T ) = ∑
{L∈L|i∈V (L)}

ξU E
i (v, L)+�i ,

which coincides with the sink value defined in Khmelnitskaya (2010a, b), where

�i =
(
v(PT (i))−

∑

{L∈L|i∈V (L)}
v(P L(i))

)

−
∑

{ j |( j,i)∈A(T )}

(
v(PT ( j))−

∑

{L∈L| j∈V (L)}
v(P L( j))

)
.

6.1.2 Covering values of acyclic digraph games

If the flow f in an acyclic digraph D is given, then by Lemma 5.3, correspondingly
we can define all the flows of the rooted trees in the covering of D. Denote the set of
rooted trees in the covering found in Lemma 5.3 of D by T . Then by Theorem 6.1,
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in every rooted tree game 〈vT , T 〉, T ∈ T , there is a unique G-value that satisfies CE
and SE, and it is given by

ti (v, T ) = vT (ST (i))−
∑

j∈N+
T (i)

vT (ST ( j)), for all i ∈ V (T ), (6)

where 〈vT , T 〉 is the corresponding game of 〈v, D〉 restricted on the rooted tree T .
Equation 6 gives the unique value for every vertex in the rooted tree T . Let the set

of rooted trees containing vertex i in T be T i . By summing up Eq. 6 over T i , we get

∑

T ∈T i

ti (v, T ) =
∑

T ∈T i

vT (ST (i))−
∑

T ∈T i

∑

j∈N+
T (i)

vT (ST ( j)), for all i ∈ V (D).

We define a new value,

di (v, D) :=
∑

T ∈T i

ti (v, T )+�i , (7)

where

�i :=
(
v(SD(i))−

∑

T ∈T i

vT (ST (i))

)
−

∑

j∈N+
D (i)

(
f (i j)

f j
v(SD( j))

−
∑

{T ∈T i | j∈V (T )}
vT (ST ( j))

)
. (8)

In Eq. 8, f (i j) is the flow amount directly from vertex i to j , or the flow amount on arc
(i, j). If multiple arcs occur from vertex i to j here, then f (i j) is their sum of flows.
And f j is the total flow amount that goes through vertex j from all of its parents.

It is obvious that

N+
D (i) = ∪T ∈T i N+

T (i).

So we have

∑

j∈N+
D (i)

∑

{T ∈T i | j∈V (T )}
vT (ST ( j)) =

∑

T ∈T i

∑

j∈N+
T (i)

vT (ST ( j))

Then Eq. 7 becomes

di (v, D) = v(SD(i))−
∑

j∈N+
D (i)

f (i j)

f j
v(SD( j)), for all i ∈ V (D). (9)
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We call the class of values di defined in (9) the class of rooted covering value.
The outcome of the rooted covering value does not necessarily satisfy component
efficiency, we have the following proposition.

Proposition 6.3 Let D be an acyclic digraph. Let C ∈ N/D be a component of N ,
and let RC be its source set. Then for the digraph game 〈v, D〉, the outcome of the
rooted covering value satisfies component efficiency if and only if

v(C) =
∑

i∈RC

v(SD(i)), for any C ∈ N/D.

Proof Obviously, D|C is an acyclic digraph, and C = ∪i∈RC SD(i) = SD(RC ). Let
f i

j be the total flow amount that goes from i to j . Note that f i
j is different from f (i j).

Since there may be multiple paths from i to j , and f i
j is the sum of the flow amount

over all of such paths, f (i j) is just the flow amount on arc (i, j). Since
∑

i∈RC

f i
j

f j
= 1,

we have

∑

j∈SD(RC )

d j (v, D) =
∑

i∈RC

∑

j∈SD(i)

f i
j

f j
d j (v, D) (10)

Simply multiplying
f i

j
f j

and rooted covering value d j of j , we have the following
equality:

f i
j

f j
d j (v, D) = f i

j

f j

(
v(SD( j))−

∑

k∈N+
D ( j)

f ( jk)

fk
v(SD(k))

)
. (11)

Summing up Eq. 11 over SD(i), we get

∑

j∈SD(i)

f i
j

f j
d j (v, D) = f i

i

fi
di (v, D)

+
∑

j∈SD(i)

f i
j

f j

(
v(SD( j))−

∑

k∈N+
D ( j)

f ( jk)

fk
v(SD(k))

)

= di (v, D)+
∑

j∈N+
D (i)

f (i j)

f j
v(SD( j)). (12)

Summing up Eq. 12 over i ∈ RC , we get

∑

i∈RC

∑

j∈SD(i)

f i
j

f j
d j (v, D) =

∑

i∈RC

(
di (v, D)+

∑

j∈N+
D (i)

f (i j)

f j
v(SD( j))

)
(13)
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The definition of rooted covering value in Eq. 9 shows that

∑

i∈RC

(
di (v, D)+

∑

j∈N+
D (i)

f (i j)

f j
v(SD( j))

)
=

∑

i∈RC

v(SD(i)) (14)

By Eqs. 10, 13 and 14, we know that

∑

j∈SD(RC )

d j (v, D) =
∑

i∈RC

v(SD(i)) (15)

The outcome of the rooted covering value for the digraph game 〈v, D〉 satisfies
component efficiency if and only if for every component C in N ,

v(C) =
∑

j∈SD(RC )

d j (v, D). (16)

And by Eq. 15 we know that Eq. 16 holds if and only if v(C) = ∑
i∈RC

v(SD(i)),
thus the proof is complete. ��

Specially, if |RC | = 1, the outcome of the rooted covering value satisfies component
efficiency.

We consider the expression ve = v(C)− ∑
i∈RC

v(SD(i)), which is the difference
between the worth of the coalition C and the sum of the payoffs of the players (equal
to

∑
i∈RC

v(SD(i)) by Eq. 15) in the rooted covering value. If the difference is zero,
we can easily see that the outcome of the rooted covering value satisfies component
efficiency. However, this is not always the fact. We call the expression given above
the extra value of the component C . The extra value may be positive, negative or zero.
What does the extra value mean? We want to explain this in the following example.

Example 6.4 The explanation of the extra value
We consider a digraph game with Fig. 2d as the communication graph. This

digraph contains only one component. Let U = {4, 5, 6, 7, 8}, U1 = SD(1), U2 =
SD(2), U3 = SD(3). U takes part in three different coalitions, U1, U2 and U3,
and the payoff of U is the sum of his payoffs in them. In this digraph game, ve =
v(N )− ∑

i=1,2,3 v(Ui ). The coalitions U1,U2,U3 are a covering of the grand coali-
tion N , they have U as the common players. The players in {1, 2, 3} are the sources of
the digraph, they have special positions. In a sense, we can say they are the creators of
the coalitions. The cooperation in N is not possible without their involvements. They
all have their own successors, despite some of them have intersections. However, they
are not successors of each other. If we consider this predecessor–successor relation-
ship as some superior–subordinate relationship, then they are all superiors, they have
their own subordinates (there may be intersections). But they are in the same level,
they do not have to be subordinated to anyone. This situation creates some difficulty
for the formation of the grand coalition. Perhaps we may consider ve as the differ-
ence between the collective interest and individual interest. The rooted covering value
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describes a situation where the individual interest prevails. We can not tell which is
better for the group N , since ve may be positive, zero or negative. If ve = 0, this
means that although U1, U2 and U3 have U as the common members, they are kind
of independent. Their cooperation does not create extra value, the value of the grand
coalition is just the sum of their values. If ve > 0, this means that the grand coalition
gains extra value. If ve < 0, this means that the grand coalition loses extra value. We
may just consider U1, U2, U3 as three different departments in one company D. The
group U consists of the common employees in these departments, and U gets paid
from all of the three departments. The payoff of U is the sum of his payoffs in the
three departments. Having paid the wages of his employees, the company gets extra
money ve. ��

In some cases, if the grand coalition does form, the total worth is v(N ), what can
we do now? A small modification can be made to the covering value to get a CE value.

Example 6.5 The allocation of the extra value
If the grand coalition forms, who deserves to earn (ve ≥ 0) or has to afford (ve ≤ 0)

the extra value? We will show this in the game in Example 6.4. We say the players in
the set B = {1, 2, 3} are responsible for the extra value. The set B may be considered
as the boss set, they are the bosses of the company. When the company makes profit,
they earn extra money; when the company operates badly, they lose extra money. The
extra value ve is allocated among the set B according to their payoffs. Let the payoffs
of the bosses be d1, d2, d3 respectively. Then the boss i, i = 1, 2, 3 get extra value

vi
e = vedi

d1 + d2 + d3
.

��
In general, let C ∈ N/D be a component of N , and let RC be its source set. Then

we can define a CE covering value, such that

d ′
i =

{
di + div

C
e∑

j∈RC
d j

if i ∈ RC ;
di if i ∈ C\RC ,

where vC
e is the extra value of the component C . It is easy to check that the newly

defined value d ′ is CE.
The rooted covering value does not necessarily satisfy the axiom of SE, either. That

is because if we delete an arc a from D, the new digraph D′ = D − a may be still
connected.

Similarly, we can cover an acyclic digraph with sink trees or line-graphs. We can
define different covering values which are the combinations of the sink values or
line-graph values. We will not discuss them in detail here.

123



712 L. Li, X. Li

6.2 Axiomatic characterizations

In this section, our approach to the value is close to that of Myerson (1977) based on
ideas of efficiency and a certain link deletion property.

In Sect. 6.1.2, we define a unique G-value for an acyclic digraph game 〈v, D〉,
under the condition that all the subgames on the rooted trees in D’s coverings satisfy
the two axioms: CE and SE. We wish to find new axioms to substitute SE and CE,
such that with the new axioms, we can uniquely define a value for an acyclic digraph
game. In this section, we find such axioms, and define a value which coincides with
the rooted covering value.

Denote E = {( j, k) ∈ A(D)| j ∈ N−
D (SD(i)), k ∈ SD(i)}, let D′ = D\E . A

G-value ξ is modified successor equivalent (MSE) if, for any acyclic digraph game
〈v, D〉, for every vertex i ∈ V (D), we have

ξ j (v, D′) =
∑

k∈N−
D′ ( j) u(k j)

∑
k∈N−

D ( j) u(k j)
ξ j (v, D)

= ξ j (v, D)
∑

k∈N−
D′ ( j)

u(k j), for all j ∈ SD(i),

and ξi (v, D′) = ξi (v, D).

MSE is a natural extension of SE defined in Khmelnitskaya (2010a, b). It shows that
the payoffs of the players in the group SD(i) change accordingly in a situation when
the group is isolated. In the new digraph D′, player i finds his way to create as much
flow amount as he had in D, he then takes on the responsibility to supply flows for the
group. But for other players in the group who can’t create flow, their flow amount may
decrease in D′ than that they had in D. Since they could have received flows through
E which are now cut off. In the new digraph game 〈v, D′〉, the payoff of player i keeps
the same, and the payoffs of other players decrease according to how much the flow
amount going through them has decreased by.

A G-value ξ is modified covering efficient (MCE) if, for any acyclic digraph game
〈v, D〉, for any component C ∈ N/D, and its corresponding source set RC ,

∑

i∈V (C)

ξi (v, D) =
∑

i∈RC

v(SD(i)).

MCE is a variant of component efficiency. In the acyclic digraph game 〈v, D〉, the play-
ers in the source set RC are in special positions. They do not have any predecessors,
they all have some successors (some in common). We may consider this predeces-
sor–successor relationship as some kind of superior–subordinate relationship. Since
all players in RC do not have any superiors, this situation makes it difficult for them
to work without frictions. They have the motive to seek their independence from the
coalition C . We think that there does be cooperation across C , since SD(i), i ∈ RC

have players in common. Nevertheless, the coalition C is not necessarily thus formed.
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Coalitions SD(i), i ∈ RC form instead. The sum of the payoffs of all the players in C
is only a simple addition over the worth of SD(i), i ∈ RC .

Note that MCE does not depend on the weight functions u, w and flow function
f , but MSE does depend on them. It turns out that the two axioms of MCE and MSE
uniquely define a G-value on the class of acyclic digraph games.

Theorem 6.6 On the class of acyclic digraph games, there is a unique G-value that
satisfies MCE and MSE, and for any acyclic digraph game 〈v, D〉 with weight functions
u, w and flow function f defined in Sect. 4, it is given by

di (v, D) = v(SD(i))−
∑

j∈N+
D (i)

u(i j)v(SD( j)), for all i ∈ N . (17)

From now on we refer to the G-value d as the digraph value.

Proof D′ is as defined in MSE. At first, we show that MCE and MSE on acyclic digraph
games define uniquely a G-value that satisfies these axioms. Consider a G-value ξ
satisfying MCE and MSE, and let 〈v, D〉 ∈ GD

N .
For a vertex i ∈ V (D), let Ci be the component in N/D′ containing player i . By

the acyclic digraph structure of D,Ci = SD(i), and RCi = {i}. Because of MCE, it
holds that

∑

j∈Ci

ξ j (v, D′) = v(Ci ). (18)

Then MSE implies that

∑

j∈Ci

ξ j (v, D′) =
∑

j∈SD(i)

ξ j (v, D′)

M SE= ξi (v, D)+
∑

j∈SD(i)

∑
k∈N−

D′ ( j) u(k j)
∑

k∈N−
D ( j) u(k j)

ξ j (v, D) (19)

(18)
=
v(Ci ).

We get |V (D)| equations of type (19), with ξ j (v, D), j ∈ N as variables. We know
that |V (D)| = |N |. Due to the acyclic digraph structure of D, we can arrange the order
of the |V (D)| equations such that the coefficient matrix is an upper triangular matrix
with ones on the diagonal. So the |N | equations of type (19) are linearly independent
and, therefore, uniquely determine ξ(v, D).

Secondly, we verify now that the digraph value d, defined by (17), satisfies MCE
and MSE. The value d coincides with the covering value defined in Sect. 6.1.2. And
by the proof of Proposition 6.3 (Eq. 15), we know that MCE is satisfied. Next, observe
that, due to the acyclic graph structure of D, for any player i ∈ V (D), the sets SD′(i)
and SD(i) coincide. Therefore, by definition (17), it follows immediately that d meets
MSE. In fact, by (17), we have
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di (v, D′) = v(SD′(i))−
∑

j∈N+
D′ (i)

u(i j)v(SD′( j))

= v(SD(i))−
∑

j∈N+
D (i)

u(i j)v(SD( j))

= di (v, D),

d j (v, D′) = vD′(SD′( j))−
∑

k∈N+
D′ (i)

vD′(SD′(k)) (20)

=
∑

k∈N−
D′ ( j)

u(k j)

(
v(SD( j))−

∑

k∈N+
D ( j)

u( jk)v(SD(k))

)

= d j (v, D)
∑

k∈N−
D′ ( j)

u(k j) for all j ∈ SD(i). (21)

Equations 20 and 20 show that the value d satisfies the axiom of MSE. ��
Given weight functions u, w and flow function f , since f (i j)

f j
= u(i j), we know

that the value axiomatized above coincides with the value defined in (9).

Example 6.7 Calculation of the digraph value
In Fig. 5, it is a sink tree game provided with a flow. We find the digraph values in

this game in two methods.
Firstly, we consider the subgames restricted on the line-graphs which are in the

line-graph covering of the sink tree. We give their tree values (same with the lower
equivalent values),

t (51) = v(51), t (41) = v(S(41))− v(51), t (1) = v(S(1))− v(S(41));
t (52) = v(52), t (42) = v(S(42))− v(52), t (2) = v(S(2))− v(S(42));
t (53) = v(53), t (43) = v(S(43))− v(53), t (3) = v(S(3))− v(S(43)).

Besides, because the worth of a coalition is proportional to the flow amount that goes
to its source set, we know that

v(51) = v(52) = v(53) = 1

3
v(5);

v(S(41)) = v(S(42)) = v(S(43)) = 1

3
v(S(4)).

Fig. 5 Digraph values in sink tree
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The covering value is defined by summing up the tree values over all the trees in the
covering plus an extra value. We have

d(5) =
∑

i=1,2,3

t (5i )+�5 = v(5)+ 0 = v(5);

d(4) =
∑

i=1,2,3

t (4i )+�4

=
∑

i=1,2,3

(v(S(4i ))− v(5i ))+
(
v(S(4))−

∑

i=1,2,3

v(S(4i ))

)

−
(
v(5)−

∑

i=1,2,3

v(5i )

)

= v(S(4))− v(5); (22)

d(1) = v(S(1))− 1

3
v(S(4));

d(2) = v(S(2))− 1

3
v(S(4));

d(3) = v(S(3))− 1

3
v(S(4)).

Secondly, by Theorem 6.6, we can directly calculate the digraph values of all the
players in the example, which coincide with Eq. 22. ��

Consider another two axioms:
Denote E = {( j, k) ∈ A(D)| j ∈ P D(i), k ∈ N+

D (P D(i))}, let D′ = D\E . A
G-value ξ is modified predecessor equivalent (MPE) if, for any acyclic digraph game
〈v, D〉, for every vertex i ∈ V (D), we have

ξ j (v, D′) =
∑

k∈N+
D′ ( j) w( jk)

∑
k∈N+

D ( j) w( jk)
ξ j (v, D)

= ξ j (v, D)
∑

k∈N+
D′ ( j)

w( jk), for all j ∈ PD(i),

and ξi (v, D′) = ξi (v, D).

A G-value ξ is modified covering efficient (MCE’) if, for any acyclic digraph game
〈v, D〉, for any component C ∈ N/D, and its corresponding sink set SC ,

∑

i∈C

ξi (v, D) =
∑

i∈SC

v(P D(i)).

It turns out that the two axioms of MCE’ and MPE uniquely define a G-value on
the class of acyclic digraph game.
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Theorem 6.8 On the class of acyclic digraph games there is a unique G-value that
satisfies MCE’ and MPE. For any acyclic digraph game 〈v, D〉 with weight functions
u, w and flow function f defined in Sect. 4, it is given by

si (v, D) = v(P D(i))−
∑

j∈N−
D (i)

w( j i)v(P D( j)), for all i ∈ N , (23)

From now on we refer to the G-value s as the sink digraph value.
The proof of Theorem 6.8 is similar to that of Theorem 6.6, and we skip it here.

7 Distribution of Harsanyi dividends

In the sequel, for the cardinality of a given set N we use lowercase letters like n = |N |.
Shapley (1953) introduced a well-known basis for the game space GN called una-

nimity games. With every coalition S ⊆ N , there is associated its unanimity game
〈N , uS〉 defined by

uS(T ) =
{

1, if S ⊂ T ;
0, otherwise.

It is well-known that any game 〈N , v〉 can be represented as a linear combination of
the unanimity games 〈N , uS〉, S ⊆ N , such that

v =
∑

S⊆N

�vSuS,

where �vS is the so-called dividend with respect to the coalition S, S ⊆ N . The
dividends �vS, S ⊆ N , of a game 〈N , v〉, as defined by Harsanyi (1958), are of the
form

�vS =
∑

T ⊆S

(−1)s−tv(T ), for all S ⊆ N .

Moreover,

v(S) =
∑

T ⊆S

�vT , for all S ⊆ N . (24)

By (24), the worth of any coalition is equal to the sum of Harsanyi dividends of the
coalition itself and all its proper subcoalitions. The Harsanyi dividend of a coalition
has a natural interpretation as the extra revenue from cooperation among the players
of the coalition that they did not already realize by cooperating in smaller coalitions.
How the value distributes the dividend of a coalition provides important information
concerning the interest of different players to create the coalition. van den Brink et al.
(2007) discussed the distribution of Harsanyi dividends in line-graphs, and Herings
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et al. (2008) discussed it in trees. We consider now the digraph and sink digraph values
with respect to the distribution of Harsanyi dividends.

The digraph value d of any acyclic digraph game 〈v, D〉 can be equivalently rep-
resented in terms of restricted games as

di (v, D) = vD(SD(i))−
∑

j∈N+
D (i)

u(i j)vD(SD( j)). (25)

Let

S = {S ⊆ SD(i)},
S1 = {S ⊆ SD(i)|i ∈ S},
S2 = {S ⊆ SD(i)|∀ j ∈ N+

D (i), S 
⊆ SD( j)},
S3 = {S ⊆ SD(i)|∃ j ∈ N+

D (i) s.t. S ⊆ SD( j)},
IS = { j ∈ N+

D (i)|S ⊆ SD( j)}.

We can easily see that

S = S1 ∪ S2 ∪ S3,

Si ∩ S j = ∅, for i 
= j, i, j = 1, 2, 3.

From Eq. 25 and the representation of the worth of a coalition via Harsanyi divi-
dends in Eq. 24, it follows that for any acyclic digraph game 〈v, D〉 ∈ GD

N , the digraph
value in terms of the distribution of Harsanyi dividends is given by

di (v, D) =
∑

S⊆SD(i)

�v
D

S −
∑

j∈N+
D (i)

u(i j)
∑

S⊆SD( j)

�v
D

S

=
∑

S∈S1

�v
D

S +
∑

S∈S2

�v
D

S +
∑

S∈S3

�v
D

S −
∑

j∈N+
D (i)

u(i j)
∑

S⊆SD( j)

�v
D

S

=
∑

S∈S1

�v
D

S +
∑

S∈S2

�v
D

S +
∑

S∈S3

⎛

⎝1 −
∑

j∈IS

u(i j)

⎞

⎠�v
D

S , for all i ∈ N .

The digraph value of player i in terms of dividends consists of three parts. In the
following we will explain them, respectively.

• The first part is the sum of dividends of coalitions in S1. For any coalition S ∈ S1,
it has player i as the source. The players in S have player i as the only supplier of
flows, and they turn in the dividend of S to player i as a return.

• The second part is the sum of dividends of coalitions in S2. For any coalition
S ∈ S2, its source set has more than one members. If the players in its source set
have conflicts, it is difficult for the coalition S to form. The coalition S might have
not been formed if player i had not been involved. So S turns in its dividend to
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player i . If we apply Burt’s Structural hole theory (Burt 1992), this part of divi-
dends may be also considered as the social capital created by player i who brokers
connections among players in coalitions in S2.

• The third part is a linear combination of dividends of coalitions in S3. For any
coalition S ∈ S3, the coefficient of �v

D

S is related to the flow amount going from
player i to his children in IS . Although player i is a predecessor of S, IS also
contains predecessors of S, and the distance from the players in IS to S are nearer
than that from player i to S. Player i may trust IS to pass flows to S, although he
is in charge of the distribution of the dividend of S, he has to pay to every player
j ∈ IS part of the dividend u(i j)�v

D

S for their work to pass flows. The coefficient
1 − ∑

j∈IS
u(i j) is less than 1, it may be positive, negative or zero.

Note that in the special case of rooted tree games, the second and third part of the
digraph value are zero, which means that the digraph value of a rooted tree graph
assigns dividend of any connected coalition to its root. As discussed above, in the gen-
eral case of acyclic digraph games, the digraph value assigns more dividends to the
source player. In a coalition S = SD(i), player i is given a strong motive to create S.

For the sink digraph value, we have a similar analysis, and we omit the details here.
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