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Abstract New characterizations of sequential equilibrium, perfect equilibrium, and
proper equilibrium are provided that use nonstandard probability. It is shown that there
exists a belief system µ such that (�σ ,µ) is a sequential equilibrium in an extensive
game with perfect recall iff there exist an infinitesimal ε and a completely mixed
behavioral strategy profile σ ′ (so that σ ′

i assigns positive, although possibly infinitesi-
mal, probability to all actions at every information set) that differs only infinitesimally
from �σ such that at each information set I for player i , σi is an ε-best response to �σ ′−i
conditional on having reached I . Note that the characterization of sequential equili-
brium does not involve belief systems. There is a similar characterization of perfect
equilibrium; the only difference is that σi must be a best response to �σ ′−i conditional
on having reached I . Yet another variant is used to characterize proper equilibrium.

Keywords Sequential equilibrium · Perfect equilibrium · Proper equilibrium ·
Nonstandard probability

1 Introduction

Sequential equilibrium (Kreps and Wilson 1982) and perfect equilibrium (Selten 1975)
are refinements of Nash equilibrium in extensive-form games defined in terms of
“trembles” or mistakes. The definitions are subtle, involving sequences of strategies
with smaller and smaller “trembles”. In this paper I provide alternative characteriza-
tions of sequential equilibrium and perfect equilibrium using nonstandard probability.
The definition replaces the sequence of trembles by a single (nonstandard) strategy
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38 J. Y. Halpern

profile and dispenses with belief systems altogether. I would argue that the new
definition provides a better conceptual basis for the notion of sequential equilibrium
and makes the relationship between sequential equilibrium, perfect equilibrium, and
Nash equilibrium more transparent.

The new definition takes as its point of departure the observation that sequential
equilibrium and perfect equilibrium have a simple definition for extensive-form games
where the equilibrium is a completely mixed strategy profile, so that each strategy
assigns positive probability to every action at every information set. A completely
mixed strategy profile is a sequential equilibrium iff each player plays a best response
at all information sets, that is, for each player i and each information set I for player
i , player i plays a best response to the other players’ strategies, conditional on having
reached I . Moreover, a completely mixed strategy profile is (the strategy component
of) a sequential equilibrium iff it is a perfect equilibrium.

All the subtlety in the definition of sequential equilibrium comes in dealing with
information sets off the equilibrium path, that is, information sets that are reached with
probability 0. To define “best response” at such an information set requires defining
what the agent’s beliefs are at that information set; this is exactly what is provided by
the belief assessment. The consistency requirements imposed on belief assessments
ensure that an agent’s beliefs are in some sense “reasonable”. At an information set that
is reached with positive probability, there is an obvious way of defining “reasonable”
using conditioning; indeed, an agent’s beliefs at such an information set are completely
determined by the strategies used. But what should count as a reasonable belief at
an information set that the agent believes will not be reached in the first place? This
concern is not new. Kreps and Wilson (1982, p. 876) themselves say: “We shall proceed
here to develop the properties of sequential equilibrium as defined above; however, we
do so with some doubts of our own concerning what ‘ought’ to be the definition of a
consistent assessment that, with sequential rationality, will give the ‘proper’ definition
of a sequential equilibrium.” Osborne and Rubinstein (1994, p. 225) say “we do not
find the consistency requirement to be natural, since it is stated in terms of limits; it
appears to be a rather opaque technical assumption”. They go on to quote Kreps (1990,
p. 430), who says “[r]ather a lot of bodies are buried in this definition”.

The new characterization avoids these difficulties to some extent by considering
only completely mixed strategies. Intuitively, actions that are not best responses are
given infinitesimal probability rather than 0 probability. As a first step towards the new
characterization, consider the following characterization of sequential equilibrium,
which is a variant of Kreps and Wilson’s (1982) characterization of sequential equili-
brium in terms of what they called weak perfect equilibrium (see their Proposition 6).

Proposition 1.1 If � is an extensive-form game with perfect recall, then there exists
a belief system µ such that the assessment (�σ ,µ) is a sequential equilibrium in � iff
there exists a sequence �σ n of completely mixed strategy profiles converging to �σ and
a sequence εn of nonnegative real numbers converging to 0 such that for each player i
and each information set I for player i , σ n

i is an εn-best response to �σ n
−i , conditional

on having reached I .

Proposition 1.1 defines sequential equilibrium without needing assessments and
is arguably quite natural. But it still defines a sequential equilibrium in terms of
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limits. Using nonstandard reals, we can replace the sequence �σ n of strategies in
Proposition 1.1 by a single strategy and the sequence εn by a single infinitesimal
to get a characterization that does not involve perturbations of either strategies or
utility functions, and does not require assessments.

Theorem 1.2 If � is an extensive-form game with perfect recall, then there exists a
belief system µ such that the assessment (�σ ,µ) is a sequential equilibrium in � iff
there exist an infinitesimal ε and a nonstandard completely mixed strategy profile �σ ′
that differs infinitesimally from �σ such that, for each player i , and each information
set I for player i , σ ′

i is an ε-best response to �σ ′−i , conditional on having reached I .

I define all the relevant notions in the statement of Theorem 1.2 in Sect. 2. I continue
with a more informal discussion here, in the hope that the reader has enough of an
intuitive sense of the relevant notions to follow.

One advantage of Theorem 1.2 is that it makes the connection between sequential
equilibrium, Nash equilibrium, and perfect equilibrium more transparent. For Nash
equilibrium, the following theorem, whose straightforward proof I leave to the reader,
makes it clear that sequential equilibrium is a refinement of Nash equilibrium in the
most obvious sense: we get a characterization of Nash equilibrium by dropping the
requirement that σi be an ε-best response to �σ−i at every information set.

Theorem 1.3 If � is an extensive-form game with perfect recall, then �σ is a Nash
equilibrium in � iff there exist an infinitesimal ε and a nonstandard completely mixed
strategy profile �σ ′ that differs infinitesimally from �σ such that for each player i , σ ′

i is
an ε-best response to �σ ′−i .

The connection to perfect equilibrium is equally straightforward. Note that in
Theorem 1.2 I could have equally well required that σi be an ε-best response to �σ ′−i ,
since σi and σ ′

i differ only infinitesimally. But if we focus on σi , we can ask for even
more. We can require σi to be a best response to �σ ′−i , not just an ε-best response. As
the following theorem shows, this strengthening of sequential equilibrium is perfect
equilibrium.

Theorem 1.4 If � is an extensive-form game with perfect recall, then �σ is a perfect
equilibrium in � iff there exists a nonstandard completely mixed strategy profile �σ ′
that differs infinitesimally from �σ such that, for each player i and each information
set I for player i , σi is a best response to �σ ′−i , conditional on having reached I .

This characterization of perfect equilibrium is not surprising; it just replaces the
sequence of strategies in the standard definition of perfect equilibrium by a single
strategy, just as in the transition from Proposition 1.1 and Theorem 1.2. However,
it makes it clear that the only difference between sequential equilibrium and perfect
equilibrium is whether σi is required to be a best response or an ε-best response to
σ ′−i .

Proper equilibrium (Myerson 1978) further refines perfect equilibrium by, roughly
speaking, requiring that bigger mistakes get smaller probability. This intuition can
also be captured easily using nonstandard probability. Since proper equilibrium is
typically defined for normal-form games, I give the characterization for normal-form
games.
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Theorem 1.5 If � is a normal-form game, then a mixed strategy profile �σ is a proper
equilibrium in � iff there exists a completely mixed nonstandard strategy profile �σ ′
that differs infinitesimally from �σ such that, for all players i , if s1 and s2 are two pure
strategies for player i such that EUi (s1, �σ ′−i ) < EUi (s2, �σ ′−i ) and EUi (s2, �σ ′−i ) −
EUi (s2, �σ ′−i ) is not infinitesimal, then σ ′

i (s1)/σ
′
1(s2) is infinitesimal.

It is easy to see that if �σ is a proper equilibrium and σi (s) > 0, then s must be a best
response to �σ ′−i . (Otherwise σ ′

i (s)would be infinitesimal, so σi (s)would have to be 0,
since σi (s) and σ ′

i (s) differ only infinitesimally.) It follows that a proper equilibrium
must be a perfect equilibrium.

Theorems 1.2, 1.4, and 1.5 serve to illustrate a well-known general phenomenon:
sequences of real objects (strategies, numbers) can often by replaced by a single non-
standard object, leading to simpler statements of results. Of course, it may seem that,
if the object is nonstandard, then there is no real gain in transparency or understan-
ding. In practice, the sequence of “trembles” required to generate the off-equilibrium
beliefs in a sequential equilibrium or the strategies converging to �σ in a perfect or
proper equilibrium is usually described in terms of a polynomial or rational function
of ε, where ε goes to 0. Lemma 3.1 shows that this way of describing the trembles is
almost without loss of generality; they can always be described using probabilities that
are power series of ε (thus, we may need to go beyond rational functions to functions
that involve sines, cosines, and exponentials). Moreover, it follows (Theorem 3.2) that
the nonstandard probabilities can always be taken to be a power series in a single
nonstandard ε. Thus, the nonstandard probabilities involved are not so mysterious.1

Theorem 1.2 also suggests an alternative interpretation of sequential equilibrium.
It shows that (the strategy component of) a sequential equilibrium is the standard
part of an ε-sequential equilibrium for an infinitesimal ε. (For every nonstandard
number r , there is a unique closest standard real number r ′, which differs from r by an
infinitesimal; r ′ is called the standard part of r . We can then define the standard part of
a nonstandard behavioral strategy profile in the obvious way.) Under this interpretation,
the focus is on the ε-sequential equilibrium �σ ′, not �σ ; �σ is just the closest standard
approximation to the “true” equilibrium.

An interpretation of Theorems 1.2 and 1.4 that is somewhat closer to the standard
interpretation is that they show that in a sequential equilibrium (resp., perfect equi-
librium) �σ , each player i can be viewed as making an ε-best response (resp., best
response) at each information set, under the belief that the other players are playing
�σ ′−i (so that player i’s beliefs off the equilibrium path are determined by �σ ′−i ). This
belief is reasonable: even repeated observations of the game will not contradict it (the
distribution induced by �σ is essentially indistinguishable from that induced by �σ ′).
However, this interpretation has an obvious difficulty: why should we be interested in
the particular beliefs induced by �σ ′? Although they are reasonable, why not consider
the beliefs induced by other strategies �σ ′′ that are also infinitesimally close to �σ? Put

1 The suggestion to prove Lemma 3.1 and Theorem 3.2, as well as sketches of their proof, were provided
by Hari Govindan.
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another way, why is it good enough to know that �σ is an (ε-)best response to some
beliefs? In the more standard definition of sequential equilibrium, this question can be
reformulated as asking why we should care that σi is a best response to the particular
beliefs given by the belief assessment. The advantage of the first interpretation is that
it avoids this issue altogether.

Related work. As I said, Proposition 1.1 is much in the spirit of Kreps and
Wilson’s characterization of sequential equilibrium in terms of weak perfect equi-
librium. Rather than comparing Proposition 1.1 to Kreps and Wilson’s results, I com-
pare it to a reformulation due to Blume and Zame (1994). In their Proposition A,
Blume and Zame show that (�σ ,µ) is a sequential equilibrium in a game � with utility
functions �u iff there exists a sequence �σ n of completely mixed strategies converging
to �σ and a sequence �un of utility functions converging to �u such that for each player
i and each information set I for player i , σ n

i is a best response to �σ n
−i , conditional

on having reached I , with respect to the utility function �un . Clearly if, for all n, σ n
i

is a best response to �σ n
−i , conditional on having reached I , with respect to the uti-

lity function �un , then we can find a sequence εn converging to 0 such that σ n
i is an

εn-best response to �σ n
−i conditional on having reached I with respect to �u. Conver-

sely, if the condition stated in Proposition 1.1 holds, it can be shown that Blume and
Zame’s condition holds as well, although it is actually easier to show directly that
there is a sequential equilibrium. Since the characterization of Theorem 1.2 does not
need to use sequences of trembles and does not require modifying the game, it is
arguably more natural, although “naturalness” is clearly in the eye of the beholder
here.

The results of this paper are far from the first use of nonstandard analysis in game
theory. Perhaps closest to the results of this paper, Blume et al. (1991) characterize
perfect and proper equilibrium using lexicographic probability systems (LPS’s). There
are deep connection between LPS’s and nonstandard probability. Hammond (1994)
proves that they are equivalent in finite spaces; Halpern (2001) generalizes Hammond’s
results. Using these connections, it is not hard to prove Theorems 1.4 and 1.5 from the
characterizations given by Blume, Brandenburger, and Dekel, and vice versa. More
generally, Hammond (1994) argued for thinking of notions such as perfect and proper
equilibrium in terms of nonstandard probabilities. Rajan (1998) characterizes a number
of solution concepts, including perfect equilibrium and proper equilibrium (but not
sequential equilibrium), in terms of agents whose beliefs are given by nonstandard
probability distributions. Nonstandard utilities and lexicographic utilities have also
been considered by a number of authors (see, e.g., Fishburn 1972; Richter 1971; Skala
1974 and the references therein).

Outline. The rest of this paper is organized as follows: In Sect. 2 I give all the relevant
formal definitions (and include a review of the definition of sequential equilibrium).
Theorems 1.2 and 1.4 are proved in Sect. 3. These proofs depend on a deep theorem
of first-order logic, the compactness theorem (Enderton 1972), which is explained in
Sect. 2. The proof of Theorem 1.5 is so similar to the other two that it is omitted; the
proof of Theorem 1.1 is similar in spirit to, but simpler than, that of Theorem 1.2, so
is also omitted.
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2 Definitions

To make the paper self-contained, I briefly review the definitions of sequential
equilibrium, perfect equilibrium, and proper equilibrium, and then discuss relevant
concepts from logic. I assume that the reader is familiar with the standard definition of
games in extensive form and normal form. All of the notions I consider are standard
in the game theory and logic literatures.

2.1 Sequential equilibrium

Sequential equilibrium is defined with respect to an assessment, a pair (�σ,µ) where
�σ is a strategy profile and µ is a belief system, that is, a function that determines
for every information set I a probability µI over the histories in I . Intuitively, if I
is an information set for player i , then µI is i’s subjective assessment of the rela-
tive likelihood of the histories in I . Roughly speaking, an assessment is a sequential
equilibrium if (a) at every information set where a player moves he chooses a best
response given the beliefs he has about the histories in that information set and the
strategies of other players, and (b) his beliefs are consistent with the strategy profile
being played. Consistency at an information set I is easy to define if I is reached with
positive probability by �σ ; in that case, it is just the result of conditioning on I . The
definition is a little more subtle if I is reached with probability 0.

Given a strategy profile �σ , let Pr�σ be the probability distribution on complete
histories of the game induced by �σ . That is, if h is a complete history, then Pr�σ (h)
is the product of the probability of each of the moves made in h. If we identify a
partial history with the set of complete histories that extend it, this statement holds for
partial histories as well. If I is an information set, we take Pr�σ (I ) to be the probability
of the set of complete histories extending some partial history in I . The conditional
probability Pr�σ (h | I ) is defined in the standard way.

Formally, an assessment (�σ ,µ) is a sequential equilibrium of an extensive-form
game � if it satisfies the following properties:

• Sequential rationality. For every information set I of player i and every behavioral
strategy τ for player i , σi is a best response to �σ−i at I given belief system µ; that
is,

EUi ((�σ,µ) | I ) ≥ EUi (((τ, �σ−i ), µ) | I ),

where EUi ((�σ ,µ) | I ) = ∑
h∈I

∑
z∈Z µI (h)Pr�σ (z | h)ui (z) and Z is the set of

terminal histories of the game �.
• Consistency between belief system and strategy profile. There exists a sequence of

assessments (�σ n, µn), n = 1, 2, 3, . . ., such that, for all n, �σ n is a profile of com-
pletely mixed strategies, �σ n → �σ , and µI (h) = limn→∞ Pr�σ n (h|I ). (Since each
strategy in �σ n is completely mixed, Pr�σ n (I ) > 0, so the conditional probability is
well defined.)
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2.2 Perfect equilibrium and proper equilibrium

To define perfect equilibrium, I first need to define the notion of a best response at an
information set.

Definition 2.1 If ε ≥ 0 and I is an information set for player i , σi is an ε-best
response to �σ−i for i conditional on having reached I if for every strategy τ for player
i that agrees with σ except possibly at I and information sets preceded by I we have
EUi (�σ) ≥ EUi (τ, �σ−i )− ε. A best response is a 0-best response.

Definition 2.2 �σ is a perfect equilibrium in an extensive-form game � iff there exists
a sequence �σ n of completely mixed behavior strategies such that �σ n → �σ and, for all
n and each information set I of player i , σi is a best response to �σ n

−i conditional on
having reached I .2

Proper equilibrium is typically defined in normal-form games. As I said earlier,
proper equilibrium tries to capture the intuition that worse strategies get smaller pro-
bability.

Definition 2.3 �σ is a proper equilibrium in a normal-form game if there exists a
sequence of completely mixed strategy �σ n and a sequence of positive real numbers
ε1, ε2, . . . such that �σ n → �σ , εn → 0, and, for all players i and all pure strategies s1
and s2 for player i , if EUi (s1, �σ k

−i ) < EUi (s2, �σ k
−i ), then σi (s1) < εkσi (s2).

2.3 Nonstandard probabilities

An elementary extension F of the reals is an ordered field that includes the real
numbers, at least one infinitesimal (i.e., a number ε that is less than every positive real
number, but still greater than 0), and is elementarily equivalent to the real numbers.
The fact that F and R are elementarily equivalent means that every formula that can
be expressed in first-order logic and uses the function symbols + and × and a constant
symbol r for each real number r is true in F iff it is true in R (where, in R, + is
interpreted as addition, × is interpreted as multiplication, and the constant symbol r
is interpreted as the real number r ).

The existence of such elementary extensions of the reals follows from the compact-
ness theorem of first-order logic. The compactness theorem says that if every finite
subset of an infinite collection of formulas has a model, then the whole infinite set has
a model. To see how the existence of elementary extensions of the reals follows from
the compactness theorem, add an extra constant symbol c to the language of the reals,
and consider the (uncountable) set � of formulas consisting of

2 It is more standard to define perfect equilibrium as above in normal-form games, and then define a
perfect equilibrium in an extensive-form game � to be a perfect equilibrium of the normal-form game
�′ corresponding to the agent-normal form of �, where the agent-normal form of � has one agent for
each information set in �; the agents corresponding to information sets of player i in � make decisions
independently but have the same utility as player i . It is not hard to show [using arguments similar to those
of Selten (1975, Lemma 6)] that, in games with perfect recall, the standard definition is equivalent to the
one given here.
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(a) all first-order formulas in the language true of the reals (this includes, e.g., a
formula such as ∀x∀y(x + y = y + x), which says that addition is commutative,
as well as formulas such as 2 + 3 = 5 and

√
2 × √

3 = √
6);

(b) the countable collection of formulas c < 1/n, for each positive natural n;
(c) the formula c > 0.

Clearly each finite subset �′ of � has a model; namely, the reals; there is always
an interpretation for c as a real number if only finitely many statements in (b) are
considered. Compactness says that � must have a model, say F . In F , c must be
interpreted as an infinitesimal, so F must be an elementary extension of R.

If F is an elementary extension of R, I refer to the elements of F that are in R as
standard reals. It is not hard to show that for all b ∈ F such that −r < b < r for
some standard real r > 0, there is a unique closest real number a such that |a − b|
is an infinitesimal. (In fact, a is the inf of the set of real numbers that are at least as
large as b.) Let st (b) denote the closest standard real to b; st (b) is sometimes read
“the standard part of b”.

For the purposes of this paper, I take a nonstandard probability to be one whose
range lies in an elementary extension of the reals. Two nonstandard probabilities Pr and
Pr′ are infinitesimally close if, for each event E , | Pr(E)− Pr′(E)| is an infinitesimal.
Given a nonstandard probability measure Pr, there is a unique standard probability
measure Pr′ that is infinitesimally close to it, obtained by taking Pr′(E) = st (Pr(E)).
A behavior strategy for player i just defines a probability distribution over actions at
each information set of player I . A nonstandard behavior strategy is one that uses
a nonstandard probability distribution; a standard behavior strategy is one that uses
a standard probability distribution. Two behavior strategies σ and σ ′ for player i
are infinitesimally close if, for every information set I of player i , the probability
distributions defined by σ and σ ′ are infinitesimally close.

In Sect. 3.4, I show that in all the main theorems we can use one particular, quite
natural, elementary extension of the reals, denoted R

∗(ε). To describe R
∗(ε), first

consider R(ε), the smallest non-Archimedean field strictly containing the reals. R(ε)

consists of all rational expressions f (ε)/g(ε) in ε, where f and g are polynomials and
g 
= 0. [The construction of R(ε) apparently goes back to Robinson (1973); R(ε) is
used extensively by Hammond (1994).] While R(ε) is an ordered non-Archimedean
field, it is not an elementary extension of R. For example, ε does not have a cube root
in R(ε), although it is a theorem of R that every number has a cube root. As a first
step to obtaining an elementary extension of R, let R

+(ε) consist of all formal power
series in ε of the form

∑
i≥n riε

i , where n is an integer and ri ∈ R. R
+(ε) is also

easily seen to be an ordered non-Archimedean field, where inverses are computed by
formal division of power series. (Note that we need to allow the summation to start
at a negative number since, e.g., the inverse of ε3 is ε−3.) Although R

+(ε) includes
R(ε) (every rational function can be expressed as a power series by formal division),
it is still not an elementary extension of R; again ε has no cube root. In order to extend
R

+(ε) to an elementary extension of R, we need a field that includes, for example
ε1/3, so that ε has a cube root. This suggests that, in order to construct an elementary
extension of R(ε), it is necessary to allow rational exponents in power series. Let
R

∗(ε) consist of all series of the form
∑

i≥n riε
i/k , where n is an integer and and k is
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a positive natural number. R
∗(ε) is known as the field of Puiseux series in ε, and is an

elementary extension of R (Basu et al. 2003, Chapter 2).

3 Proofs of Theorems

3.1 Proof of Proposition 1.1

Suppose that the assessment (�σ ,µ) is a sequential equilibrium. Then there exists a
sequence of assessments (�σ n, µn) converging to (�σ ,µ). It is easy to see that there
must be a sequence εn of nonnegative real numbers converging to 0 such that �σ n is an
εn-sequential equilibrium.

For the converse, if �σ n is a sequence of completely mixed strategy profiles conver-
ging to �σ , then let µn be the belief system determined by �σ n . By compactness,
there must be a convergent subsequence of µn . Let µ be the belief system to which
this convergent subsequence converges. It easily follows from the fact that �σ n is an
εn-sequential equilibrium for some sequence of nonnegative reals εn converging to 0
that (�σ ,µ) is a sequential equilibrium.

3.2 Proof of Theorem 1.2

First suppose that �σ ′ satisfies the conditions of the theorem. Define a belief system
µ by taking µI (h) = st (Pr�σ (h | I )); that is, the standard part of the conditional
probability of h given I , according to Pr�σ ′ . Since �σ ′ consists of completely mixed
strategies, this conditional probability is well defined. We want to show that (�σ ,µ)
is a sequential equilibrium. Because there exists an infinitesimal ε such that σi is
an ε-best response to �σ ′−i conditional on having reached I , and �σ ′ differs infinitesi-
mally from �σ , it easily follows that, for all standard strategies τ for player i , we have
EUi ((�σ ,µ) | I ) ≥ EUi (((τ, �σ−i ), µ) | I ); thus, sequential rationality holds. To show
that we have consistency between the belief system and strategy profile, we use the
fact that F , the field which is the range of the nonstandard probabilities used in �σ ′, is
an elementary extension of R. The idea is, for each n, to write a first-order formula
ϕn that says that a strategy profile �σ n with the right properties exists. Since ϕn will
be easily seen to be true in F , it must also be true in R. In more detail, we proceed as
follows.

For each information set I of player i , if h is in I , let qh = Pr�σ ′(h|I ); let
rh = µI (h) = st (qh). In addition, for each action a that i can perform in infor-
mation set I , let qI,a = σ ′

i (I )(a); that is, qI,a is the probability that i performs action
a in information set I according to σ ′

i . Let rI,a = σi (I )(a) = st
(
qI,a

)
. Suppose that

there are M histories in the game �, K information sets in �, and for each information
set I j in�, there are N j actions that can be performed at I j . Now, for each n, let ϕn be a
formula ∃xh1 . . . ∃xhM ∃xI1,a11 . . . ∃xI1,a1N1

. . . ∃xIK ,aK 1 . . . ∃xIK ,aK NK
ϕ′

n , where ϕ′
n is

described below. Intuitively, ϕ′
n says that xh , the conditional probability of h given I

(the information set containing h) is within 1/n of qh , and that xI j ,a jk , the probability
of performing action a jk in information set I j , is within 1/n of qI j ,a jk . Finally, for each
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history h in information set I , ϕ′
n relates xh to the probability of reaching h conditional

on reaching I . Thus, ϕ′
n is the conjunction of the following formulas:

(a) formulas of the form |xh − rh | < 1/n for all histories h;
(b) formulas of the form (|xI,a − rI,a | < 1/n)∧ (xI,a > 0) for each information set

I and action a that can be performed at I ;

(c) for each information set I j , a formula
∑N j

k=1 xI j ,a jk = 1;
(d) for each history h in an information set I , a formula saying that xh is the product

of the probabilities xI ′,a over the actions a taken to reach h, divided by the sum
of the corresponding products taken over all histories h′ ∈ I .

The formulaϕn is clearly satisfiable in F by taking xh to be qh and xI,a to be qI,a . Thus,
ϕn is also satisfiable in R. The values of xI,a that satisfy the formula in R determine the
strategy profile �σ n ; if I is an information set of player I , then σ n

i (I )(a) = xI,a . The
formulas in (b) and (c) guarantee that σ n

i is a completely mixed strategy that is within
1/n of σi . Thus �σ n → �σ . Taking µn

I (h) = xh , the formulas in clause (d) guarantee
that µn

I is the (unique) belief assessment corresponding to the strategy profile �σ n (it is
unique because �σ n consists of completely mixed strategies). The formulas in clause
(a) guarantee that µn is within 1/n of µ, so µn → µ.

For the converse, suppose that (�σ ,µ) is a sequential equilibrium. Thus, there exists
a sequence of assessments (�σ n, µn) → (�σ ,µ) such that, for each n, �σ n is a profile
of completely mixed strategies. Since, at each information set I for player i , σi is a
best response to �σ−i conditional on having reached I , given belief system µ, it must
be the case that, for all ε, there exists n such that σ n

i is an ε-best response to �σ n
−i at I ,

given belief system µn . But since �σ n consists of completely mixed strategies, so that
µn is determined by �σ n , it is easy to see that σ n

i is in fact an ε-best response to σ n
−i

conditional on having reached I , in the sense of Definition 2.1.
With this observation, we can now use the compactness theorem to show that an

appropriate �σ ′ exists. The proof is similar in spirit to that of the first half. We consider
the language of the reals with additional constants ch for each history h, a constant
cI,a for each (information set, action) pair, and a constant d. Consider the following
collection � of formulas:

(a) all first-order formulas in the language true of the reals;
(b) for each information I and action a that can be performed at I , the formula

cI,a > 0 and, for each natural number n > 0, the formula |cI,a − rI,a | < 1/n;

(c) for each information set I j , a formula
∑N j

k=1 cI j ,a jk = 1;
(d) the formula d > 0 and, for each natural number the formula d < 1/n;
(e) for each player i , a formula saying that the strategy σi is a d-best response to the

strategy profile �σ−i defined by the probabilities cI,a . The statement that σi is a
d-best response is easily definable using a universally quantified formula with
linear inequalities.

Any finite subset �′ of � is satisfiable by the reals. Since F contains only finitely
many formulas of the form d < 1/n, there is some real number ε that satisfies these
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formulas. We can then choose cI,a to be the probabilities determined by �σ n for n
sufficiently large so that, for each information set I for player i , σ n

i is an ε-best
response to �σ n

−i . That is, for the appropriate choice of n, if I is an information set for
player i , then (c)I,a is interpreted as σ n

i (I )(c).
Since every finite subset of� is satisfiable, by compactness, there is a model F for

�. The formulas in (a) force F to be an elementary extension of R; the formulas in
(c) ensure that the interpretation of the constants cI,a determines a strategy profile �σ ′;
the formulas in (b) guarantee that �σ and �σ ′ differ only infinitesimally; the formulas in
(d) guarantee that the interpretation ε of d is an infinitesimal; and the formulas in (e)
guarantee that σi is an ε-best response to �σ ′. This proves the desired result.

3.3 Proof of Theorem 1.4

The structure of the proof of Theorem 1.4 is almost identical to that of Theorem 1.2,
so here I just highlight the differences.

Suppose that there exists a completely mixed nonstandard strategy profile �σ ′ that
differs infinitesimally from �σ such that at each information set I for player i , σi is a
best response to �σ ′−i , conditional on having reached I . For each n, we can define a
formula ψn that can be used to define the strategy profile �σ n ; ψn has same form as the
formula ϕn in the proof of Theorem 1.2. We just need to add another finite collection of
conjunctions to the formula ϕ′

n saying that, at each information set I of player i , σi is a
best response to the strategy profile defined by the values xI,a . Again, the formula ϕn

is satisfied in F , the field which is the range of the nonstandard probabilities used in �σ ′
by interpreting xI,a as qI,a and xh as qh . Thus, ϕn is satisfied in R. The interpretation
of the variables xI,a in R determines the strategy �σ n .

For the converse, we again take an infinite collection of formulas and apply com-
pactness. The formulas are identical to those used in the proof of Theorem 1.2, except
that we do not need the constant d and the constraints on d described by the formulas
in (d), and we modify the formulas in (e) to say that σi is a best response to the strategy
profile defined by the probabilities cI,a , rather than just a d-best response.

3.4 A power series representation of nonstandard strategy profiles

As I said in the introduction, Theorem 1.2, 1.4, and 1.5 do not give any hint as to how
to think of the nonstandard strategy profiles �σ ′ that differ infinitesimally from �σ . In
this section, I show that they can be thought of in a way that is close in spirit to the
way trembles are typically presented in the literature; we can take all the probabilities
to lie in R

∗(ε).
As a first step, we need the following lemma. Note that a standard strategy in a

(finite) extensive-form game can be identified with a vector in R
N for an appropriate

choice of N , since the strategy is just characterized by a tuple of numbers describing the
probabilities of moves at each information set. Of course, the same is true for a normal-
form game as well. In the following lemma, I assume that N is chosen appropriately.
Recall that an analytic function is one that is locally given by a convergent power
series.
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Lemma 3.1 Suppose that �σ is a (standard) strategy profile.

(a) �σ is a sequential equilibrium of an extensive-form � with perfect recall iff there
exists analytic functions σ̄ : [0, 1] → R

N and f : [0, 1] → [0, 1] such that
σ̄ (0) = �σ , f (0) = 0, and, for all ε > 0, σ̄ (ε) is a completely mixed strategy
profile such that, for each player i and each information set I for player i , σ̄i (ε)

is an f (ε)-best response to σ̄−i (ε), conditional on having reached I .
(b) �σ is a perfect equilibrium of an extensive-form game � with perfect recall iff

there exists an analytic functions σ̄ : [0, 1] → R
N such that σ̄ (0) = �σ and, for

all ε > 0, σ̄ (ε) is a completely mixed strategy profile such that, for each player i
and each information set I of player i , σi is a best response to σ̄−i (ε) conditional
on having reached I .

(c) �σ is a proper equilibrium of a normal-form game � iff there exist analytic func-
tions σ̄ : [0, 1] → R

N and f : [0, 1] → [0, 1] such that σ̄ (0) = �σ , f (0) = 0,
and, for all ε > 0, σ̄ (ε) is a completely mixed strategy profile such that each
player i and all pure strategies s1 and s2 of player i , if EUi (s1, σ̄−i (ε) <

EUi (s2, σ̄−i (ε), then σ̄i (s1) < f (ε)σ̄i (s2).

Proof Sufficiency in all three cases is clear (for part (a), this depends on Proposi-
tion 1.1). For necessity, I first prove part (b). Let A be the set of completely mixed
strategy profiles �τ such that, for each player i and each information set I of player i ,
σi is a best response to �τ−i conditional on having reached I . A is easily seen to be a
semialgebraic set (i.e., a set defined by a finite sequence of polynomial equations and
inequalities, or the union of such sets); moreover, it is immediate from the definition of
perfect equilibrium that �σ is in the closure of A. The result now follows immediately
from the Nash Curve Selection Lemma (Bochnak et al. 1998, Proposition 8.1.13).

The modifications required to prove parts (a) and (c) are straightforward. For
(a), let A consist of pairs (�τ , ε) such that, for each player i and each information
set I for player i , τi is an ε-best response to �τ−i , conditional on having reached I ; for
(c), let A consist of pairs (�τ , ε) such that if EUi (s1, �τ−i (ε) < EUi (s2, �τ−i (ε), then
τi (s1) < ετi (s2). In both cases, (�σ , 0) is in the closure of A (for part (a), this fol-
lows from Proposition 1.1). Again, the result follows from the Nash Curve Selection
Lemma. 
�
Theorem 3.2 In Theorems 1.2, 1.4, and 1.5, the extension field F can be taken to be
R

∗(ε), and all the probabilities can be taken to be analytic functions of ε (i.e., power
series of the form

∑
i≥0 riε

i ).

Proof The fact that the probabilities can be taken to be analytic functions of ε in
Theorems 1.2, 1.4, and 1.5 is immediate from Lemma 3.1. We can simply take �σ ′ in
each of these theorems to be σ̄ (ε). Since σ̄ (0) = �σ , it follows that each component
of �σ ′ − �σ is a power series whose leading coefficient is 0, and hence is infinitesimal.
For (a) and (c), since f (0) = 0, f (ε) is an infinitesimal.

The fact that �σ is a sequential (resp., perfect; proper) equilibrium if the conditions in
Theorem 1.2 (resp., Theorem 1.4; Theorem 1.5) hold for a nonstandard mixed strategy
�σ whose probabilities are all analytic functions of ε is immediate from the proofs of
these theorems (where it is shown that these results hold as long as the probabilities
come from any elemenatry extension of R). 
�
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