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Abstract We provide a new axiomatization of the Kalai–Smorodinsky bargaining
solution, which replaces the axiom of individual monotonicity by disagreement point
monotonicity and a restricted version of Nash’s IIA.
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1 Introduction

The classic bargaining problem, originated in Nash (1950), is defined as a pair (S, d),
where S ⊂ R

2 is the feasible set, representing all possible (v-N.M) utility agreements
between the two players, and d ∈ S, the disagreement point, is a point that specifies
the players’ utilities in case they do not reach a unanimous agreement on some point
of S. The following assumptions are made on (S, d):

• S is compact and convex;
• d < x for some x ∈ S;1

• For all x ∈ S and y ∈ R
2 : d ≤ y ≤ x ⇒ y ∈ S.

Denoting by B the collection of all such pairs (S, d), a solution is a function μ : B →
R

2 that satisfiesμ(S, d) ∈ S for all (S, d) ∈ B. Given a feasible set S, the weak Pareto
frontier of S is W P(S) ≡ {x ∈ S|y > x ⇒ y /∈ S} and the strict Pareto frontier of

1 Vector inequalities: x Ry iff xi Ryi for both i ∈ {1, 2}, R ∈ {>,≥}; x � y iff x ≥ y&x 	= y.

S. Rachmilevitch (B)
Department of Economics, Northwestern University, Evanston, IL, USA
e-mail: shiranrach@gmail.com

123



692 S. Rachmilevitch

S is P(S) ≡ {x ∈ S|y � x ⇒ y /∈ S}. A function f : R → R is a positive affine
transformation if f (x) = αx + β, for some α > 0 and β ∈ R. Let FA denote the set
of these functions. Also, let π(a, b) ≡ (b, a).

Letting (S, d) denote a generic element of B, the Nash solution to the problem
(S, d) is the unique maximizer of (x1 − d1)(x2 − d2) over Sd ≡ {x ∈ S|x ≥ d}.
Nash showed that this is the unique solution that satisfies the following axioms, in the
statements of which (S, d) and (T, d ′) are arbitrary elements of B.

Weak Pareto optimality (WPO): μ(S, d) ∈ W P(S).2

Individual rationality (IR): μi (S, d) ≥ di for all i ∈ {1, 2}.

Independence of equivalent utility representations (IEUR): ( f1, f2) ∈ FA × FA ⇒
( f1, f2) ◦ μ(S, d) = μ(( f1, f2) ◦ S, ( f1, f2) ◦ d).3

Symmetry (SY): [π S = S]&[πd = d] ⇒ μ1(S, d) = μ2(S, d).4

Independence of irrelevant alternatives (IIA): [S ⊂ T ]&[d = d ′]&[μ(T, d ′) ∈
S] ⇒ μ(S, d) = μ(T, d ′).

Whereas the first four axioms are widely accepted, IIA has raised some criticism.
The idea behind a typical such criticism is that the bargaining solution could, or even
should, depend on the shape of the feasible set. In particular, Kalai and Smorodinsky
(1975) noted that when the feasible set expands in such a way that for every feasible
payoff for player 1 the maximal feasible payoff for player 2 increases, it may be the
case that player 2 loses from this expansion under the Nash solution.

We now introduce additional notation in order to state Kalai’s and Smorodinsky’s
idea formally. Let (S, d) denote a generic element of B. For each x ∈ Sd , let gS

i (x j )

be the maximal possible payoff for i in S given that j’s payoff is x j , where
{i, j} = {1, 2}. The point a(S, d), called the ideal point of (S, d), is defined by
ai = max{xi |x ∈ Sd}. The monotonicity axiom considered by Kalai and Smorodin-
sky is stated as follows, where (S, d) and (T, d ′) are arbitrary elements of B.

Individual monotonicity (IM):

[d = d ′]&[a j (S, d) = a j (T, d ′)]&[gS
i (x j ) ≤ gT

i (x j ) ∀x ∈ Sd ∩ Td ′ ]
⇒ μi (S, d) ≤ μi (T, d ′)

The axiom IM states that if for every utility level that player j may demand the max-
imum feasible utility level that player i can simultaneously reach is increased, then

2 A natural strengthening of this axiom is Pareto optimality (PO), which requires μ(S, d) ∈ P(S) for all
(S, d) ∈ B.
3 If fi : R → R for each i = 1, 2, x ∈ R2, and A ⊂ R2, then: ( f1, f2) ◦ x ≡ ( f1(x1), f2(x2)) and
( f1, f2) ◦ A ≡ {( f1, f2) ◦ a|a ∈ A}.
4 A feasible set S that satisfies π S = S is called symmetric.
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player i should (weakly) benefit. Beyond showing that the Nash solution violates IM,
Kalai and Smorodinsky proposed another solution and proved that it is the unique
solution that satisfies WPO, SY, IEUR, and IM. This solution is given by choosing for
every (S, d) ∈ B the highest point in S (according to the standard partial order on R

2)
that lies on the line segment connecting d and a(S, d). Let K denote this solution.

We propose an alternative axiomatization of K that does not involve IM. In addition
to WPO, IEUR, and SY, we impose the following two axioms, in the statements of
which (S, d), (S′, d ′), and (T, d ′) are arbitrary elements of B.

Restricted independence of irrelevant alternatives (R.IIA): [S ⊂ T ]&[d = d ′]&
[a(S, d) = a(T, d ′)]&[μ(T, d ′) ∈ S] ⇒ μ(S, d) = μ(T, d ′).

This axiom was introduced by Roth (1977). Its requirement from the solution is the
same as the one of IIA, but it applies only to problems that in addition to the conditions
stipulated by IIA share the same ideal point.

Disagreement point monotonicity (DIM): [a(S, d) /∈ S]&[S′ = S]&[d ′
i > di ]&[d ′

j =
d j ] ⇒ μi (S′, d ′) > μi (S, d).

This is a fairness axiom. Interpreting di as player i’s “outside option”, DIM requires
i’s solution-payoff to be an increasing function of it. Note that the requirement that
this axiom applies only to problems that do not contain their ideal point is hardly ever
binding: clearly no bargaining theory is needed for solving such “rectangular situa-
tions”, in which each player can be assigned his first-best utility. The requirement from
the solution to strictly increase in the disagreement point di was introduced by Livne
(1989). The less demanding weak-inequality-version of this axiom was introduced by
Thomson (1987).

The main contribution of our characterization is that it takes the “monotonicity”
from Kalai’s and Smorodinsky’s IM, and applies it to the disagreement point instead
of to the feasible set. This has two advantages. First, it highlights the importance of
the disagreement point in bargaining. Second, it reinforces a well-known pattern: K
behaves very well with respect to various monotonicity conditions.5

2 The main result

We start with two auxiliary lemmas, the statements of which will involve the following
axiom. In the axiom’s statements (S, d) is an arbitrary element of B.

Strong individual rationality (S.IR): μ(S, d) > di for all i ∈ {1, 2}.
Lemma 1 W P O & R.I I A & DI M ⇒ I R.

5 For example, as was shown by Thomson (1983), when one considers an environment with a variable
number of agents, K can be characterized in terms of population monotonicity. Informally, this axiom
requires that “if there is one more mouth to feed, then everybody should contribute” (see Thomson 1983
for details).
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Proof Let (S, d) ∈ B and let μ be a solution that satisfies the three axioms. Assume
by contradiction, and without loss of generality (wlog), that μ1(S, d) < d1. Let l be
the line segment with endpoints d and μ(S, d). Let S′ be the set of the points x ∈ S
such that (1) x lies to the right of l, and (2) x2 ≥ d2. Note that (S′, d) ∈ B, S′ ⊂ S,
and a(S′, d) = a(S, d). Hence, by R.IIA, μ(S′, d) = μ(S, d). Next, let:

S′′ ≡ {x ∈ R
2|x ≥ (μ1(S, d), d2) and x ≤ y for some y ∈ S}

Note that (S′′, d) ∈ B, a(S′, d) = a(S′′, d), and S′ ⊂ S′′. Moreover, W P(S′′) =
W P(S′), so by WPO μ(S′′, d) ∈ S′. Hence, by R.IIA, μ(S′, d) = μ(S′′, d). There-
fore, μ(S′′, d) = μ(S, d). Finally, consider a shift-to-the-left of d in S′′: by DIM
this change should strictly decrease player 1’s payoff, but this is not possible in S′′, a
contradiction. ��
Lemma 2 W P O & SY & I EU R & R.I I A & DI M ⇒ S.I R.

Proof Let μ be a solution satisfying the axioms. Assume by contradiction that it
violates S.IR. Then, there exists an element (S, d) ∈ B and an i ∈ {1, 2} such that
μi (S, d) ≤ di ; by Lemma 1, it must be that μi (S, d)=di . Assuming wlog that i=1,
WPO impliesμ(S, d)=(d1, a2(S, d)). Let T ≡ conv{d, (d1, a2(S, d)), (a1(S, d), d2)}.
By R.IIA μ(T, d)=μ(S, d)=(d1, a2(S, d)). However, by IEUR, WPO, and SY it fol-
lows that μ(T, d) is the midpoint of T ’s hypotenuse, a contradiction. ��
We are now ready to state and prove the main result.

Theorem 1 The Kalai–Smorodinsky solution is the unique solution that satisfies
WPO, SY, IEUR, R.IIA, and DIM.

Proof It is easy to check that K satisfies all the axioms. We now prove uniqueness.
Let μ be a solution satisfying the axioms and let (S, d) be an arbitrary element of
B. Assume by contradiction that μ(S, d) 	= K (S, d). Note that μ(S, d) 	= K (S, d)
implies that a(S, d) /∈ S (otherwise, we would have μ(S, d) = K (S, d) = a(S, d)).6

Therefore, DIM applies to all the bargaining problems to be constructed in the remain-
der of the proof.

Since K satisfies PO, it follows that μi (S, d) < Ki (S, d) for some i ∈ {1, 2}.
Since μ satisfies WPO, it follows that there exists exactly one such i . Suppose then,
wlog, that μ1(S, d) < K1(S, d) and μ2(S, d) ≥ K2(S, d). In fact, it must be that
μ2(S, d) > K2(S, d).7

Let V ≡ conv{μ(S, d), d, (d1, a2(S, d)), (a1(S, d), d2)}. By R.IIA, μ(V, d) =
μ(S, d). Lemma 2 guarantees that V is a convex hull of four points.8 Therefore,

6 To see this, suppose that a(S, d) ∈ S and let ν ∈ {μ, K }. By Lemma 1 ν(S, d) ∈ R ≡
conv{d, a(S, d), (a1(S, d), d2), (d1, a2(S, d))} and hence by R.IIA ν(S, d) = ν(R, d). By WPO, SY,
and IEUR, ν(R, d) = a(S, d).
7 If μ(S, d) ∈ W P(S), μ1(S, d) < K1(S, d), and μ2(S, d) = K2(S, d), then μ2(S, d) = a2(S, d) and
therefore K (S, d) = a(S, d), in contradiction to a(S, d) /∈ S.
8 Without S.IR we could not exclude the possibility μ(S, d) ∈ {(d1, a2(S, d)), (a1(S, d), d2)}.
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there exists a d ′
2 > d2 such that K (V, d ′) = μ(V, d), where d ′ = (d1, d ′

2).
9 By DIM,

μ(V, d) 	= μ(V, d ′). Let W ≡ conv{μ(V, d), d ′, (d1, a2(S, d ′)), (a1(S, d ′), d ′
2)}. We

obtain:

μ(W, d ′) = μ(V, d ′) 	= μ(V, d) = K (V, d ′) = K (W, d ′)

The first equality is by R.IIA, the second equality is by definition of d ′, and the
third equality follows from the definition of K . However, by WPO, SY, and IEUR,
μ(W, d ′) = K (W, d ′), a contradiction. ��
If we replaced DIM by its weak-inequality version (see Thomson 1987), then the
conclusion of Theorem 1 would not hold. In fact, the Nash solution satisfies the weak-
inequality version of DIM, as well as the rest of the axioms of Theorem 1.10

2.1 Independence of the axioms

As was just noted, the Nash solution satisfies all the axioms of Theorem 1 besides
DIM. The disagreement solution μ(S, d) ≡ d satisfies all the axioms besides WPO.
Letting m(S, d) ≡ 1

2 [a(S, d) + d], the solution μ(S, d) ≡ m(S, d) + (ε, ε), where
ε is the maximal number such that the expression on the right-hand-side is in S,
satisfies all the axioms besides IEUR.11 The generalized individually monotonic solu-
tion (due to Peters and Tijs 1985) satisfies all the axioms besides SY. To describe
this solution, some preliminary definitions are needed. For (S, d) ∈ B there exists a
unique pair ( f1, f2) ∈ FA × FA such ( f1, f2) ◦ (S, d) is a normalized problem, in
the sense that its disagreement point is (0, 0) and its ideal point is (1, 1). Call this
pair ( f1, f2) the normalizing transformation for (S, d). Let � be the set of strictly
increasing and continuous functions ψ : [0, 1] → [0, 1] that satisfy ψ(0) = 0 and
ψ(1) = 1. Given ψ ∈ �, let G(ψ) denote the graph of ψ . Given ψ ∈ �, the asso-
ciated (generalized individually monotonic) solution works as follows: Given (S, d),
normalize it by applying its normalizing transformation ( f1, f2), take the intersection
point W P(( f1, f2) ◦ S)∩ G(ψ) and “pull it back” by applying to it ( f −1

1 , f −1
2 ). The

resulting point is the solution to (S, d). Denote this solution μψ . Note that K = μψ
for the identity function ψ(t) = t .

I now turn to describe a solution that satisfies all the axioms besides R.IIA. Let
α ∈ (0, 1) and S∗ ≡ {(x, y) ∈ R

2+|x2 + y2 ≤ 1, x ≤ α}. Let S∗ ≡ {( f1, f2) ◦
S∗|( f1, f2) ∈ FA × FA}. Take a ψ ∈ � such that ψ( 1

2 ) 	= 1
2 . Let μ∗ be the solution

such that μ∗(S, d) = μψ(S, d) if S ∈ S∗ and μ∗(S, d) = K (S, d) otherwise. It is
easy to check that μ∗ satisfies all the axioms besides R.IIA. Though formally making
the point it is supposed to make, the solutionμ∗ is just an artificial construct. One may
further ask whether there exist well-known, or well-behaved solutions that satisfy all
the axioms of Theorem 1 besides R.IIA. I am not aware of such a solution on the entire

9 If V were a convex hull of three points such a d ′ would not have existed, because K satisfies S.IR.
10 The fact that the Nash solution satisfies the weak inequality version of DIM was proved by Thomson
(1987), the rest is due to Nash (1950).
11 This solution appears in de Clippel (2007).
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domain of bargaining problems considered here; however, there is no shortage of such
solutions on the sub-domain of strictly comprehensive problems—the problems with
feasible sets S that satisfy W P(S) = P(S). For example, the equal-area solution is
one such solution (see Anbarci and Bigelow 1994 for details).12
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