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Abstract We consider repeated games where the number of repetitions θ is
unknown. The information about the uncertain duration can change during the play
of the game. This is described by an uncertain duration process � that defines the
probability law of the signals that players receive at each stage about the duration. To
each repeated game � and uncertain duration process � is associated the �-repeated
game ��. A public uncertain duration process is one where the uncertainty about the
duration is the same for all players. We establish a recursive formula for the value
V� of a repeated two-person zero-sum game �� with a public uncertain duration
process �. We study asymptotic properties of the normalized value v� = V�/E(θ)

as the expected duration E(θ) goes to infinity. We extend and unify several asymp-
totic results on the existence of lim vn and lim vλ and their equality to lim v�. This
analysis applies in particular to stochastic games and repeated games of incomplete
information.
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30 A. Neyman, S. Sorin

1 Introduction

We consider repeated games with an uncertain number of stages. For simplicity, we
describe in detail the case of two-person repeated games with symmetric uncertainty
about the number of stages. (The extension to general n-person games and/or asym-
metric uncertainty about the number of stages is straightforward.) The model consists
of two basic components:

(a) First, a repeated game � is given and described as follows. M is a state space
on which a family of normal form two-person games is defined by move spaces I and
J for Player 1 and Player 2 respectively, and a payoff function g = (g1, g2) from
M × I×J× to R

2. To simplify the description of the model, we assume here that
the sets I , J , and M are finite. (Suitable topological and measurability conditions are
needed in the infinite case.)

The initial state m1 is chosen at random and the players receive some informa-
tion about it, say a1 (resp. b1) for Player 1 (resp. Player 2). The choice of the triple
(m1, a1, b1) is performed according to some probability π on M×A×B, where A and
B are signal sets. In addition, after each stage the players obtain some further informa-
tion about the previous choice of moves and about both the previous and the new state.
This is represented by a map Q from M×I×J to probabilities on M×A×B. At stage t ,
given the state mt and the moves (it , jt ), a triple (mt+1, at+1, bt+1) is chosen at random
according to the distribution Q(mt , it , jt ). The new state is mt+1, and the signal at+1
(resp. bt+1) is transmitted to Player 1 (resp. Player 2). A play of the game is thus
a sequence m1, a1, b1, i1, j1, m2, a2, b2, i2, j2, . . ., while the information of Player
1 before his play at stage t is a private history of the form (a1, i1, a2, i2, . . . , at ),
and similarly for Player 2. The associated sequence of stage payoffs is g1, g2, . . .,
with gt = g(mt , it , jt ) ∈ R

2. Note that a play of the game consists of a sequence
of states, signals, and moves. The repeated game � is thus represented by the tuple
〈M, I, J, g, π, Q, A, B〉 and this description is public knowledge.

A behavioral (resp. pure) strategy σ for Player 1 in � is a map from private histories
in � to probabilities on the set I of moves, denoted �(I ) (resp. to I ). A strategy τ

of Player 2 is defined similarly. The corresponding sets of behavioral strategies are
denoted 	 and T .

The space of all private histories h = (a1, i1, . . . , it−1, at ) of Player 1 before the
play at stage t is denoted H1

t , and H1 = ∪t≥1 H1
t is the set of all private histories of

Player 1. The set of private histories H2 of Player 2 is defined similarly. For finite sets
M, I, J, A, B, the sets of finite histories H1 and H2 are countable and the sets of pure
(resp. behavioral) strategies of Player 1 and of Player 2 are the compact (in the product
topology) Cartesian product spaces I H1

(resp. (�(I ))H1
) and J H2

(resp. (�(J ))H2
).

Nature’s choices in the repeated game � (with finite sets M, I, J, A, B) are repre-
sented by a list X of independent random variables: X0 is an M× A×B-valued random
variable with distribution π (that selects the initial triple (m1, a1, b1)), and, for each
t ≥ 1 and (m, i, j) ∈ M × I × J , Xt,m,i, j is an M × A × B-valued random variable
with distribution Q(m, i, j) (that selects the triple mt+1, at+1, bt+1 when mt = m,
it = i , and jt = j). Nature’s choices X can be viewed as a random variable with values
in the infinite Cartesian product (Q × A × B) × ∏

t≥1,m∈M,i∈I, j∈J (M × A × B).
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Repeated games with public uncertain duration process 31

A pair of pure strategies, σ of Player 1 and τ of Player 2, together with the real-
ization X of Nature’s choices, define inductively the play of the repeated games �

as follows: (m1, a1, b1) = X0, it = σ(a1, i1, . . . , at ), jt = τ(b1, j1, . . . , bt ), and
(mt+1, at+1, bt+1) = Xt,mt ,it , jt .

Two special cases of repeated games that have been extensively considered are
stochastic games and repeated games with incomplete information.

We describe a stochastic game in the simplest framework of standard signaling
(or perfect monitoring). The initial signal to the players is the state, namely, a1 =
b1 = m1, and at each subsequent stage the signal to both players is the previous
pair of moves and the new state: at+1 = bt+1 = {it , jt , mt+1}. Hence, formally
A = B = M ∪ (I × J × M). It follows that a play can be identified with a sequence
m1, i1, j1, m2, i2, j2, . . ., and the information of each player before his play at stage
t is the sequence of states and moves m1, i1, j1, . . . , it−1, jt−1, mt . In addition, since
the initial state is publicly known, the analysis is usually done conditional on m1;
hence the initial probability π is replaced by a Dirac mass at some point in M .

As for the game with lack of information on both sides (in the so-called dependent
case) the traditional description is as follows. To each m in M corresponds a two-per-
son I×J game Gm . Nature chooses m ∈ M according to a publicly known probability
distribution p on M . Each player gets partial information regarding the actual state
m ∈ M ; Player 1 (resp. Player 2) observes the realization of a deterministic signal

1(m) (resp. 
2(m)). Equivalently, M1 = {M1

1 , . . . , M1
C } and M2 = {M2

1 , . . . , M2
D}

are two partitions of the set M , and following the choice of m ∈ M , Player 1 is informed
of c and Player 2 is informed of d where m ∈ M1

c
⋂

M2
d . The state m is chosen once and

for all according to p, and the game Gm is played repeatedly, with standard signaling
(perfect monitoring). Using the general presentation above, the probability π is the
one induced by p on M×C×D and g(m, i, j) = Gm

i j . Finally, Q(mt , it , jt ) is the unit
mass on (mt , it , jt ) and at+1 = bt+1 = (it , jt ); hence formally A = C ∪ (I×J ) and
B = D ∪ (I×J ).

One basic distinction between the two classes is that in stochastic games the infor-
mation of the players on the state space is at each stage identical while it is asymmet-
ric in repeated games with incomplete information. More generally, we refer to any
repeated game with identical information about the state as a stochastic game.

(b) The second component of the model is the number of repetitions θ , unknown
to the players. θ is an integer-valued random variable defined on a probability space
(�,B, µ) with finite expectation E(θ). The players receive partial information about
the value of θ via a sequence of public signals s0, s1, . . . , st , . . .. Each signal st is a
measurable function defined on the probability space (�,B, µ) and with finite range S.
The random variable (s0, s1, . . .) is independent of the random variable X that defines
Nature’s choices in �. This defines an uncertain duration process � = 〈(�,B, µ),

(st )t≥0, θ〉.
To each repeated game � and uncertain duration process � is associated an

extended repeated game ��, called the �-repeated game. The �-repeated game
is played essentially like the original game �, but, in addition, following the play
at stage t , namely (it , jt ), and before the next play at stage t + 1, the play-
ers receive the public signal st (ω). Formally, a play is now an infinite sequence
s0, m1, a1, b1, i1, j1, s1, m2, a2, b2, i2, j2, s2, . . ., while the information of Player 1
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32 A. Neyman, S. Sorin

corresponds to finite private histories like (s0, a1, i1, s1, a2, i2, s2, . . . , at ). Note that
the sequence of payoffs g1, g2, . . ., is a function of the sequence of states and stage
actions, and is thus unaffected (directly) by the process �; but the total payoff in ��,
∑∞

t=1 gt I (θ ≥ t)(ω) = ∑θ(ω)
t=1 gt , is affected by the process �. Note, however, that

the payoff on a play is a function of (only) the sequence of states and moves and of
the duration. Since the play after stage t on the event θ ≤ t is irrelevant, one can
enlarge the signal space so that the signal st conveys also the information whether
θ ≤ t or not. Thus, we can assume, whenever convenient, that θ is a stopping time
w.r.t. the filtration generated by the signals, namely, the increasing sequence of fields
Ft = σ(s0, . . . , st ), t = 0, 1, . . ..

A behavioral (resp. pure) strategy σ for Player 1 in �� is a map from private his-
tories in �� to �(I ) (resp. I ). A strategy τ is defined similarly for Player 2. The
associated sets of behavioral (or mixed) strategies are 	� and T�. If M, I, J, A, B
are finite sets and each st has a countable range (so that measurability requirements
are not needed), then the strategy sets 	� and T� are compact. A strategy σ ∈ 	 is
identified with the strategy σ̃ ∈ 	� that ignores the public signals s0, s1, s2, . . ., i.e.,
σ̃ (s0, a1, i1, s1, . . ., at ) = σ(a1, i1, . . ., at ). Thus 	 and T are identified with subsets
of 	� and T� respectively.

Given a repeated game � = 〈M, I, J, g, π, Q, A, B〉 and an uncertain duration
process �, a pair of strategies (σ, τ ) in 	�×T� induces a distribution Pσ,τ,� (or
Pσ,τ,µ for simplicity) on plays; hence on the sequence of payoffs (gt ). The (un-nor-
malized) payoff in �� is G�(σ, τ) = Eσ,τ,µ

(∑∞
t=1 gt I (θ≥t)

) ∈ R
2, where Eσ,τ,µ

is the expectation w.r.t. distribution Pσ,τ,µ.
In the zero-sum case, the value V�(�) of the (un-normalized) �-repeated game

��, with I , J , and M finite (or infinite with the suitable measurability and continuity
assumptions) is

V�(�) = max
σ∈	�

min
τ∈T�

G�(σ, τ)

= min
τ∈T�

max
σ∈	�

G�(σ, τ).

The existence of V�(�) follows from the usual minmax theorem: considering mixed
strategies, the payoff is bilinear and (even jointly) continuous and both strategy spaces
are convex and compact.

The value v�(�) of the normalized �-repeated game is v�(�) = V�(�)
E(θ)

.
We are interested in the asymptotic behavior of v�(�) as the expected duration

E(θ) goes to ∞.

Remark (1) The above model of public uncertain duration extends naturally to a
model of asymmetric uncertain duration with n players. The asymmetric uncer-
tainty is modeled by private signals; i.e., the signal st is a profile st = (s1

t , . . . , sn
t )

of signals for each player and the information to, say, Player 1 before the play at
stage t is thus the private history (s1

0 , a1, i1, s1
1 , a2, i2, s1

2 , . . . , at ). Then a behav-
ioral (resp. pure) strategy σ of Player 1 is a map from such histories to the set
of mixed moves �(I ) (resp. pure moves I ). An additional possible extension is
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Repeated games with public uncertain duration process 33

to the model where the distribution of the duration signal st depends also on the
play up to stage t .

(2) The previous extension of a game via a random duration process applies as well
to any multistage game with an associated sequence of stage payoffs.

(3) The case of an asymmetric uncertain duration, as distinct from an asymmetric
uncertain duration process, corresponds to the signaling structure where signals
about the duration occur only before the “start of the game”, namely, (s(ω), I (θ >

t)) = st (ω) for every t ≥ 1; alternatively, if we do not assume that, for every
Player i , θ is a stopping time w.r.t. the filtration generated by the duration signals
to Player i , it corresponds to st (ω) being independent of t , namely, st (ω) = s0(ω).

(4) The case of uncertain duration with no signals about the duration corresponds
to st (ω) = 1 if θ(ω) = t and st (ω) = 0 if θ(ω) �= t ; alternatively, if we do
not assume that θ is a stopping time w.r.t. the filtration generated by the duration
signals, it corresponds to st (ω) being a constant that is independent of t and ω.
In this case the strategy sets 	� and T� are equal to 	 and T and the evaluation
of the payoffs can be written as

∑
t ρt gt with ρt = µ(θ ≥ t)/Eµ(θ).

The case where θ is deterministic (θ = n) is the classical n-stage repeated game.
The payoff is Eσ,τ,µ

( 1
n

∑n
t=1gt

)
and we write vn for v�.

The λ-discounted game corresponds to µ(θ≥t) = (1−λ)t−1. Since E(θ) = 1/λ

the payoff is Eσ,τ,µ

(∑∞
t=1λ(1 − λ)t−1gt

)
and we use the notation vλ for v�.

(5) Repeated games with asymmetric uncertain duration were studied in Neyman
(1999) and Neyman (2009b), demonstrating that asymmetric information about
the duration leads to results that differ significantly from those in the public
uncertain duration case.

2 Initial results

The next property confirms the robustness of the uniform value.
We first recall the definition. Following Mertens et al. (1994, Chap. IV, Sect. 1) we

say that Player 1 can guarantee w in � if: for any ε > 0, there exists a strategy σ of
Player 1 in � and a number of stages T such that, for any strategy τ of Player 2 in �

and any t ≥ T ,

Eσ,τ

(
t∑


=1

g


)

≥ t (w − ε).

Similarly, Player 2 can guarantee w in � if: for any ε > 0, there exists a strategy τ of
Player 2 in � and a number of stages T such that for any strategy σ of Player 1 in �

and any t ≥ T ,

Eσ,τ

(
t∑


=1

g


)

≤ t (w + ε).

The uniform value v∞ exists if both players can guarantee it.
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34 A. Neyman, S. Sorin

Theorem 1 If Player 1 can guarantee w in �, then lim inf E(θ)→∞ v�(�) ≥ w. More-
over, ∀ε > 0 ∃(σ, T ) ∈ 	 × R such that for every uncertain duration process � with
E(θ) ≥ T and ∀τ ∈ T� we have gθ (σ, τ ) ≥ w − ε. In particular, if the infinite game
� has a uniform value v∞, then

lim
E(θ)→∞ v�(�) = v∞

and, moreover, ∀ε > 0 ∃(σ ∗, τ ∗, T ) ∈ 	 × T × R s.t. ∀(σ, τ ) ∈ 	� × T� and ∀�

with E(θ) > T we have g�(σ, τ ∗) − ε ≤ v∞ ≤ g�(σ ∗, τ ) + ε.

Proof Assume that Player 1 can guarantee w in �. Given ε > 0, let σ be a strategy of
Player 1 in � and let T be a positive integer so that for every strategy τ of Player 2 in
� and every t ≥ T ,

Eσ,τ

(
t∑


=1

g


)

≥ t (w − ε).

Given a pure strategy τ of Player 2 in �� and ω in � we denote by τω the strategy of
Player 2 in � given by

τω(b1, j1, b2, . . . , bt ) = τ(s0(ω), b1, j1, s1(ω), b2, j2, s2(ω), . . . , bt ).

It follows that if τ is a pure strategy of Player 2 in �� and if ω in � satisfies θ(ω) ≥ T ,
then

Eσ,τω

⎛

⎝
θ(ω)∑


=1

g


⎞

⎠ ≥ θ(ω)(w − ε)

and therefore for every ω ∈ �

Eσ,τω

⎛

⎝
θ(ω)∑


=1

g


⎞

⎠ ≥ θ(ω)(w − ε) − ‖g‖T

where ‖g‖=supM×I×J |g(i, j, m)|. As Eσ,τ,µ

(∑θ

=1 g


)
= Eµ

(
Eσ,τω

(∑θ(ω)

=1 g


))
,

we deduce that for any strategy τ of Player 2 in ��

Eσ,τ,µ

(
θ∑

t=1

gt

)

≥ E(θ)(w − ε) − ‖g‖T .

��
Remark (1) Note that the strategy σ of the pair (σ, T ) in the “moreover” part of

the theorem is in 	. Therefore, the theorem holds also for asymmetric uncertain
duration processes.
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Repeated games with public uncertain duration process 35

(2) The proof of Theorem 1 applies also to n-person games with either symmetric
or asymmetric uncertain duration processes. The applications are both for the
uniform maxmin (and the uniform minmax) and for uniform equilibrium.
We start with the comments applicable to the uniform maxmin and to the uni-
form minmax. In an n-person repeated game � Player i can guarantee wi

if: for every ε > 0, there exists a strategy σ i of Player i in � and a num-
ber of stages T such that for any strategy profile σ−i of the other players in
� and any t ≥ T , Eσ i ,σ−i

∑t

=1 gi


 ≥ t (wi − ε). The uniform maxmin of
Player i in the repeated game � exists and equals wi if Player i can guaran-
tee wi in � and for every strategy σ i of Player i in � there is a strategy pro-
file σ−i of the other players in � and a positive integer T such that for any
t ≥ T , Eσ i ,σ−i

(∑t

=1 g


) ≤ t (wi + ε). The maxmin of Player i in �� is

vi
�(�) := maxσ i ∈	i

�
min

σ−i ∈× j �=i 	
j
�

1
E(θ)

Eσ i ,σ−i

(∑θ

=1 gi




)
.

Similarly, Player i can protect wi , if for every strategy profile σ−i of the other
players in � and every ε > 0 there is a strategy σ i of Player i and a positive
integer T such that for any t ≥ T , Eσ i ,σ−i

∑t

=1 gi


 ≥ t (wi − ε). The uniform
minmax of Player i in the repeated game � exists and equals wi if Player i can
protect wi in � and for every ε > 0 there is a strategy profile σ−i of the other
players in � and a positive integer T such that for any t ≥ T and every strategy
σ i of Player i , Eσ i ,σ−i

(∑t

=1 g


) ≤ t (wi + ε). The minmax of Player i in ��

is v̄i
�(�) := min

σ−i ∈× j �=i 	
j
�

maxσ i ∈	i
�

1
E(θ)

Eσ i ,σ−i

(∑θ

=1 gi




)
.

The proof of Theorem 1 implies that if Player i can guarantee (resp. protect) wi

in �, then lim inf E(θ)→∞ vi
�(�) ≥ wi (resp. lim inf E(θ)→∞ v̄i

�(�) ≥ wi ), and
if the infinite game � has a uniform maxmin (resp. minmax) vi∞ (resp. v̄i∞), then
limE(θ)→∞ vi

�(�) = vi∞ (resp. limE(θ)→∞ v̄i
�(�) = v̄i∞ ).

We follow with comments regarding uniform equilibrium. A strategy profile
σ = (σ 1, σ 2, . . .) is an ε-uniform equilibrium in the repeated game � if there is
a positive integer T such that for every t ≥ T , every Player i , and every strategy
τ i of Player i , we have Eσ

(∑t

=1 gi




) + tε ≥ Eσ−i ,τ i

(∑t

=1 gi




)
. An ε-equilib-

rium of �� is a strategy profile σ such that for every Player i and every strategy

τ i of Player i we have Eσ

(∑θ

=1 gi




)
+ E(θ)ε ≥ Eσ−i ,τ i

(∑θ

=1 gi




)
.

The proof of Theorem 1 implies that if σ is an ε-uniform equilibrium in the
repeated game �, then for every ε′ > ε there is T such that σ is an ε′-equilibrium
of �� for every uncertain duration process � with E(θ) ≥ T .

(3) Two-person zero-sum stochastic games (resp. n-person stochastic games) with
finitely many states and actions and with perfect monitoring, and absorbing
games with compact action spaces and perfect monitoring, have a value (Mertens
and Neyman 1981; Mertens et al. 2009) (resp. a maxmin and minmax (Neyman
2003a)) and thus, in particular, a uniform value (resp. a uniform maxmin and min-
max). However, without perfect monitoring these classes of two-person zero-sum
stochastic games do not have a uniform value. For example, the big match does
not have a uniform value when players do not observe the actions of the other
players. Therefore Theorem 1 does not imply directly that the limit of v�(�), as
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36 A. Neyman, S. Sorin

E(θ) → ∞, exists in these repeated games without perfect monitoring and is
independent of the signals of players’ moves. This limiting result holds and it
will follow from Theorem 1 in conjunction with the recursive formula developed
in the next section.

3 The extended recursive structure

3.1 Recursive structure

Shapley (1953) associates to a two-person zero-sum stochastic game the Shapley oper-
ator � that maps real-valued functions defined on the state space M to themselves:

�( f )[m] = sup
x∈�(I )

inf
y∈�(J )

{
g(m, x, y) + Em,x,y

[
f (m′)

]}
(1)

where g(m, x, y) is the bilinear extension of g(m, ·, ·) to �(I )×�(J ) and the expecta-
tion Em,x,y is with respect to the law of m′ given by Q(m, x, y): the bilinear extension
to �(I )×�(J ) of the transition Q(m, ·, ·). �( f )[m] is interpreted as the value of a
one-stage game played as the one-shot stochastic game with the payoff function being
the sum of the stage payoff of the stochastic game and the value of the function f at
the new state. The iterates of the operator � evaluated at 0 express the values of the
finitely repeated stochastic game:

�n(0) = Vn . (2)

A similar operator can be introduced in the zero-sum case, for any repeated game
considered in Sect. 1 (Mertens et al. 1994, Chap. IV, Sect. 3). In contrast to the case
of stochastic games where the operator acts on functions defined on the state space
of the game, the general case involves operators on functions defined on an auxiliary
enlarged state space M ′. In fact, to each repeated game � = 〈M, I, J, g, π, Q, A, B〉,
one associates an auxiliary stochastic game �′ = 〈M ′, I ′, J ′, g′, π ′, Q′〉 having the
same n-stage (and λ-discounted) value. A formula like (1) defines the corresponding
Shapley operator and the n-stage value is expressed by the n-th iterate of the operator
evaluated at 0.

The purpose of this section is to extend formulas (1) and (2) for repeated games
(hence in particular also for stochastic games) with an uncertain duration process.
Given an uncertain duration process �, equality of the type V�(�) = ��(0) will
be obtained where � is the extended Shapley operator of the auxiliary game. The
generalized iterate �� will in fact be defined (in Sect. 3.2, following Neyman (2003b))
for any nonexpansive mapping �.

Next we illustrate extended Shapley operators � associated with several specific
classes of repeated games:

(1) Repeated games with a publicly known state.
This is the class where, at every stage t , each private signal at or bt contains at
least the current state mt . Since in this framework the state is public knowledge,
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Repeated games with public uncertain duration process 37

the Shapley operator (1) introduced in the perfect monitoring case and acting on
functions defined on M itself is the auxiliary Shapley operator.

(2) Repeated games with publicly known probability distribution on the state space.
This is the class with public signals and perfect monitoring, i.e., where at every
stage t , at equals bt and contains at least (it , jt ), namely, the pair of moves. The
auxiliary stochastic game �′ can be chosen as follows: the state space M ′= �(M)

is the space of probability distributions on M ; I ′ = I , J ′ = J , g′(·, i, j) is the
linear extension of g(·, i, j) to M ′. Finally, for each η ∈ M ′, Q′(η, i, j) is the
probability on M ′ defined as follows: let ρ(η, i, j)(a) = Eη(Q(m, i, j)(a)) be
the probability of signal a induced in � by (η, i, j). Each signal a determines,
given (η, i, j), a conditional probability distribution η(a) on the state space M ,
hence a point in M ′. Then Q′(η, i, j)

[
η′] = ∑

a;η(a)=η′ ρ(η, i, j)(a).
The resulting auxiliary Shapley operator is:

�( f )[η] = sup
x∈�(I )

inf
y∈�(J )

{g′(η, x, y) + Eη,x,y
(

f (η′)
)}

where g′(η, x, y) := ∑
i, j x(i)y( j)g′(η, i, j) is the multi-linear extension of

g′(η, i, j) and Ex,y,η

(
f (η′)

) := ∑
i, j,η′ x(i)y( j)Q′(η, i, j)[η′]( f (η′)).

(3) Repeated games with incomplete information: the independent case with perfect
monitoring (Aumann and Maschler 1995).
M is a product space K×L , π is a product probability p ⊗ q with p∈�(K ),
q∈�(L), and, in addition, a1 = k and b1 = 
. The state m = (k, 
) corresponds
to the type of the players and each player knows his own type and holds a prior
on the other player’s type. From stage 1 on, the state is fixed and the information
of the players is at+1 = bt+1 = {it , jt }.
The auxiliary stochastic game �′ can be chosen as follows: the state space
M ′ is �(K )×�(L) and is interpreted as the space of beliefs on the true
state; I ′ = �(I )K and J ′ = �(J )L correspond to type-dependent mixed
moves of the players; g′ is defined on M ′ × I ′ × J ′ by g′(p, q, x, y) =∑

k,
 pkq
g(k, 
, xk, y
). The transition Q′ is introduced next: given (p, q, x, y),
let x(i) = ∑

k xk
i pk and p(i) be the conditional probability on K given the move

i , that is, pk(i) = pk xk
i

x(i) (and similarly for y and q). Then Q′(p, q, x, y)(p′, q ′) =
∑

i, j;(p(i),q( j))=(p′,q ′) x(i)y( j).
The resulting auxiliary Shapley operator is:

�( f )[p, q] = sup
x∈I ′

inf
y∈J ′

{∑

k,


pkq
g(k, 
, xk, y
) +
∑

i, j

x(i)y( j) f (p(i), q( j))

}

= sup
x∈I ′

inf
y∈J ′

{
g′(p, q, x, y) + E p,q,x,y

[
f (p′, q ′)

]}
.

(4) Repeated games where Player 1 knows more than Player 2.
This is the case where at determines bt and jt and w.l.o.g. determines also it (we
always assume perfect recall). The auxiliary stochastic game �′ can be chosen
as follows: the state space M ′ is �(�(M)). The set S = �(M) describes the
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possible beliefs of Player 1 on the state space M and the set M ′ = �(S) stands
for the beliefs of Player 2 about Player 1’s beliefs. I ′ = �(I )S , J ′ = �(J ),
and for η ∈ M ′, x ∈ I ′ and y ∈ J ′, the payoff function is g′(η, x, y) =∫

S[
∑

j y j
∫

M

∑
i g(m, i, j)xs

i s(dm)]η(ds). It remains to specify Q′(η, x, y). A
signal a of Player 1 defines (through Q) a posterior probability on M , namely,
a point in S. Given a signal b and a move j of Player 2, Player 2 can compute
the conditional distribution on the signals a of Player 1, and hence a point in
M ′. Finally, (η, x, y) and Q determine the law of the signals b. The resulting
auxiliary Shapley operator is

�( f )[η] = sup
x∈�(I )S

inf
y∈�(J )

{
g′(η, x, y) + Eη,x,y

(
f (η′)

)}
.

Note that the above procedure aims at building from a repeated game �, another
repeated game �′, which is in fact a stochastic game, such that the n-stage and λ-dis-
counted values of both games coincide. However, there is in general no direct relation
between strategies in both games; in particular optimal strategies in �′ need not have
counterpart optimal strategies in the original repeated game �. In examples 1 and 2
above, the state space in the auxiliary stochastic game �′ is public knowledge in the
original game �, which enables a natural map from strategies in �′ to strategies in
� that preserves optimality. In example 3, the auxiliary state space corresponds to
beliefs of the players, which can be computed on the basis of their type-dependent
mixed moves, but which are not observable during the play of the original game �.
Finally, in example 4, the auxiliary state space that models the probabilistic informa-
tion of Player 2 relies again on the knowledge of Player 1’s strategy that Player 2 does
not observe in the play of �. However, the better-informed Player 1 can compute it,
and hence optimal strategies for Player 1 in �′ translate also to optimal strategies in �.

We turn to the construction of the auxiliary Shapley operator for an arbitrary
repeated game � as defined in Sect. 1. It relies on the recursive structure based on
the representation of an information scheme, namely, a probability distribution on
M × A × B, where A and B are arbitrary signal sets for Players 1 and 2 respectively.
(We follow Mertens et al. (1994, Chap. IV, Sect. 3).)

Given M , there exists a space W with the following properties (Mertens and Zamir
1985):

(1) There exists a homeomorphism ϕ from W to �(M×W ).
(2) If W i denotes a copy of W , any information scheme has a canonical represen-

tation as a probability P on U = M×W 1×W 2 such that, for {i, j} = {1, 2},
the conditional probability P(·|wi ) on M × W j coincides with ϕ(wi ), P almost
surely.

The set of such probabilities (called consistent) is denoted P . The set W i is called
the type set of player i and U is called the universal belief space. Given a consistent
probability P , a type wi in W i , which corresponds to the signal to Player i , is thus
identified with its image ϕ(wi ), which is a distribution on M×W j ( j �= i), namely,
on states and types of the opponent. It coincides with the beliefs he computes, given
his type.
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The game � = 〈M, I, J, g, π, Q, A, B〉 is value-equivalent to �′ = 〈M ′, I ′, J ′, g′,
π ′, Q′〉 where M ′ = P , the signal space to player i would be W i , and the correspond-
ing distribution on U would be P1 = P . Similarly, given σ and τ , strategies in �,
the distribution on plays up to moves at stage t defines a consistent probability Pt

on U , which corresponds to the state of knowledge on M at stage t . The game � is
value-equivalent to a new game where σ and τ are played for t − 1 stages and where
the game restarts at stage t with Pt (as a function of the play and σ and τ ) as initial
distribution on state and signals. The (behavioral) strategies used at stage t in � allow
us to construct Pt+1. They can be replaced, for each player i , by a function of his
type wi

t at that stage that induces the same payoff (Mertens et al. 1994, Chap. III,
Proposition 4.5). Hence the play at time t is specified by Pt and maps αt and βt from
type sets to mixed actions. This triple determines the stage payoff via the marginal
distribution on M × I × J and Pt+1 as a function H(Pt , αt , βt ) in �(M×W 1×W 2).

The extension of the Shapley operator (1) is the following operator � defined on
bounded functions on P:

�( f )[P] = sup
α

inf
β

{g′(P, α, β) + f [H(P, α, β)]} (3)

where α (resp. β) is a map from W 1 to �(I ) (resp. W 2 to �(J )) and g′(P, α, β)

denotes the expectation of g(m, i, j) with respect to the probability induced by α, β

and P on M×I×J . Hence the auxiliary repeated game is actually a stochastic game
with a deterministic transition defined by the function H .

The previous explicit examples used this property with a reduction of both spaces
U and P to subspaces U0 and P0 where the support of each probability P in P0 is
included in U0.

In example 1 as well as in standard stochastic games satisfying (1), rather than
dealing with probability distributions on states, the public knowledge of the state in �

allows us to choose M ′ = M in �′, but the transition is no longer deterministic. A sim-
ilar remark applies to example 2, where one works with �(M) rather than �(�(M)).
Also, in the last two examples public knowledge of the moves or comparison of the
information enables us to reduce the level of iterations needed when working with H .

3.2 Uncertain duration process and extended orbits of a nonexpansive operator

Let � be a nonexpansive map from a Banach space X to itself. Following (Neyman
2003b), we generalize here the iterates �n to operators �� that act on X and are
defined for an arbitrary uncertain duration process � = 〈(�,B, µ), (st )t≥0, θ〉. ��

captures the idea of a “generalized” random number of iterations of the nonexpan-
sive map �. Moreover, when θ is a stopping time w.r.t. the increasing sequence of
algebras Ft = σ(s0, . . . , st ), the domain of the operator �� extends from X to all
Fθ -measurable functions x : � → X .

To an uncertain duration process �, where θ is a stopping time, we associate a
probability tree as follows. The terminal nodes T = T� are all finite sequences of
signals ν = (s0, . . . , st ) with positive µ probability and t = θ(s0, . . . , st ). The set of
nodes N = N� is the set of all initial segments (s0, . . . , sr ), r ≤ t , of a terminal node

123



40 A. Neyman, S. Sorin

(s0, . . . , st ). For every node ν = (s0, . . . , sr ), let k(ν) = max{θ(ν′) − r; ν′ terminal
node with initial segment s0, . . . , sr }. The root of the tree is the node of the empty
string of signals ν = ∅. The probability measure µ on (�,B) induces a probability
measure µT on the countable set of terminal nodes T . Given a node ν = (s0, . . . , sr )

and an integrable function f : � → R we denote by E( f | ν) the value of the
conditional expectation E( f | Fr ) at ν.

The next theorem asserts that given an integrable function x on the terminal nodes
and a nonexpansive map � there is a uniquely determined � iterate x̄ defined on all
non-terminal nodes.

Theorem 2 Given a function x : T → X (which is identified with a function x :
� → X, measurable w.r.t. Fθ ) with finite expectation EµT (‖x‖) = Eµ(‖x‖) < ∞,
and a nonexpansive map � : X → X, there is a unique extension of the function x to
a function x̄ defined on all nodes N such that

x̄(∅) = E(x̄(s0)), (4)

and for every non-terminal node ν = (s0, . . . , sr ) �= ∅,

x̄(ν) = �(E(x̄(ν, sr+1) | ν)) (5)

‖x̄(ν)‖ ≤ E(θ − r | ν)‖�(0)‖ + E(‖x‖ | ν). (6)

In addition, given two functions x, y : T → X with finite expectation, the following
inequality holds:

‖x̄(ν) − ȳ(ν)‖ ≤ E(‖x − y‖ | ν). (7)

Proof If θ = 0, Eq. 4 defines uniquely x̄(∅) and the inequalities (6) and (7) hold.
Assume that E(θ) > 0. We first prove the lemma for the case where θ is bounded,
by induction on the number of nodes in N�. Let ν �= ∅ be a node with k(ν) = 1;
equivalently, ν is a maximal non-terminal node (i.e., all subsequent nodes are termi-
nal nodes). Given two functions x, y from T� to X , Eq. 5 defines x̄(ν) and ȳ(ν) and
‖x̄(ν) − ȳ(ν)‖ ≤ E(‖y − x‖ | ν) by nonexpansiveness. Therefore, by the induction
hypothesis, x̄ and ȳ, which are uniquely defined on all nodes by backward induc-
tion using (5), will satisfy for any other non-terminal node ν′, ‖x̄(ν′) − ȳ(ν′)‖ ≤
E(‖x − y‖ | ν′), i.e., (7) holds. (6) holds as well by backward induction. In fact, fix
a node ν with k(ν) = 1; note that x̄(ν) is defined by (5), and replace it by a terminal
node. This defines a stopping time θ ′ with associated process �′. Set y : T�′ → X
by y(ν) = x̄(ν) and y = x at all other terminal nodes in T�′ . Note that ‖y(ν)‖ =
‖x̄(ν)‖ ≤ ‖�(0)‖ + E(‖x‖ | ν). At any node ν′ = (s0, . . . , sr ) in N�′ \ T�′ , one has
x̄(ν′) = ȳ(ν′) so that ‖x̄(ν′)‖ = ‖ȳ(ν′)‖ ≤ E(θ ′ −r | ν′)‖�(0)‖+ E(‖y‖ | ν′) hence
‖x̄(ν′)‖ ≤ E(θ ′ − r | ν′)‖�(0)‖ + E(‖x‖ | ν′) + Prob(ν | ν′)‖�(0)‖ = E(θ − r |
ν′)‖�(0)‖ + E(‖x‖ | ν′).

Assume finally that θ is unbounded with finite expectation. Fix a node ν =
(s0, . . . , sr ) and a sufficiently large n ≥ r . Define the stopping time θ ∧ n and let
� ∧ n = 〈(�,B, µ), (st )t≥0, θ ∧ n〉 be the associated uncertain duration process.
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Consider y and z, two functions on T�∧n that coincide with x on T�∧n ∩ T� and such
that for every ν′ ∈ T�∧n ,

‖ȳ(ν′)‖ + ‖z̄(ν′)‖ ≤ 2E((θ − n)+ | ν′)‖�(0)‖ + 2E(‖x‖ | ν′).

It follows that

‖ȳ(ν) − z̄(ν)‖ ≤ E(‖y − z‖ | ν)≤2E((θ − n)+ | ν)‖�(0)‖ + 2E(‖x‖I (θ >n) | ν)

and the upper bound goes to 0 as n → ∞. In particular, if yn coincides with x on
T�∧n ∩ T� and equals 0 on T�∧n\T�, ȳn(ν) converges to a limit denoted by x̄(ν). The
last argument proves existence of the extension and the previous one shows unique-
ness. ��
Definition The �-iterate of � is defined on the set of Fθ -measurable functions x :
� → X by

��(x) = x̄(∅).

Comments Equations 5, 6, and 7 are in fact true in a more general setting. Let θ ′ be
another Ft -stopping time and write �′ for the associated uncertain duration process.
Assume θ ′ ≤ θ so that T�′ ⊂ N�. Define a Fθ ′ -measurable function y by y(ν) = x̄(ν)

for ν in T�′ . Then

��(x) = ��′
(y). (8)

If θ and θ ′ are two stopping times (w.r.t. (Ft )t≥0) with finite expectations, ��(0) =
��∧�′

(y) where E(‖y‖) ≤ E(θ −(θ ∧θ ′))‖�(0)‖ and thus ‖��(0)−��∧�′
(0)‖ ≤

E(θ − (θ ∧θ ′))‖�(0)‖. Similarly, ‖��′
(0)−��∧�′

(0)‖ ≤ E(θ ′ − (θ ∧θ ′))‖�(0)‖.
As |θ − θ ′| = θ − (θ ∧ θ ′) + θ ′ − (θ ∧ θ ′), we have,

‖��′
(0) − ��(0)‖ ≤ E(|θ ′ − θ |)‖�(0)‖.

If ν = (s0, . . . , sr ) is a non-terminal node of the uncertain duration process �,
we denote by �(ν) the remaining uncertain duration process after ν (in particular,
θ(ν) = θ −r ). The associated probability tree is thus the sub-tree with root ν, endowed
with the corresponding conditional probability. If ν is a terminal node we identify the
identity operator with ��(ν). With this notation one has, for every ν ∈ N�,

x̄(ν) = ��(ν)(x),

and thus, in particular, for any non-terminal node ν = (s0, . . . , sr ) �= ∅,

��(ν)(·) = �(E(��(ν,sr+1)(·)) | ν). (9)

Note that Eq. 6 is needed for uniqueness only in the case where θ is unbounded.
However, uniqueness follows also with a weaker requirement: ‖x̄(ν)‖ ≤ K E(θ − r |
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ν)‖�(0)‖ + K E(‖x‖ | ν) for some constant K ≥ 1. Nevertheless, some bound is
needed. Indeed, if θ is unbounded and (s0, s1, . . .) is an infinite sequence of signals so
that µ(s0, . . . , st ) > 0 for every t , for any z ∈ X we can find a function ȳ : N� → X
that coincides with our defined x̄ on all nodes ν that are not initial segments of the
infinite sequence (s0, s1, . . .) and so that ȳ(∅) = z and ȳ obeys (5). Indeed, define
inductively ȳ(s0, . . . , st ) so that (5) holds also for ȳ(s0, . . . , st−1).

3.3 Uncertain duration process and extended recursive formula

Here we establish an extended recursive formula for the value of the �-repeated game
��.

Since the law of θ is independent of the moves and states, one obtains that the value
of the game � extended by the uncertain duration process � satisfies the following
extension of (2):

Theorem 3

V�(�) = ��(0) (10)

where � is given by (3).

Proof As the duration signals are public, following, e.g., Mertens et al. (1994, Chap.
IV, Sect. 3), the equality holds for any bounded uncertain duration process �. More-
over, as V�∧n and ��∧n(0) converge to V� and ��(0) respectively the equalities
V�∧n = ��∧n(0) imply that V� = ��(0). ��

Equation 9 implies that for any non-terminal node ν = (s0, · · · , sr ) �= ∅,

V�(ν)(�) = �(E(V�(ν,sr+1)(�) | ν)) (11)

and from (4) one has:

V�(�) = E(V�(s0)(�)).

In particular, this recursive formula implies the following property on optimal strate-
gies.

Theorem 4 Assume that the state variable Pt ∈ P is public knowledge. Then each
player has an optimal strategy that at each stage t is only a function of Pt and �(ν),
ν ∈ Ft .

To be more specific, consider a stochastic game with a publicly known state, as
previously defined in Sect. 3.1, example 1. The above result implies that both play-
ers have optimal strategies that depend only upon the remaining uncertain duration
process �(ν) and the current state mt . Hence the value v� is the same whatever the
additional information on moves may be. However, in the case of full monitoring or
at least when the signals at and bt allow both players to compute gt−1, Mertens and
Neyman (1981) proved the existence of a uniform value. Theorem 1 thus implies:
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Corollary 1 In a stochastic game with a publicly known state, limE(θ)→∞ v� exists
and is independent of the signals on moves.

Similarly, Mertens et al. (2009) proved the existence of a uniform value in absorbing
games with compact action spaces: these are stochastic games where only one state,
say m, is nonabsorbing. (Recall that an absorbing state is a state that once reached
cannot be left.) The action spaces are compact sets X and Y . Given (x, y) in X×Y the
game starting from m remains in stage m with probability q(x, y) and the payoff in
this event is g(x, y). Otherwise an absorbing state is reached and one can assume that
there is an absorbing payoff ρ(x, y). These three functions are continuous on X×Y .
Theorem 1 thus implies:

Corollary 2 In an absorbing game with compact action spaces and with a publicly
known state, limE(θ)→∞ v� exists and is independent of the signals on moves.

Note that these results hold for any signals on moves, and hence also in cases where
the uniform value may not exist. They rely on the previous recursive formula for v�

that implies, as mentioned above, that both players have optimal strategies that depend
only upon the remaining uncertain duration process �(ν) and the current state mt .

4 Operator approach

In this section we extend previously known inequalities of the values of the n-stage
game vn and the λ-discounted game vλ to corresponding inequalities of the values v�

of the repeated games with uncertain duration processes.

4.1 Variational bounds

The nonexpansive operators arising in repeated games act on spaces of real-valued
functions endowed with the uniform norm and in addition these operators are mono-
tonic. Let � be a monotonic nonexpansive mapping on a convex cône F of bounded
real functions that contains the constants. We first recall a definition from Sorin (2004)
that extends Rosenberg and Sorin (2001).

Definition 1 L+ is the set of functions f in F for which there exists L∈R such that

�(K f ) ≤ (K + 1) f, ∀K ≥ L .

Such a function yields an upper bound for the iterates, �n(0) ≤ n f + 2L‖ f ‖, which

implies that lim supn→∞
�n

(0)
n ≤ f for any f ∈L+; see Rosenberg and Sorin (2001)

and Sorin (2004). The next result generalizes this inequality to any uncertain duration
process.

Theorem 5 Assume f ∈L+. For any uncertain duration process �,

��(0) ≤ E(θ) f + 2L‖ f ‖.
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Proof Assume f ∈L+ and let L be the constant associated to f . We prove the stronger
property that for any uncertain duration process � and every function K : T� → R

with K ≥ L and E(K ) < ∞,

��(K f ) ≤ (E(K ) + E(θ)) f. (12)

Obviously, (12) holds when E(θ) = 0. The proof of (12) for bounded uncertain
duration processes (with E(θ) > 0) is by induction on N�, that is, on the number of
nodes of the probability tree associated with �. Let �′ be an uncertain duration process
(defined on the same duration signal space (�,µ, (st )t≥0)) with θ −1 ≤ θ ′ < θ . Thus
|N�′ | < |N�|. Define the function K ′ : T�′ → R by K ′(ν) = E(θ−r | ν)+E(K | ν)

for a terminal node ν = (s0, . . . , sr ) of �′. As f ∈ L+, we have ��(ν)(K f ) ≤
(E(θ−r | ν)+E(K | ν)) f = K ′(ν) f by induction. As K ′(ν) = E(θ−r | ν)+E(K |
ν) ≥ L , the induction hypothesis implies that ��′

(K ′ f ) ≤ (E(θ ′) + E(K ′)) f . Note
that E(θ ′) + E(K ′) = E(θ) + E(K ) and thus ��′

(K ′ f ) ≤ (E(θ) + E(K )) f . As
��(K f ) = ��′

(K ′ f ) we conclude that ��(K f ) ≤ (E(θ)+E(K )) f . We prove (12)
for an unbounded duration process by truncation: define the function K∧n on the termi-
nal nodes of �∧n by (K ∧n)(ν) = E(K | ν). As ��∧n((K ∧n) f ) →n→∞ ��(K f )

and E(θ ∧n)+ E(K ∧n) →n→∞ E(θ)+ E(K ), (12) holds for any uncertain duration
process. ��

A function f belongs to C+ if it satisfies the following: For all δ > 0, there exists
Lδ such that

�(K f ) ≤ (K + 1) f + δ, ∀K ≥ Lδ.

Similarly a function f belongs to C− if it satisfies the following: For all δ > 0, there
exists Lδ such that

�(K f ) ≥ (K + 1) f − δ, ∀K ≥ Lδ.

If a function f belongs to C+, then

�(K ( f + δ)) ≤ (K + 1)( f + δ), ∀K ≥ Lδ,

and thus f + δ belongs to L+ for all δ > 0; one obtains then an upper bound:

Corollary 3 Let f ∈ C+; then

lim sup
E(θ)→∞

��(0)

E(θ)
≤ f.

We now apply this property to continuous absorbing games. Proposition 7 and Cor-
ollary 8 in Rosenberg and Sorin (2001) prove that in this case the intersection of the
closure of C+ and of C− is nonempty; hence reduced to one point. This provides an
alternative proof of Corollary 2.
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In the same spirit let us consider continuous recursive games. These are stochastic
games where the set M0 of nonabsorbing states is finite and the payoff is 0 at each of
these states. The action spaces are compact sets X and Y . The absorbing payoffs as
well as the transitions are continuous on X×Y . From Proposition 16 in Sorin (2003),
which proves that in this case also the intersection of the closure of C+ and of C− is
nonempty, one deduces the following result:

Corollary 4 If � is a continuous recursive game, there exists w in R
M0 such that:

lim
E(θ)→∞ v�(�) = w.

4.2 Bounded variation of vλ

We first recall a result from Neyman (2003b) dealing with a nonexpansive mapping

� on a Banach space X . Define vn = �n
(0)

n and for 0 < λ ≤ 1 let Vλ = vλ

λ
be the

(unique) fixed point of the mapping x �→ �((1 − λ)x).

Definition 2 The function λ �→ vλ is of bounded variation (over (0, 1]) if there exists
a constant C such that for any decreasing sequence λi with 0 < λi+1 ≤ λi ≤ 1,

∑

i

‖vλi+1 − vλi ‖ ≤ C.

If the function λ �→ vλ has bounded variation, then vλ converges to a limit w as
λ → 0+ and it is shown further in Neyman (2003b) that it implies the convergence of
vn to the same limit.

We will establish here a similar property under an additional monotonicity hypoth-
esis on the uncertain duration process.

Definition 3 The uncertain duration process is monotonic if for every terminal node
ν = (s0, . . . , sr ), the conditional expectations E(θ − t | s0, . . . , st ) decrease in t ,
0 ≤ t ≤ r .

The interpretation is that the expected remaining duration decreases over time, imply-
ing that the relative weight of the present increases as the process evolves. Typical
examples include finite length (where the ratio is 1/n if the remaining duration is n)
and discounted factor uncertain duration (where the ratio is the constant λ).

We follow the proof in Neyman (2003b) to obtain

Theorem 6 Assume vλ is of bounded variation. Set w = limλ→0+ vλ. For every ε > 0,
there exists N such that for any monotonic duration process satisfying E(θ) > N,

‖v� − w‖ ≤ ε.
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Proof On the event {t < θ} we set ρt = E(θ − t | s0, . . . , st ), λt = 1/ρt , wt = vλt .
On the event {θ ≤ t} we set ρt = 0 and wt = 0. We will prove that

‖��(0) − V1/E(θ)‖ ≤ E

⎛

⎝
∑

t≥0

ρt+1‖wt+1 − wt‖
⎞

⎠ . (13)

For every t ≥ 0 we define the random variables Ut and Wt as follows: on the event
{t < θ} we define Ut = ��(s0,...,st )(0) and Wt = Vλt = vλt /λt ; on the event {t ≥ θ}
we set Ut = Wt = 0. As θ is a stopping time the X -valued random variables Ut and
Wt are measurable w.r.t. Ft .

On the event {t < θ}, Ut = �(E(Ut+1 | Ft )), Wt = �((1 − λt )Wt ) and E(ρt+1 |
Ft ) = ρt − 1. Therefore using the nonexpansiveness of � followed by the triangle
inequality and thereafter the equality E(ρt+1 | Ft ) = ρt − 1, we have on θ > t :

‖Ut − Wt‖ ≤ ‖E(Ut+1 | Ft ) − ((1 − λt )Wt‖
≤ ‖E(Ut+1 − Wt+1 | Ft )‖ + ‖E(Wt+1 | Ft ) − (1 − λt )Wt‖
≤ E(‖Ut+1 − Wt+1‖ | Ft ) + ‖E(ρt+1wt+1 − (ρt − 1)wt | Ft )‖
≤ E(‖Ut+1 − Wt+1‖ | Ft ) + E(ρt+1‖wt+1 − wt‖ | Ft ).

On the event θ ≤ t , ‖Ut − Wt‖ = 0. Therefore we have everywhere

‖Ut − Wt‖ ≤ E(‖Ut+1 − Wt+1‖ | Ft ) + E(ρt+1‖wt+1 − wt‖ | Ft ).

Summing the expectations (conditional on F0) of the above inequalities over T ≥ t ≥ 0
we deduce that

‖U0 − W0‖ ≤ E(‖UT − WT ‖ | F0)) + E

⎛

⎝
∑

0≤t<T

ρt+1‖wt+1 − wt‖ | F0

⎞

⎠ .

As ‖UT ‖ + ‖WT ‖ ≤ 2ρT ‖�(0)‖ (by non expansiveness), E(‖UT − WT ‖ | F0) ≤
2E(ρT | F0)‖�(0)‖, which converges to 0 as T → ∞, and therefore

‖U0 − W0‖ ≤ E

⎛

⎝
∑

t≥0

ρt+1‖wt+1 − wt‖ | F0

⎞

⎠ .

Observe that ρ0 = E(θ) and therefore ��(0) = E(U0) and V1/E(θ) = E(W0), which
proves (13).

Fix ε > 0 and let K be sufficiently large so that the variation of vλ over the interval
(0, 1/K ) is less than ε. Assume that E(θ) > K and let θ ′ be the smallest r so that
E(θ − r | (s0, . . . , sr )) < K . We have
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‖��(0) − V1/E(θ)‖ ≤ E

⎛

⎝
∑

0≤t<θ ′
ρt+1‖vλt+1 − vλt ‖

⎞

⎠+E

⎛

⎝
∑

t≥θ ′
ρt+1‖vλt+1 − vλt ‖

⎞

⎠.

The monotonicity of the uncertain duration process � implies that the sequence λt

is monotonic. Therefore, for any t ≥ 0, ρt ≤ ρ0, and for every t ≥ θ ′, ρt+1 ≤ K .
Hence:

‖��(0) − V1/E(θ)‖ ≤ E

⎛

⎝ρ0

∑

0≤t<θ ′
‖vλt+1 − vλt ‖

⎞

⎠ + E

⎛

⎝K
∑

t≥θ ′
‖vλt+1 − vλt ‖

⎞

⎠

≤ ρ0ε + K C,

where C bounds the variation of the function vλ.
Thus if E(θ) > K C/ε, we deduce that ‖v� − v1/E(θ)‖ < 2ε, which imply that

‖v� − w‖ < 3ε. ��
The inequality (13) has an alternative formulation using the probability tree associ-

ated with the uncertain duration process �. For every terminal node ν = (s0, . . . , sr ),
define

f (ν) =
r∑

t=1

(r − t)‖w(s0, . . . , st ) − w(s0, . . . , st−1)‖,

where ρ(s0, . . . , st ) = E(θ − t | s0, . . . , st ) and w(s0, . . . , st ) = v1/ρ(s0,...,st ) if
(s0, . . . , st ) is a non-terminal node; and it = 0 if (s0, . . . , st ) is a terminal node. Recall
that µT is the probability induced on the terminal nodes. The alternative formulation
is:

‖��(0) − V1/E(θ)‖ ≤ EµT ( f (ν)).

5 Game with lack of information on both sides

We consider here games with incomplete information (with finitely many states
and finitely many actions; namely, M , I , and J are finite sets) as defined in
Sect. 1.

In the case of finitely repeated games, it is proved in Mertens and Zamir (1971) that
v(p) = limn→∞ vn(p) exists. Moreover, the error term ‖vn − v‖ (:= maxp |vn(p) −
v(p)|) is bounded by a constant times 1√

n
. For the λ-discounted game it is also proved

in Mertens and Zamir (1971) that ‖vλ − v‖ is bounded by a term of the order of
√

λ.
The purpose of this section is to extend these results of Mertens and Zamir (1971)

to general public uncertain duration processes.

Theorem 7 The limit of v�(p) as E(θ) → ∞ exists, equals v(p), and

‖v� − v‖ ≤ O

(
1√

E(θ)

)

.
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Proof We use the minmax theorem. It is thus sufficient to prove that there is a constant
R such that for every uncertain duration process � and every strategy τ of Player 2,
there is a strategy σ of Player 1 such that

E p,σ,τ,µ

⎛

⎝
∑

t≥1

gt I (θ≥t)

⎞

⎠ ≥ v(p)Eµ(θ) − R
√

Eµ(θ) (14)

where E p,σ,τ,µ is the expectation w.r.t. the probability defined on plays of the game
�� by the initial probability p on the state space, the strategy pair σ and τ , and by the
probability µ, and Eµ is the expectation with respect to the probability µ.

We denote by Ht the σ -algebra generated by the sequence of moves i1, j1, . . . ,
it−1, jt−1 and by the sequence s0, s1, . . . , st of public signals prior to the play at stage
t . W.l.o.g. we assume that the event θ ≥ t is measurable w.r.t. Ht . The expectation of
a random variable is the expectation of its conditional expectation. Therefore

E

⎛

⎝
∑

t≥1

I (θ ≥ t)gt

⎞

⎠ = E

⎛

⎝
∑

t≥1

I (θ ≥ t)E(gt | Ht )

⎞

⎠ (15)

where E stands for the more explicit E p,σ,τ,µ.
For every state m ∈ M let Gm denote the I × J matrix Gm

i, j = g(m, i, j). Set
‖Gm‖ = maxi, j |Gm

i j |, and let ‖G‖ = maxm∈M ‖Gm‖.
Let � and τ be given. From Theorem 4.4 and the proof of Proposition 4.3 in

Mertens and Zamir (1971), there exists a strategy σ of Player 1 and a martingale
p1, p̃1, . . . , pt , p̃t , . . ., with values in �(M) and p1 = p, and where pt is measurable
w.r.t. Ht , such that

v(pt ) is a submartingale, (16)

E p,σ,τ,µ(gt | Ht ) ≥ v(pt ) − ‖G‖E p,σ,τ,µ(‖pt+1 − p̃t‖1 | Ht ), (17)

and for any 
 ≥ t , conditional on Ht , the random variables

I (θ ≥ 
) and pt+1 are independent. (18)

By (15) and (17),

E

⎛

⎝
∑

t≥1

I (θ ≥ t)gt

⎞

⎠ ≥
∑

t≥1

E(I (θ ≥ t)v(pt ))

−‖G‖
∑

t≥1

E (I (θ ≥ t)E(‖pt+1 − p̃t‖1 | Ht )). (19)

��
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Note that

E

⎛

⎝
∑

t≥1

I (θ ≥ t)E(‖pt+1 − p̃t‖1 | Ht )

⎞

⎠ = E

⎛

⎝
∑

m∈M

∑

t≥1

I (θ ≥ t)|pt+1(m) − p̃t (m)|
⎞

⎠ .

But we have:

Lemma 1 For any martingale {qt } with values in [0, 1] and expectation q:

∑

t≥1

E
(
|qt+1 − qt |2

)
≤ q(1 − q)

E

⎛

⎝
∑

t≥1

I (θ≥t)|qt+1 − qt |
⎞

⎠ ≤ √
E(θ)

√
q(1 − q).

Proof The first inequality follows from the fact that the differences (qt+1 − qt ) of the
martingale {qt } are uncorrelated. Hence

T∑

t≥1

E
(
|qt+1 − qt |2

)
= E

⎛

⎜
⎝

⎛

⎝
T∑

t≥1

qt+1 − qt

⎞

⎠

2
⎞

⎟
⎠ ≤ E

(
(qT +1 − q)2

)

and the variance of qT +1 is at most q(1 − q). For the second property one has

E

⎛

⎝
∑

t≥1

I (θ≥t)|qt+1 − qt |
⎞

⎠ =
∑

t≥1

E(I (θ≥t)|qt+1 − qt |)

≤
∑

t≥1

√
E(I (θ ≥ t))E

(|qt+1 − qt |2
)

≤
√∑

t≥1

E(I (θ ≥ t))
∑

t≥1

E
(|qt+1 − qt |2

)

≤ √
E(θ)

√
q(1 − q)

where the first equality follows from the additivity of the expectation, the first inequal-
ity follows from the Cauchy Schwarz inequality applied to the functions I (θ ≥ t) and
|qt+1 −qt |, the second inequality follows from the Cauchy Schwarz inequality applied

to the vectors
(√

E(I (θ ≥ t))
)

t≥1 and
(√

E(|qt+1 − qt |2)
)

t≥1
, and the last inequality

follows from the first inequality of the lemma. ��
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Hence

E

⎛

⎝
∑

t≥1

I (θ ≥ t)E(‖pt+1 − p̃t‖1 | Ht )

⎞

⎠ ≤
∑

m
(E(θ))1/2

√
pm(1 − pm)

≤ √|M | − 1 (E(θ))1/2 (20)

where the last inequality follows from Jensen’s inequality and the concavity of the
square root, and |M | denotes the number of elements of the set M .

Next we show that

E

⎛

⎝
∑

t≥1

I (θ ≥ t)v(pt )

⎞

⎠ ≥ E(θ)v(p1). (21)

Fix 
 ≥ t ≥ 1. As I (θ ≥ 
) and pt are, by (18), independent conditionally on Ht−1,
and as, by (16), v(pt ) is a submartingale,

E(I (θ ≥ 
)v(pt ) | Ht−1) ≥ E(I (θ ≥ 
)v(pt−1) | Ht−1).

Therefore,

E(I (θ ≥ t)v(pt )) ≥ E(I (θ ≥ t))v(p1). (22)

As E
(∑

t≥1 I (θ ≥ t)
) = E(θ), summing inequality (22) over t ≥ 1 proves inequ-

ality (21).
Inequalities (19), (21), and (20) yield formula (14) with the constant R =

‖G‖√|M | − 1 . ��
Comments

(1) In the framework of games with state-independent signaling matrices (Mertens
1971), the proof of Theorem 7 implies, using Mertens et al. (1994, Lemma 4.6,
p. 355), that

‖v� − v‖≤O(E(θ)−
1
3 ).

(2) The conclusion of the theorem does not hold in the case of non-public uncertain
duration (Neyman 2009b). In the non-public uncertain duration, Neyman (2009b)
demonstrates the following result. If v(p) and v̄(p) denote the maxmin and the
minmax of the repeated game, then lim inf v� = v(p) and lim sup v� = v̄(p) as
E(θ) → ∞ (and � ranges over all asymmetric uncertain durations).

(3) Theorem 7 holds (with the same proof) also for the model of an uncertain dura-
tion process where the distribution of the duration signal st is also a function of
the sequence of moves i1, j1, . . . , it−1, jt−1. If the distribution of the duration
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signal st depends also on the state m we can no longer apply the proof. In fact, the
limit of v�(p) as E(θ) goes to infinity need not exists in this case. The essential
difference is that as there is asymmetry in the information on the state space, the
dependence of the duration signal, say s1, on the state m, results in asymmetric
information regarding the duration.

(4) Following Neyman (2009a,c), one can improve on the constant R in formula (14).
For example, ‖G‖ can be replaced with E p‖Gm‖, and the term

√|M | − 1 can be
replaced by a constant C that is independent of the size of M (but is dependent
on the size of I and J ).

6 Open problems

Among other classes where the existence of the limit of the value of the discounted
game has been established are recursive games with incomplete information on one
side (Rosenberg and Vieille 2000) and absorbing games with lack of information on
one side (Rosenberg 1999). In both cases one has in addition limλ→0 vλ = limn→∞ vn .
The asymptotic behavior of v� in such games deserves further research.

In the framework of general dynamic programming, Lehrer and Sorin (1992) proves
the equivalence between the uniform convergence of the functions vn and the uniform
convergence of the functions vλ. Whether this property has an extension to some fam-
ily v� is unknown. However, in the special class of finite action and state spaces with
signals, the result of Rosenberg et al. (2002) on the existence of a uniform value proves
in particular together with our Theorem 1 that v� converges to a limit as E(θ) → ∞.
Partial results extending this equivalence property to models with uncertain duration
are in Monderer and Sorin (1993).
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