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Abstract This paper studies a generalization of the well known house allocation
problem in which agents may own fractions of different houses summing to an arbitrary
quantity, but have use for only the equivalent of one unit of a house. It departs from the
classical model by assuming that arbitrary quantities of each house may be available to
the market. Justified envy considerations arise when two agents have the same initial
endowment, or when an agent is in some sense disproportionately rewarded in compar-
ison to her peers. For this general model, an algorithm is designed to find a fractional
allocation of houses to agents that satisfies ordinal efficiency, individual rationality,
and no justified envy. The analysis extends to the full preference domain. Individual
rationality, ordinal efficiency, and no justified envy conflict with weak strategyproof-
ness. Moreover, individual rationality, ordinal efficiency and strategyproofness are
shown to be incompatible. Finally, two reasonable notions of envy-freeness, no justi-
fied envy and equal-endowment no envy, conflict in the presence of ordinal efficiency
and individual rationality. All of the impossibility results hold in the strict preference
domain.
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1 Introduction

In this paper, we consider the problem of allocating a number of objects (say houses)
to agents in an efficient and fair manner. Agents have complete and transitive prefer-
ences over the houses, and each agent wishes to be allocated the equivalent of at most
one house. The distinguishing feature of our model is that agents may be endowed
with fractional amounts of various houses. This model is a common generalization
of several well-studied models that have received a lot of attention in the literature. If
each agent is endowed with a distinct house, we recover the housing market model,
first considered by Shapley and Scarf (1974). For this model, Shapley and Scarf pro-
posed the Top-Trading Cycles mechanism (attributed to Gale) that finds the unique
core allocation of the associated cooperative game. The TTC mechanism is Pareto effi-
cient, strategyproof, and is individually rational (precise definitions are given later).
Ma (1994) later proved that the TTC mechanism is characterized by these properties.
At the other extreme, if agents have no endowments, we recover the random assign-
ment problem considered by, among others, Abdulkadiroglu and Sonmez (1998), and
Bogomolnaia and Moulin (2001). Abdulkadiroglu and Sonmez (1998) study the ran-
dom priority (RP) mechanism: agents are ordered randomly, they choose houses in
this order, and each agent picks her most preferred house among the set of houses
still available. This mechanism is strategyproof, ex-post Pareto efficient, and satisfies
equal treatment of equals. An alternative mechanism—probabilistic serial (PS)—for
the same problem was proposed by Bogomolnaia and Moulin (2001): at each point in
time, agents consume their best available houses at unit rate. The resulting assignment
can be implemented as a lottery over efficient deterministic assignments. Bogomolnaia
and Moulin (2001) showed that the PS mechanism finds an allocation that is envy-free
and ordinally efficient (a stronger form of efficiency), but satisfies strategyproofness
only in a weaker sense. Katta and Sethuraman (2006) extended the PS mechanism to
the full preference domain, and proved that envy-freeness and ordinal efficiency are
incompatible with even the weaker form of strategyproofness. Finally, Abdulkadiroglu
and Sonmez (1999) and Yilmaz (2009) have considered house allocation problems with
existing tenants:1 in this model, some agents have no endowments (“new tenants”)
and others are endowed with a distinct house (“existing tenants”). In such models, in
addition to fairness and efficiency, it is natural to require individual rationality: absent
such a requirement, agents may not participate in the mechanism in environments
where such participation is voluntary. Abdulkadiroglu and Sonmez (1999) designed
a natural mechanism for this problem that specializes to the TTC mechanism when
there are no new tenants, and to the RP mechanism when there are no existing tenants.
Recently, Yilmaz (2009) proposed a mechanism that specializes to the PS mechanism
when there are no existing tenants, but is different from the TTC mechanism when
there are no new tenants.2 Note that in models with endowments expecting envy-
free assignments that are also individually rational may be unreasonable, as these two

1 A later version of Yilmaz’s work includes a brief discussion of how his algorithm can be adapted to the
fractional endowment setting considered in this paper.
2 Sethuraman (2001, unpublished manuscript) proposed a solution for this problem that specializes to the
PS mechanism when there are no existing tenants and to the TTC mechanism when there are no new tenants.
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requirements may be in obvious conflict with each other. A key contribution of Yilmaz
(2009) is his definition of justified and unjustified envy, which shows how to interpret
the equity requirement when agents have different endowments.

Contributions. In our model, agents are allowed to have arbitrary endowments over
the houses. Thus, the model we propose—House allocation with fractional endow-
ments—is a common generalization of most of the existing models in the context of
house allocation. For the house allocation problem with fractional endowments, we de-
sign an algorithm to find an assignment that is individually rational, ordinally efficient,
and satisfies the no justified envy criterion of Yilmaz (2009). This algorithm gener-
alizes the work of Yilmaz (2009) who designed an algorithm with these properties
for the special case of 0–1 endowments. Similar to Yilmaz’s algorithm, our algorithm
is computationally efficient (its running-time is polynomial in the size of the input),
and works by solving a sequence of maximum flow problems. These algorithms are
in the spirit of earlier work of Katta and Sethuraman (2006), and can be viewed as
a generalization of their result to this substantially more general model. We further
show that individual rationality, ordinal efficiency, and no justified envy are incom-
patible with weak-strategyproofness, a very mild incentive compatibility requirement.
Somewhat surprisingly, we also show that ordinal efficiency and individual rationality
alone are incompatible with strategyproofness. This negative result holds even in the
canonical instance of the model in which there are n agents and n houses and each
agent owns 1/n of every house. In the context of random assignment, this finding
suggests that endowing each of n agents with 1/n of every house and allowing them
to trade their “endowments” cannot lead to a truthful allocation procedure. Property
rights are, in this sense, not helpful in overcoming related impossibility results in the
random assignment problem (Bogomolnaia and Moulin 2001). Finally, we prove that,
under ordinal efficiency and individual rationality, no justified envy conflicts with the
fairness requirement that no two agents with equal endowments envy each other. All
of our impossibility results hold even in the strict preference domain, and apply even
when we substitute no justified envy with weaker equity criteria.

Applications. House allocation and random assignment models have significant appli-
cations—the allocation of scarce on-campus housing is one celebrated example. Our
model addresses any situation in which agents collectively own a bundle of goods,
allowing for separate individual ownership. Owning a fraction of a good could reflect
the probability of an agent actually possessing the good in question, provided that
endowments sum to less than 1. In the context of dorm room allocation it could also
reflect the relative “right” an agent has over a certain room. In our interpretation, the
agents have the rights to consume their initial endowments, but do not have the right
to trade (for e.g., the right to enter a lottery to attend a local public school), so that any
allocation mechanism in which each agent’s final allocation is at least as good as his
endowment will ensure participation (this is the individual rationality requirement).

Another interpretation of fractional individual ownership rests on thinking of goods
as divisible entities. (This is in contrast to the classical models where goods are assumed
to be indivisible and a fractional allocation of goods to agents is viewed as a lottery
assignment.) This approach makes particular sense in markets where time-sharing is
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an option. If a good may be consumed at different times during the course of a given
time period, then owning a fraction of it simply reflects the amount of time an agent
is entitled to consuming it.

Finally, one can view our model as a way of improving upon a given lottery. Imagine
a situation in which the final assignment of objects to agents will be made based on a
given fractional assignment matrix. Interpreting this fractional assignment matrix as
the endowment of the agents, the mechanism proposed here computes an alternative
assignment matrix in which each agent’s random allocation stochastically dominates
her endowment, yielding a “superior” lottery for each agent. Ordinal efficiency of the
proposed mechanism implies that this new lottery cannot be improved upon for all the
agents simultaneously.

Organization of the paper. We discuss the model more formally in §2. Section 3
contains a description of the algorithm to find a solution for any given instance of
the house allocation problem with fractional endowments; it also proves that the
algorithm finds an assignment that is individually rational, ordinally efficient, and
has no justified envy. Section 4 contains a collection of impossibility results. We
discuss several extensions in §5 and end with a brief discussion of future research
in §6.

2 Model description

2.1 Model

Consider a market with n agents I = {1, 2, . . . , n} and n houses H = {h1, h2, . . . , hn}.
Suppose agent i is endowed with ei j units of house h j , with each ei j ∈ [0, 1]. We
assume that each agent owns at most the equivalent of a full house, and that at most
one unit of any house is owned by the agents. In other words, the endowment matrix
can be represented by a doubly sub-stochastic matrix.3

h1 h2 . . . hn

1 e11 e12 . . . e1n

2 e21 e22 . . . enn
...

...
...

...
...

n en1 en2 . . . enn,

with the rows indexed by the agents and the columns by the houses. Each agent i has
(ordinal) preferences over the set of houses expressed by the complete and transitive
relation �i .4 If houses h j and hk are such that h j �i hk and hk �i h j then agent
i is indifferent between houses h j and hk , denoted by h j ∼i hk . If h j �i hk , but

3 All of the results extend to the more general case in which an arbitrary amount (instead of 1) of each
house is available in the market. See §5 for this and other generalizations.
4 All of our results extend in a straightforward manner to the case in which �i is quasi-transitive, and also
to the case in which �i is a partial order. We omit the details.
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hk ��i h j , then agent i strictly prefers h j to hk , denoted by h j �i hk . It is clear that
the relation ∼i is symmetric and transitive, and that the relation �i is antisymmetric
and transitive.

An allocation for agent i is a vector pi = (pi1, pi2, . . . , pin) such that
∑

j pi j ≤ 1.
The interpretation is that in allocation pi , agent i consumes pi j units of house h j . As
is clear from the definition of an allocation, we consider environments in which agents
desire at most the equivalent of “one house.” The allocations for all the agents can
be described by an assignment matrix, with the rows indexing the agents and col-
umns indexing the houses; like the endowment matrix, the assignment matrix will be
a doubly sub-stochastic matrix. In this work, we explore mechanisms for allocating
the houses to the agents satisfying some desirable properties, described next.

2.2 Mechanisms and properties

A mechanism is a function that determines an assignment matrix for every possible
profile of preferences and endowments. The desirable properties of a mechanism typ-
ically stem from efficiency, truthfulness, and equity considerations.

Efficiency. For agent i , an allocation pi dominates qi , denoted pi �i qi ,

pi �i qi ⇔
∑

k�i h

pik ≥
∑

k�i h

qik, for all h ∈ H.

If at least one of the above inequalities is strict, then pi strictly dominates qi , and
is denoted pi �i qi . (The dominance relation described here is simply the first-order
stochastic dominance.) Note that � is a partial order and certain allocations are not
comparable: for example, getting the second best object for sure cannot be compared
to getting 1/2 unit each of the best and worst objects. The dominance relation de-
fined on individual allocations extends to assignment matrices in a natural way: an
assignment matrix P dominates an assignment matrix Q if pi �i qi for every agent
i; P strictly dominates Q if P dominates Q, and if pi �i qi for some agent i . An
assignment matrix P is said to be ordinally efficient (or simply efficient) if P is not
strictly dominated by any assignment matrix Q. A mechanism is efficient if it deter-
mines an efficient assignment matrix for every profile of preferences and endowments.

Individual rationality. Consider an environment in which participation is voluntary.
If the mechanism finds an allocation pi for agent i such that pi �i ei , then agent i
will always participate. Otherwise i may choose not to participate, which may result
in an inefficient assignment. So, an assignment P is said to be individually rational
if pi �i ei for each agent i . A mechanism is individually rational if it determines an
individually rational allocation for every agent.

Truthfulness. In many application contexts, preferences of the agents are not observ-
able, but should be elicited from them. A natural, but fairly strong, requirement then
is a mechanism in which it is a (weakly) dominant strategy for agents to reveal their
preferences truthfully. As not every pair of allocations can be compared, there are two
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versions of this property. A mechanism is said to be strategyproof if for every agent i ,
the allocation she obtains by reporting her true preferences (weakly) dominates the
allocation she obtains by reporting any other preference, regardless of what the other
agents do. A mechanism is said to be weakly strategyproof if for every agent i , the
allocation she obtains by reporting her true preferences is not dominated by the allo-
cation she obtains by reporting any other preference, regardless of what the other
agents do.

Equity. A minimal requirement of fairness is the familiar property of equal treatment
of equals (ETE), which states that two agents with identical endowments and prefer-
ences should receive identical allocations. Formally a mechanism satisfies ETE if it
finds an allocation such that pi = pi ′ whenever ei = ei ′ and �i = �i ′ , for any pair of
agents i and i ′.

A stronger requirement is envy-freeness, which states that each agent’s allocation
(weakly) dominates every other agent’s allocation. That is, for any agent i, pi �i pi ′
for every agent i ′. Indeed this property has been considered in many economic con-
texts, notably in the house allocation problem with no endowments. For the model with
endowments, however, envy-freeness is too strong a requirement as it is in obvious
conflict with individual rationality. For instance, suppose agents i and i ′ both have
house h j as their most preferred choice, but i owns h j . In this case individual rational-
ity dictates that i be allocated h j fully, but i ′ will necessarily envy i in this allocation.
Thus, any reasonable definition of envy in this context should take into account the
fact that a mechanism may be forced to treat agents differently because they have
different endowments. We define two notions of envy-freeness in this context (neither
one of which implies the other), which are described next.

First, we can require envy-freeness only amongst agents who have identical endow-
ments: this is a natural property and a reasonable requirement because two agents with
identical endowments bring exactly the same resources to the group, so any differences
in their final assignment should be explained solely by their preferences. We say that a
mechanism satisfies equal-endowment no envy (EENE) if agents with the same initial
endowments do not envy each other. In other words, a mechanism satisfies EENE if
it finds an allocation P such that pi �i pi ′ whenever ei = ei ′ .

An alternative notion—no justified envy—has been proposed by Yilmaz (2009) for
the house-allocation model with existing tenants, a special case of our model in which
the endowment matrix is 0–1 and sub-stochastic. He distinguishes between two kinds
of envy: justified and unjustified. The difference is explained by the following two
examples, both due to Yilmaz.

Example 1 Consider the following instance of the house allocation problem with three
agents {1, 2, 3} and three houses {a, b, c}. Agent 1 prefers a to b and b to c; agents 2
and 3 prefer b to a and a to c. The initial endowments are specified in braces, next to
the preference ordering. Here, agent 1 is endowed with house b, agent 2 with a, and
agent 3 with c.

1 : a � b � c {b}
2 : b � a � c {a}
3 : b � a � c {c}
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It is clear that the only individually rational and efficient assignment is

a b c

1 1 0 0
2 0 1 0
3 0 0 1

Clearly agent 3 will envy both agents 1 and 2. However, this envy is not justified
because it is not possible for agents 1 and 2 to give up any portion of their endowments
to agent 3, receive a positive share of house c and still maintain individual rationality.
In contrast, consider the following example:

Example 2

1 : a � c � b {b}
2 : b � c � a {a}
3 : b � a � c {c}

The assignment discussed earlier—giving a to 1, b to 2, and c to 3—is still individ-
ually rational and efficient. However there are other individually rational and efficient
allocations because agents 1 and 2 are willing to give up some of b and a respec-
tively for any house in the sets {a, c} and {b, c} respectively. In this context, if all
of c is allocated to agent 3, then this agent could justifiably envy agents 1 and 2.
This is because instead of giving agents 1 and 2 their best houses, the mechanism
could have found a different allocation in which agents 1 and 2 do a little worse,
still maintain individual rationality, and agent 3 does a little better. In particular, the
assignment

a b c

1 1
2 0 1

2

2 0 1
2

1
2

3 1
2

1
2 0

is individually rational, efficient, and is envy-free.

Yilmaz (2009) formalizes these observations into the following definition: an agent
i justifiably envies an agent i ′ if i’s allocation does not dominate i ′’s, and if i’s allo-
cation is an individually rational allocation for agent i ′. Formally, i justifiably envies
i ′ if

pi ��i pi ′ and pi �i ′ ei ′ .

Equivalently, i does not justifiably envy i ′ if

pi �i pi ′ or pi ��i ′ ei ′ .
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We say that a mechanism satisfies no justified envy if in the assignment it determines,
no agent justifiably envies any other agent.5 This definition of NJE is motivated by
the following consideration: if pi ��i pi ′ , then agent i could potentially prefer the
allocation pi ′ to pi ; however, if NJE is satisfied, this implies that pi is not even an
individually rational allocation for agent i ′. In a way, this definition of NJE traces any
potential envy in the final allocation to the difference in the endowments the agents
start with. Later in the paper (see Remark 2 following Theorem 2 in §4), we consider
a modified definition in which i justifiably envies i ′ if

pi ′ �i pi and pi �i ′ ei ′ .

The NJE property is easier to satisfy under this new definition of justified envy, so
the positive results of the paper continue to hold automatically for this new definition.
We point out that the impossibility results established in this paper that rely on NJE
(Theorems 2 and 4) continue to hold under this new definition as well.

We conclude this section by pointing out that the model we consider generalizes
some of the most prominent models studied in the house allocation literature. In
particular:

• If the endowment matrix is a permutation matrix, we recover the classical house
trading model of Shapley and Scarf (1974) in which each agent owns a distinct
house.

• If the endowment matrix is identically zero, we get the random assignment prob-
lem considered by Abdulkadiroglu and Sonmez (1998), Bogomolnaia and Moulin
(2001), Katta and Sethuraman (2006), and others.

• If the endowment matrix is {0, 1}with each column sum at most 1 and each row sum
at most 1, we obtain the house allocation problem with existing tenants, considered
by Abdulkadiroglu and Sonmez (1999) and Yilmaz (2009).

3 The controlled-consuming (CC) algorithm

In this section we design an efficient algorithm to find an allocation satisfying individ-
ual rationality, ordinal efficiency, and no justified envy. To make the discussion trans-
parent and to keep the notation short, we shall restrict attention to the case in which
the agents have strict preferences and have doubly stochastic endowment matrices.
In Sect. 5, we show how our algorithm can be adapted to deal with indifferences and
more general endowment profiles.

The CC algorithm falls under the general class of simultaneous eating algorithms,
first introduced by Bogomolnaia and Moulin (2001). In particular, it allows each agent
to “eat” her most preferred available house at rate 1, as long as there is some way to
complete the assignment so that the individual rationality constraints are not violated;
this continues until some house is completely consumed, or some individual rationality
constraint is in danger of being violated. In the latter case the agents, whose continued

5 We could require further that the allocation of agent i ′ dominate i’s endowment. But this makes it more
difficult for justified envy to exist, so no justified envy becomes easier to satisfy.
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consumption of their best available houses would violate some individual rationality
constraint, are forbidden from consuming their most preferred houses even if they are
available, and they move on to their next best house.

3.1 Flows and cuts

A network (V, A) consists of a set V (called nodes) and a set A (called arcs) of ordered
pairs of distinct elements of V , along with some additional data associated with V and
A such as capacities and costs. A useful model to keep in mind is that of a transpor-
tation network: the nodes represent demand or supply points of a commodity, and the
arcs indicate potential ways in which the commodity can be transported, with the costs
and capacities having the obvious interpretation. The relevant network problem for
the purposes of this paper is the maximum flow problem, which is defined as follows:
given a network, a source node s, a sink node t , and capacities u(·) on the arcs, find the
maximum amount of flow that can be sent from s to t . (A flow is simply an assignment
of non-negative real values to the arcs such that for every node v other than s and
t the total flow into v equals the total flow out of v.) Related to this problem is the
problem of finding a minimum capacity s–t cut: an s–t cut is any collection of nodes
S that includes s and excludes t , and the capacity of any such cut is the sum of the
capacities of the arcs (i, j) with i ∈ S and j �∈ S. It is obvious that the capacity of any
s–t cut is an upper bound on the total flow that can be sent from s to t ; therefore the
minimum capacity s–t cut is an upper bound on the maximum s–t flow. A fundamental
result in network flow theory is that the maximum s–t flow is exactly the same as
the minimum capacity s–t cut (for background on maximum flows, see Ahuja et al.
1993). A more general model involves a network in which certain arc capacities are
a function of a parameter λ; the maximum flow (equivalently, the minimum cut) is
therefore a function of λ, and the problem of interest is to understand the dependence of
this quantity on this parameter. This is called the parametric maximum flow problem.
The CC algorithm, as we shall describe later, works by finding a maximum flow in a
suitably defined parametric network. We first illustrate the algorithm on an example.

3.2 An illustrative example

Consider the following instance:

1 : a � c � b {.99b, .01c}
2 : b � a � c {.99a, .01c}
3 : b � a � c {.01a, .01b, .98c}

As described earlier, the algorithm finds the final allocations by solving a sequence
of maximum-flow problems on specific networks associated with the given instance.
The networks all have the same set of nodes and arcs, but data associated with the
network such as arc-capacities and other auxiliary information maintained by the algo-
rithm will change over time. The nodes of the network are as follows: for each agent i ,
we introduce 3 nodes i(1), i(2), i(3), one for each “preference level”; there is a node
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1(1) 

1(2) 

1(3) 

2(1) 

2(2) 

2(3) 

3(1) 

3(2) 

3(3) 

a 

b 

c 

s 
t 

0 

.01 

.99 

0 

.99 

.01 

.01 

.01 

.98 

1 

1 

1

Fig. 1 Initial network

for each house; and finally, there is a source node s and a sink node t . The arcs of
the initial network are as follows: the source is connected to each node i(k), with the
capacity of the arc being eih if h is the kth most preferred house of agent i ; each
“house” node is connected to the sink with an arc of capacity 1; and finally, there are
k infinite capacity arcs from node i(k) to the house nodes, one to each of agent i’s k
most preferred houses.

The initial network is shown in Fig. 1. We first make a few observations:

• Any flow from s to t determines an assignment in a natural way: the amount of
house h allocated to agent i , denoted pih , is given by the total amount of flow in
the arcs (i(k), h), for k = 1, 2, 3.

• The maximum flow from s to t is 3, and can be obtained, for example, by using
the endowments as flows: if agent i’s kth most preferred house is h, then the flow
along the arc (s, i(k)) is eih , as is the flow along the arc (i(k), h).

• Any flow of 3 units from s to t determines an individually rational assignment: the
only way to send 3 units of flow from s to t is for each arc from s to i(k) to carry a
flow equal to its capacity, which is equal to i’s endowment of her kth best house;
the only way for this flow to reach the sink is via one of the arcs leaving i(k), and
each of these arcs is to a house that i (weakly) prefers to her kth best house. So the
individual rationality constraints will be satisfied for every agent i .

Iteration 1. The flow given by the endowments is individually rational, but may not be
ordinally efficient. To find an ordinally efficient assignment, we employ a variation of
the “simultaneous eating” algorithm due to Bogomolnaia and Moulin (2001). Suppose
an agent i is not endowed with any amount of his most-preferred house, so that the
capacity of the arc (s, i(1)) is currently zero. We now consider increasing the capacity
on the arc (s, i(1)) at unit rate; because of this increase, we can decrease the capacity
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3(1) 

3(2) 

3(3) 

a 

b 

c 

s t 

1

1

1 

max{ ,.01} 

min{.02- ,.01} 

.98 

Fig. 2 Changing capacities as λ increases

(at unit rate) on the first positive capacity arc in the sequence (s, i(2)), (s, i(3)),

. . . , (s, i(n)), and still maintain individual rationality. The algorithm we propose does
exactly this with one important exception: if an agent i has a positive endowment e
of her most preferred house, the capacity of the arc (s, i(1)) is set to this endowment
until time e so as to maintain individual rationality. This is seen, for instance, in Fig. 2,
which focuses on agent 3 and shows how the arc-capacities from the source to the
nodes of agent 3 vary during the course of the algorithm. Here, λ is a parameter that
starts at zero and is increased at unit rate. As agent 3 is endowed with 0.01 units of his
most preferred house b, the capacity of arc (s, 3(1)) will be 0.01 until λ reaches that
value, after which it will simply be λ.

We are now ready to work through the example in detail. To make the figures easier
to read, we omit the arcs from the source, but indicate the capacities of these arcs
above the respective nodes. We also omit the arcs to the sink. As mentioned earlier,
we introduce a parameter λ that starts at zero and will grow to 1 at which point the
algorithm terminates. When λ = λ̂, each agent will have a partial assignment of λ̂

units, with the assurance that this partial assignment can be turned into an individually
rational full assignment (each agent getting one unit in total). Consider the (redrawn)
initial network in Fig. 3, with the capacities now a function of λ. Each agent’s best
node is shown as a solid bold circle; his next node, which is the “next” (less) preferred
endowment that he is willing to give up in exchange for his most-preferred house, is
shown as a dashed bold circle. We gradually increase λ and continue doing so as long
as the maximum flow from s to t is still 3, and as long as none of the (arc) capacities
drops below zero. The former is to ensure that we stay within the class of individually
rational allocations, and the latter ensures that the trade-off of less to more-preferred
houses is feasible for each agent. On this example, the capacity of arc (s, 1(2)) will
drop to zero when λ = 0.01: the interpretation is that agent 1 consumes 0.01 of his
most-preferred house (house a) by giving up the same amount of his claim on house
c (that he was endowed with); any additional consumption of a must be accompanied
by agent 1’s willingness to give up an equal amount of his claim on a less-preferred
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Fig. 3 Iteration 1: λ ∈ [0, 0.01), and the partial allocation at λ = 0.01

Fig. 4 Iteration 2: λ ∈ [0.01, 0.02), and the partial allocation at λ = 0.02

house. This is incorporated into the algorithm by setting the capacity of (s, 1(2)) to
zero and by setting the capacity of (s, 1(3)) to 1− λ, as shown in Fig. 4 in which node
1(3) appears as the next node for agent 1.6 The value of λ at the end of the first iteration
is thus 0.01.

Iteration 2. Figure 4 shows the second iteration of the CC algorithm. We continue
increasing λ until it reaches .02, at which point the capacity of the arc (s, 3(2)) becomes
zero, and node 3(3) becomes the next node for agent 3.

Iteration 3. The network during iteration 3 is shown in Fig. 5. We continue increasing
λ until it reaches .5, at which point any further increase in λ will cause the maximum

6 The CC algorithm keeps track of these two entities—the best house for an agent and the next house for
which he has a positive endowment—for each agent over time in two arrays called best and next.
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Fig. 5 Iteration 3: λ ∈ [0.02, 0.5), and the partial allocation at λ = 0.5

s–t flow in the network to drop below 3. (This is the other way that an iteration can
come to an end.) This is so because the nodes 2(1) and 3(1) each receive λ units of flow
from the source and they can send this flow only to node b, which can send only one
unit of flow to the sink. That house b is a bottleneck can also be seen by examining
the min-cut: The relevant min-cut is {s, 2(1), 3(1), b} with a capacity of 4− 2λ, which
is below 3 for any λ > 0.5. Thus house b becomes unavailable to agents 2 and 37,
and each of them is allocated 0.5 units of house b. Since agents 2 and 3 will not be
allocated any more of b, all arcs connecting their other, “lesser preferred,” agent-nodes
to this house are deleted. Their “best” house now becomes a, and their “next” houses
are updated to c. Figure 6 shows this updated network: in that figure the nodes 2(1) and
3(1) are filled in, reflecting that their capacities are frozen. It also shows that the current
best nodes for agents 2 and 3 are 2(2) and 3(2) respectively, and that the capacities of
these arcs will be increased at unit rate. Notice, further, that at this stage all agents are
“eating” house a.

Iteration 4. The network shown in Fig. 6 remains valid until λ reaches .505, at which
point the maximum flow in the network is about to drop below 3. The relevant mini-
mum-cut in this case is {s, 1(1), 2(1), 2(2), 3(1), 3(2), a, b}with a capacity of 3.505−λ.
Thus, house a is declared unavailable to agents 1 and 3 and their allocation of house a
is set at .505, and .005 respectively. Since agents 1 and 3 will not be allocated any more
of a, all arcs connecting their other, “lesser preferred,” agent-nodes to this house are
deleted. In effect, the algorithm discovers that any additional allocation of house a to
agents 1 or 3 will cause the individual rationality condition for agent 2 to be violated.
Thus, even though house a is still not fully allocated, it has to be made unavailable to
agents 1 and 3, if the final allocation is to be individually rational for agent 2. Figure 7
reflects these changes.

7 The CC algorithm uses a set A of ordered agent-house pairs to keep track of the set of houses available
for each agent.
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Fig. 6 Iteration 4: λ ∈ [0.5, 0.505), and the partial allocation at λ = 0.505

Fig. 7 Iteration 5: λ ∈ [0.505, 0.99), and the partial allocation at λ = 0.99

Iterations 5 and 6. The network in Fig. 7 is valid until λ reaches .99, at which point the
maximum flow in the network is about to drop below 3. The relevant minimum-cut is
once again {s, 1(1), 2(1), 2(2), 3(1), 3(2), a, b} with a capacity of 3.99− λ: thus, house
a is declared unavailable to agent 2 and her allocation of house a is set at .49. Since
agent 2 will not be allocated any more of a, all arcs connecting its other agent-nodes
to this house are deleted. This is shown in Fig. 8, which is the network at the beginning
of iteration 6. As λ is increased from 0.99, no other updates are made until λ reaches
1, at which point the algorithm terminates, with the final allocation shown in that
figure.

The role of endowments and strategic behavior. We briefly comment on the CC
algorithm’s focus on individual endowments and vulnerability to strategic behav-
ior. As the following example suggests, it can be profitable to claim that one’s
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Fig. 8 Iteration 6: λ ∈ [0.99, 1) and the final allocation

endowment is more valuable than it actually is. In particular, a valuable social
endowment may give an agent added bargaining power over obtaining her most pre-
ferred houses.

Suppose that agent 1 misrepresents her preferences and submits a � b � c,
instead of a � c � b. She thus overstates the value of her endowment to her.
With this new preference profile, the CC algorithm will compute the following
allocation

a b c

1 .99 0 .01
2 .01 .98 .01
3 0 .02 .98

It is clear that agent 1’s new allocation emphatically dominates her old one. By mis-
stating that house b is her second most preferred, agent 1 can ensure that 2 trades her
endowment of house a almost entirely with her. Notice that agent 2 is also quite happy
with this trickery as her new allocation also clearly dominates her old one. The only
agent who is left out in the cold is 3 who is in effect compelled to keep her endowment
of house c.

The above example further highlights how agents with identical preferences (agents
2 and 3) may receive very different allocations depending on the attractiveness of their
endowments for other agents. In our example, agent 2’s endowment is far more desir-
able to agent 1 than agent 3’s endowment. This, however, does not give agent 2 an
intrinsic edge over 3. The structure of the CC algorithm ensures that agent 3 is allowed
to improve her allocation, so long as IR constraints are respected. In this regard, agent
1’s IR constraints are key. When she declares her preferences truthfully, her coveted
endowment of house b will be equally distributed to agents 2 and 3. When she lies,
agent 2 ends up getting all but .01 of agent 1’s endowment of b.
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3.3 The algorithm

We now formally present the algorithm. Recall that I = {1, 2, . . . , n} denotes the
set of agents and H = {h1, h2, . . . , hn}, the set of houses. We assume strict prefer-
ences and a doubly stochastic endowment matrix. Let hi(k)

denote agent i’s kth most
preferred house (thus hi(1)

�i hi(2)
�i · · · �i hi(n)

). For convenience, denote ei,hi(k)

by ei(k)
. As mentioned earlier, the algorithm finds the final assignment by solving a

sequence of (parametric) maximum-flow problems on specific networks associated
with the given instance. The networks all have the same set of nodes and arcs, but
some of the arc-capacities change during the course of the algorithm. The nodes of
the network are as follows:

• (agent nodes) for each agent i , there are n nodes i(1), i(2), . . . , i(n), one for each
“preference level”;

• (house nodes) for each house h j , there is a node labelled h j ; and
• a source node s and a sink node t .

The arcs of the network are as follows: the source is connected to each agent node
i(k) with an arc whose capacity is denoted ui(k)

; each house node h j is connected to
the sink with an arc of capacity 1; and finally, there are k infinite capacity arcs from
node i(k) to the house nodes, one to each of agent i’s k most preferred houses. During
the course of the algorithm the capacities of some of the arcs emanating from the
source node will be varied; all other arc-capacities remain fixed. (To capture this, we
sometimes use an additional superscript for ui(k)

to make this dependence explicit.)
Finally, the algorithm maintains the following additional information that is critical
to its operation: (i) a set A of available agent-house pairs; and (ii) for each agent i , a
best house index bi and a next house index ni .

Initial network

If (i, h) ∈ A, we say that house h is available for agent i . Initially, every
house is available for each agent so that A consists of all possible agent-house pairs.
The initial capacities, u0

i(k)
, of the arc connecting the source s to the node i(k) is set to

the corresponding endowment ei(k)
. The best house for agent i is her most preferred

house among the houses available to her; if her best house is hi(k)
, her next house, if

any, is the smallest j > k for which the arc (s, i( j)) has positive capacity. Equivalently,
agent i’s best house index, bi , is k and her next house index, ni , is j . (If there is no next
house for agent i, ni is undefined.) Note that the best house is defined with respect to
the set A whereas the next house is defined with respect to the arc-capacities of the
associated network.

An iteration of the CC algorithm

The algorithm progresses by examining a sequence of networks at times 0 = λ0 ≤
λ1 ≤ λ2 ≤ · · · ≤ λz = 1. At each of these instants, the network is updated (some
arc-capacities are changed), as is the additional information that it maintains (the set
A, and the best and next house indices for each agent). To complete the description of
the algorithm we specify how, given all the data at time λt , the algorithm finds λt+1

and updates the network as well as the auxiliary information.
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Let λ be a parameter that will be gradually increased from its current value of λt .
Consider the network at time λt and make the following changes for each agent i :

• Set the capacity of the arc (s, i(bi )) to

max

⎧
⎨

⎩
λ−

bi−1∑

�=1

ut
s,i(�)

, ut
s,i(bi )

⎫
⎬

⎭
. (1)

• Set the capacity of the arc (s, i(ni )) to

min

⎧
⎨

⎩

bi∑

�=1

ut
s,i(�)
+ ut

s,i(ni )
− λ, ut

s,i(ni )

⎫
⎬

⎭
. (2)

All other arc capacities are maintained at their values at time λt .
If the maximum in Expression (1) is achieved by the first term, we say that agent

i is consuming her best house; if the maximum in Expression (1) is achieved by the
second term, we say that agent i is claiming her best house. Clearly an agent can
consume or claim a house only if it is available to her, and only when it is her best
house. The interpretation of these two steps is very straightforward: for each agent, we
increase the capacity of the arc to the best available house at unit rate (the first term in
Expression (1)), except when individual rationality requires a larger quantity of that
house to be set aside for this agent (the second term in Expression (1)). In the former
case, the increase is accompanied by a corresponding decrease in the guarantee of the
next best house, which explains Expression (2).

We now solve a parametric maximum-flow problem on this updated network by
gradually increasing λ from its current value of λt . Observe that for λ = λt , the
maximum s–t flow is n. Define λt+1 as the earliest time at which at least one of the
following events occurs:

(a) The capacity of some arc becomes zero;
(b) Any further increase of λ will cause the maximum s–t flow to be strictly

below n;
(c) The value of λ is 1.

We first obtain the new network by fixing the capacities of all the arcs to be their
values at λ = λt+1.

Event (c) defines the termination condition for the algorithm: any maximum s–t
flow (necessarily of value n) in the final network can be interpreted as an allocation of
houses to the agents: the amount of house h allocated to agent i , denoted pih , is given
by the total amount of flow in the arcs (i(k), h), for k = 1, 2, . . . , n.

If Event (b) occurs, the algorithm identifies a minimum s–t cut whose capacity is
strictly below n for any λ > λt+1. Such a cut will be of the form s∪Xt+1∪Yt+1, where
Xt+1 is a subset of the agent nodes of the form i(k) and Yt+1, a subset of the house
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nodes.8 Moreover, for any node i(k) ∈ Xt+1, each of its neighboring house nodes
must be in Yt+1 (otherwise the cut will have infinite capacity). Consider any agent i .
Suppose her total consumption (including all her copies in Xt+1) of the bottleneck
set Yt+1 increases with λ, then agent i’s best house, which is necessarily in Yt+1, is
declared unavailable to her. This occurs if and only if i(bi ) ∈ Xt+1 and i(ni ) �∈ Xt+1; in
this case the pair (i, hi(bi )

) is removed from A, and her best house index is incremented
(as her best house is no longer available to her). This is done for each agent i . The
next house indices for all the agents are updated, and the algorithm continues.

If Event (a) occurs, the best house indices do not change, but the next house indices
of at least one of the agents changes; we recalculate the next house indices of all the
agents and the algorithm continues.

This completes one iteration of the algorithm. A formal description of the algorithm
appears as Algorithm 1.

Relationship to yilmaz’s algorithm. The CC algorithm generalizes the earlier algo-
rithm of Yilmaz (2009) that was designed for the special case of 0–1 endowments,
which, in turn, generalized an earlier algorithm of Katta and Sethuraman (2006) for
the case of no endowments. Therefore the CC algorithm shares a number of features
with these two algorithms. The one key difference is in the network construction: in
the case of fractional endowments it may be necessary to make as many copies of each
agent node as the number of distinct objects, whereas for the case of 0–1 endowments
a single additional copy suffices. Given the need to work with n agent-nodes for each
agent, it is critical that any additional consumption of the best object for each agent be
compensated in a way that maximizes potential trading opportunities in the future: this
is done by reducing the capacity of the arc from the source to that agent’s entitlement
of the next best object; a different choice may not result in an efficient outcome! This
is facilitated by the auxiliary information maintained by the algorithm. These issues
do not arise in the case of 0–1 endowments or when there are no endowments: in these
special cases, once an agent node becomes part of the bottleneck set, either an object
is completely consumed, or the group of agents in the bottleneck set can be isolated
and their final allocation can be determined by solving a subproblem in isolation. In
other words, once the IR constraint becomes binding for a group of agents, that group
of agents will compete for the rest of their endowments, and this determines the sub-
problem that the algorithm solves. In contrast, for the case of fractional endowments,
there are potentially n different IR conditions for each agent, and it is not possible to
view these in isolation. It is this feature that makes the CC algorithm somewhat more
complicated to describe.

3.4 Properties

We show that the CC mechanism is individually rational, ordinally efficient, and sat-
isfies no justified envy and no-envy for agents with equal endowments.

8 When there are many such minimum cuts, we pick one with the maximum number of nodes on the source
side. Such a cut is unique, see Lovasz and Plummer (1986).
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Proposition 1 The CC mechanism is individually rational.

Proof Fix an agent i and any k ∈ {1, 2, . . . , n}. We show, by induction on t , that

k∑

�=1

ut
i(�)
≥

k∑

�=1

ei(�) (3)

for any t ≥ 0. As u0
i(k)
= ei(k)

for each k, the result is true by definition for t = 0.
Suppose the result is true at the beginning of iterations 0, 1, 2, . . . , t . We show that
the result is true at the beginning of iteration t + 1, equivalently, at the end of iter-
ation t . In iteration t , the only arc-capacity that potentially decreases is that of the
arc from s to i(ni ); but from Expressions (1) and (2), this decrease, if any, is off-
set by a corresponding increase in the capacity of the arc from s to i(bi ). The result
follows. �

Algorithm 1: The CC Algorithm
begin

A0 = {(i, h) | i ∈ I, h ∈ H}
for i ∈ I do

u0
i(k)
= ei(k)

, for k = 1, 2, . . . , n

bi = 1, ni = min�>1{� | u0
i(�)

> 0}
t = 0, λ0 = 0
while λt < 1 do

for i ∈ I do

ui(bi )
(λ) = max{λ−∑bi−1

�=1 ut
i(�)

, ut
ibi
}

ui(ni )
(λ) = min{∑bi

�=1 ut
i(�)
+ ut

i(ni )
− λ, ut

ini
}

Gradually increase λ from λt until (a) some arc capacity becomes zero; or (b) the maximum
s–t flow in the network is below n for any larger value of λ; or (c) λ = 1
Set λt+1 = λ, At+1 = At

for i ∈ I do

ut+1
i(bi )

= max{λt+1 −∑bi−1
�=1 ut

i(�)
, ut

ibi
}

ut+1
i(ni )

= min{∑bi
�=1 ut

i(�)
+ ut

i(ni )
− λt+1, ut

ini
}

if maximum s–t flow is below n for λ > λt+1 then
Find a min-cut, which will be of the form s ∪ Xt+1 ∪ Yt+1, where Xt+1 is a subset of
the agent nodes and Yt+1, a subset of the house nodes
for i ∈ I do

if i(bi ) ∈ Xt+1 and i(ni ) �∈ Xt+1 then
At+1 ← At+1 \ {(i, hi(bi )

)}
bi ← bi + 1

for i ∈ I do
ni = min�>bi {� | ut+1

i(�)
> 0}

t ← t + 1

end
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We now turn to properties concerning ordinal efficiency and no-envy. To this end
we start with a few observations. First, the total capacity of the arcs emanating from the
source node s is always n, the total number of agents (equivalently, houses). Second,
the maximum s–t flow in the network is always n, which implies that the flow along
the arcs emanating from the source is unique. These observations are useful in proving
the following:

Lemma 1 Suppose the minimum-cut found by the algorithm in iteration t is
s ∪ Xt+1 ∪ Yt+1. Then:

(a) The set Yt+1 is precisely the set of all houses that are adjacent to some agent in
Xt+1.

(b) If agent-node i(k) ∈ Xt+1, then i(�) ∈ Xt+1 for any � < k.
(c) Let X̄t+1 denotes the set of agents nodes that are not in Xt+1. In any maximum-

flow from s to t (in the current network or in the future), the flow carried by any
arc from a node in X̄t+1 to a node in Yt+1 is zero.

Proof Observe that arcs from Xt+1 to Yt+1 have infinite capacity, and a minimum-cut
cannot contain any such arc; so it is clear that every house node adjacent to some
agent-node in Xt+1 must be included in Yt+1. Any house node h for which there is
no incoming arc from any node in Xt+1 will contribute one unit to the cut-capacity
(as the arc from h to t will be part of the cut); removing such a node from the cut will
decrease the cut-capacity by 1 as no additional arcs will contribute to the cut-capacity.
This verifies part (a) of the proposition. To verify part (b), observe that agent-node i(k)

connects to all the house nodes that any other agent-node i(�) (with � < k) connects
to; including such an agent-node i(�) in the cut may decrease the cut-capacity (as the
arc from s to i(�) will no longer contribute), but will not increase it. To verify part (c),
observe that every arc from a node in X̄t+1 to a node in Yt+1 is a backward arc in the
minimum-cut, and so cannot carry positive flow in any maximum-flow in the network
at time λt+1. Moreover, by the definition of λt+1, we know that in the network at
time λt+1, the total capacity of the arcs connecting s to Xt+1 equals the total capacity
of the arcs connecting Yt+1 to t . In all future networks, the total capacity of the arcs
connecting s to Xt+1 cannot decrease, which implies that the total flow along these
arcs cannot decrease either. But the only way for this flow to reach the sink node t is
via the arcs from Yt+1 to t. �

Armed with these observations, we are now ready to formally prove that the CC
mechanism is ordinally efficient and satisfies no justified envy.

We begin with ordinal efficiency. Let P be the assignment found by the CC algo-
rithm. The CC algorithm is a “simultaneous eating” algorithm (we can find eating
speed functions such that the assignment found by the simultaneous eating algorithm
with these eating speed functions is the assignment P); Bogomolnaia and Moulin
(2001) showed that any assignment found by such an algorithm is ordinally efficient
and every ordinally efficient assignment can be found this way. It follows then that P is
ordinally efficient. Nevertheless, we present a direct proof of this result. The proof uses
an alternative characterization of ordinal efficiency, due to Bogomolnaia and Moulin
(2001), and extended to the full preference domain by Katta and Sethuraman (2006).

123



House allocation with fractional endowments 501

Given an assignment matrix P and preference relations�i for each agent i , define the
binary relation τ(P,�) over the set of houses H as follows9:

hτh′ ⇔ { ∃i ∈ I : h �i h′ and pi,h′ > 0}.

Say that the relation is strict if h � h′ in the definition above. The relation τ is cyclic
if there exists a cycle of relations h1τh2, h2τh3, . . . , hk−1τhk, hkτh1. It is strictly
cyclic if it is cyclic, and at least one of the relations in the cycle is strict. The following
result is due to Bogomolnaia and Moulin (2001).

Proposition 2 Let P be a random assignment matrix for the preference profile �.
Then P is ordinally efficient if and only if the relation τ(P,�) is not strictly cyclic.

Proposition 3 The CC mechanism is ordinally efficient.

Proof Suppose not. Consider an instance for which the assignment P found by the
CC algorithm is not ordinally efficient. Then there is a set of agents and a set of
houses such that the relation τ is strictly cyclic. Suppose without loss of generality
that the set of agents is {1, 2, . . . , k}, the set of houses {h1, h2, . . . , hk} and suppose
that hi �i hi+1 for each agent i (interpreting hk+1 as h1), and pi,hi+1 > 0. As agent
i prefers hi to hi+1, and as pi,hi+1 > 0, house hi becomes unavailable for agent i
before house hi+1 does. Let λi be the time at which house hi becomes unavailable for
agent i , and suppose λ1 = min�{λ�}. We claim that the minimum s–t cut s ∪ X ∪ Y
at time λ1 contains all the house nodes h1, h2, . . . , hk . Clearly, it contains h1 as h1
becomes unavailable to agent 1 at exactly this time. Since agent k is later assigned a
positive amount of h1, part (c) of Lemma 1 implies that the set X must contain some
copy of agent k with an arc to h1 (recall that agents with no copy in the cut will not
get assigned any amount of houses in the cut); but this copy of agent k will have an
arc to hk as well, because hk �k h1. Therefore hk ∈ Y . Applying the same argument,
we see that {h1, h2, . . . , hk} ⊂ Y . However, house h1 is declared unavailable to agent
1, which implies her next house at time λ1 should be outside of S. But note that part
(c) of Lemma 1 implies that agent 1 cannot be allocated any more of the houses in Y
and so p1,h2 must be zero, a contradiction. �
Proposition 4 The CC allocation satisfies no justified envy.

Proof Let P be the assignment found by the CC algorithm on an instance of the
problem. Consider an agent i and let h1 �i h2 �i · · · �i hn . Let λt+1 be the epoch
at which house hk is declared unavailable for agent i . By the definition of the CC
algorithm, house hk must have been the best house for agent i at some point (possibly
only at λt+1). Let s ∪ Xt+1 ∪ Yt+1 be the cut found by the CC algorithm. Note that
the only additional agents that i may potentially envy because of hk’s unavailability
(to him) should continue to “consume” or “claim” hk after time λt+1. By part (c) of

9 Note that τ depends on both the given assignment and the preference relation, but we suppress this
dependence because it is usually clear from the context.
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Lemma 1, any such agent i ′ must have both his best and next agent-nodes in Xt+1.
However, the CC algorithm always satisfies the following invariant

n j∑

�=1

ut+1
j(�)
=

n j∑

�=1

e j(�) , (4)

for any agent j , if n j is his next house at time λt+1. In particular, this expression is
valid for agent i ′.

Now consider the allocation of agent i found by the CC algorithm. By part (c)
of Lemma 1, we know that agent i receives exactly λt+1 units from the houses in
Yt+1. The discussion in the preceding paragraph implies that any individually rational
allocation for agent i ′ must allocate more than λt+1 units from the set Yt+1. So the
allocation of agent i is not individually rational for agent i ′. �

3.5 Computational considerations

To analyze the number of iterations needed for the algorithm to terminate, observe
that each iteration (except the last) ends with the occurrence of Event (a) or Event (b)
(or both); Event (a) causes at least one agent’s next house to change; Event (b) causes
at least one agent’s best house to change. As any agent prefers her best house to her
next house, we see that the number of possibilities for each agent is O(n), so the algo-
rithm terminates in O(n2) iterations. Each iteration of the algorithm involves finding
the smallest breakpoint of a parametric max-flow problem. Even though some of the
capacities are nonlinear because of Expression (1), it is clear that we can find each
λt by solving at most (n + 1) maximum-flow problems from s to t . (Each capacity
is a piecewise linear function with at most 2 pieces; and once an agent becomes a
“consumer,” she cannot become a “claimer” unless her best house changes.) Thus the
entire algorithm can be implemented by solving O(n3) maximum flow problems in a
network with O(n2) nodes and O(n3) arcs. Our analysis of the running time is very
loose, and a more careful implementation will likely be substantially faster, but we do
not investigate this aspect any further as it falls outside the scope of this paper.

4 Impossibility results

The CC mechanism satisfies individual rationality, efficiency and no justified envy,
but is not even weakly strategyproof. This is not a coincidence: The following result
rules out the existence of a mechanism satisfying individual rationality, efficiency, no
justified envy, and weak strategyproofness.

Theorem 2 Consider the strict preference domain and fix |I | ≥ 3. Any mechanism
satisfying individual rationality, efficiency, and no justified envy cannot be strategy-
proof, even in the weak sense.

We note that to prove such an impossibility result for |I | ≥ k, it is enough to con-
sider the case |I | = k as long as individual rationality is required. Any instance with
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k agents can be extended to one with a greater number of agents by letting agents
k+ 1, . . . , n own a distinct house, which they prefer to any other house in the market.

Proof Let I = {1, 2, 3}, H = {a, b, c}, and consider the following preference and
endowment profile:

1 : a � b � c {c}
2 : c � a � b {a}
3 : a � c � b {b}

Individual rationality dictates that p2b = 0. Furthermore, ordinal efficiency implies
that p2a = 0; otherwise agent 2 can exchange a part of her share of a for house c from
agents 1 or 2, resulting in a Pareto improving assignment for all agents. From these
two observations, we get p2c = 1, and p1c = p3c = 0. Since any allocation that 3
obtains will be individually rational for 1 and vice versa, no justified envy implies that
1 and 3 need to receive identical allocations. Thus we obtain

a b c

1 1
2

1
2 0

2 0 0 1

3 1
2

1
2 0

Now consider what happens if agent 1 changes her preferences to a � c � b.
Applying individual rationality for agents 1 and 2, we get p1b = p2b = 0, by which
p3b = 1. Then, from ordinal efficiency we get p1a = p2c = 1. For agent 1, this
allocation dominates the original one, so weak strategyproofness is violated. �
Remarks 1. Observe that this result does not exploit the full power of the no justified

envy requirement. For example, the violation of weak-strategyproofness persists as
long as agent 1 does not get all of a in the original preference profile: any criterion
of fairness that rules out p1a = 1 in the original preference profile is incompatible
with individual rationality, ordinal efficiency, and weak strategyproofness.

2. Our definition of NJE assumes that an agent i justifiably envies j if her allocation
does not dominate j’s allocation and a relevant IR condition is met. Suppose we
weaken the dominance-related part of the definition and require that j’s allocation
strictly dominate i’s.10 This new definition makes it easier to find an allocation
that satisfies NJE, and therefore makes establishing an impossibility result harder.
However, Theorem 2 remains valid even under this weaker equity criterion: for
the given profile, IR and OE force c to be allocated to agent 2. Since agents 1
and 3 have identical preferences on the remaining objects, and any allocation of
these objects to the agents is individually rational for both, the only envy-free
allocation according to either definition is for them to receive equal amounts of
each object. When agent 1 submits the modified preference ordering, IR and OE
force the allocation that is stated, so envy is not used in any form in that case.

10 That is, i justifiably envies j if p j �i pi and pi � j e j .
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3. Theorem 2 asserts the incompatibility of individual rationality (IR), ordinal effi-
ciency (OE), no justified envy (NJE), and weak strategyproofness (WSP). We do
not know if there are mechanisms that satisfy every proper subset of these prop-
erties: the CC mechanism satisfies IR, OE and NJE; the PS mechanism satisfies
OE, NJE (actually, no-envy) and WSP; we do not know of mechanisms satisfying
WSP, IR, and either OE or NJE.

The impossibility result can be strengthened if we insist on strategyproofness in the
strong sense: the following result shows that (strong) strategyproofness is incompati-
ble with individual rationality and efficiency. This is somewhat surprising as typically
individual rationality and efficiency are viewed as fairly mild requirements. The proof
adapts an elaborate construction of Bogomolnaia and Moulin (2001) to an environ-
ment with endowments and the elegant reasoning they use in their proof of a related
(but different) impossibility result.11

Theorem 3 Consider the strict preference domain and fix |I | ≥ 4. There is no mech-
anism that satisfies individual rationality, ordinal efficiency, and strategyproofness.

Proof We start with the following fact about strategyproof mechanisms (we omit the
easy proof, see Bogomolnaia and Moulin 2001):

Fact 1 Consider two orderings of houses σi = h1 �i h2 �i · · · �i hn and σi ′ =
h′1 �i h′2 �i · · · �i h′n . Suppose for some k, {h1, . . . , hk} = {h′1, . . . , h′k}. Consider
a mechanism φ and suppose pi and p′i are the allocations it finds when agent i reports
the preference order σi and σi ′ respectively, for some fixed preferences of the other
agents. If φ is strategyproof, then

∑k
l=1 pil =∑k

l=1 p′il .

Our proof of Theorem 3 proceeds by examining a sequence of profiles, noting
down, in each case, the implications of the various properties; eventually, we shall
show that these implications are inconsistent. In the rest of the proof, we suppress the
�i notation in describing an agent’s preferences so that a �i b �i c �i d is simply
denoted abcd; the identity of the agent is usually clear from the context. We also use
IR for individual rationality, OE for ordinal efficiency, and SP for strategyproofness.

Consider an instance of the problem with |I | = 4 and suppose each agent owns
1/4 of each house.

• Profile 1: In this profile agents 2, 3, and 4 have the preference order abcd and
agent 1’s preference order is badc. By OE, p1a = 0 (as every other agent prefers a
to b and agent 1 prefers b to a); and by IR, p1b = pia+ pib = 1/2, for i = 2, 3, 4.
By a similar reasoning, p1d = 1/2.

a b c d

badc 0 1
2 0 1

2

abcd(3)

11 Bogomolnaia and Moulin (2001) show that strategyproofness is incompatible with efficiency and equal
treatment equals for the random assignment problem with strict preferences.
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• Profile 2: Consider the profile in which agent 1 has the preference bdac, and the
others, abcd. Here OE implies that p1a = 0. For agent 1, SP and Fact 1 applied to
profiles 1 and 2, we get p1b = 1/2 and p1d = 1/2. Also, as p1a = 0, we must have
max{p2a, p3a, p4a} ≥ 1/3. Assume, without loss of generality, that the maximum
is attained by agent 4, so that p4a = β ≥ 1/3 > 1/4. These observations are
summarized as

a b c d

bdac 0 1
2 0 1

2

abcd(2)

abcd β

Agent 4 is now special as this agent has the largest amount of a in Profile 2. In
the rest of the profiles, agents 2 and 3 always have the preference order abcd (like
in Profiles 1 and 2); agents 1 and 4 will have different preference orderings in
different profiles and these will be specified in each case.

• Profile 3: Here the preference order of agents 1 and 4 is abdc (agents 2 and 3 have
the preference order abcd). By IR, we have pia = pib = 1/4 for all i . Then, by
OE, we have p1d = p4d = p2c = p3c = 1/2. So we get

a b c d

abdc 1
4

1
4 0 1

2

abcd(2) 1
4

1
4

1
2 0

abdc 1
4

1
4 0 1

2

• Profile 4: Now, consider the profile in which agent 1’s preference is badc and
agent 4’s is adbc. By OE, p1a = 0, and by IR p1b ≥ 1/2. Suppose p1b = 1/2+α,
for some α ≥ 0. By IR, agents 2 and 3 collectively own at least 1/2 units each of
the bundle {a, b}; and agent 4 owns at least 1/4 units of the bundle {a, b}. These
observations imply α ≤ 1/4.

a b c d

badc 0 1
2 + α

abcd(2)

adbc
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• Profile 5: Now, consider the profile in which 1’s preference is bdac and 4’s is
adbc. Clearly, OE implies p1a = 0. Also, SP and Fact 1 applied to agent 1 and
Profiles 4 and 5 yields p1b = 1/2 + α. Furthermore, applying Fact 1 to agent 4
and Profiles 2 and 5, we get p4a = β > 1/4. Now let p1d = γ and p1c = ε and
p4d = δ. All these observations are summarized as

a b c d

bdac 0 1
2 + α ε γ

abcd(2)

adbc β δ

From Profile 4, we already know that α ≤ 1/4. We shall now show a sharper
bound on α. Note that p1a + p1b = 1/2 + α; by IR, agents 2 and 3 own at least
1/2 units each of the bundle {a, b}, and agent 4 owns at least 1/3 units of a (as
β ≥ 1/3). Adding up all of these, we find that these four agents collectively own
at least 11/6 + α units of the bundle {a, b}; this implies α ≤ 1/6 < 1/4 as only
two units of the bundle {a, b} are available.
We shall now argue that γ > 1/4. If ε = 0 then γ = 1 − 1/2 − α ⇒ γ > 1

4
because, we just saw that α < 1/4. If, on the other hand, ε > 0, then OE implies
that p2d = p3d = 0. As β > 1/4, we must have δ < 3/4, which implies
γ = 1− δ > 1/4. In either case, we have γ > 1/4.

• Profile 6: Suppose agent 1’s preference is abdc and agent 4’s is adbc. By IR,
pia = 1/4 for all i . Then S P and Fact 1 applied to agent 1 and Profiles 4 and 6
implies p1b = 1/4+α. Furthermore SP and Fact 1 applied to agent 1 and Profiles
5 and 6 implies p1d = γ > 1/4. Consider agent 4. By OE, p4b = 0; by S P and
Fact 1 applied to agent 4 and Profiles 3 and 6, we have p4a + p4b + p4d = 1,
which implies p4d = 3/4. So we get

a b c d

abdc 1
4

1
4 + α ε γ

abcd(2) 1
4

adbc 1
4 0 3

4

If γ > 1
4 we have γ + 3

4 > 1, a contradiction.

�
Remarks 1. The result in Theorem 3 is sharp in the sense that there are mechanisms

satisfying every proper subset of the properties in the statement of the theorem.
The CC mechanism satisfies OE and IR; the identity mechanism that sets the final
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allocation to the initial endowments satisfies SP and IR; and any serial dictatorship
that ignores the endowments—order the agents in some way and let them choose
their best available houses in that order—satisfies SP and OE.

2. Heo (2010) recently asked whether there is a strategyproof mechanism satisfying
ordinal efficiency and the equal division lower bound property (each agent should
be assigned at least k/n of his k most preferred houses for every k ≥ 1). Theorem 3
shows that these requirements are incompatible.

Our next result shows that NJE and EENE are incompatible in the presence of
ordinal efficiency and individual rationality.

Theorem 4 Consider the strict preference domain and fix |I | ≥ 5. Any mechanism
satisfying individual rationality and ordinal efficiency cannot simultaneously satisfy
no justified envy and equal-endowment no envy.

Proof Let I = {1, 2, 3, 4, 5}, H = {a, b, c, d, e}, and consider the following prefer-
ence and endowment profile:

1 : adbe {1/2b, 1/2e}
2 : aed {d}
3 : abe {1/2b, 1/2e}
4 : bc {c}
5 : ca {a}

The agent preference lists are not complete, but they can be made complete by ranking
the remaining houses arbitrarily—the IR constraint will ensure that no agent gets any
fraction of the houses that are not in the given preference lists. For convenience,
therefore, we work with the shortened preference lists.

We examine the implications of imposing IR, OE, and EENE on this example. The
restrictions imposed by IR are summarized as:

a b c d e

1 p1a p1b 0 p1d p1e

2 p2a 0 0 p2d p2e

3 p3a p3b 0 0 p3e

4 0 p4b p4c 0 0

5 p5a 0 p5c 0 0

We use OE to further refine the set of possible allocations. Suppose p1b > 0. This
implies p4b < 1, which implies p4c > 0. Then, we must have p5c < 1, which implies
p5a > 0. But then agents 1, 4 and 5 can perform mutually beneficial trade, which
violates OE. We conclude that p1b = 0. A similar argument establishes that p3b = 0.
As b can only be allocated to agents 1, 3, or 4, we must have p4b = 1. But this implies
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p4c = 0, which implies p5c = 1, which, in turn, implies p5a = 0. Thus, the allocation
matrix should be:

a b c d e

1 p1a 0 0 p1d p1e

2 p2a 0 0 p2d p2e

3 p3a 0 0 0 p3e

4 0 1 0 0 0

5 0 0 1 0 0

In any allocation that satisfies EENE, agents 1 and 3 must get the same amount of
object a; suppose p1a = p3a = x . Then p3e = 1− x , and by IR for agent 3, x ≥ 1/2.
Therefore x = 1/2 and so p1a = p3a = p3e = 1/2, which implies p2a = 0. Finally,
agents 1 and 2 have opposite preferences on the objects d and e, and by OE, agent
1 cannot be allocated any amount of e when agent 2 gets a positive amount of d.
Thus, we must have p2e = 1/2, p1e = 0, p1d = p2d = 1/2. The final allocation
matrix is

a b c d e

1 1
2 0 0 1

2 0

2 0 0 0 1
2

1
2

3 1
2 0 0 0 1

2

4 0 1 0 0 0

5 0 0 1 0 0

(5)

In this allocation agent 2’s allocation is individually rational for agent 1, and yet agent
2 prefers 1’s allocation to his own. Thus, agent 2 justifiably envies agent 1.12 �

Comparing EENE and NJE. The example considered in the proof of Theorem 4
displays the tension between NJE and EENE. If we run the CC algorithm on that
particular instance of the problem the allocation we obtain is the following:

12 This remains true even if we alter the NJE definition along the lines of the second remark following
Theorem 2.
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a b c d e

1 1
4 0 0 1

4
1
2

2 1
4 0 0 3

4 0

3 1
2 0 0 0 1

2

4 0 1 0 0 0

5 0 0 1 0 0

(6)

This allocation satisfies NJE but fails EENE for agents 1 and 3. In comparing it to
the unique allocation that satisfies EENE, it is not entirely clear which of the two is
fairer—In allocation (5), agents 1 and 3 do not envy each other, but agent 2 is justified
in being unhappy with her allocation, when comparing it to that of 1. Conversely, in
allocation (6), agent 2 is not justified in envying agent 3 (even though 3 gets more
of house a than she does) but agent 1 strictly prefers 3’s allocation to her own, even
though she came to the market with an identical endowment. This example suggests
an inherent difficulty in reconciling property rights with concepts of fairness when
endowments and allocations are fractional.

Finally, as the model considered here generalizes several well-studied models in
the literature, the impossibility results of these special cases automatically carry over.
The most prominent of these are stated in the following theorem.

Theorem 5 (i) (Bogomolnaia and Moulin (2001)) Consider the strict preference
domain and fix |I | ≥ 4. There is no mechanism that satisfies ordinal efficiency,
equal treatment of equals, and strategyproofness.

(ii) (Yilmaz (2009)) Consider the strict preference domain and fix |I | ≥ 3. There is
no mechanism that satisfies individual rationality, no justified envy, and strate-
gyproofness.

(iii) (Katta and Sethuraman (2006)) Consider the full preference domain and fix
|I | ≥ 3. There is no mechanism that satisfies ordinal efficiency, envy-freeness,
and weak strategyproofness.

5 Extensions

We consider three extensions of the basic model treated in §2. In each case we briefly
discuss how the algorithm and results extend.

Full domain. The CC algorithm can be generalized in a straightforward manner to the
full preference domain. For every agent i we introduce a node i(k) representing the set
of his or her k’th most preferred houses (unlike the case of strict preferences this need
not be a singleton set) and connect it to the source with an edge (s, i(k)). We include
edges from i(k) to every house that is included in agent j’s k most preferred sets of
houses. The algorithm then extends naturally. For each agent we—in effect—treat
her bundle of equally preferable houses as a single house. Her endowment over this
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“house” is the sum of her endowments over the original houses. In the algorithm it is
this quantity that we treat as the endowment of the “house” representing her kth best
set of houses. The proofs of individual rationality, ordinal efficiency, and no justified
envy extend easily.

One difference worth mentioning is that, as the algorithm encounters breakpoints
that force the maximum s–t flow below n, there may be many ways to redistribute the
houses in the bottleneck set. For example, consider

1 : a ∼ b � c {1/2b, 1/2c}
2 : a ∼ b � c {1/2b, 1/2c}
3 : b � c � a {a}

At time λ = 2/3 the set {a, b} will become part of the min-cut, and so will be fully
allocated to the agents. Agent 3 must get 2/3 units of b but the way in which agents
1 and 2 split house a and the remaining 1/3 units of b does not matter.

Arbitrary endowment profiles. The CC algorithm can be naturally adapted to cover
general endowment profiles where

∑
h eih �= 1 for some i . In those cases the capacities

of outgoing arcs (s, i(·)) would simply sum to
∑

h eih , a non-negative number which
could be greater or smaller than 1. If this number is smaller than 1, then we proceed
as before with the only difference that node i(n) is granted a capacity of 1−∑

l<n ei(l)
rather than ei(n)

. If, on the other hand, this quantity is greater than 1, then we do not
change anything and assign capacities to arcs (s, i(k)) in the usual manner. Of course,
these changes may affect the quantity of a house available in the market, which leads
us to the next extension.

Arbitrary fractions of houses available in the market. The CC algorithm can be
adapted to the case in which a non-unit fraction of a house h, say wh , is present in the
market. If wh ≤ 1 then the only modification we need to make is to set the capacity of
arc (h, t) to wh instead of 1. If wh > 1, then we may split this house into two or more
identical copies (thus increasing the number of houses in the market), such that all
but one of these have wh = 1 and exactly one has wh ≤ 1. We then set the capacities
of arcs (h, t) to wh . Since our algorithm can deal with indifferences, this poses no
problem. The breakpoints in the algorithm are subsequently arrived at when the max
flow drops below the quantity min{∑h wh, n}.

A number of other extensions such as unequal numbers of agents and houses, agents
declaring certain houses as “unacceptable” etc. can be accommodated as well. Since
these changes are much more straightforward and they have been addressed before in
the literature on random assignment problems (see Bogomolnaia and Moulin 2001;
Katta and Sethuraman 2006, for example), we do not discuss them in more detail here.

6 Future research

We have provided a computationally-efficient algorithm for finding an assignment sat-
isfying individual rationality, ordinal efficiency and no justified envy in generalized
house allocation markets. We have shown that these properties are inconsistent with
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strategyproofness even in the weak sense. We have also shown that strategyproofness
in the strong sense is incompatible with the (very reasonable) requirements of individ-
ual rationality and ordinal efficiency. In light of this and other impossibility results, a
natural question to ask is whether there exists a mechanism that is individually rational,
ordinally efficient, and weakly strategyproof.

Furthermore, while we have shown that IR, OE, NJE, and EENE are incompatible,
our knowledge of mechanisms satisfying proper subsets of these properties is scarce.
In particular, additional work is needed to clarify EENE and its compatibility with
proper subsets of IR, OE, and NJE.

We also wish to comment on what we consider to be a limitation of the CC algorithm.
Consider a preference and endowment profile for which there exists an assignment
that is individually rational, ordinally efficient, and envy-free. In such a case, it is
not unreasonable to expect the mechanism to find such an assignment. That the CC
mechanism fails to do so is shown in the following example:

Example 6 Consider the following endowment and preference profile

1 : a � b � c � d {5/18 a, 11/18 b, 1/9 d}
2 : c � a � b � d {7/18 b, 1/2 c, 1/9 d}
3 : c � b � a � d {7/18 a, 1/2 c, 1/9 d}
4 : a � d � b � c {1/3 a, 2/3 d}

It is clear that agents 1, 2, and 3 will not trade any of their endowment for any
portion of house d. Thus, agent 4’s allocation will necessarily be (1/3, 0, 0, 2/3). Fur-
thermore, agents 2 and 3 will each receive 1/2 of c, while 1, 2 and 3’s allocation of d
will remain fixed at 1/9. An allocation that is individually rational, ordinally efficient,
and envy-free is the following:

a b c d

1 1
3

10
18 0 1

9

2 1
3

1
18

1
2

1
9

3 0 7
18

1
2

1
9

4 1
3 0 0 2

3

On the other hand, the algorithm will allocate 1/3 units of a to agent 4 (at which
point houses a, b, c become unavailable to her) while it will allocate more than 1/3
units of a to agent 1. Specifically, the CC algorithm finds the following assignment:

a b c d

1 7
12

11
36 0 1

9

2 1
12

11
36

1
2

1
9

3 0 7
18

1
2

1
9

4 1
3 0 0 2

3
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In this assignment agent 4 envies 1 since p1a > p4a . This leads us to the following
natural open question: Among mechanisms that are individually rational and ordinally
efficient, is there one that always finds an envy-free assignment whenever there is one?

A second important issue is the definition of justified envy. As discussed earlier,
defining when envy is justified is tricky in any model in which agents have endow-
ments. The definition that we use attempts to trace any potential envy in the final
allocation to the initial endowments of the corresponding agents. An alternative defi-
nition, also suggested by one of the referees, is as follows: an allocation satisfies NJE
if it is envy-free or if it is not possible to find any envy-free, individually rational
reallocation. This is an especially appealing definition under our interpretation of the
initial endowments. However, as the following example shows, this requirement of
NJE may conflict with ordinal efficiency.

Example 7 Let I = {1, 2, 3, 4, 5}, H = {a, b, c, d, e}, and consider the following
preference and endowment profile:

1 : adbe {1/2b, 1/2e}
2 : aed {d}
3 : aeb {1/2b, 1/2e}
4 : bc {c}
5 : ca {a}

It is not difficult to check that the only allocation satisfying IR and envy-freeness is:

a b c d e

1 1
4 0 0 3

4 0

2 1
4 0 0 1

4
1
2

3 1
4

1
4 0 0 1

2

4 0 3
4

1
4 0 0

5 1
4 0 3

4 0 0

However, an argument very similar to that of Theorem 4 shows that every IR and
OE allocation should have p5c = 1.

An interesting topic of research is to consider the core of the associated cooperative
game. The most appropriate way to define the core is not apparent; our preliminary
investigation suggests mostly negative results, but much remains to be done here.
Finally, an interesting (and challenging) open question is to generalize the TTC mech-
anism to this setting.
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