
Int J Game Theory (2008) 37:371–386
DOI 10.1007/s00182-008-0123-8

ORIGINAL PAPER

Cournot–Walras equilibrium as a subgame perfect
equilibrium

Francesca Busetto · Giulio Codognato ·
Sayantan Ghosal

Accepted: 13 February 2008 / Published online: 1 August 2008
© Springer-Verlag 2008

Abstract In this paper, we investigate the problem of the strategic foundation of the
Cournot–Walras equilibrium approach. To this end, we respecify à la Cournot–Walras
the mixed version of a model of simultaneous, noncooperative exchange, originally
proposed by Lloyd S. Shapley. We show, through an example, that the set of the
Cournot–Walras equilibrium allocations of this respecification does not coincide with
the set of the Cournot–Nash equilibrium allocations of the mixed version of the original
Shapley’s model. As the nonequivalence, in a one-stage setting, can be explained by
the intrinsic two-stage nature of the Cournot–Walras equilibrium concept, we are led
to consider a further reformulation of the Shapley’s model as a two-stage game, where
the atoms move in the first stage and the atomless sector moves in the second stage.
Our main result shows that the set of the Cournot–Walras equilibrium allocations coin-
cides with a specific set of subgame perfect equilibrium allocations of this two-stage
game, which we call the set of the Pseudo–Markov perfect equilibrium allocations.
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372 F. Busetto et al.

1 Introduction

In this paper, we study the problem of the strategic foundation of the Cournot–Walras
equilibrium approach, initiated by Gabszewicz and Vial (1972), by comparing it with
the noncooperative market game approach, initiated by Shapley and Shubik (1977).

Gabszewicz and Vial (1972) is one of the first attempts to extend the analysis of
oligopolistic interaction proposed by Cournot to a general equilibrium framework.
These authors introduced the concept of Cournot–Walras equilibrium for an economy
with production, where firms are assumed to be “few” whereas consumers are assumed
to be “many.” Firms produce consumption goods and distribute them—according to
some preassigned shares—to consumers, who are therefore endowed with the bundles
of goods which they receive as shareholders of the firms plus some given initial bun-
dles. Consumers are then allowed to exchange their endowments among themselves
and the equilibrium prices resulting form these exchanges enable firms to determine
the profits associated with their production decisions. A Cournot–Walras equilibrium
is a noncooperative equilibrium of a game where the players are the firms, the strategies
are their production decisions and the payoffs are their profits.

The denomination of the equilibrium concept introduced by Gabszewicz and Vial
(1972) comes from the fact that firms behave “à la Cournot” in making their produc-
tion decisions while consumers behave “à la Walras” in exchanging goods. The line of
research initiated by these authors raised some theoretical problems (see also Roberts
and Sonnenschein 1977; Roberts 1980; Mas-Colell 1982; Dierker and Grodal 1986,
among others). Gabszewicz and Vial (1972) were already aware that their concept of
Cournot–Walras equilibrium depends on the rule chosen to normalize prices and that
profit maximization may not be a rational objective of the firms.

Codognato and Gabszewicz (1991) introduced a Cournot–Walras equilibrium con-
cept for exchange economies where “few” traders, called the oligopolists, behave
strategically “à la Cournot” in making their supply decisions and share the endow-
ment of a particular commodity while “many small” traders behave “à la Walras” and
share the endowments of all the other commodities. The oligopolists are allowed to
supply a fraction of their initial endowments. Taking prices as given, each oligopolist
is able to determine the income corresponding to his supply decision and to choose a
bundle of commodities which gives him the highest utility. All traders, behaving “à
la Walras,” are then allowed to exchange commodities among themselves until prices
clear all the markets. A Cournot–Walras equilibrium is a noncooperative equilibrium
of the game where the players are the oligopolists, the strategies are their supply
decisions and the payoffs are the utility levels they achieve through the exchange.

The line of research initiated by Codognato and Gabszewicz (1991) circumvented
the theoretical difficulties of Gabszewicz and Vial’s model by defining an equilib-
rium concept which does not depend on price normalization (see also Codognato and
Gabszewicz 1993; d’Aspremont et al. 1997; Gabszewicz and Michel 1997; Shitovitz
1997; Lahmandi-Ayed 2001; Bonnisseau and Florig 2003, among others).

Nevertheless, the whole Cournot–Walras equilibrium approach shares another fun-
damental problem, stressed, in particular, by Okuno et al. (1980). In fact, all the models
mentioned above do not explain why a particular agent behaves strategically rather
than competitively.
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Cournot–Walras equilibrium as a subgame perfect equilibrium 373

Taking inspiration from the cooperative analysis of oligopoly introduced by
Shitovitz (1973); Okuno et al. (1980) proposed a foundation of agents’ behavior that
considered the Cournot–Nash equilibria of a model of simultaneous, noncooperative
exchange between large traders, represented as atoms, and small traders, represented
by an atomless sector. Their model belongs to a line of research initiated by Shapley
and Shubik (1977) (see also Dubey and Shubik 1978; Postlewaite and Schmeidler
1978; Mas-Colell 1982; Amir et al. 1990; Peck et al. 1992; Dubey and Shapley 1994,
among others). In particular, Okuno et al. (1980) showed that large traders keep their
strategic power even when their behavior turns out to be competitive in the cooperative
framework considered by Shitovitz (1973).

Codognato (1995) and Codognato and Ghosal (2000b) generalized the analysis of
Okuno et al. (1980) by considering the mixed version of a model originally proposed
by Lloyd S. Shapley and subsequently analyzed by Sahi and Yao (1989). Within this
framework, traders send out bids, i.e., quantity signals, which indicate how much of
each commodity they are willing to offer for trade. Every bid of each commodity is
tagged by the name of some other commodity for which it has to be exchanged. The
pricing rule requires that a single price system, which equates the value of the total
amount of bids of any commodity to the value of the total amount available of that
commodity, is used to clear the markets.

In particular, Codognato (1995) compared this model with the mixed version of
the model in Codognato and Gabszewicz (1991) and provided an example showing
that the set of the Cournot–Nash equilibrium allocations may not coincide with the
set of the Cournot–Walras equilibrium allocations. There could be two reasons for
this result. The first is that the Cournot–Walras equilibrium concept has an intrin-
sic two-stage nature which cannot be reconciled with the one-stage Cournot–Nash
equilibrium of the Shapley’s model. The second is that, in the model by Codognato
and Gabszewicz (1991), the oligopolists behave à la Cournot in making their supply
decisions and à la Walras in exchanging commodities whereas, in the mixed version
of the Shapley’s model, the large traders always behave à la Cournot. This “twofold
behavior” of large traders represents in fact a further problem with the line of research
introduced by Codognato and Gabszewicz (1991).

In this paper, we provide a respecification à la Cournot–Walras of the mixed ver-
sion of the Shapley’s model. More precisely, we assume that large traders behave à la
Cournot in making bids, as in the Shapley’s model, while the atomless sector behaves
à la Walras. Given the atoms’ bids, prices adjust to equate the aggregate net bids to the
aggregate net demands of the atomless sector. Each nonatomic trader then obtains his
Walrasian demand whereas each large trader obtains final holdings determined as in the
Shapley’s model. A Cournot–Walras equilibrium is a noncooperative equilibrium of a
game where the players are the large traders, the strategies are their bids and the payoffs
are the utility levels they achieve through the exchange process described above. We
show that, in the one-stage setting, our respecification of the Shapley’s model gener-
ates a set of Cournot–Walras equilibrium allocations which does not coincide with the
set of the Cournot–Nash equilibrium allocations of the mixed version of the original
Shapley’s model. This confirms, within a different framework, the result obtained by
Codognato (1995). Since large traders always behave à la Cournot in both the respeci-
fication à la Cournot–Walras and the original version of the Shapley’s model, we could
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374 F. Busetto et al.

guess that our nonequivalence result is explained by the two-stage implicit nature of
the Cournot–Walras equilibrium.

For this reason, we introduce a reformulation of the Shapley’s model as a two-stage
game, where the atoms move in the first stage and the atomless sector moves in the sec-
ond stage, and proceed to check whether an equivalence result can be obtained in this
setup. In the Cournot–Walras model, different atoms’ strategies leading to the same
aggregate bids yield the same prices. On the other hand, in the two-stage Shapley’s
model, there can be subgames associated with atoms’ strategies summing to the same
aggregate bids that the atomless sector plays in different ways, so generating different
prices. In order to avoid this unreasonable behavior, we introduce a subgame perfect
equilibrium notion characterized by the fact that, in the second stage, the atomless
sector always uses the same strategies when the atoms send out bids which sum to
the same total amounts. We call it Pseudo–Markov perfect equilibrium for reasons
which will become apparent in Sect. 4, where we discuss the differences between
the two notions of Pseudo–Markov and Markov perfect equilibrium. Our main result
then follows. The set of the Cournot–Walras equilibrium allocations and the set of the
Pseudo–Markov perfect equilibrium allocations of the two-stage game coincide. This
theorem reconciles the Cournot–Walras approach with the line of research initiated
by Shapley and Shubik (1977) and makes this approach immune from the criticism
by Okuno et al. (1980), as it provides an endogenous foundation of strategic and
competitive behavior.

The paper is organized as follows. In Sect. 2, we introduce our reformulation of
the Cournot–Walras equilibrium concept for mixed exchange economies. In Sect. 3,
we compare the Cournot–Walras, Walras, and Cournot–Nash equilibrium concepts
for mixed exchange economies in a one-stage framework. In Sect. 4, we show our
equivalence theorem in a two-stage framework.

2 The model

We consider an exchange economy with large traders, represented as atoms, and small
traders, represented by an atomless sector. The set of traders is denoted by T = T0∪T1,
where T0 = [0, 1] is the set of small traders and T1 = {2, . . . , m + 1} is the set of
large traders. Following Codognato and Ghosal (2000b), it is possible to denote the
space of traders by the complete measure space (T, T , µ), where T is the σ -algebra
of all µ-measurable subsets of T and µ is the Lebesgue measure, when restricted
to TT0 = {D ∩ T0 : D ∈ T }, and the counting measure, when restricted to TT1 =
{D ∩ T1 : D ∈ T }. By Propositions 3 and 4 in Codognato and Ghosal (2000b), it
is straightforward to show that the measure space (T0, TT0 , µ) is atomless and the
measure space (T1, TT1 , µ) is purely atomic; moreover, for each t ∈ T1, the singleton
set {t} is an atom of the measure space (T, T , µ) (see, for instance, Aliprantis and
Border 1999, p. 357). A null set of traders is a set of Lebesgue measure 0. Null sets of
traders are systematically ignored throughout the paper. Thus, a statement asserted for
“all” traders, or “each” trader, or “each” trader in a certain set, is to be understood to
hold for all such traders except possibly for a null set of traders. The word “integrable”
is to be understood in the sense of Lebesgue. Given any function g defined on T , we
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Cournot–Walras equilibrium as a subgame perfect equilibrium 375

denote by 0g and 1g the restrictions of g to T0 and T1, respectively. Analogously, given
any correspondence G defined on T , we denote by 0G and 1G the restriction of G to
T0 and T1, respectively.

In the economy, there are l different commodities. A commodity bundle is a point
in Rl+. An assignment (of commodity bundles to traders) is an integrable function x:
T → Rl+. There is a fixed initial assignment w, satisfying the following assumptions.

Assumption 1 w(t) > 0, for all t ∈ T ,
∫

T0
w(t) dµ � 0.

An allocation is an assignment x for which
∫

T x(t) dµ = ∫
T w(t) dµ. The pref-

erences of each trader t ∈ T are described by an utility function ut : Rl+ → R,
satisfying the following assumptions.

Assumption 2 ut : Rl+ → R is continuous, strictly monotonic, strictly quasi-
concave, for all t ∈ T .

Assumption 3 u : T × Rl+ → R, given by u(t, x) = ut (x), is measurable.

A price vector is a vector p ∈ Rl+. According to Aumann (1966), we define, for
each p ∈ Rl+, a correspondence �p : T → P(Rl) such that, for each t ∈ T ,
�p(t) = {x ∈ Rl+ : px ≤ pw(t)}, and a correspondence � p : T → P(Rl) such that,
for each t ∈ T , � p(t) = {x ∈ Rl+ : for all y ∈ �p(t), ut (x) ≥ ut (y)}. A Walras
equilibrium is a pair (p∗, x∗), consisting of a price vector p∗ and an allocation x∗,
such that, for all t ∈ T , x∗(t) ∈ �p∗(t) ∩ � p∗(t).

In order to formulate the concept of Cournot–Walras equilibrium, we first focus on
the atomless sector’s behavior. By Assumption 2, for each p ∈ Rl++, it is possible
to define the small traders’ Walrasian demands as a function 0x(·, p) : T0 → Rl+
such that, for each t ∈ T0, 0x(t, p) = 0�p(t) ∩ 0� p(t). We are now able to show the
following proposition.

Proposition Under Assumptions 1–3, the function 0x(·, p) is integrable, for each
p ∈ Rl++.

Proof Let p ∈ Rl++. From Aumann (1966), we know that the function 0x(·, p) is a
Borel measurable function since the correspondences 0�p and 0� p are Borel measur-
able and 0x(t, p) = 0�p(t)∩0� p(t), for each t ∈ T0. Moreover, 0x(·, p) is integrably

bounded, since 0xi (t, p) ≤
∑l

j=1 p j w j (t)

pi , i = 1, . . . , l, for all t ∈ T0. But then, by

Theorem 2 in Aumann (1965), the function 0x(·, p) is integrable. 	

Consider now the atoms’ strategies. Let e ∈ Rl2

be a vector such that e =
(e11, e12, . . . , ell−1, ell). A strategy correspondence is a correspondence E : T1 →
P(Rl2

) such that, for each t ∈ T1, E(t) = {e ∈ Rl2 : ei j ≥ 0, i, j = 1, . . . , l; ∑l
j=1

ei j ≤ wi (t), i = 1, . . . , l}. A strategy selection is an integrable function e : T1 → Rl2

such that, for all t ∈ T1, e(t) ∈ E(t). For each t ∈ T1, ei j (t), i, j = 1, . . . , l, represents
the amount of commodity i that trader t offers in exchange for commodity j . Let E be
the set of all strategy selections. Moreover, let e \ e(t) be a strategy selection obtained
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by replacing e(t) in e with e(t) ∈ E(t). Finally, let π(e) denote the correspondence
which associates, with each e ∈ E , the set of the price vectors such that

∫

T0

0x
j
(t, p) dµ +

l∑

i=1

∫

T1

ei j (t) dµ
pi

p j
=

∫

T0

w j (t) dµ +
l∑

i=1

∫

T1

e j i (t) dµ,

j = 1, . . . , l. (1)

Assumption 4 For each e ∈ E , π(e) �= ∅ and π(e) ⊂ Rl++.

A price selection p(e) is a function which associates, with each e ∈ E , a price
vector p ∈ π(e) and is such that p(e′) = p(e′′) if

∫
T1

e′(t) dµ = ∫
T1

e′′(t) dµ.1

For each strategy selection e ∈ E , we define atoms’ final holdings as a function
1x(·, e(·), p(e)) : T1 → Rl+ such that

1x j (t, e(t), p(e)) = w j (t) −
l∑

i=1

e j i (t) +
l∑

i=1

ei j (t)
pi (e)
p j (e)

, (2)

for all t ∈ T1, j = 1, . . . , l. Given a strategy selection e ∈ E , taking into account the
structure of the traders’ measure space, the Proposition, and Eq. (1), it is straightfor-
ward to show that the function x(t) such that x(t) = 0x(t, p(e)), for all t ∈ T0, and
x(t) = 1x(t, e(t), p(e)), for all t ∈ T1, is an allocation.

At this stage, we are able to define the concept of Cournot–Walras equilibrium.

Definition 1 A pair (ẽ, x̃), consisting of a strategy selection ẽ and an allocation x̃
such that x̃(t) = 0x(t, p(ẽ)), for all t ∈ T0, and x̃(t) = 1x(t, ẽ(t), p(ẽ)), for all
t ∈ T1, is a Cournot–Walras equilibrium, with respect to a price selection p(e), if
ut (

1x(t, ẽ(t), p(ẽ))) ≥ ut (
1x(t, e(t), p(ẽ \ e(t)))), for all t ∈ T1 and for all e(t) ∈

E(t).

3 Cournot–Walras, Walras, and Cournot–Nash equilibrium

In this section, we begin with investigating the relationship between the concepts of
Cournot–Walras and Walras equilibrium for the mixed exchange economy defined
above. Next, we compare the Cournot–Walras equilibrium concept introduced in
this paper with the Cournot–Walras equilibrium concept proposed by Codognato and
Gabszewicz (1991). Finally, we introduce the mixed version of the original Shapley’s
model and the related notion of Cournot–Nash equilibrium and we analyze the rela-
tionship between the concepts of Cournot–Walras and Cournot–Nash equilibrium in
a one-shot structure.

1 Assumption 4 is quite strong. In our framework, it guarantees that the price-correspondence is non-
empty and that the atomless sector’s demand is well-defined. Analogous strong assumptions on the price-
correspondence or the price selection are used in all the previous models belonging to the Cournot–Walras
approach.
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Cournot–Walras equilibrium as a subgame perfect equilibrium 377

Within a cooperative context, Shitovitz (1973) showed that, counterintuitively, the
core allocations of a mixed exchange economy are Walrasian when the atoms have the
same endowments and preferences (but not necessarily the same size). The following
example shows that this unsatisfying result can be avoided within a noncooperative
setting. It analyzes an exchange economy with two identical atoms facing an atom-
less continuum of traders and proves that, in this economy, there is a Cournot–Walras
equilibrium allocation which is not Walrasian.

Example 1 Consider the following specification of an exchange economy satisfying
Assumptions 1–4, where l = 2, T1 = {2, 3}, T0 = [0, 1], w(t) = (1, 0), ut (x) =
lnx1 + lnx2, for all t ∈ T1, w(t) = (1, 0), ut (x) = lnx1 + lnx2, for all t ∈ [0, 1

2 ],
w(t) = (0, 1), ut (x) = lnx1 + lnx2, for all t ∈ [ 1

2 , 1]. For this economy, there is
a Cournot–Walras equilibrium allocation which does not correspond to any Walras
equilibrium.

Proof The only symmetric Cournot–Walras equilibrium is the pair (ẽ, x̃), where

ẽ12(2) = ẽ12(3) = 1+√
13

12 , x̃1(2) = x̃1(3) = 11+√
13

12 , x̃2(2) = x̃2(3) = 1+√
13

20+8
√

13
,

x̃1(t) = 1
2 , x̃2(t) = 3

10+4
√

13
, for all t ∈ [0, 1

2 ], x̃1(t) = 5+2
√

13
6 , x̃2(t) = 1

2 , for all

t ∈ [ 1
2 , 1]. On the other hand, the only Walras equilibrium of the economy considered

is the pair (x∗, p∗), where x∗1(2) = x∗1(3) = 1
2 , x∗2(2) = x∗2(3) = 1

10 , x∗1(t) = 1
2 ,

x∗2(t) = 1
10 , for all t ∈ [0, 1

2 ], x∗1(t) = 5
2 , x∗2(t) = 1

2 , for all t ∈ [ 1
2 , 1], p∗ = 1

5 . 	

The model introduced in Sect. 2 can be viewed as a respecification à la Cournot–

Walras of a noncooperative market game first proposed by Lloyd S. Shapley and next
analyzed by Sahi and Yao (1989) and Codognato and Ghosal (2000a). Here, we intro-
duce a mixed version of the original Shapley’s model, where the space of traders is as
in Sect. 2.

We first consider traders’ strategy decisions. Let b ∈ Rl2
be a vector such that

b = (b11, b12, . . . , bll−1, bll). A strategy correspondence is a correspondence B :
T → P(Rl2

) such that, for each t ∈ T , B(t) = {b ∈ Rl2 : bi j ≥ 0, i, j =
1, . . . , l; ∑l

j=1 bi j ≤ wi (t), i = 1, . . . , l}. A strategy selection is an integrable

function b : T → Rl2
, such that, for all t ∈ T , b(t) ∈ B(t). For each t ∈ T ,

bi j (t), i, j = 1, . . . , l, represents the amount of commodity i that trader t offers in
exchange for commodity j . Given a strategy selection b, we define the aggregate
matrix B̄ as B̄ = (

∫
T bi j (t) dµ). Moreover, we denote by b \ b(t) a strategy selection

obtained by replacing b(t) in b with b(t) ∈ B(t). Then, we are able to introduce the
following definition (see Sahi and Yao 1989).

Definition 2 Given a strategy selection b, a price vector p is market clearing if

p ∈ Rl++,

l∑

i=1

pi b̄i j = p j

(
l∑

i=1

b̄ j i

)

, j = 1, . . . , l. (3)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar multiple, price
vector p satisfying (3) if and only if B̄ is irreducible. Denote by p(b) the function
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which associates, with each strategy selection b such that B̄ is irreducible, the unique,
up to a scalar multiple, market clearing price vector p. Given a strategy selection b such
that p is market clearing and unique, up to a scalar multiple, consider the assignment
determined as follows:

x j (t, b(t), p(b)) = w j (t) −
l∑

i=1

b j i (t) +
l∑

i=1

bi j (t)
pi (b)

p j (b)
,

for all t ∈ T , j = 1, . . . , l. It is easy to verify that this assignment is an allocation.
Given a strategy selection b, the traders’ final holdings are

x j (t) = x j (t, b(t), p(b)) if p is market clearing and unique,

x j (t) = w j (t) otherwise,

for all t ∈ T , j = 1, . . . , l.

This reformulation of the Shapley’s model for mixed exchange economies allows
us to define the following concept of Cournot–Nash equilibrium (see Codognato and
Ghosal 2000b).

Definition 3 A strategy selection b̂ such that ¯̂B is irreducible is a Cournot–Nash equi-
librium if

ut (x(t, b̂(t), p(b̂))) ≥ ut (x(t, b(t), p(b̂ \ b(t)))),

for all t ∈ T and for all b(t) ∈ B(t).

Codognato and Ghosal (2000a) showed that, in limit exchange economies, the set
of the Cournot–Nash equilibrium allocations and the set of the Walras equilibrium
allocations of the Shapley’s model coincide. On the other hand, Okuno et al. (1980)
showed that the Cournot–Nash equilibrium allocations of a mixed exchange economy
with two commodities are not Walrasian even under those circumstances where the
core turns out to be competitive (see Shitovitz 1973). It can be shown that an analo-
gous result holds for the Shapley’s model introduced in this section by simply verifying
that the allocation corresponding to a Cournot–Walras equilibrium in Example 1 also
corresponds to a Cournot–Nash equilibrium as in Definition 3.

In effect, if we consider the mixed version of the original Shapley’s model, all trad-
ers behave strategically but those belonging to the atomless sector have a negligible
influence on prices. The strategic behavior of the atomless sector could consequently
be interpreted as competitive behavior. On the other hand, in our version à la Cournot–
Walras of the Shapley’s model, the atomless sector is supposed to behave competitively
while the atoms have strategic power. Therefore, it seems to be reasonable to conjec-
ture that the set of the Cournot–Walras equilibrium allocations of our variant of the
Shapley’s model coincides with the set of the Cournot–Nash equilibrium allocations
of the mixed version of the original Shapley’s model. This conjecture turns out to be
false, as is shown by the following example.
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Cournot–Walras equilibrium as a subgame perfect equilibrium 379

Example 2 Consider the following specification of an exchange economy satisfying
Assumptions 1–4, where l = 2, T1 = {2, 3}, T0 = [0, 1], w(t) = (1, 0), ut (x) =
lnx1 + lnx2, for all t ∈ T1, w(t) = (1, 0), ut (x) = lnx1 + lnx2, for all t ∈ [0, 1

2 ],
w(t) = (0, 1), ut (x) = x1 + lnx2, for all t ∈ [ 1

2 , 1]. For this economy, there is a
Cournot–Walras equilibrium allocation which does not correspond to any Cournot–
Nash equilibrium.

Proof The only symmetric Cournot–Walras equilibrium of the economy considered

is the pair (ẽ, x̃), where ẽ12(2) = ẽ12(3) = −1+√
37

12 , x̃1(2) = x̃1(3) = 11−√
37

12 ,

x̃2(2) = x̃2(3) = −1+√
37

14+4
√

37
, x̃1(t) = 1

2 , x̃2(t) = 3
7+2

√
37

, for all t ∈ [0, 1
2 ], x̃1(t) =

1+2
√

37
6 , x̃2(t) = 6

7+2
√

37
, for all t ∈ [ 1

2 , 1]. On the other hand, the only symmetric

Cournot–Nash equilibrium is the strategy selection b̂, where b̂12(2) = b̂12(3) =
1+√

13
12 , b̂12(t) = 1

2 , for all t ∈ [0, 1
2 ], b̂21(t) = 5+2

√
13

11+2
√

13
for all t ∈ [ 1

2 , 1], which gen-

erates the allocation x̂1(2) = x̂1(3) = 11+√
13

12 , x̂2(2) = x̂2(3) = 1+√
13

22+4
√

13
, x̂1(t) = 1

2 ,

x̂2(t) = 3
11+2

√
13

, for all t ∈ [0, 1
2 ], x̂1(t) = 5+2

√
13

6 , x̂2(t) = 6
11+2

√
13

, for all

t ∈ [ 1
2 , 1], where x̂(t) = x(t, b̂, p(b̂)), for all t ∈ T . 	


4 Cournot–Walras equilibrium as a subgame perfect equilibrium

Example 2 shows the nonequivalence between Cournot–Walras and Cournot–Nash
equilibrium allocations in mixed exchange economies. As this nonequivalence holds
in a one-stage game, we are led to consider a multi-stage game. In particular, given that
the Cournot–Walras equilibrium concept has an intrinsic two-stage flavor, it seems to
be natural to analyze a two-stage game where the atoms move in the first stage and the
atomless sector moves in the second stage, after observing the first stage atoms’ moves.
Therefore, we consider the same exchange economy as in Sect. 3 and associate with
it a two-stage game with observed actions (see Fudenberg and Tirole 1991), which
represents a sequential reformulation of the mixed version of the Shapley’s model. We
provide a theorem showing that the set of the Cournot–Walras equilibrium allocations
coincides with the set of a specific set of subgame perfect equilibrium allocations
which we call the Pseudo–Markov perfect equilibrium allocations of this game.

The game is played in the two stages 0 and 1. Consider now the traders’ actions. Let
a ∈ Rl2

be a vector such that a = (a11, a12, . . . , all−1, all). We denote by A0 an action
correspondence in stage 0, defined on T , such that A0(t) is the singleton “do nothing,”
for all t ∈ T0, and A0(t) = {a ∈ Rl2 : ai j ≥ 0, i, j = 1, . . . , l; ∑l

j=1 ai j ≤ wi (t),

i = 1, . . . , l}, for all t ∈ T1. We denote by A1 an action correspondence in stage 1,
defined on T , such that A1(t) = {a ∈ Rl2 : ai j ≥ 0, i, j = 1, . . . , l; ∑l

j=1 ai j ≤
wi (t), i = 1, . . . , l}, for all t ∈ T0, and A1(t) is the singleton “do nothing,” for all
t ∈ T1. An action selection in stage 0 is a function a0, defined on T , such that a0(t) ∈
A0(t), for all t ∈ T , where 1a0 is integrable. For each t ∈ T1, 1a0(t), i, j = 1, . . . , l,
represents the amount of commodity i that trader t offers in exchange for commodity j .
An action selection in stage 1 is a function a1, defined on T , such that a1(t) ∈ A1(t),
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for all t ∈ T , where 0a1 is integrable. For each t ∈ T0, 0a1(t), i, j = 1, . . . , l,
represents the amount of commodity i that trader t offers in exchange for commo-
dity j . Let S0 and S1 be the sets of all action selections in stage 0 and stage 1,
respectively, and let H0 and H1 be the sets of all stage 0 and stage 1 histories, respec-
tively, where H0 = ∅ and H1 = S0. In addition, let H2 = S0 × S1 be the set of all
final histories. Given a final history h2 = (a0, a1), we define the aggregate matrix Ā as
Ā = (āi j ) = (

∫
T0

0a1
i j (t) dµ+∫

T1
1a0

i j (t) dµ). Then, we can introduce the following
definition (see Sahi and Yao 1989).

Definition 4 Given a final history h2 = (a0, a1), a price vector p is market clearing if

p ∈ Rl++,

l∑

i=1

pi āi j = p j

(
l∑

i=1

ā j i

)

, j = 1, . . . , l. (4)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar multiple, price
vector p satisfying (4) if and only if Ā is irreducible. Denote by p(h2) the function
which associates, to each final history h2 = (a0, a1) such that Ā is irreducible, the
unique, up to a scalar multiple, market clearing price vector p. Given a final history
h2 = (a0, a1) such that p is market clearing and unique, up to a scalar multiple,
consider the assignment determined as follows:

x j (t, h2(t), p(h2)) = w j (t) − ∑l
i=1

0a1
j i (t) + ∑l

i=1
0a1

i j (t)
pi (h2)

p j (h2)
, for all t ∈ T0,

x j (t, h2(t), p(h2)) = w j (t) − ∑l
i=1

1a0
j i (t) + ∑l

i=1
1a0

i j (t)
pi (h2)

p j (h2)
, for all t ∈ T1,

(5)
j = 1, . . . , l. It is easy to verify that this assignment is an allocation. Finally, given a
final history h2 = (a0, a1), the traders’ final holdings are

x j (t) = x j (t, h2(t), p(h2)) if p is market clearing and unique,
x j (t) = w j (t) otherwise,

(6)

for all t ∈ T , j = 1, . . . , l.

Now, we define a strategy profile, s, as a sequence of functions {s0, s1}, where s0 is
defined on T × H0 and is such that s0(t, h0) ∈ A0(t), for all t ∈ T , and s0(·, h0) ∈ S0;
s1 is defined on T × H1 and is such that, given h1 ∈ H1, s1(t, h1) ∈ A1(t), for all
t ∈ T , s1(·, h1) ∈ S1. For each t ∈ T , let s(t, ·) denote the sequence of functions
{s0(t, ·), s1(t, ·)}, where s0(t, ·) : H0 → A0(t) and s1(t, ·) : H1 → A1(t). We denote
by s\s(t, ·) = {s0\s0(t, ·), s1\s1(t, ·)} a strategy profile obtained by replacing s0(t, ·)
in s0 and s1(t, ·) in s1, respectively, with the functions s0(t, ·) and s1(t, ·). With a little
abuse of notation, given a strategy profile s, we denote by 1s0 and 0s1 the functions
defined, respectively, on T1 and T0, such that 1s0(t) = 1a0(t) = s0(t, h0), for all
t ∈ T1, and 0s1(t) = 0a1(t) = s1(t, h1), for all t ∈ T0, with h1 = s0(·, h0). In
addition, given a strategy profile s, we define the aggregate matrix S̄ as S̄ = (s̄i j ) =
(
∫

T0
0s1

i j (t) dµ + ∫
T1

1s0
i j (t) dµ). Then, given a strategy profile s such that S̄ is

irreducible, we denote by p(s) the function obtained by replacing, in Eq. (4), āi j with
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s̄i j , i, j = 1, . . . , l. Given a strategy profile s such that p is market clearing and unique,
up to a scalar multiple, the allocation x(t, s(t), p(s)) is obtained by replacing, in (5),
h2 with s and 0a1, 1a0, respectively, with 0s1, 1s0. Finally, the traders’ final holdings
are determined as in (6), by replacing h2 with s.

We proceed now to consider the subgame represented by the stage 1 of the game
outlined above, given the history h1 ∈ H1. Given a strategy profile s, the strategy selec-
tion s|h1 is a function, defined on T , such that, for each h1 ∈ H1, s|h1(t) = s1(t, h1),
for all t ∈ T . In addition, given a history h1 ∈ H1 and a strategy profile s, we define
the aggregate matrix S̄|h1 as S̄|h1 = (s̄i j |h1) = (

∫
T0

0si j (t)|h1 dµ+∫
T1

1h1
i j (t) dµ).

Then, given a history h1 ∈ H1, and a strategy profile s such that S̄|h1 is irreducible,
we denote by p(s|h1) the function obtained by replacing, in Eq. (4), āi j with s̄i j |h1,
i, j = 1, . . . , l. Given a history h1 ∈ H1 and a strategy profile s such that p is market
clearing and unique, up to a scalar multiple, the allocation x(t, s|h1(t), p(s|h1)) is
obtained by replacing, in (5), h2 by s|h1 and 0a1, 1a0, respectively, with 0s|h1, 1h1.
The traders’ final holdings are determined as in (6), by replacing h2 with s|h1. Finally,
given a history h1 ∈ H1, we denote by s|h1 \ s(t)|h1 a strategy selection obtained by
replacing s(t)|h1 in s|h1 with s(t)|h1 ∈ A1(t).

We are now able to define the concept of subgame perfect equilibrium for the
two-stage game above.

Definition 5 A strategy profile ŝ such that ¯̂S|h1 is irreducible, for each h1 ∈ H1, is a
subgame perfect equilibrium if, for all t ∈ T ,

ut (x(t, ŝ(t), p(ŝ))) ≥ ut (x(t, s(t, ·), p(ŝ \ s(t, ·)))),

for all possible sequences of functions functions s(t, ·), and, for each h1 ∈ H1,

ut (x(t, ŝ|h1(t), p(ŝ|h1))) ≥ ut (x(t, s(t)|h1, p(ŝ|h1 \ s(t)|h1))),

for all t ∈ T and for all s(t)|h1 ∈ A1(t).

At this point, we have to deal with the following problem. In a Cournot–Walras
equilibrium, different atoms’ strategies leading to the same aggregate bids generate
the same prices. On the other hand, in a subgame perfect equilibrium of the two-
stage Shapley’s model, nothing assures that the atomless sector reacts the same way
to different histories leading to the same total bids—thereby generating the same
prices—even though atoms’ bids affect payoffs only in the aggregate. In order to
avoid this unreasonable behavior, we introduce a subgame perfect equilibrium notion
characterized by the fact that, in the second stage, the atomless sector uses strategies
invariant with respect to different atoms’ bids summing to the same total amounts. To
this purpose, we denote by H1�

(·) the partition of H1 such that, for each h1′ ∈ H1,
H1�

(h1′
) = {h1′′ ∈ H1 : ∫

T1
h1′′

(t) dµ = ∫
T1

h1′
(t) dµ}. H1�

is a sufficient partition
of the set of stage 1 histories, although it may not be the coarsest sufficient partition
required to define a Markov perfect equilibrium (see Fudenberg and Tirole 1991;
Maskin and Tirole 2001). For this reason, we call our equilibrium notion Pseudo–
Markov perfect equilibrium. It can be formalized as follows.
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Definition 6 A subgame perfect equilibrium ŝ is a Pseudo–Markov perfect equilib-
rium if, for all t ∈ T , ŝ1(t, h1′

) = ŝ1(t, h1′′
), whenever h1′′ ∈ H1�

(h1′
).

In order to prove our equivalence theorem, we shall introduce a final assumption
on the endowments and preferences of the atomless sector. We denote by L the set
of commodities {1, . . . , l} and by Rl

+ j>0 ⊂ Rl+ the set of vectors in Rl+, whose j-th
component is strictly positive. For each i ∈ L , we consider the set Ti = {t ∈ T0 :
wi (t) > 0}. Clearly, by Assumption 1, µ(Ti ) > 0. We say that the commodities
i, j ∈ L stand in the relation C if there is a measurable subset T ′

i of Ti , with µ(T ′
i ) > 0,

such that, for each trader t ∈ T ′
i , {x ∈ Rl+ : ut (x) = ut (y)} ⊂ Rl

+ j>0, for all

y ∈ Rl++. In addition, we use the following definition provided by Codognato and
Ghosal (2000a), to whom we refer for further details.

Definition 7 The set of commodities L is said to be a net if {〈i, j〉 : iC j} �= ∅ and any
pair of distinct vertices, i and j , of the directed graph DL(L , C) are connected by a path.

Then, we can introduce this final assumption.

Assumption 5 2 The set of commodities L is a net.

We are now ready to state our equivalence theorem.

Theorem Under Assumptions 1–5, (i) if (ẽ, x̃) is a Cournot–Walras equilibrium
with respect to the price selection p(e), there is a Pseudo–Markov perfect equilib-
rium s̃ such that x(t, p(ẽ)) = x(t, s̃(t), p(s̃)), for all t ∈ T ; (ii) if ŝ is a Pseudo–
Markov perfect equilibrium, there are a strategy selection ê and a price selection p(e)
such that the pair (ê, x̂), where x̂(t) = x(t, ŝ(t), p(ŝ)) = 0x(t, p(ê)), for all t ∈ T0,
and x̂(t) = x(t, ŝ(t), p(ŝ)) = 1x(t, ê(t), p(ê)), for all t ∈ T1, is a Cournot–Walras
equilibrium with respect to the price selection p(e).

Proof (i) Let (ẽ, x̃) be a Cournot–Walras equilibrium with respect to the price selec-
tion p(e). Let p(h1) denote a function obtained by replacing, in the price selection
p(e), each strategy selection e with a history h1 such that h1(t) = e(t), for all t ∈ T1.
Consider now a history h1 ∈ H1. As, by assumption, p(h1) � 0, Assumption 2
implies that p(h1)0x(t, p(h1)) = p(h1)w(t), for all t ∈ T0. But then, by Lemma 5
in Codognato and Ghosal (2000a), for all t ∈ T0, there exist λ j ≥ 0, j = 1, . . . , l,∑l

j=1 λ j = 1, such that

0x j (t, p(h1)) = λ j

∑l
j=1 p j (h1)w j (t)

p j (h1)
, j = 1, . . . , l.

2 This is the weakest assumption which allows all traders to have boundary endowments and indifference
curves that intersect the boundary of the consumption set, and which guarantees that, with an atomless
continuum of traders, the set of the Cournot–Nash equilibrium allocations of the Shapley’s model and the
set of the Walras equilibrium allocations coincide (for a proof, see Codognato and Ghosal 2000a). It is
related to the irreducibility assumption on traders’ endowments and preferences used by Gale (1960) in the
more specific framework of linear exchange economies.
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Define now a function λ : T0 → Rl+ such that λ j (t) = λ j (t), j = 1, . . . , l, for all
t ∈ T0. Let s̃|h1 denote a function, defined on T , such that s̃(t)|h1 ∈ A1(t), for all
t ∈ T , and 0s̃i j (t)|h1 = wi (t)λ j (t), i, j = 1, . . . , l, for all t ∈ T0. It is straightforward
to show that the function 0s̃|h1 is integrable. We want now to show that the matrix
¯̃S|h1 = (¯̃si j |h1) = (

∫
T0

0s1
i j (t)|h1 dµ+∫

T1
1h1

i j (t) dµ) is irreducible. Let i, j ∈ L be
two commodities which stand in the relation C . Consider a trader t ∈ T ′

i . First, observe
that p(h1)w(t) > 0 since, by assumption, p(h1) � 0. This, together with Assump-
tion 2, implies that 0x(t, p(h1)) > 0 and, given that the commodities i and j stand in
the relation C , that 0x j (t, p(h1)) > 0. Consider now the matrix S̄L |h1 = (s̄L

i j |h1) such

that s̄L
i j |h1 = ∫

T ′
i

wi (t)λ j (t) dµ, if iC j , and s̄L
i j |h1 = 0, otherwise. If iC j , s̄L

i j |h1 > 0,

since, for each t ∈ T ′
i , wi (t) > 0 and λ j (t) > 0. But then, the matrix ¯̃S|h1 is irre-

ducible as it is such that ¯̃si j |h1 ≥ s̄L
i j |h1, i, j = 1, . . . , l, and the matrix S̄L |h1, by

Assumption 5 and by the argument used in the proof of Theorem 2 in Codognato and
Ghosal (2000a), is irreducible. Since it is easy to verify that

0x j (t, p(h1)) = w j (t) −
l∑

i=1

s̃ j i (t)|h1 +
l∑

i=1

s̃i j (t)|h1 pi (h1)

p j (h1)
,

for all t ∈ T0, j = 1, . . . , l, and as p(h1) satisfies Eq. (1), we have

∫

T0

w j (t) dµ −
l∑

i=1

∫

T0

s̃ j i (t)|h1 dµ +
l∑

i=1

∫

T0

s̃i j (t)|h1 dµ
pi (h1)

p j (h1)

+
l∑

i=1

∫

T1

h1
i j (t) dµ

pi (h1)

p j (h1)
=

∫

T0

w j (t) dµ +
l∑

i=1

∫

T1

h1
j i (t) dµ,

j = 1, . . . , l. This implies that

l∑

i=1

pi (h1)¯̃si j |h1 = p j (h1)

(
l∑

i=1

¯̃s j i |h1

)

, j = 1, . . . , l,

and, consequently, by Eq. (4), that p(h1) = p(s̃|h1). It is then straightforward to
verify that 0x j (t, p(h1)) = x j (t, s̃(t)|h1, p(s̃|h1)), for all t ∈ T0, j = 1, . . . , l,
1x j (t, h1(t), p(h1)) = x j (t, s̃(t)|h1, p(s̃|h1)), for all t ∈ T1, j = 1, . . . , l. It remains
now to show that no trader t ∈ T , in stage 1, has an advantageous deviation from
s̃(t)|h1. This is trivially true for all t ∈ T1. Suppose now that there exist a trader t ∈ T0
and an action s(t)|h1 ∈ A1(t) such that

ut (x(t, s(t)|h1, p(s̃|h1 \ s(t)|h1))) > ut (x(t, s̃(t)|h1, p(s|h1))).

Since, as an immediate consequence of Definition 4, p(s̃|h1 \ s(t)|h1) = p(s̃|h1), the
last inequality implies that
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ut (x(t, s(t)|h1, p(h1))) > ut (
0x(t, p(h1))).

As p(h1)x(t, s(t)|h1, p(h1)) = p(h1)w(t), this implies that 0x(t, p(h1)) �∈ �p(h1)(t)

∩� p(h1)(t), a contradiction. Let now h̃1 be a history such that h̃1(t) = ẽ(t), for all

t ∈ T1, and let s̃ be a strategy profile such that, for all t ∈ T , s̃0(t, h0) = h̃1(t)
and s̃1(t, h1) = s̃(t)|h1, for each h1 ∈ H1. Then, p(ẽ) = p(s̃) and 0x j (t, p(ẽ)) =
x j (t, s̃(t), p(s̃)), for all t ∈ T0, j = 1, . . . , l, 1x j (t, ẽ(t), p(ẽ)) = x j (t, s̃(t), p(s̃)),
for all t ∈ T , j = 1, . . . , l. Moreover, since p(h1) is a price selection, it follows
that p(h1′

) = p(h1′′
) whenever h1′′ ∈ H1�

(h1′
). This implies that, for all t ∈ T ,

s1(t, h1′
) = s1(t, h1′′

), whenever h1′′ ∈ H1�
(h1′

). In order to show that s̃ is a Pseudo–
Markov perfect equilibrium, it remains now to show that no trader t ∈ T has an
advantageous deviation from s̃. As, for each trader t ∈ T0, p(s̃ \ s(t, ·)) = p(s̃|h̃1 \
s(t, h̃1)|h̃1), it is straightforward consequence of the previous discussion that no trader
t ∈ T0 has an advantageous deviation from s̃. Suppose that there exists a trader t ∈ T1
and a sequence of functions s(t, ·) such that

ut (x(t, s̃ \ s(t, ·), p(s̃ \ s(t, ·)))) > ut (x(t, s̃(t), p(s̃))).

Let h̃1 \ h(t) be a history obtained by replacing h̃1(t) in h̃1 with h(t) = s0(t, h0) and
let ẽ \ e(t) be a strategy selection obtained by replacing ẽ(t) in ẽ by e(t) = s0(t, h0).
As p(ẽ \ e(t)) = p(s̃|h̃1 \ h(t)) = p(s̃ \ s(t, ·)), the last inequality implies that

ut (
1x(t, e(t), p(ẽ \ e(t)))) = ut (x(t, s(t, ·), p(s̃ \ s(t, ·)))) >

ut (x(t, s̃(t), p(s̃))) = ut (
1x(t, ẽ(t), p(ẽ))),

a contradiction. (ii) Let ŝ be a Pseudo–Markov perfect equilibrium. Consider a history
h1 ∈ H1. First, it is straightforward to show that, for all t ∈ T0, p(ŝ|h1)x(t, ŝ|h1(t),
p(ŝ|h1)) = p(ŝ|h1)w(t). We want now to show that, for all t ∈ T0, x(t, ŝ|h1(t),
p(ŝ|h1)) = 0x(t, p(ŝ|h1)). Suppose that this is not the case for a trader t ∈ T0. Then,
by Assumption 2, there is a bundle z ∈ {x ∈ Rl+ : p(ŝ|h1)x = p(ŝ|h1)w(t)} such that
ut (z) > ut (x(t, ŝ|h1(t), p(ŝ|h1)). By Lemma 5 in Codognato and Ghosal (2000a),
there exist λ j ≥ 0, j = 1, . . . , l,

∑l
j=1 λ j = 1, such that

z j = λ j

∑l
j=1 p j (ŝ|h1)w j (t)

p j (ŝ|h1)
, j = 1, . . . , l.

Let si j (t) = wi (t)λ j , i, j = 1, . . . , l. Since, as an immediate consequence of Defini-
tion 4, p(ŝ|h1) = p(ŝ|h1 \ s(t)|h1), it is easy to verify that

z j = x j (t, s(t), p(ŝ|h1 \ s(t)|h1)), j = 1, . . . , l.

But then, we have

ut (x(t, s(t), p(ŝ|h1 \ s(t)|h1))) = ut (z) > ut (x(t, ŝ|h1(t), p(ŝ|h1))),
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a contradiction. As the function x(·, h1(·), p(ŝ|h1)) is an allocation, we obtain that

∫

T0

0x
j
(t, p(ŝ|h1)) dµ+

l∑

i=1

∫

T1

h1
i j (t) dµ

pi (ŝ|h1)

p j (ŝ|h1)
=

∫

T0

w j (t) dµ+
l∑

i=1

∫

T1

h1
j i (t) dµ.

(7)

Let now p(e) be a function which associates, with each e, the price vector p(ŝ|h1),
where h1 is such that h1(t) = e(t), for all t ∈ T1. First, let us notice that, since ŝ is a
Pseudo–Markov perfect equilibrium, we have p(ŝ|h1′

) = p(ŝ|h1′′
) if

∫
T1

h1′
(t) dµ =

∫
T1

h1′′
(t) dµ and then p(e′) = p(e′′), if

∫
T1

e′(t) dµ = ∫
T1

e′′(t) dµ. Moreover, if

we replace, in Eq. (7), the history h1 with a strategy selection e such that e(t) =
h1(t), for all t ∈ T1, and the price p(ŝ|h1) with the price p(e), it follows immedi-
ately that the function p(e) satisfies Eq. (1). Therefore, we can conclude that p(e)
is a price selection. It also follows immediately from the above argument that, for
each history h1 ∈ H1, x̂(t) = x(t, ŝ(t), p(ŝ)) = 0x(t, p(ê)), for all t ∈ T0, and
x̂(t) = x(t, ŝ(t), p(ŝ)) = 1x(t, ê(t), p(ê)), for all t ∈ T1, where e is a strategy
selection such that e(t) = h1(t), for all t ∈ T1. Let now ĥ1 be a history such that
ĥ1(t) = ŝ0(t, h0), for all t ∈ T , and let ê be a strategy selection such that ê(t) = ĥ1(t),
for all t ∈ T1. As p(ŝ) = p(ŝ|ĥ1), x̂(t) = x(t, ŝ(t), p(ŝ)) = 0x(t, p(ê)), for all t ∈ T0,
and x̂(t) = x(t, ŝ(t), p(ŝ)) = 1x(t, ê(t), p(ê)), for all t ∈ T1. But then, in order to
show that the pair (ê, x̂), where x̂(t) = x(t, ŝ(t), p(ŝ)) = 0x(t, p(ê)), for all t ∈ T0,
and x̂(t) = x(t, ŝ(t), p(ŝ)) = 1x(t, ê(t), p(ê)), for all t ∈ T1, is a Cournot–Walras
equilibrium with respect to the price selection p(e), it remains to show that no trader
t ∈ T1 has an advantageous deviation from the strategy selection ê. Suppose, on the
contrary, that there exists a trader t ∈ T1 and a strategy e(t) ∈ E(t) such that

ut (
1x(t, e(t), p(ê \ e(t)))) > ut (

1x(t, ê(t), p(ê))).

Let ĥ1 \ h(t) be a history obtained by replacing ĥ1(t) in ĥ1 with h(t) = e(t) and let
ŝ \ s(t) be a strategy profile obtained by replacing ŝ0(t, ·) in ŝ0 with s0(t) = h(t). As
p(ŝ \ s(t)) = p(ŝ|ĥ1 \ h(t)) = p(ê \ e(t)), the last inequality implies that

ut (
1x(t, s(t), p(ŝ \ s(t)))) = ut (

1x(t, e(t), p(ê \ e(t)))) >

ut (
1x(t, ê(t), p(ê))) = ut (

1x(t, ŝ(t), p(ŝ))),

a contradiction. 	
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