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Abstract I analyze a stochastic bargaining game in which a renewable surplus is
divided among n ≥ 5 committee members in each of an infinite number of periods,
and the division implemented in one period becomes the status quo allocation of the
surplus in the ensuing period. I establish existence of equilibrium exhibiting mini-
mum winning coalitions, assuming sufficiently mild concavity of stage preferences.
The analysis highlights the role of proposal power in committee deliberations and
yields a fully strategic version of McKelvey’s (J Econ Theory 12:472–482, 1976;
Econometrica 47:1086–1112, 1979) dictatorial agenda setting.

Keywords Bargaining · Dictatorial agenda setting · Endogenous status quo ·
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1 Introduction

The sequential bargaining approach pioneered by Rubinstein (1982) spawned a non-
cooperative literature on collective decision making that has flourished in the last
two decades.1 This literature fills one lacuna in the theory of collective choice by
providing a viable solution concept when social choice is plagued by intransitive
social preferences. Yet, this literature does not address the dynamic implications of
social preference intransitivity as, for the most part, it operates under the assumption
that bargaining ceases once the committee has reached a decision. In order to study

1 E.g., Baron and Ferejohn (1989), Merlo and Wilson (1995), Banks and Duggan (2000, 2006), etc.
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these dynamics, I analyze a multilateral dynamic bargaining game in which agree-
ments require the consent of a majority of the participants and past agreements can
be revised ad infinitum. Bargaining occurs over the division of a surplus of fixed size.
This is a canonical agreement space that is also assumed, for example, in the influen-
tial contribution of Baron and Ferejohn (1989). A strong incentive to form minimum
winning coalitions (Riker 1962) is present in these agreement spaces when interac-
tion is limited to a proposal and voting stage in each period and collective bargaining
ceases once an agreement is reached. In the present study I ask whether such minimum
winning coalitions equilibria can be sustained in a dynamic environment in which past
agreements constitute future status quos? I also explore the effect of proposal making
rights on the equilibrium distribution of the surplus.

I study committees comprising an odd number of five or more players. In each
period, one committee member is recognized with some fixed probability and proposes
a division of the surplus. If the proposal is approved by a majority, it is implemented in
that period; otherwise, the status quo allocation (which is defined as last period’s divi-
sion) is implemented. A non-trivial issue that must be confronted in this environment
is that existence of equilibrium in simple Markovian strategies is not guaranteed since
the game is stochastic with continuous action and state spaces, and deterministic tran-
sitions.2 I establish existence using a combination of constructive methods coupled
with more standard fixed point arguments. Since my focus is on equilibria with mini-
mum winning coalitions, I proceed in two steps. First, I derive equilibrium strategies
for status quos such that a bare majority or fewer players receive positive allocations.
In the second step, I extend these strategies to the remaining status quo divisions of the
surplus and show that the extended minimum winning coalition strategies constitute
an equilibrium. This equilibrium has the possibly counter-intuitive property that the
proposer extracts the entire surplus in every period except (possibly) the initial two.

In previous work (Kalandrakis 2004) I have derived a similar equilibrium for the
special case of a committee with three players. There, I derived the equilibrium in
closed form by exploiting the fact that players have identical recognition probabilities
and by requiring linear stage payoffs. In the present study, I admit mild concavity
in stage payoffs, and I drop the assumption of equal recognition probabilities when
these payoffs are linear.3 Besides covering all odd-sized committees and ensuring
robustness of the established equilibrium to heterogeneous recognition probabilities
and mild concavity in stage preferences, the additional generality in the present study
provides insight on other questions of interest.

First, the equilibrium highlights the importance of proposal rights in securing bet-
ter (expected) outcomes for committee members since any ex ante allocation of the
intertemporal surplus can be achieved in the long run via manipulation of recognition
probabilities. This result extends a result of Kalandrakis (2006) cast in an otherwise
more general setting but without assuming an endogenous status quo. In addition,
as a corollary of the main existence theorem, I obtain a fully strategic version of

2 For a detailed discussion of the equilibrium existence problem in these settings, see Duggan and Kalan-
drakis (2007).
3 Although the present study is otherwise more general, it does not subsume the case of n = 3 players due
to a difference in equilibrium dynamics for committees of that size.
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McKelvey’s (McKelvey 1976, 1979) dictatorial agenda setting result. In particular,
for every initial status quo and for every discount factor, a committee member who
offers proposals with probability one can extract the entire surplus in all periods but
the first. To my knowledge, this the first derivation of such dictatorial agenda setting
with farsighted voters and the institutions assumed by McKelvey.

I also show that the minimum winning coalitions equilibrium established in this
study does not survive when utility from the share of the surplus is sufficiently concave,
as concavity generates incentives for sharing the surplus within periods. Consistent
with this result, Battaglini and Palfrey (2007) report numerical results in a three-player
game in which the set of allocations is restricted on a grid, and find that sufficient con-
cavity in individual allocations can support equilibria in which the surplus is shared
among all players within periods. In work complementary to the present paper, Bowen
and Zahran (2009) study the same model (requiring concavity in individual alloca-
tions) and build on the equilibrium derived in Sect. 3 to derive conditions that may
support non-minimum winning allocations for some initial status quo.

Before I move to the detailed presentation and analysis of the model, I further discuss
related contributions. Closely related to the present model is that analyzed by Epple
and Riordan (1987). They study subgame perfect (as opposed to Markovian) equilibria
of a three-player divide-the-dollar game with alternating offers. They establish that at
least two radically different sequences of divisions of the surplus can be supported in
equilibrium, thus providing evidence that a folk-theorem may hold for these games.
The first study of Markov perfect equilibria with the game form I consider in the pres-
ent study is by Baron (1996), who analyzes the case of a one-dimensional policy space
and shows that policies converge to the median in the long run. Diermeier and Fong
(2009) study a discretized version of the single proposer, divide-the-dollar game. For
any fixed grid on the space of agreements, they show that there exists an equilibrium
in which the proposer cannot extract the whole surplus for some initial status quo if
the discount factor is high enough. Their equilibrium does not exist for any discount
factor when the space of agreements is a continuum, as in the present paper. While the
above studies are concerned with applications in special policy spaces, Duggan and
Kalandrakis (2007) study a general model with only smoothness conditions imposed
on players’ preferences and minimal restrictions on the policy space. Among other
results, they establish existence of Markovian equilibria in pure strategies. Despite
its generality, the existence result of Duggan and Kalandrakis does not apply in the
model considered in this study, because they require stochastic shocks on preferences
and the status quo.

Related to the setup of Baron (1996), Kalandrakis (2004), and the present paper is
the model with a one-dimensional state space of Cho (2005) who studies a multi-party
parliamentary democracy with both bargaining and elections. In a model with finite
state space and transferable utility, Gomez and Jehiel (2005) study efficiency proper-
ties of equilibria. Battaglini and Coate (2007) characterize stationary equilibria in a
model of public good provision, private consumption, and taxation in which only the
status quo level of the public good is determined by past actions. Bernheim et al. (2006)
analyze a dynamic game of sequential proposing and voting such that victorious pro-
posals become the status quo in each voting round (without being implemented) with
the proposal surviving the last voting round being the implemented policy, and derive
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conditions so that this final policy coincides with the ideal policy of the last proposer.
In a general setting applying social choice theoretic equilibrium notions, Lagunoff
(2009) and Lagunoff (2008) studies the dynamics of institutional stability and reform.
Penn (2009) studies dynamic preferences in a model with exogenous proposals and
probabilistic voting.

In what follows I present the model, define the equilibrium solution concept, and
introduce necessary notation in Sect. 2. I fully characterize an equilibrium when the
agreement space is restricted to minimum winning allocations in Sect. 3. In Sect. 4, I
establish existence of a minimum winning coalitions equilibrium and discuss proper-
ties of this equilibrium. I conclude in Sect. 5. All proofs are relegated to the Appendix.

2 Model and preliminaries

Consider a game among n = 2m + 1 players, where m is an integer satisfying m ≥ 2,
contained in the set N = {1, . . . , n} . These players convene in committee in each
period t = 1, 2, . . . to reach an agreement xt drawn from a set X . Period t starts
with a status quo policy qt ∈ X , and then player i is recognized with probability
pi ≥ 0,

∑n
i=1 pi = 1, to make a proposal y ∈ X . Players respond yes or no and

if a majority of m + 1 or more players vote yes, then the proposed agreement is
implemented, i.e., xt = y; otherwise, the status quo policy qt is implemented, i.e.,
xt = qt . The game then moves to period t +1, with the status quo now being period t’s
agreement, qt+1 = xt , and a new round of proposal and vote. The agreement space X
represents all possible divisions of a fixed budget among the n players, so that X = �

where � = {x ∈ R
n+ : ∑n

i=1 xi = 1}.4 Players derive stage utility ui : X → R

from the implemented agreement and I assume players’ utility depends only on their
share of the surplus. In particular, individual preferences take the form ui (x) = u(xi )

where the function u : [0, 1] → R is strictly monotonic and concave, and satisfies the
normalizations u(0) = 0 and u(1) = 1. Players discount the future with a common
factor δ ∈ (0, 1), and their payoff in the game is the discounted sum of stage payoffs.

I focus the analysis on equilibria in which players use Markovian strategies.5 Exis-
tence of such equilibria requires mixing at the proposal stage, so I represent a (mixed)
proposal strategy for player i as a measurable function πi : X → P [X ] that maps
status quo q to Borel probability measures over X . I use the somewhat abusive nota-
tion πi [· | q] ∈ P [X ] to denote player i’s randomization given status quo q. A voting
strategy is a function αi : X × X → {yes, no}, so that, for example, αi (q, y) = yes
indicates player i votes yes on proposal y when the status quo is q. In what follows
I work with the equivalent representation of voting strategy αi by a correspondence
Ai : X ⇒ X that maps each status quo q to an acceptance set Ai (q) = {y ∈ X :
αi (q, y) = yes}. Let σ = (πi , Ai )i∈N represent a profile of strategies for the n play-
ers. Given such a profile, define the win set of status quo q as the set of agreements
that defeat status quo q by majority rule, namely

4 In Sect. 3, it will prove convenient to solve an auxiliary game in which the space of possible agreements,
X , is restricted to a proper subset of �.
5 There are well developed arguments in the literature (e.g., Maskin and Tirole 2001, and the references
therein) that justify this focus on Markov strategies.

123



Minimum winning coalitions and endogenous status quo 621

W (q; σ) =
{

y ∈ X |
n∑

i=1

IAi (q) (y) ≥ m + 1

}

, (1)

where IA (y) is the indicator function. If players use strategies σ and we impose the
additional requirement that support (πi [· | q]) ⊆ W (q; σ) for all proposers i and all
status quo q, then we can write the expected payoff of player i from an agreement x
as

Ui (x; σ) = (1 − δ)ui (x) + δ

n∑

j=1

p j

∫

X
U (y; σ)π j [dy | x] . (2)

The supposition in (2) that proposal strategies have support in the win set, W (q; σ),
does not restrict possible equilibrium outcome distributions in the analysis that follows,
in the sense that for every equilibrium in which some player proposes y /∈ W (q; σ),
there exists an otherwise equivalent equilibrium in which this player proposes the
status quo q instead.

I now define an equilibrium as a variant of Markov Perfect Nash equilibrium
(Maskin and Tirole 2001) with an added standard refinement on voting strategies:

Definition 1 An equilibrium is a profile of proposal and voting strategies σ ∗ =
(π∗

i , A∗
i )i∈N , such that for all players i , and for all status quo q:

y ∈ A∗
i (q) ⇔ Ui

(
y; σ ∗) ≥ Ui

(
q; σ ∗) , and (3)

π∗
i

[
arg max

{
Ui

(
x; σ ∗) | x ∈ W

(
q; σ ∗)} | q

] = 1, (4)

Equilibrium condition (3) requires that a player votes yes to a proposal if and only
if she weakly prefers it to the status quo q. Thus, I eliminate a – rather large – class of
uninteresting equilibria that involve arbitrary voting actions when players are not piv-
otal. Equilibrium condition (4) requires that a committee member chooses a proposal
optimally when recognized. Observe that proposers are restricted to choose among the
set of alternatives that defeat the status quo, W (q; σ ∗), a restriction that was assumed
in Eq. 2. Note that q ∈ W (q; σ ∗) for all q ∈ X (by equilibrium condition (3)), so that
a proposer cannot profitably deviate by proposing y /∈ W (q; σ ∗).

I now proceed to the analysis of the game. To pave the way, I introduce necessary
notation. Partition the space of possible divisions of the surplus into subsets �θ ⊂ �,
where θ, 0 ≤ θ ≤ n − 1, indicates the number of players receiving zero, i.e., �θ ={

x ∈ � | ∑n
i=1 I{0} (xi ) = θ

}
. For any numbers β > α, α, β ∈ {0, 1, . . . , n − 1},

define

�β
α =

β⋃

θ=α

�θ .

�
β
α is the set of all allocations of the surplus with α, or α +1, . . . , or β players receiv-

ing zero. I establish the existence of, and fully characterize, an equilibrium with the
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property that proposals involve minimum winning coalitions (Riker 1962), such that at
most m +1 players receive a positive fraction of the surplus in each period. Note that if
such proposals indeed prevail in equilibrium, then �n−1

m is an absorbing set, one that is
reached in at most one period from any initial status quo allocation. Capitalizing on the
above property of equilibria with minimum winning coalitions, I proceed in two steps.
First, I derive equilibrium strategies in closed form for an auxiliary game in which the
space of possible agreements is restricted to X = �n−1

m (Sect. 3). Second, I extend the
specified equilibrium strategies to the entire space of agreements X = � (Sect. 4).

3 Minimum winning coalition status quo allocations

As an intermediate step to establishing an equilibrium that features minimum winning
coalitions, I first establish an equilibrium when the space of possible agreements is
restricted to X = �n−1

m . This equilibrium is summarized by two properties: First,
for every status quo, optimal proposals coincide with the feasible allocations that
maximize the proposer’s share of the surplus. This is an intuitive property for the
agreement space assumed in this study, but nevertheless requires certain restrictions
on the concavity of players’ stage payoff functions. Second, players with zero status
quo allocation are willing to accept proposals y ∈ �n−1

m+1 that also allocate them zero.6

It follows from these two properties that any proposer i obtains the approval of m
other players in order to extract the whole surplus for q ∈ �n−1

m+1, or for q ∈ �m , if
qi > 0. With these proposal strategies, and using (2), player i’s expected payoff from
any agreement x ∈ �n−1

m+1 is given by

Ui (x) = (1 − δ)u(xi ) + δpi . (5)

In order to complete the description of proposal strategies for all status quo q ∈
�n−1

m , it remains to specify proposals by players i with zeros status quo allocation
and status quo q ∈ �m . To facilitate the presentation of equilibrium proposals in
this case, fix a status quo q ∈ �m , and, if necessary, relabel players so that q j+1 ≥
q j , j = 1, . . . , n − 1. Any i ∈ {1, . . . , m} must receive the vote of one among players
j = m + 1, . . . , n with status quo allocation q j > 0 in order to pass a proposal.
Of course, i wishes to coalesce with the least expensive player who, intuitively, is the
player with the lowest positive status quo allocation, i.e., player m +1. I will now dem-
onstrate that, depending on the exact value of q ∈ �m , it is not an equilibrium strategy
for proposer i to allocate a positive amount to player m+1 with probability one. Indeed,
suppose that player m + 1 is allocated an amount z whenever player i = 1, . . . , m
is the proposer, with i retaining the rest of the surplus. By Eq. 5, the corresponding
allocation, say y ∈ �n−2, yields expected utility Um+1(y) = (1 − δ)u(z) + δpm+1.
On the other hand, the expected utility from maintaining the status quo q ∈ �m is
(given assumed proposal strategies)

6 Indeed, players with zero status quo allocation may even strictly prefer such proposals in equilibrium.
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Um+1(q) = (1 − δ)u(qm+1)

+ δ

[

(1 − δ)

(
m∑

h=1

phu(z) + pm+1u(1) +
n∑

h=m+2

phu(0)

)

+ δpm+1

]

= (1 − δ)u(qm+1) + δ

[
m∑

h=1

ph(1 − δ)u(z) + pm+1

]

.

The allocation z required by player m + 1 can be obtained by solving Um+1(y) =
Um+1(q) or

u(z) = u(qm+1)

1 − δ
∑m

h=1 ph
.

With the above described proposal strategies, the expected payoff of players
j = m + 2, . . . , n from the status quo q is U j (q) = (1 − δ)u(q j ) + δ[p j (1 −
δ)u(1) + δp j ] = (1 − δ)u(q j ) + δp j . As a consequence, proposer i can allocate an
amount q j to player j = m +2, . . . , n in order to obtain j’s vote, and retain the rest of
the surplus. Thus, the assumed pure proposal strategies are not part of an equilibrium
for any q ∈ �m such that

u(qm+1)

1 − δ
∑m

h=1 ph
> u(qm+2). (6)

If (6) holds, player m + 1 becomes too expensive, because player m + 1 expects to
receive a positive allocation from other players with probability

∑m
h=1 ph , while play-

ers j = m + 2, . . . , n expect zero instead. Thus equilibrium proposals for status quo
q ∈ �m must generally involve mixed strategies. Specifically, proposer i mixes by
allocating an amount I denote by zb(q) to one among b players j ∈ {m+1, . . . , m+b}.
By a similar method to that used above, we conclude that this amount is given by

u(zb(q)) =
∑m+b

j=m+1 u(q j )

b − δ
∑m

i=1 pi
. (7)

Furthermore, the integer b ∈ {1, . . . , m + 1} is determined by two equilibrium condi-
tions:

u(zb(q)) < u(qm+b+1), if b = 1, . . . , m, (8)

and

u(zb(q)) ≥ u(q j ), j = m + 1, . . . , m + b. (9)

Condition (8) is a generalization of condition (6) and requires that the allocation
received by each of the b players m + 1, . . . , m + b is smaller than that demanded
by player m + b + 1. Thus, (8) ensures that proposers do not have an incentive to
coalesce with any of players m + b + 1, . . . , n instead of choosing one among players
m + 1, . . . , m + b. Condition (9) implies that players m + 1, . . . , m + b receive (and
demand) a larger amount than their status quo allocation q j , j = m + 1, . . . , m + b in
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order to approve a proposal. On the one hand, these players’ utility streams in the event
they become the proposer in future periods is identical under the two alternatives, that
is, these players can extract the whole surplus in the future whether they accept the
equilibrium proposal or retain the status quo. On the other hand, upon accepting an
equilibrium proposal, players j ∈ {m + 1, . . . , m + b} receive zero from all proposers
h 
= j in future periods, whereas, by maintaining the status quo, these players expect
to receive a positive amount as coalition partners with positive probability. Thus, the
proposed allocation is larger than the status quo allocation in order for these players
to vote against the status quo.

The next lemma states that conditions (8) and (9) jointly determine a unique number
of players, b, that are potential recipients of positive allocations in equilibrium when
the status quo is q ∈ �m , thus uniquely pinning down the required mixed strategies
in equilibrium.

Lemma 1 Assume stage payoff function u satisfies (10) of Proposition 1. Fix any
q ∈ �n−1

m and, if necessary, relabel players so that qi+1 ≥ qi , i = 1, . . . , n − 1.

1. There exists a unique b, 1 ≤ b ≤ m + 1, that satisfies (8) and (9).

2. If b satisfies (8) and (9), then u(zb(q)) ≤ (m + 1)u( 1
m+1 )

m + 1 − δ
∑m

i=1 pi
.

Condition (10) is a mild concavity restriction that ensures that the required allo-
cation zb(q) is feasible. In fact, more stringent concavity restrictions are necessary
in order for the strategies described in this section to constitute an equilibrium. In
particular,

Proposition 1 Assume X = �n−1
m and that for all C ⊂ N such that |C | = m

(m + 1)u( 1
m+1 )

m + 1 − δ
∑

i∈C pi
≤ u

( 1
2

)
, and (10)

mu( s
m )

m − δ
∑

i∈C pi
≤ u(s) (11)

for all s ∈ [0, 1] such that
mu( s

m )

m−δ
∑

i∈C pi
< u(1 − s). Then there exists an equilibrium

satisfying properties 1 to 3.

1. Every proposer i extracts the whole surplus if q ∈ �n−1
m+1, or if q ∈ �m and qi > 0.

2. If q ∈ �m, relabeling players if necessary so that qh+1 ≥ qh, h = 1, . . . , n − 1,
then every proposer i with qi = 0 proposes yi j ∈ �n−2 with probability μ

j
i =

u(zb(q)) − u(q j )

δu(zb(q))
∑m

i=1 pi
, where j = m + 1, . . . , m + b, yi j

j = zb(q) and yi j
i = 1 −

zb(q), zb(q) satisfies (7), and b satisfies (8) and (9).
3. The equilibrium expected utility is continuous and, relabeling players if necessary

so that xh+1 ≥ xh, h = 1, . . . , n − 1, takes the form:

Ui (x) =
⎧
⎨

⎩

(1 − δ)u(xi ) + δpi if i = m + b + 1, . . . , n,

(1 − δ)u(zb(x)) + δpi if i = m + 1, . . . , m + b,

δ(pi (1 − δ)u(1 − zb(x)) + δpi ) if i = 1, . . . , m,

(12)
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where zb(x) satisfies (7) and b satisfies (8) and (9).

If, in addition, pi = 1
n for all i , then conditions (10) and (11) are necessary for the

existence of this equilibrium.

Conditions (10) and (11) are restrictions on the concavity of the stage utility func-
tion u. Their role is to ensure that players wish to maximize their own allocation when
proposing, a property implicitly assumed in the analysis prior to Proposition 1. Note
that conditions (10) and (11) are easier met when the committee is larger (larger m).
Both conditions are always satisfied in the case of risk neutrality, u(x) = x . I use
Proposition 1 in the next section to establish the existence of an equilibrium when the
agreement space is unrestricted (X = �).

4 Minimum winning coalitions equilibrium

4.1 Existence

The previous section clears the way for the characterization of an equilibrium in which
minimum winning coalitions prevail at all status quos. If players’ strategies are iden-
tical to those characterized in Proposition 1 for q ∈ �n−1

m then, in order to establish
such an equilibrium when the space of agreements encompasses all possible divisions
of the surplus, we must extend the proposal strategies of Proposition 1 to q ∈ �m−1

0
with all proposals restricted to the subset �n−1

m , and ensure that the resultant strategies
are mutual best responses. In particular, it must be shown that proposers using these
extended strategies cannot profitably deviate by proposing allocations y ∈ �m−1

0 for
all q ∈ �. The last part of Proposition 1 demonstrates that restrictions on the concavity
of players’ stage utility functions are necessary for the existence of such equilibria,
and the arguments in this section require additional such restrictions. Specifically,
throughout this section, I assume one of the following conditions holds: First is risk
neutrality, namely,

ui (x) = xi for all i. (A1)

The second condition allows for mild risk aversion but restricts recognition probabil-
ities as follows:

ui (x) ≤ (1 + ε)xi for some ε > 0, and pi = 1
n for all i. (A2)

As I detail shortly, assumptions (A1) and (A2) enable me to extend players’ proposal
strategies to q ∈ �m−1

0 with proposals that exhibit minimum winning coalitions.
First, for each q ∈ �m−1

0 , I restrict the support of player i’s proposals in a set
�(i) ⊂ �n−1

m , which is defined as

�(i) =
⋃

C⊂N\{i}:|C|=m

{x ∈ � | xi ≥ ẑ and x j = 0, j ∈ C},
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with

ẑ =
⎧
⎨

⎩

0 if (A1) holds

u−1
(

(m+1)u( 1
m+1 )

m+1−δ m
n

)

if (A2) holds.

The set �(i) is compact as the union of compact sets. When (A1) holds, it contains
allocations such that either a bare majority of players including player i receive a
positive amount, or allocations such that the set of players who receive a positive
amount is a minority (possibly excluding i). When (A2) holds, the set �(i) requires

that the proposer receive at least ẑ = u−1
(

(m+1)u( 1
m+1 )

m+1−δ m
n

)

. This restriction does not

impair the optimality of i’s proposals within �n−1
m since, if (A1) or (A2) hold and

payoffs are given by (12), no allocation in �n−1
m \ �(i) can yield a higher expected

payoff than the expected payoff i receives from any allocation in �(i). Indeed, this
restriction on players’ proposals is necessary in order to obtain Lemmas 2 and 3 in the
sequel.

Denote i’s mixing over proposals at q ∈ �m−1
0 restricted in this manner by π̂i ∈

P[�(i)], and assume (as is required by the equilibrium concept) that π̂i is such that
all proposals in its support are approved and implemented. Denote the vector of such
randomizations by all players by π̂ ∈ 
̂, where 
̂ = ×i∈N P[�(i)] is the set of all
such profiles of mixed proposal strategies at q ∈ �m−1

0 . Now, players’ expected utility
for q ∈ �m−1

0 when players randomize over proposals using π̂ can be computed as

Ûi (q, π̂) = (1 − δ)u(qi ) + δ

n∑

h=1

ph

∫

Ui (y)π̂h[dy], (13)

where Ui (y) is given by Eq. 12 of Proposition 1. I emphasize that (13) is derived under
the assumption that players follow the equilibrium of Proposition 1 for status quos in
�n−1

m .
Next define Âi (q, π̂) = {x ∈ �n−1

m | Ui (x) ≥ Ûi (q, π̂)}, i.e., the set of proposals
in �n−1

m that are accepted by player i when the status quo is q ∈ �m−1
0 and for this

status quo players use randomizations π̂ ∈ 
̂. For each player i , each q ∈ �m−1
0 , and

each π̂ ∈ 
̂, define the set

Ŵi (q, π̂) = {y ∈ �(i) |
∑

h 
=i

I Âh(q,π̂)(y) ≥ m}.

It follows that Ŵi (q, π̂) contains those among proposals available to player i that are
approved by at least m other players when q ∈ �m−1

0 , players use lotteries over pro-
posals given by π̂ , and the game is played according to Proposition 1 for status quos in
�n−1

m . Lemma 2 states that Ŵi is a non-empty, upper-hemicontinuous correspondence
of π̂ , and that player i has a proposal in Ŵi (q, π̂) such that i’s allocation is strictly
larger than ẑ.
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Lemma 2 Assume either (A1) or (A2) with ε sufficiently small. For all i , all π̂ ∈ 
̂,
and all q ∈ �m−1

0 ,

1. There exists x ∈ Ŵi (q, π̂) such that xi > ẑ.
2. Ŵi (q, π̂) is upper-hemicontinuous at π̂ .

For each player i , define the correspondence of best response proposals

Mi (q, π̂) = arg max{Ui (x) | x ∈ Ŵi (q, π̂)}.

Suppose that for any initial or provisional randomizations π̂ , we obtain new best
response mixed strategies π̂ ′ by restricting players to choose optimal proposals (i.e.,
those in Mi (q, π̂)). Thus, define the correspondence Bi (q, π̂) = P[Mi (q, π̂)], and
require π̂ ′

i ∈ Bi (q, π̂). Lastly, define the correspondence B : 
̂ ⇒ 
̂ as B(q, π̂) =
×n

h=1 Bh(q, π̂). Lemma 3 establishes a decisive step in proving existence of equilib-
rium:

Lemma 3 Assume either (A1) or (A2) with ε sufficiently small. For all q ∈ �m−1
0

1. There exists a fixed point π̂∗ ∈ B(q, π̂∗).
2. If Ûh(q, π̂∗) ≤ δph for some h, π̂∗ ∈ B(q, π̂∗), then π̂∗

i ({x ∈ �(i) | xh = 0}) =
1 for all i 
= h.

Lemma 3 relies on the fact that there exist feasible proposals for i in Ŵi (q, π̂) that
yield an allocation xi > ẑ. This property, established in part 1 of Lemma 2, ensures the
necessary continuity property of the best proposals correspondence, Mi , thus allowing
the application of a standard fixed point theorem. Furthermore, Lemma 3 also provides
a partial characterization of optimal proposals as it establishes a minimum expected
payoff necessary for a player h 
= i to receive a positive allocation from proposer i at
a fixed point π̂∗.

The reader may have noticed that the fixed point mapping B only requires that
proposers optimize over the restricted set of available alternatives that receive the vote
of m other players. This specification is necessary in order to obtain Lemma 2 but
does not guarantee that the proposer prefers such optimal proposals over the status
quo. Perhaps more threatening to this construction is the fact that we have a priori
restricted proposers not to consider proposals in �m−1

0 . The next lemma addresses
both of these issues by ensuring that such alternative proposals cannot constitute prof-
itable deviations for any proposer at any status quo.

Lemma 4 Assume either (A1) or (A2) with ε sufficiently small. For all q ∈ �m−1
0 ,

all fixed points π̂∗ ∈ B(q, π̂∗), and all coalitions C ⊂ N such that |C | = m + 1,
there exists x ∈ �n−1

m such that Ui (x) ≥ Ûi (q, π̂∗) for all i ∈ C.

Lemma 4 precludes profitable deviations since it ensures that if at q ′ ∈ � proposer
i can pass a proposal q ∈ �m−1

0 (with q possibly equal to q ′) with the votes of coa-
lition C (with i ∈ C), and at q players use proposal strategies π̂∗ ∈ B(q, π̂∗), then
i can also pass x ∈ �n−1

m at q ′ that yields at least as high of payoff as q to all mem-
bers of C . Thus, proposal q at status quo q ′ cannot be strictly better than what i can
obtain by optimizing over acceptable proposals in �n−1

m . The order of the quantifiers

123



628 T. Kalandrakis

is important in the statement of Lemmas 2 to 4 because, given requisite ε > 0 when
assumption (A2) holds, the conclusions of the Lemmas hold for all i, q, π̂ , etc. Thus,
by combining these Lemmas we obtain the chief result of this section:

Theorem 1 Assume X = �, and either (A1) or (A2) with ε sufficiently small. There
exists an equilibrium σ ∗ that satisfies properties 1 to 3 of Proposition 1 and proposal
strategies that satisfy π∗

i [�n−1
m | q] = 1 for all i and all q ∈ �m−1

0 .

In combination with Proposition 1, Theorem 1 provides a sharp description of the
equilibrium, which has the property that within a maximum of three periods, all pro-
posers extract the entire surplus. This property is not shared with the version of this
game with n = 3 players and equal recognition probabilities analyzed by Kalandra-
kis (2004). In that case, it is possible that decisions are drawn outside the absorbing
set �n−1 with positive probability for any finite period t . This is because a proposer
cannot extract the whole surplus when that player is the only one with zero status quo
allocation. On the contrary, when n ≥ 5, there always exists a bare minority of m
players other than the proposer who have zero status quo allocation in period t = 3.

4.2 Proposal power and McKelvey’s dictatorial agenda setter

Assuming linear payoffs as in assumption (A1), the conclusion of Theorem 1 holds
for all possible values of recognition probabilities, pi . Thus, players’ long-run equi-
librium expected payoff can be any fraction of the available surplus, depending on
recognition probabilities. If we take the perspective that a player’s expected payoff
represents her power in this setting, then Proposition 1 yields a partial extension7 of
the result of Kalandrakis (2006) on the relation between recognition probabilities and
political power:

Corollary 1 (Proposal Power) Assume X = � and (A1). For all w ∈ � there exist
recognition probabilities p1, . . . , pn and an equilibrium σ ∗ for the associated game
such that

Ext [Ui (xt ; σ ∗)] = wi ,

for all i and all t > 3.

Of note, the case of a single proposer i with pi = 1 yields an equilibrium deriva-
tion of dictatorial agenda setting under the institution assumed by McKelvey (1976,
1979). McKelvey’s dictator manages to implement her ideal point via a sequence of
binary votes between the status quo and appropriate proposals where, as in the present
analysis, each proposal that passes becomes the status quo. In McKelvey’s analysis,
voters approve these proposals to their eventual detriment, because they are assumed
to be myopic (δ = 0). In the present setup, this type of dictatorial agenda setting is
obtained as part of a Markovian Nash equilibrium, under the assumption that voters

7 This is a partial extension because Kalandrakis (2006) considers all monotonic voting rules and general
(possibly heterogeneous) discount factors.
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are farsighted, and for every value of the discount factor δ < 1. Remarkably, it only
takes two periods for player i to extract the whole surplus. In particular, the proposer
i with pi = 1 implements some x ∈ �(i) in period t = 1. Thus, qt = x in period
t = 2 and at least m players other than i have zero status quo allocation, so that the
proposer i can extract the whole surplus with probability one in period t = 2. Hence,
we obtain the following result:

Corollary 2 (Smooth Dictator) Assume X = �, (A1), and pi = 1. There exists an
equilibrium such that, for all initial status quo q ∈ X, i extracts the whole surplus in
every period t ≥ 2.

Recently, Diermeier and Fong (2009) have studied a discretized version of the sin-
gle proposer model considered in Corollary 2 and have established an equilibrium in
which McKelvey’s dictatorial agenda setting is not achieved.8 In particular, in that
equilibrium, players with zero proposal probability can obtain a positive share of the
surplus in the long-run, depending on the initial status quo allocation. Unlike the equi-
librium of Corollary 2 that requires mixed proposal strategies by the agenda setter,
the equilibrium of Diermeier and Fong is in pure strategies, but requires high enough
discount factors for any fixed grid on the space of divisions of the surplus. In particu-
lar, it is straightforward to show that for any discount factor δ < 1, their equilibrium
does not survive as the grid on the space of allocations becomes finer. As a result,
the equilibrium of Diermeier and Fong (2009) does not exist in the model assumed in
Corollary 2 for any δ < 1. Indeed, it is an open question whether any pure strategy
equilibria exist in the continuum model studied in the present paper when X = �.

4.3 Concavity and equilibria without minimum winning coalitions

Equilibria with the properties stated in Theorem 1 need not be unique, although all
such equilibria are essentially identical in that they involve the same expected payoffs
for allocations in the absorbing set �n−1

m . When the utility function u is concave as is
allowed by condition (A2), the equilibrium of Theorem 1 is inefficient because players
could collectively benefit by sharing the surplus in each period. Thus concavity gener-
ates incentives countervailing those that support the equilibrium of Theorem 1. These
countervailing incentives are already evident in Proposition 1, since the existence of
that equilibrium relies on the concavity restrictions (10) and (11). Furthermore, as is
evident by the arguments in Lemmas 2 to 4, the extension of the equilibrium to status
quo such that an oversized coalition of players receive a positive allocation requires
more stringent concavity restrictions in the form of assumption (A2) and small ε. This
is intuitive as a move to an allocation with minimum winning coalitions is most costly
(collectively) at status quo in which all players receive a positive allocation.

In view of the above discussion, both Proposition 1 and Theorem 1 leave open the
possibility that equilibria without minimum winning coalitions may prevail when stage
payoffs are sufficiently concave. Indeed, two related papers have recently explored

8 In their setup, the discount factor is equivalently interpreted as the probability that the proposer will have
the opportunity to offer another proposal.
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such equilibria. Using numerical methods, Battaglini and Palfrey (2007) compute
equilibria in a model in which the possible divisions of the surplus are restricted on
a grid and stochastic shocks on players’ payoff from each action are allowed. When
stage preferences exhibit considerable concavity, they find equilibria in which players
share the surplus in all periods. More related and complementary to the present study
is the work of Bowen and Zahran (2009). Relying on the results of Proposition 1, they
explore conditions for the existence of equilibria in which players share the surplus
when the initial status quo belong in a subset of �m−1

0 . Their conditions are stated in
terms of the discount factor, and require that players are neither too patient nor too
impatient. These conditions can be restated in terms of the concavity of stage prefer-
ences on individual allocations, and this alternative equilibrium explored by Bowen
and Zahran (2009) does not survive when players are risk neutral. It is an open question
whether alternative equilibria that do not exhibit minimum winning coalitions and the
one established in the present study exist for the same parameter values.

5 Conclusion

The canonical divide-the-dollar bargaining environment is theoretically significant not
because it emulates an actual political space of agreements, but because it lays bare
certain of the incentives present in more realistic policy environments. In the one-shot
version of that model with one round of proposing and voting, equilibrium incentives
lead to allocations that exhibit minimum winning coalitions. In the present study I
established that these incentives can also be sustained in equilibrium with dynamic
interactions in which present decisions serve as future status quo. In fact, minimum
winning coalitions in this dynamic environment lead to an extreme manifestation of the
incentives in the one-shot environment in that proposers are eventually able to extract
the entire surplus. I established that this equilibrium is robust to small concavity in
players’ individual allocations and to variation on proposal probabilities beyond the
benchmark of random recognition. But the analysis also reveals that strong incentives
for sharing the surplus may prevail in equilibrium with sufficient concavity in stage
preferences because the equilibrium collapses in the absence of restrictions on the
concavity of individual payoffs. Thus it appears plausible to conjecture that incentives
for compromise outcomes are stronger in more typical policy environments, in which
individual payoffs cannot be independently manipulated without imposing positive
(or negative) externalities on coalitions of players.

Acknowledgements I would like to thank John Duggan, Nolan McCarty, Adam Meirowitz, Tom Palfrey,
Maggie Penn, Thomas Romer, William Thomson, audiences at the APSA and MPSA conferences, and
seminar audiences at Columbia, Northwestern, Princeton, Yale, and the University of Rochester for helpful
comments. I am solely responsible for all errors.

Appendix

This appendix contains the proofs of all results.

Proof of Lemma 1 We start by showing the following equivalence:

123



Minimum winning coalitions and endogenous status quo 631

[u(zb(q)) < u(qm+b+1) ⇔ u(zb+1(q)) < u(qm+b+1)], b = 1, . . . , m. (14)

Indeed, using (7) we write

u(zb(q)) < u(qm+b+1) ⇔
m+b∑

j=m+1

u(q j ) < (b − δ

m∑

i=1

pi )u(qm+b+1) ⇔

m+b+1∑

j=m+1

u(q j ) < (b + 1 − δ

m∑

i=1

pi )u(qm+b+1) ⇔

u(zb+1(q)) < u(qm+b+1).

Now, to show existence of b satisfying (8) and (9) consider the algorithm:

1. Start with b = 1; if u(z1(q)) < u(qm+2) then b = 1. Otherwise proceed to step 2.
2. If u(zb(q)) ≥ u(qm+b+1), consider b′ = b + 1. By the contra-positive of (14), b′

satisfies (9). If b′ also satisfies (8), then existence of the required integer is estab-
lished. Otherwise, if u(zb′(q)) ≥ u(qm+b′+1), proceed as in 2 until u(zb(s)) <

u(qm+b+1) for some b ≤ m.

3. If condition (8), u(zb(q)) < u(qm+b+1), fails for all b ≤ m, then u(zm(q)) ≥
u(qn), and b = m + 1.

Note that the concavity of u and condition (10) ensures that zm+1(q) ≤ 1 for all q,
ensuring existence of some b that satisfies both (8) and (9).

To show uniqueness, suppose there exist distinct b, b′ with b < b′ that satisfy (8)
and (9) to get a contradiction. Then, we have u(zb(q)) < u(qm+b+1) from (8) and
certainly u(zb′(q)) ≥ u(qm+b+λ), λ = 1, . . . , (b′ −b) from (9). From the last (b′ −b)

inequalities we deduce

(b′ − b)u(zb′(q)) ≥
(b′−b)∑

λ=1

u(qm+b+λ) ⇔

(b′ − b)

∑m+b
h=m+1 u(qh) + ∑(b′−b)

λ=1 u(qm+b+λ)

b + (b′ − b) − δ
∑m

i=1 pi
≥

(b′−b)∑

λ=1

u(qm+b+λ) ⇔
∑m+b

h=m+1 u(qh)

b − δ
∑m

i=1 pi
≥

∑(b′−b)
λ=1 u(qm+b+λ)

b′ − b
⇔

u(zb(s)) ≥
∑(b′−b)

λ=1 u(qm+b+λ)

b′ − b
≥ u(qm+b+1),

which contradicts condition (8) for b. This concludes the proof of part 1.
To show part 2, assume b satisfies (8) and (9). We first show that u(zb(q)) ≤

u(zm+1(q)). This is trivial if b = m + 1, so consider the case b ≤ m. Then, by condi-
tion (8) and the fact that qi+1 ≥ qi , i = 1, . . . , n−1, we have u(zb (s)) < u(qm+b+1),
which implies that
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∑m+b
i=m+1 u(qi )

b − δ
∑m

h=1 ph
<

∑n
i=m+b+1 u(qi )

m + 1 − b
⇔

(m + 1 − b)

m+b∑

i=m+1

u(qi ) < (b − δ

m∑

h=1

ph)

n∑

i=m+b+1

u(qi ) ⇔

(m + 1)

m+b∑

i=m+1

u(qi ) < b
n∑

i=m+1

u(qi ) − δ

m∑

h=1

ph

n∑

i=m+b+1

u(qi ) ⇔

(m + 1 − δ

m∑

h=1

ph)

m+b∑

i=m+1

u(qi ) < (b − δ

m∑

h=1

ph)

n∑

i=m+1

u(qi ) ⇔

u(zb(q)) =
∑m+b

i=m+1 u(qi )

b − δ
∑m

h=1 ph
<

∑n
i=m+1 u(qi )

m + 1 − δ
∑m

h=1 ph
= u(zm+1(q)).

Thus, u(zb(q)) ≤ u(zm+1(q)) when b = 1, . . . , m + 1 satisfies (8) and (9), as we
wished to show. Now, concavity of u implies that

u(zm+1(q)) =
∑n

i=m+1 u(qi )

m + 1 − δ
∑m

i=1 pi
≤ (m + 1)u( 1

m+1 )

m + 1 − δ
∑m

i=1 pi
,

which completes the proof of part 2 and the lemma. �

Proof of Proposition 1 To ensure that the associated proposals are well defined, we
show that mixing probabilities lie between zero and one and sum up to one. In par-
ticular it suffices to show that

∑m+b
j=m+1 μ

j
i = 1 and that μ

j
i ≥ 0 for all j . The latter

is equivalent to u(zb(q)) ≥ u(q j ), j = m + 1, . . . , m + b, which is true by (9).

We also have
∑m+b

j=m+1 μ
j
i = bu(zb(q))−∑m+b

j=m+1 u(q j )

δu(zb(q))
∑m

i=1 pi
= 1, after substitution from (7).

Straightforward algebra yields the expected utilities in (12), which are clearly con-
tinuous. To establish the equilibrium, we must show that proposals are optimal. Note
that extracting the entire surplus is a global maximizer of the expected utilities in
(12), yielding (1 − δ)u(1) + δpi = max{Ui (x) | x ∈ �n−1

m }. Thus, we only need
consider cases when the proposer does not extract the entire surplus. This occurs for
status quo q ∈ �m and proposer i with qi = 0. Assume that for such status quo and
proposer, the integer b uniquely satisfies (8) and (9). Prescribed equilibrium propos-
als yih ∈ �n−2, h = m + 1, . . . , m + b for proposer i are optima among feasible
alternatives in �n−1

m+1, because by simple inspection of (12), i’s maximization over

alternatives in �n−1
m+1 amounts to maximization of i’s allocation. Note that part 2 of

Lemma 1 and (10) ensure that
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zb(q) = yih
h ≤ u−1

⎛

⎝
(m + 1)u

(
1

m+1

)

m + 1 − δ
∑m

k=1 pk

⎞

⎠ <
1

2
,

and as a result yih
i > 1

2 . We need to show that there exists no y′ ∈ arg max{Ui (x) |
x ∈ W (q; σ ∗)

⋂
�m} such that Ui (y′) > Ui (yih). So further assume, in order to get a

contradiction, that there exists such a y′ ∈ W (q; σ ∗)∩�m such that Ui (y′) > Ui (yih).
By (12) and part 2 of Lemma 1, we have y′

i > yih
i . Without loss of generality relabel

players so that y′
j+1 ≥ y′

j , j = 1, . . . , n − 1, still indexing the proposer by i , and
let integer b′ uniquely satisfy (8) and (9) for y′. After relabeling, we have i = n and
b′ ≤ m, by (8), (10), and part 2 of Lemma 1 that jointly imply zb′(y′) ≤ 1

2 < y′
i .

We also have U j
(
y′) ≥ U j (q) > δp j for at least one player j with q j > 0, else

y′ /∈ W (q; σ ∗). Since q j > 0, (8) and (12) now imply that

(1 − δ)−1(U j (y′) − δp j ) ≥ u(zb(q)) > 0, (15)

so that y′
j > 0 and, due to the fact that we have relabeled players, j ∈ {m +1, . . . , n −

1}. We now have three cases:
Case 1, j > m+b′: Then from (12) we have U j

(
y′) = (1−δ)u(y′

j )+δp j ≥ U j (q)

and y′
j ≥ zb(q) = yih

h . But then 1− yih
h = yih

i < y′
i < 1− y′

j , which yields yih
h > y′

j ,
a contradiction.

Case 2, j ≤ m + b′, b′ = m: Then we have U j
(
y′) = (1 − δ)u(zb′(y′)) + δp j .

From (15) we have u(zb′(y′)) =
∑n−1

k=m+1 u(y′
k)

m−δ
∑m

k=1 pk
≥ u (zb (q)). By (11) and the concavity

of u we deduce that

u (zb (q)) ≤
∑n−1

k=m+1 u(y′
k)

m − δ
∑m

k=1 pk
≤ mu(y′)

m − δ
∑m

k=1 pk
≤ u

(
my′) = u

(
n−1∑

k=m+1

y′
k

)

,

where y′ =
∑n−1

k=m+1 y′
k

m . But note that y′
i > yih

i ⇔ 1 − y′
i < 1 − yih

i ⇔ yih
h >

∑n−1
k=m+1 y′

k , so that we conclude that u(zb(q)) = u(yih
h ) > u(

∑n−1
k=m+1 y′

k) ≥
u(zb(q)), a contradiction.

Case 3, j ≤ m + b′, b′ < m: Then U j
(
y′) = (1 − δ)u(zb′(y′)) + δp j

and Um+b′+1
(
y′) = (1 − δ)u(y′

m+b′+1) + δpm+b′+1. From (8) and (15) we have

u
(
ym+b′+1

)
> u(zb′(y′)) ≥ u (zb (q)) = u(yih

h ), which implies yih
i = 1 − yih

h >

1 − y′
m+b′+1 > y′

i ⇒ Ui (y′) < Ui (yih), a contradiction.
In all three cases we obtained a contradiction, due to the absurd hypothesis that

Ui (y′) > Ui (yih). Thus proposals yih are optimal, as we wished to show.
In order to complete the proof, we need to show that conditions (10) and (11) are

necessary for the existence of the equilibrium when pi = 1
n for all i , which follows

from Examples 4 and 5 (pp. 21–22) in Kalandrakis (2007). �
Proof of Lemma 2 Fix q ∈ �m−1

0 and π̂ ∈ 
̂. The proof consists of four steps.
First, we establish a lower bound on Ûi (q, π̂). Then, we show an upper bound on the
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sum of the demands of an appropriate set of players. In steps 3 and 4 we use these
results to prove the lemma.
Step 2.1: For all i ,

Ûi (q, π̂) ≥
⎧
⎨

⎩

− δ2 pi (1−pi )(1−δ)
m+1−δ

+ δ2 pi if (A1) holds
δ(1−δ)̂z

n

(
1 − δ(n−1)

n

)
+ δ2

n if (A2) holds.
(16)

From (12) we have that i cannot receive a payoff less than

min {Ui (x) : x ∈ �(i)} = (1 − δ)u(ẑ) + δpi

when proposing. Similarly, the minimum possible payoff that can be received by player
i when other players propose satisfies

min
{

Ui (x) : x ∈ �n−1
m

}
≥
{

δ(pi (1−δ)u
(

1− 1
m+1−δ

)
+δpi ) if (A1) holds

δ(
(1−δ)

n u (1−̂z) + δ
n ) if (A2) holds

≥
{

− δpi (1−δ)
m+1−δ

+δpi if A1 holds
− δ(1−δ)̂z

n + δ
n if (A2) holds.

The first inequality follows from the fact that

max{zb (x) : b satisfies (8) and (9), x∈�n−1
m } ≤

⎧
⎨

⎩

1
m+1−δ

if (A1) holds

u−1
(

(m+1)u( 1
m+1 )

m+1−δ m
n

)

if (A2) holds,

by part (ii) of Lemma 1, while the second inequality follows from the fact that u(1 −
ẑ) ≥ 1 − ẑ and simple algebra. By combining the above inequalities and noting that i
is the proposer with probability pi , we obtain

Ûi (q, π̂)

≥
⎧
⎨

⎩

(1 − δ)qi + δ
(

pi (δpi )+ (1−pi )
(
− δpi (1 − δ)

m + 1−δ
+ δpi

))
if (A1) holds

(1 − δ)u(qi )+ δ
(

1
n ((1 − δ)u(̂z)+ δ

n ) ,+ n−1
n

(
− δ(1 − δ)̂z

n + , δ
n

))
if (A2) holds

≥
⎧
⎨

⎩

− δ2 pi (1−pi )(1−δ)
m+1−δ

+ δ2 pi if (A1) holds
δ(1−δ)̂z

n

(
1 − δ(n−1)

n

)
+ δ2

n if (A2) holds,

proving (16).
For the next two steps we define d̂ j (q, π̂) = (1 − δ)−1 max

{
0, Ûi (q, π̂) − δpi

}

and assume without loss of generality that d̂h+1 (q, π̂) ≥ d̂h (q, π̂) , h = 1, . . . , n−1.
Step 2.2:

∑m+1
h=1 d̂h (q, π̂) < 1 − ẑ. Let � = min

{
i ∈ N : d̂i (q, π̂) > 0

}
. Obviously,

if � > m+1 then
∑m+1

h=2 d̂h (q, π̂) = 0, so we only need consider cases with � ≤ m+1.
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By the definition of d̂i (q, π̂) we have

n∑

h=�

d̂h (q, π̂) = (1 − δ)−1
n∑

h=1

(
Ûh (q, π̂) − δpi

) − (1 − δ)−1
�−1∑

h=1

(
Ûh (q, π̂) − δph

)
.

We now invoke (16) to deduce

n∑

h=�

d̂h (q, π̂) ≤
∑n

h=1

(
Ûh (q, π̂) − δpi

)

(1 − δ)

+
⎧
⎨

⎩

∑�−1
h=1

δ2 pi (1−pi )
m+1−δ

+ ∑�−1
h=1 δpi if (A1) holds

δ(�−1)
n

(
1 − ẑ

(
1 − δ(n−1)

n

))
if (A2) holds.

(17)

Also, since d̂h+1 (q, π̂) ≥ d̂h (q, π̂), we deduce that

∑m+1
h=� d̂h (q, π̂)

m + 2 − �
≤

∑n
h=� d̂h

2m + 2 − �
. (18)

Finally, note that for any π̂ ∈ 
̂ and for any status quo q ∈ �m−1
0 ,

∑n
h=1

(
Ûh (q, π̂) − δpi

)

1 − δ
≤
{

1 if (A1) holds
1 + ε

(
1 + δ + δ2

)
if (A2) holds,

(19)

where the second line is obtained because u(y) ≤ y(1 + ε), and
∑n

h=1 uh(x) = 1
for all allocations x ∈ �n−1 which prevail two periods after any proposal in �n−1

m is
approved (by Proposition 1). We now distinguish two cases:

• (A1) holds, ẑ = 0: Then
∑n

h=1 Ûh (q, π̂) = 1, and we can combine (17)–(19) to
obtain

m+1∑

h=�

d̂h (q, π̂) ≤ m + 2 − �

2m + 2 − �

(

1 + δ2
�−1∑

h=1

ph (1 − ph)

m + 1 − δ
+ δ

�−1∑

h=1

ph

)

.

The above immediately yields
∑m+1

h=� d̂h (q, π̂) ≤ m+1
2m+1 < 1, when � = 1. Note

that if � > 1,
∑�−1

h=1 ph (1 − ph) ≤ (� − 1)

(
1

� − 1

)(

1 − 1

� − 1

)

= � − 2

� − 1
.

Thus, since δ < 1 and d̂h (q, π̂) = 0, h < �, we deduce

m+1∑

h=1

d̂h (q, π̂) =
m+1∑

h=�

d̂h (q, π̂) <
m + 2 − �

2m + 2 − �

(

2 + 1

m

(
� − 2

� − 1

))

,

� = 2, . . . , m + 1.
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The right-hand side of the last inequality is equal to 1 when � = 2, and decreases
with �, proving the step in this case.

• (A2) holds, ẑ = u−1
(

(m+1)u( 1
m+1 )

m+1−δ m
n

)

: In this case we combine (17)–(19) to obtain

m+1∑

h=�

d̂h (q, π̂) ≤ m + 2 − �

2m + 2 − �
(

1 + ε
(

1 + δ + δ2
)

+ δ(� − 1)

n

(

1 − ẑ

(

1 − δ(n − 1)

n

)))

≤ m + 1

2m + 1

(
1 + ε

(
1 + δ + δ2

))
,

since the right-hand side of the first inequality decreases with �, m + 1 ≥ � ≥ 1.
Since u−1 is convex with u−1(1) = 1, n = 2m + 1, and δ < 1, we obtain

m+1∑

h=1

d̂h (q, π̂) + ẑ ≤ m + 1

2m + 1

(
1 + ε

(
1 + δ + δ2

))
+ u−1

(
(m + 1)u( 1

m+1 )

m + 1 − δ m
n

)

<
m + 1

2m + 1
(1 + 3ε) + 1 + ε

m + 1 − m
2m+1

<
64

65
+ 142ε

65
≤ 1.

The last inequality holds for ε ≤ 1
142 . The expression in the third line is obtained

by setting m = 2 which is the value of m ≥ 2 that maximizes the right-hand side
of the second inequality.

Step 2.3: There exists x ∈ Ŵi (q, π̂) such that xi > ẑ. Let C = {1, . . . , m + 1} \ {i}
if i ≤ m + 1 or C = {1, . . . , m}, otherwise. By Step 2,

∑m+1
h=1 d̂h (q, π̂) < 1 − ẑ,

so that we can construct proposal x ∈ �(i) with xh = d̂h (q, π̂) for all h ∈ C , and
xi = 1 − ∑

h∈C d̂h (q, π̂) > ẑ. By (12) and the definition of d̂h and the fact that u is
concave, we easily infer that Uh(x) ≥ Ûh (q, π̂) for all h ∈ C , so that x ∈ Ŵi (q, π̂).

Note that Step 3 also establishes non-emptiness of the correspondence Ŵi . Thus, it
remains to establish upper-hemicontinuity which we prove with the last step.

Step 2.4: Ŵi (q, π̂) is upper-hemicontinuous as a correspondence of π̂ . To estab-
lish upper-hemicontinuity, notice that Ui (x) , Ûi (q, π̂) are continuous in x, π̂ respec-
tively; thus, Âi (q, π̂) has closed graph for all i . As a consequence, Ŵi (q, π̂) has closed
graph, since finite unions and intersections of closed sets are closed. Thus, since it
also has a compact Hausdorff range, Ŵi (q, π̂) is upper-hemicontinuous, by the Closed
Graph Theorem (Aliprantis and Border 1999, 16.12, p. 529). �
Proof of Lemma 3 Throughout assume that in the case of assumption (A2), ε > 0 is
small enough so that the conclusions of Lemma 2 hold. The proof consists of a number
of steps:
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Step 3.1 Mi (q, π̂) is non-empty. This follows from the fact that Ŵi (q, π̂) is non-
empty and compact by Lemma 2.

The following step proves a stronger version of the second part of the lemma.
Step 3.2 If Ûh(q, π̂) ≤ δph for some h, then Mi (q, π̂) ∩ {x ∈ �(i) | xh >

0} = ∅ for all i 
= h. Fix i 
= h, y ∈ arg max{Ui (x) | x ∈ Ŵi (q, π̂)} and assume
yh > 0 for some h such that Ûh(q, π̂) ≤ δph . Let C(y) = { j ∈ N | y j > 0}.
By Lemma 2 we have i ∈ C(y). Without loss of generality, relabel players so that
y j+1 ≥ y j , j = 1, . . . , n − 1, and let i still index the proposer and h index the player
satisfying Ûh(q, π̂) ≤ δph . Let b satisfy (8) and (9) for y, and distinguish two cases:

1. h > m + b: Consider allocation y′ with y′
i = yi + η, y′

h = yh − η, y′
j = y j , j 
=

i, h for small enough η > 0. Now (12) ensures that U j (y′) ≥ U j (y) for all
j 
= i, h, Ui (y′) > Ui (y) and Uh(y′) = δph ≥ Ûh(q, π̂), so that y′ ∈ Ŵi (q, π̂),
contradicting the optimality of y.

2. h ∈ {m + 1, . . . , m + b}: Consider allocation y′ with y′
h = 0, y′

j = u−1
(∑m+b

k=m+1 u(yk )

b−δ
∑m

k=1 pk

)

for j ∈ {m+1, . . . , m+b}\{i, h}, y′
j = y j , j /∈ {m+1, . . . , m+

b}∪ {i}, and y′
i = 1−∑

k 
=i y′
k . We now conclude from (12) that U j (y′) ≥ U j (y)

for all j 
= i, h and Uh(y′) = δph ≥ Ûh(q, π̂) so that y′ ∈ Ŵi (q, π̂). It remains
to show that Ui (y′) > Ui (y) to obtain the desired contradiction. This is true if
b = 1, since then y′

i = yi + yh . For b > 1 it suffices to show that

(b − 1)u−1

(∑m+b
k=m+1 u(yk)

b − δ
∑m

k=1 pk

)

<

m+b∑

k=m+1

yk,

which also ensures that y′
i > yi . By the monotonicity of u, the above inequality

is equivalent to

∑m+b
k=m+1 u(yk)

b − δ
∑m

k=1 pk
< u

(∑m+b
k=m+1 yk

(b − 1)

)

,

which is true if (A1) holds. In the case of assumption (A2), for ε ≤ 1−δ m
n

m−1 we
conclude that

∑m+b
k=m+1 u(yk)

b − δ
∑m

k=1 pk
≤ (1 + ε)

∑m+b
k=m+1 yk

b − δ
∑m

k=1 pk
<

∑m+b
k=m+1 yk

(b − 1)
≤ u

(∑m+b
k=m+1 yk

(b − 1)

)

,

thus proving the step.

The next step involves a direct proof that, unlike the typical line of argument that uses
the Theorem of the Maximum, relies on part 1 of Lemma 2.

Step 3.3 Mi (q, π̂) is upper-hemicontinuous. Since Mi has compact Hausdorff
range, it suffices to show that Mi (q, π̂) has closed graph (by the Closed Graph The-
orem, Aliprantis and Border 1999, 16.12, p. 529). Suppose Mi (q, π̂) does not have
closed graph to get a contradiction. Then there exists a sequence
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(π̂k, yk) ∈ Gr Mi = {(π, x) ∈ 
̂ × �(i) | x ∈ Mi (q, π)}

such that (π̂k, yk) → (π̂, y) /∈ Gr Mi . By Lemma 2, y ∈ Ŵi (q, π̂), i.e., y is fea-
sible. Thus, since (π̂, y) /∈ Gr Mi , there exists z ∈ arg max{Ui (x) | x ∈ Ŵi (q, π̂)}
such that Ui (z) > Ui (y). Note that by Lemma 2 we must have zi > ẑ. Otherwise,
Lemma 2 guarantees the existence of w ∈ Ŵi (q, π̂) such that wi > ẑ, hence Ui (w) >

(1 − δ)u(̂z) + δpi ≥ Ui (z) if zi = ẑ, a contradiction. Thus, zi > ẑ. Without loss of
generality, relabel players so that z j+1 ≥ z j , j = 1, . . . , n − 1, maintaining i as the
index for the proposer. By Step 3.2 we can assume that U j (z) ≥ Û j (q, π̂) for all
j ∈ {m + 1, . . . , n} \ {i}. Let b satisfy (8) and (9) for z. We distinguish two cases:

Case 1, i > m + b: Construct z′ such that z′
i = zi − η, z′

j = z j + η
m for j ∈

{m + 1, . . . , n} \ {i}. For sufficiently small η > 0 we have Ui (y) < Ui (z′) < Ui (z)
and U j (z′) > U j (z) ≥ Û j (q, π̂) for all j ∈ {m + 1, . . . , n} \ {i}. Since Ûh, Uh are
continuous and (π̂k, yk) → (π̂, y), there exists large enough k such that U j (z′) >

Û j (q, π̂k) → Û j (q, π̂) and Ui (z′) > Ui (yk) → Ui (y). Then z′ ∈ Ŵi (q, π̂k), con-
tradicting (π̂k, yk) ∈ Gr Mi .

Case 2, i ≤ m +b: By the definition of ẑ, this case pertains only to assumption A1.

Construct z′ such that z′
j = z j + η

m for j ∈ {m+b+1, . . . , n} and z′
j =

∑m+b
h=m+1 zh

b−δ
∑m

h=1 ph
+ η

m

for j ∈ {m + 1, . . . , m + b} \ {i}, and z′
i = ∑m+b

h=m+1 zh − (b−1)
∑m+b

h=m+1 zh

b−δ
∑m

h=1 ph
− η =

(1−δ
∑m

h=1 ph)
∑m+b

h=m+1 zh

b−δ
∑m

h=1 ph
− η. Note that Ui (z) − Ui (z′) = − (1−δ)η

(1−δ
∑m

h=1 ph)
. Thus, for

small enough η > 0 it follows that Ui (y) < Ui (z′) < Ui (z) and U j (z′) > U j (z) ≥
Û j (q, π̂) for all j ∈ {m + 1, . . . , n} \ {i}, leading to a contradiction as in the previous
step.

In both cases we arrived at a contradiction due to the absurd hypothesis that Gr Mi is
not closed. Hence, Mi is upper-hemicontinuous and the proof of the step is complete.

The second part of the lemma is proved by Step 3.2, and we are now ready to prove
the first part. Since Bi (q, π̂) = P[Mi (q, π̂)], Bi and B are non-empty, upper-hemi-
continuous, and convex valued by Theorem 16.14 of Aliprantis and Border (1999),
page 530. Thus, a fixed point exists by the theorem of Glicksberg (1952). �
Proof of Lemma 4 Throughout assume that in the case of assumption (A2), ε > 0 is
small enough so that the conclusions of Lemmas 2 and 3 hold. Fix q ∈ �m−1

0 and a
fixed point π̂∗ ∈ B(q, π̂∗). Define

dh(q, π̂∗) = u−1((1 − δ)−1 max{Ûh(q, π̂∗) − δph, 0}).

Assume, without loss of generality, that dh+1(q, π̂∗) ≥ dh(q, π̂∗), h = 1, . . . , n − 1.
We will show a number of steps.

Step 4.1 Assume (A1) and dh(q, π̂∗) = 0 for some h. Then π̂∗
i ({x ∈ �n−1

m | xh =
0}) = 1 for all i 
= h. This follows from the second part of Lemma 3.

Next we show a similar result for the case in which assumption (A2) holds.
Step 4.2 Assume (A2) and dh(q, π̂∗) > dm+1(q, π̂∗) for some h. Then π̂∗

i ({x ∈
�n−1

m | xh = 0}) = 1 for all i 
= h. Assume a proposer i 
= h, y ∈ arg max{Ui (x) |
x ∈ Ŵi (q, π̂∗)} and assume h ∈ arg max{dk(q, π̂∗) | k 
= i, yk > 0} is such that

123



Minimum winning coalitions and endogenous status quo 639

dh(q, π̂∗) > dm+1(q, π̂∗) to get a contradiction. Relabel players if necessary so that
y j+1 ≥ y j , j = 1, . . . , n − 1, maintaining i as an index for the proposer and h as
an index for the player with dh(q, π̂∗) > dm+1(q, π̂∗) and yh > 0. Let b satisfy
(8) and (9) for y. By Lemma 2 we conclude that yi > ẑ so that i > m + b. Define
K = {k ∈ N \ {i} | Uk(y) ≥ Ûk(q, π̂∗)}. We now distinguish four cases:

Case 1, Uh(y) < Ûh(q, π̂∗) or |K | > m, and h > m + b: Construct y′ such
that y′

h = zb(y) < yh, y′
i = yi + (yh − zb(y)), y′

j = y j for all j 
= i, h. We now

conclude from (12) that U j (y′) ≥ U j (y) for all j 
= i, h so that y′ ∈ Ŵi (q, π̂∗), and
Ui (y′) > Ui (y), contradicting the optimality of y.

Case 2, Uh(y) < Ûh(q, π̂∗) or |K | > m, and h ≤ m + b: Let Y = ∑m+b
k=m+1 yk . If

b > 1, since b ≤ m we deduce from A2 when ε ≤ 1−δ m
n

b−δ m
n

that

u

(
Y

b − 1

)

≥ Y

b − 1
>

Y (1 + ε)

b − δ m
n

≥ bu(Y
b )

b − δ m
n

≥ u(zb(y)).

Thus, we can construct y′ such that y′
h = 0, y′

j = zb(y) for any j ∈ {m + 1, . . . , m +
b}\{h}, y′

i = yi +(Y −(b−1)zb(y)) > yi , and y′
j = y j for all remaining players. We

now conclude from (12) that U j (y′) > U j (y) for all j 
= i, h so that y′ ∈ Ŵi (q, π̂∗),
and Ui (y′) > Ui (y), contradicting the optimality of y.

Case 3, Uh(y) ≥ Ûh(q, π̂∗), |K | = m, and h > m + b: Then, since |{k |
dk(q, π̂∗) < dh(q, π̂∗)}| ≥ m + 1, there exists j /∈ K with U j (y) < Û j (q, π̂∗)
and d j (q, π̂∗) < dh(q, π̂∗). For small enough η > 0, we can construct y′ such that
y′

h = 0, y′
i = yi + η, y′

j = yh − η, and y′
k = yk for all k 
= i, j, h. We now conclude

from (12) that Uk(y′) = Uk(y) for all k 
= i, j, h and U j (y) ≥ Û j (q, π̂∗), so that
y′ ∈ Ŵi (q, π̂∗), and Ui (y′) > Ui (y), contradicting the optimality of y.

Case 4, Uh(y) ≥ Ûh(q, π̂∗), |K | = m, and h ≤ m+b: Then, there exists S ⊆ {k 
=
i | dk(q, π̂∗) < dh(q, π̂∗)} with |S| = m. Construct y′ such that y′

i = yi + η, y′
j =

(1−yi −η)
m for all j ∈ S, and y′

j = 0 otherwise. Since |S| = m and 0 ≤ Uh(y) −
Ûh(q, π̂∗) < U j (y′) − Û j (q, π̂∗) for all j ∈ S when η > 0 is small enough, we
conclude from (12) that y′ ∈ Ŵi (q, π̂∗) and Ui (y′) > Ui (y), once more contradicting
the optimality of y.

For the next step, define M = {m−a+1, . . . , m+1, . . . , m+b} = { j | d j (q, π̂∗) =
dm+1(q, π̂∗)}, and note that |M | = a + b.

Step 4.3 If (A2) holds and ε ≤ 1− δ(n−1)
n

m+1− δm
n

, then

u(dm+1(q, π̂∗)) ≤
bu

(∑
j∈M q j

b

)

b − δ m
n

.

Obvious if dm+1(q, π̂∗) = 0. If dm+1(q, π̂∗) > 0, then note that by Step 4.2, any
proposer i ∈ {1, . . . , m − a} must obtain the votes of a + 1 players from M , while the
remaining proposers need the votes of a players from M \ {i}. By Lemma 2, proposer
i optimizes offering y such that yi > ẑ, so that (12) implies that i’s optimization
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amounts to maximizing the allocation yi and that any player j ∈ M such that y j > 0
must receive expected utility exactly equal to Û j (q, π̂∗) = (1−δ)u(dm+1(q, π̂∗))+ δ

n .
As a result, we conclude that

∑

j∈M

Û j (q, π̂∗)

≤ (1 − δ)
∑

j∈M

u(q j ) + δ
(

a+b
n Ûp + (n−1)a+m

n Û j (q, π̂∗) + b(n−1)−m
n Ûe

)

= (1 − δ)
∑

j∈M

u(q j ) + δ
(n−1)a+m

n u(dm+1(q, π̂∗)) + (a+b)δ
n ,

where Ûp = (1 − δ) + δ
n is the maximum that any j ∈ M can extract as a proposer

and Ûe = δ
n is the maximum that any j ∈ M can expect when an allocation y prevails

in which y j = 0. Since
∑

j∈M Û j (q, π̂∗) = (1 − δ)(a + b)u(dm+1(q, π̂∗)) + (a+b)δ
n ,

we obtain that

u(dm+1(q, π̂∗)) ≤
∑

j∈M u(q j )

a + b − δ
(n−1)a+m

n

≤
(a + b)u

(∑
j∈M q j

a+b

)

a + b − δ
(n−1)a+m

n

.

This proves the step if a = 0. If a ≥ 1, then note that by assumption (A2), since

ε ≤ 1− δ(n−1)
n

m+1− δm
n

, we conclude

(a + b)u
(∑

j∈M q j

a+b

)

a + b − δ
(n−1)a+m

n

≤ (1 + ε)
∑

j∈M q j

a + b − δ
(n−1)a+m

n

≤
∑

j∈M q j

b − δ m
n

≤
bu

(∑
j∈M q j

b

)

b − δ m
n

for all a, b, as desired.
The next step essentially establishes a bound on the cost of coalition building when

(A1) holds.
Step 4.4 If (A1) holds, then for all coalitions C ⊂ N with |C | = m + 1,

∑

i∈C

di (q, π̂∗) − δ
∑

i /∈C

pi d�(q, π̂∗) ≤ 1,

where � = min{i | i ∈ C}. Choose any majority coalition C ⊂ N with |C | = m + 1.
Define l as l = min{i ∈ N | di (q, π̂∗) > 0}. We have

∑n
i=1(Ui (q, π̂∗)−δpi ) = 1−δ,

thus, if l = 1 we must have
∑

i∈C di (q, π̂∗) ≤ 1. Hence, to show
∑

i∈C di (q, π̂∗) −
δ
∑

i /∈C pi d�(q, π̂∗) < 1, it remains to consider the case l > 1. In this case, we define
D(q, π̂∗) = ∑m+1

i=1 di (q, π̂∗), and we deduce that

Ûi (q, π̂∗) ≥ (1 − δ)qi + δ(pi (1 − δ)(1 − D(q, π̂∗)) + δpi ), i = 1, . . . , l − 1(20)
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To see why (20) holds, note that all players other than i propose alternatives in �n−1
m+1

and allocate zero to i by Lemma 3, so that i obtains utility δpi with probability (1− pi ).
Also, i can secure utility of at least (1 − δ)(1 − D(q, π̂∗)) + δpi when proposing
with probability pi , simply by allocating d j (q, π̂∗) to all j ∈ {1, . . . , m + 1}\{i},
since D(q, π̂∗) < 1 by Step 2.2 of Lemma 2. By summing both sides of (20) for
i = 1, . . . , l − 1 and rearranging terms, we get

l−1∑

i=1

(Ûi (q, π̂∗) − δpi ) ≥ (1 − δ)

l−1∑

i=1

xi − δ(1 − δ)D(q, π̂∗)
l−1∑

i=1

pi . (21)

Since j > i ⇒ d j (q, π̂∗) ≥ di (q, π̂∗), we also have

dh(q, π̂∗) +
∑

i /∈C

di (q, π̂∗) ≥ D(q, π̂∗) =
m+1∑

i=1

di (q, π̂∗). (22)

If � ≥ l, we have
∑l−1

i=1 pi ≤ ∑
i /∈C pi , while if � < l, d�(q, π̂∗) = 0. In either case

we deduce from (22) that

∑

i /∈C

pi d�(q, π̂∗) +
∑

i /∈C

di (q, π̂∗) ≥
l−1∑

i=1

pi D(q, π̂∗).

Since 0 < δ < 1 and
∑l−1

i=1 qi ≥ 0, the above implies

l−1∑

i=1

qi + δ
∑

i /∈C

pi d�(q, π̂∗) +
∑

i /∈C

di (q, π̂∗) ≥ δD(q, π̂∗)
l−1∑

i=1

pi .

Adding
∑

i∈C di (q, π̂∗) on both sides and rearranging terms, this is equivalent to

l−1∑

i=1

qi − δD(q, π̂∗)
l−1∑

i=1

pi +
n∑

i=1

di (q, π̂∗) ≥
∑

i∈C

di (q, π̂∗) − δ
∑

i /∈C

pi d�(q, π̂∗).

Since we have that
∑l−1

i=1 di (q, π̂∗) = 0, and from (21), we deduce

(1 − δ)−1
l−1∑

i=1

(
Ûi (q, π̂∗) − δpi

) +
n∑

i=l

di (q, π̂∗)

≥
∑

i∈C

di (q, π̂∗) − δ
∑

i /∈C

pi d�(q, π̂∗).

But the left-hand side is equal to 1, by the fact that di (q, π̂∗) = (1−δ)−1(Ûi (q, π̂∗)−
δpi ) for i = l, . . . , n, and since (1 − δ)−1 ∑n

i=1(Ûi (q, π̂∗) − δpi ) = 1. Thus,∑
i∈C di (q, π̂∗) − δ(

∑
i /∈C pi )d�(q, π̂∗) ≤ 1, proving the step.
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It is now possible to prove the lemma by constructing the required allocation x in
the two cases:

Case (A1): We construct x with

x j =
⎧
⎨

⎩

d j (q, π̂∗) if j ∈ C \ {�}
1 − ∑

i∈C\{�} di (q, π̂∗) if j = �

0 otherwise.

By Step 4.4, x� = 1 − ∑
i∈C\{�} di (q, π̂∗) ≥ (1 − δ

∑
i /∈C pi )d�(q, π̂∗) and it is

immediate from (12), (7), and the definition of d j that U j (x) ≥ Û j (q, π̂∗) for all
j ∈ C .

Case (A2): In this case, due to the anonymity of (12) from the fact that pi = 1
n ,

it suffices to show the existence of the required allocation for the most expensive
coalition C = {m + 1, . . . , n}. We construct x ∈ �m with

x j =

⎧
⎪⎨

⎪⎩

q j if j ∈ {m + b + 1, . . . , n}
∑m+b

i=1 qi
b if j ∈ {m + 1, . . . , m + b}
0 otherwise.

By Step 4.3 we conclude that U j (x) ≥ Û j (q, π̂∗) for all j ∈ {m + 1, . . . , m + b}

since
∑m+b

i=1 u(xi )

b− δm
n

≥
bu

(∑
j∈M q j

b

)

b−δ m
n

≥ d j (q, π̂∗). Similarly, by Step 4.2 we conclude that

U j (x) ≥ Û j (q, π̂∗) for all j ∈ {m + b + 1, . . . , n} since in that case q j ≥ d j (q, π̂∗).
�

Proof of Theorem 1 In the case of assumption (A2), assume ε so that the conclu-
sions of Lemmas 2, 3, and 4 hold. Note that both (10) and (11) are satisfied when
(A1) holds, or for small enough ε when (A2) holds. Define the correspondence B∗ :
�m−1

0 ⇒ 
̂ that maps status quo q ∈ �m−1
0 to the fixed points π̂∗ ∈ 
̂ of B(q, π̂).

Thus, combining a selector (which can be assumed measurable by an application of the
Kuratowski-Ryll-Nardzewski selection theorem) from B∗ with the proposal strategies
of Proposition 1, we obtain proposal strategies π∗

i : � → P[�] for each player i .
From these proposal strategies we calculate expected payoffs Ui (x; σ ∗), x ∈ � for
each i , in accordance with Eq. 2. In particular, Ui (x; σ ∗) coincides with Ui (x) defined
in (12) for all x ∈ �n−1

m , so that we can trivially compute Ui (x; σ ∗) for x ∈ �m−1
0 ,

in which case Ui (x; σ ∗) = Ûi (x, π∗) for the selected fixed point π∗ ∈ B∗(x). Using
these expected payoffs Ui (x; σ ∗), we obtain voting strategies A∗

i that satisfy condition
(3) for all i . Thus, it remains to show that proposal strategies π∗

i satisfy condition (4)
for all i . But this follows from Lemma 4 for status quo q ∈ �m−1

0 and from Proposition
1 and Lemma 4 for status quo q ∈ �n−1

m . �
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