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Abstract The value of a finite-state two-player zero-sum stochastic game with
limit-average payoff can be approximated to within ε in time exponential in a
polynomial in the size of the game times polynomial in logarithmic in 1/ε, for all ε > 0.
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1 Introduction

A zero-sum stochastic game is a repeated game over a finite state space, played by
two players. Each player has a non-empty set of actions available at every state, and
in each round, each player chooses an action from the set of available actions at the
current state simultaneously with and independent from the other player. The transition
function is probabilistic, and the next state is determined by a probability distribution
depending on the current state and the actions chosen by the players. In each round,
player 1 gets (and player 2 loses) a reward depending on the current state and the
actions chosen by the players. The players are informed of the history of the play
consisting of the sequence of states visited and the actions of the players played so
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220 K. Chatterjee et al.

far in the play. A strategy for a player is a recipe to extend the play: given a finite
sequence of states and pairs of actions representing the history of the play, a strategy
specifies a probability distribution over the set of available actions at the last state of
the history. The limit-average for player 1 reward of a pair of strategies σ and π for
player 1 and player 2, respectively, and a starting state s is defined as

v1(s, σ, π) = Eσ,π
s

[
lim inf

n→∞
1

n
·

n∑
i=1

r
(
Xi ,�i,1,�i,2

)]
,

where Xi is the random variable for the state reached at round i of the game, and �i, j

is the random variable for the action played by player j at round i of the game, under
strategies σ and π and starting state s, and r(s, a, b) gives the reward at state s for
actions a and b. The form of the objective explains the term limit average. First the
average is taken with respect to the expected rewards in the first n rounds of the game.
Then the objective is defined as the liminf of these averages. A stochastic game with
a limit-average reward is called a limit-average game. The fundamental question in
stochastic games is the existence of a value, that is, whether

sup
σ∈�

inf
π∈�

v1(s, σ, π) = inf
π∈�

sup
σ∈�

v1(s, σ, π),

where � and � denote the sets of strategies for player 1 and player 2, respectively.
Stochastic games were introduced by Shapley (1953), who showed the existence

of a value in discounted games, where the game stops at each round with probability
β, for some 0 < β < 1, and the goal of a player is to maximize the expectation
of the total sum of the rewards. Limit-average games were introduced by Gillete
(1957), who studied the special cases of perfect information (in each round, at most
one player has a choice of moves) and irreducible stochastic games. The existence of
a value for the perfect information case was proved in Liggett and Lippman (1969).
Gillette’s paper also introduced a limit-average game called the Big Match, which was
solved in Blackwell and Ferguson (1968). Bewley and Kohlberg (1976) then showed
how Pusieux series expansions can be used for the asymptotic analysis of discounted
games. This, and the winning strategy in the Big Match, was used by Mertens and
Neyman (1981) to show the existence of a value in limit-average games.

While the existence of a value in general limit-average stochastic games has been
extensively studied, the computation of values has received less attention.1 In general,
it may happen that a game with rational rewards and rational transition probabilities
still has an irrational value (Raghavan and Filar 1991). Hence, we can only hope
to have approximation algorithms that compute the value of a game up to a given
approximation ε, for a real ε > 0. Even the approximation of values is not simple,
because in general limit-average games only admit η-optimal strategies, for all reals
η > 0, rather than optimal strategies (Blackwell and Ferguson 1968), and the η-optimal
strategies of Mertens and Neyman (1981) require infinite memory. This precludes, for

1 In this paper we take the classical view of computation, where an algorithm either answers “Yes” or “No”,
or outputs a set of rational numbers.
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example, common algorithmic techniques that enumerate over certain finite sets of
strategies and, having fixed a strategy, solve the resulting Markov decision process
using linear programming techniques (Filar and Vrieze 1997). Most research has
therefore characterized particular subclasses of games for which stationary optimal
strategies exist (a stationary strategy is independent of the history of a play and depends
only on the current state; Parthasarathy and Raghavan 1981; Hoffman and Karp 1966;
see Filar and Vrieze 1997 for a survey), and the main algorithmic tool has been value
or policy iteration, which can be shown to terminate in an exponential number of steps
(but often behaves better in practice) for many of these particular classes.

In this paper, we characterize the computational complexity of approximating the
value of a limit-average game. We show that for any given real ε > 0, the value of
a game G at a state can be computed to within ε-precision in time bounded by an
exponential in a polynomial in the size of the game G times a polynomial function of
log 1/ε. This shows that approximating the value of limit-average games lies in the
computational complexity class EXPTIME (Papadimitriou 1994). Our main technique
is the characterization of values as semi-algebraic quantities (Bewley and Kohlberg
1976; Mertens and Neyman 1981). We show that for a real number α, whether the value
of a stochastic limit-average game at a state s is strictly greater than α can be expressed
as a sentence in the theory of real-closed fields. Moreover, this sentence is polynomial
in the size of the game and has a constant number of quantifier alternations. The theory
of real-closed fields is decidable in time exponential in the size of a formula and doubly
exponential in the quantifier alternation depth (Basu 1999). This, together with binary
search over the range of values, gives an algorithm exponential in polynomial in the
size of the game graph times polynomial in logarithmic in 1/ε to approximate the
value, for ε > 0. Our techniques combine several known results to provide the first
complexity bound on the general problem of approximating the value of stochastic
games with limit-average objectives. It may be noted that the best known deterministic
algorithm for the special case of perfect information limit-average games also requires
exponential time.

2 Definitions

Probability distributions. For a finite set A, a probability distribution on A is a
function δ : A → [0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probability

distributions on A by D(A). For a distribution δ ∈ D(A), we denote by Supp(δ) =
{x ∈ A | δ(x) > 0} the support of δ.

Definition 1 (Stochastic games) A (two-player zero-sum) stochastic game G =
〈S, A, �1, �2, δ, r〉 consists of the following components.

• A finite set S of states.
• A finite set A of moves or actions.
• Two move assignments �1, �2 : S → 2A \ ∅. For i ∈ {1, 2}, assignment �i

associates with each state s ∈ S a non-empty set �i (s) ⊆ A of moves available to
player i at state s.
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• A probabilistic transition function δ : S× A× A → D(S) that gives the probability
δ(s, a, b)(t) of a transition from s to t when player 1 plays move a and player 2
plays move b, for all s, t ∈ S and a ∈ �1(s), b ∈ �2(s).

• A reward function r : S × A × A → R that maps every state and pair of moves to
a real-valued reward. �	

The special class of perfect-information games can be obtained from stochastic
games with the restriction that for all s ∈ S either |�1(s)| = 1 or |�2(s)| = 1, i.e., at
every state at most one player can influence the transition. If the transition function δ

is deterministic rather than probabilistic then we call the game a deterministic game.
The class of rational stochastic games are the special class of stochastic games such
that all rewards and transition probabilities are rational.

Size of a stochastic game. Given a stochastic game G we use the following notations:

1. n = |S| is the number of states;
2. |δ| = ∑

s∈S |�1(s)| · |�2(s)| is the number of entries of the transition function.

Given a rational stochastic game we use the following notations:

1. size(δ) = ∑
t∈S

∑
a∈�1(s)

∑
b∈�2(s) |δ(s, a, b)(t)|, where |δ(s, a, b)(t)| denotes

the space to express δ(s, a, b)(t) in binary;
2. size(r) = ∑

s∈S
∑

a∈�1(s)
∑

b∈�2(s) |r(s, a, b)|, where |r(s, a, b)| denotes the
space to express r(s, a, b) in binary;

3. |G| = size(G) = size(δ) + size(r).

The specification of a game G requires O(|G|) bits. Given a stochastic game with n
states, we assume without loss of generality that the state space of the stochastic game
structure is enumerated as natural numbers, S = { 1, 2, . . . , n }, i.e., the states are
numbered from 1 to n.

At every state s ∈ S, player 1 chooses a move a ∈ �1(s), and simultaneously and
independently player 2 chooses a move b ∈ �2(s). The game then proceeds to the
successor state t with probability δ(s, a, b)(t), for all t ∈ S. At the state s, for moves
a for player 1 and b for player 2, player 1 wins and player 2 loses a reward of value
r(s, a, b).

A path or a play ω of G is an infinite sequence ω = 〈s0, (a0, b0), s1, (a1, b1),

s2, (a2, b2), . . .〉 of states and pairs of moves such that (ai , bi ) ∈ �1(si ) × �2(si ) and
si+1 ∈ Supp(δ(si , ai , bi )), for all i ≥ 0. We denote by  the set of all paths, and by
s the set of all paths starting from state s.

Randomized strategies. A strategy for player 1 is a function σ : (S× A× A)∗·S →
D(A) that associates with every prefix of a play, representing the history of the play
so far, and the current state a probability distribution from D(A) such that for all
w ∈ (S × A × A)∗ and all s ∈ S, we have Supp(σ (w · s)) ⊆ �1(s). Observe that the
strategies can be randomized (i.e., not necessarily deterministic) and history-dependent
(i.e., not necessarily stationary). Similarly we define strategies π for player 2. We
denote by � and � the sets of strategies for player 1 and player 2, respectively.

Once the starting state s and the strategies σ and π for the two players have been
chosen, the game is reduced to a stochastic process. Hence, the probabilities of events
are uniquely defined, where an event E ⊆ s is a measurable set of paths. For an
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Stochastic limit-average games are in EXPTIME 223

event E ⊆ s , we denote by Prσ,π
s (E) the probability that a path belongs to E when

the game starts from s and the players follow the strategies σ and π . We denote by
Eσ,π

s [·] the associated expectation operator with the probability measure Prσ,π
s (·). For

i ≥ 0, we denote by Xi :  → S the random variable denoting the i th state along a
path, and for j ∈ { 1, 2 }, we denote by �i, j : s → A the random variable denoting
the move of player j in the i th round of a play.

Limit-average payoff. Let σ and π be strategies of player 1 and player 2, respec-
tively. The limit-average payoff v1(s, σ, π) for player 1 at a state s, for the strategies
σ and π , is defined as

v1(s, σ, π) = Eσ,π
s

[
lim inf

N→∞
1

N
·

N∑
i=1

r
(
Xi ,�i,1,�i,2

)]
.

Similarly, for player 2, the payoff v2(s, σ, π) is defined as

v2(s, σ, π) = Eσ,π
s

[
lim sup

N→∞
1

N
·

N∑
i=1

−r
(
Xi ,�i,1,�i,2

)]
.

In other words, player 1 wins and player 2 looses the “long-run” average of the rewards
of the play. A stochastic game G with limit-average payoff is called a stochastic limit-
average game.

Given a state s ∈ S and we are interested in finding the maximal payoff that player
1 can ensure against all strategies for player 2, and the maximal payoff that player 2
can ensure against all strategies for player 1. We call such payoff the value of the game
G at s for player i ∈ { 1, 2 }. The values for player 1 and player 2 are defined for all
s ∈ S by

v1(s) = supσ∈� infπ∈� v1(s, σ, π) and v2(s) = supπ∈� infσ∈� v2(s, σ, π).

Mertens and Neyman (1981) established the determinacy of stochastic limit-average
games.

Theorem 1 Mertens and Neyman (1981) For all stochastic limit-average games G
and for all states s of G, we have v1(s) + v2(s) = 0.

Stronger notion of existence of values Mertens and Neyman (1981). The values
for stochastic limit-average games exist in a strong sense: for all reals ε > 0, there
exist strategies σ ∗ ∈ �,π∗ ∈ � such that the following conditions hold:

1. for all σ ∈ � and π ∈ �, we have

−ε + Eσ,π∗
s

[
lim sup

N→∞
1

N
·

N∑
i=1

r
(
Xi ,�i,1,�i,2

)]

≤ Eσ ∗,π
s

[
lim inf

N→∞
1

N
·

N∑
i=1

r
(
Xi ,�i,1,�i,2

)] + ε; (1)
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2. there exists an integer N0 such that for all σ ∈ � and π ∈ �, for all integers
N ≥ N0, we have

− ε+Eσ,π∗
s

[
1

N
·

N∑
i=1

r
(
Xi ,�i,1,�i,2

)]≤Eσ ∗,π
s

[
1

N
·

N∑
i=1

r
(
Xi ,�i,1,�i,2

)]+ε;

(2)

3. there exists 0 < β0 < 1 such that for all σ ∈ � and π ∈ �, for all 0 < β ≤ β0,
we have

−ε + Eσ,π∗
s

[
β ·

∞∑
i=1

(1 − β)i−1r
(
Xi ,�i,1,�i,2

)]

≤ Eσ ∗,π
s

[
β ·

∞∑
i=1

(1 − β)i−1r
(
Xi ,�i,1,�i,2

)] + ε. (3)

Letv1(s, σ, π) = Eσ,π
s

[
lim supN→∞ 1/N · ∑N

i=1 r
(
Xi ,�i,1,�i,2

)]
, then (1) is equi-

valent to the following equality:

sup
σ∈�

inf
π∈�

v1(s, σ, π) = inf
π∈�

sup
σ∈�

v1(s, σ, π).

3 Theory of real-closed fields and quantifier elimination

Our main technique is to represent the value of a game as a formula in the theory
of real-closed fields. We denote by R the real-closed field (R,+, ·, 0, 1,≤) of the
reals with addition and multiplication. In the sequel we write “real-closed field” to
denote the real-closed field R. An atomic formula is an expression of the form p < 0
or p = 0, where p is a (possibly) multi-variate polynomial with coefficients in the
real-closed field. Coefficients are rationals or symbolic constants (e.g., the symbolic
constant e stands for 2.71828 . . .). We will consider the special case when only rational
coefficients of the form q1/q2, where q1, q2 are integers, are allowed. A formula is
constructed from atomic formulas by the grammar

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x .ϕ | ∀x .ϕ,

where a is an atomic formula, ¬a denotes complement of a, ϕ1 ∧ϕ2 denotes conjunc-
tion of ϕ1 and ϕ2, ϕ1 ∨ ϕ2 denotes disjunction of ϕ1 and ϕ2, and ∃ and ∀ denote
existential and universal quantification, respectively. We use the standard abbrevia-
tions such as p ≤ 0, p ≥ 0 and p > 0 that are derived as follows:

p ≤ 0 (for p < 0 ∨ p = 0), p ≥ 0 (for ¬(p < 0)), and p > 0 (for ¬(p ≤ 0)).

The semantics of formulas are given in a standard way. A variable x is free in the
formula ϕ if it is not in the scope of a quantifier ∃x or ∀x . A sentence is a formula with
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Stochastic limit-average games are in EXPTIME 225

no free variables. A formula is quantifier-free if it does not contain any existential or
universal quantifier. Two formulas ϕ1 and ϕ2 are equivalent if the set of free variables
of ϕ1 and ϕ2 are the same, and for every assignment to the free variables the formula ϕ1
is true if and only if the formula ϕ2 is true. A formula ϕ admits quantifier elimination if
there is an algorithm to convert it to an equivalent quantifier-free formula. A quantifier
elimination algorithm takes as input a formula ϕ and returns an equivalent quantifier-
free formula, if one exists.

Tarski proved that every formula in the theory of real-closed fields admits quanti-
fier elimination, and (by way of quantifier elimination) that there is an algorithm to
decide the truth of a sentence ϕ in the theory of real-closed fields (see Tarski 1951 for
algorithms that decide the truth of a sentence ϕ in the theory of real-closed fields). The
complexity of the algorithm of Tarski has subsequently improved, and we now present
a result of Basu (1999) on the complexity of quantifier elimination for formulas in the
theory of the real-closed field.

Complexity of quantifier elimination. We first define the length of a formula ϕ,
and then define the size of a formula with rational coefficients. We denote the length
and size of ϕ as len(ϕ) and size(ϕ), respectively. The length of a polynomial p is
defined as the sum of the length of its constituent monomials plus the number of
monomials in the polynomial. The length of a monomial is defined as its degree plus
the number of variables plus 1 (for the coefficient). For example, for the monomial
1/4 · x3 · y2 · z, its length is 6 + 3 + 1 = 10. Given a polynomial p, the length of both
p < 0 and p = 0 is len(p) + 2. This defines the length of an atomic formula a. The
length of a formula ϕ is inductively defined as follows:

len(¬a) = len(a) + 1;
len(ϕ1 ∧ ϕ2) = len(ϕ1) + len(ϕ2) + 1;
len(ϕ1 ∨ ϕ2) = len(ϕ1) + len(ϕ2) + 1;

len(∃x .ϕ) = len(ϕ) + 2;
len(∀x .ϕ) = len(ϕ) + 2.

Observe that the length of a formula is defined for formulas that may contain symbolic
constants as coefficients. For formulas with rational coefficients we define its size as
follows: the size of ϕ, i.e., size(ϕ), is defined as the sum of len(ϕ) and the space
required to specify the rational coefficients of the polynomials appearing in ϕ in binary.
We state a result of Basu (1999) on the complexity of quantifier elimination for the
real-closed field. The following theorem is a specialization of Theorem 1 of Basu
(1999); also see Theorems 14.14 and 14.16 of Basu et al. (2003).

Theorem 2 Basu (1999) Let d, k, m be non-negative integers, X ={ X1, X2, . . . , Xk }
be a set of k variables, and P = { p1, p2, . . . , pm } be a set of m polynomials over the
set X of variables, each of degree at most d and with coefficients in the real-closed field.
Let X[r ], X[r−1], . . . , X[1] denote a partition of the set X of variables into r subsets
such that the set X[i] of variables has size ki , i.e., ki = |X[i]| and

∑r
i=1 ki = k. Let

� = (Qr X[r ]). (Qr−1 X[r−1]). . . . .(Q2 X[2]). (Q1 X[1]). ϕ(p1, p2, . . . , pm)
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be a sentence with r alternating quantifiers Qi ∈ { ∃,∀ } (i.e., Qi+1 �= Qi ), and
ϕ(p1, p2, . . . , pm) is a quantifier-free formula with atomic formulas of the form pi ��
0, where �� ∈ { <,>,= }. Let D denote the ring generated by the coefficients of the
polynomials in P . Then the following assertions hold.

1. There is an algorithm to decide the truth of � using

m
∏

i (ki +1) · d
∏

i O(ki ) · len(ϕ)

arithmetic operations (multiplication, addition, and sign determination) in D.
2. If D = Z (the set of integers) and the bit sizes of the coefficients of the polynomials

are bounded by γ , then the bit sizes of the integers appearing in the intermediate
computations of the truth of � is bounded by

γ · d
∏

i O(ki ).

The result of part 1 of Theorem 2 holds for sentences with symbolic constants as
coefficients. The result of part 2 of Theorem 2 is for the special case of sentences with
only integer coefficients. Part 2 of Theorem 2 follows from the results of Basu (1999),
but is not explicitly stated as a theorem there; for an explicit statement as a theorem,
see Theorems 14.14 and 14.16 of Basu et al. (2003).

Remark 1 Given two integers a and b, let |a| and |b| denote the space to express a
and b in binary, respectively. The following assertions hold: given integers a and b,

1. given signs of a and b, the sign determination of a +b can be done in O(|a|+ |b|)
time, i.e., in linear time, and the sign determination of a ·b can be done O(1) time,
i.e., in constant time;

2. addition of a and b can be done in O(|a| + |b|) time, i.e., in linear time; and
3. multiplication of a and b can be done in O(|a| · |b|) time, i.e., in quadratic time.

It follows from the above observations, along with Theorem 2, that if D = Z and the
bit sizes of the coefficients of the polynomials appearing in � are bounded by γ , then
the truth of � can be determined in time

m
∏

i O(ki +1) · d
∏

i O(ki ) · O(len(ϕ) · γ 2). (4)

4 Computation of values in stochastic games

The values in stochastic limit-average games can be irrational even if all rewards and
transition probability values are rational (Raghavan and Filar 1991). Hence, we can
algorithmically only approximate the values to within a precision ε, for ε > 0.

Discounted value functions. Let G be a stochastic game with reward function r .
For a real β, with 0 < β < 1, the β-discounted value function v

β
1 is defined as follows:

v
β
1 (s) = sup

σ∈�

inf
π∈�

β · Eσ,π
s

[ ∞∑
i=1

(1 − β)i · r
(
Xi ,�i,1,�i,2

)]
.
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For a stochastic game G, the β-discounted value function v
β
1 is monotonic with respect

to β in a neighborhood of 0 (Bewley and Kohlberg 1976).

4.1 Sentence for the value of a stochastic game

We now describe how we can obtain a sentence in the theory of the real-closed field
that states that the value of a stochastic limit-average game at a given state is strictly
greater than α, for a real α. The sentence applies to the case where the rewards and
the transition probabilities are specified as symbolic or rational constants.

Formula for β-discounted value functions. Given a real α and a stochastic limit-
average game G, we present a formula in the theory of the real-closed field to express
that the β-discounted value v

β
1 (s) at a given state s is strictly greater than α, for

0 < β < 1. A valuation v ∈ R
n is a vector of reals, and for 1 ≤ i ≤ n, the i th

component of v represents the value v(i) for state i . For every state s ∈ S and for
every move b ∈ �2(s) we define a polynomial u(s,b,1) for player 1 as a function of
x ∈ D(�1(s)), a valuation v and 0 < β < 1 as follows:

u(s,b,1)(x, v, β) = β ·
∑

a∈�1(s)

x(a) · r(s, a, b) + (1 − β) ·
∑

a∈�1(s)

x(a)

·
∑
t∈S

δ(s, a, b)(t) · v(t) − v(s).

The polynomial u(s,b,1) consists of the variables β, and x(a) for a ∈ �1(s), and v(t)
for t ∈ S. Observe that given a stochastic limit-average game, r(s, a, b) for a ∈ �1(s),
and δ(s, a, b)(t) for t ∈ S and a ∈ �1(s) are rational or symbolic constants given
by the game graph, not variables. The coefficients of the polynomial are r(s, a, b)

for a ∈ �1(s), and δ(s, a, b)(t) for a ∈ �1(s) and t ∈ S. Hence the polynomial
has degree 3 and has 1 + |�1(s)| + n variables. Similarly, for s ∈ S, a ∈ �1(s),
y ∈ D(�2(s)), v ∈ R

n , and 0 < β < 1, we have polynomials u(s,a,2) defined by

u(s,a,2)(y, v, β) = β ·
∑

b∈�2(s)

y(b) · r(s, a, b) + (1 − β) ·
∑

b∈�2(s)

y(b)

·
∑
t∈S

δ(s, a, b)(t) · v(t) − v(s).

The sentence stating that v
β
1 (s) is strictly greater than α is as follows. We have

variables xs(a) for s ∈ S and a ∈ �1(s), ys(b) for s ∈ S and b ∈ �2(s), and
variables v(1), v(2), . . . , v(n). For simplicity we write xs for the vector of variables
xs(a1), xs(a2), . . . , xs(a j ), where �1(s) = { a1, a2, . . . , a j }, ys for the vector of
variables ys(b1), ys(b2), . . . , ys(bl), where �2(s) = { b1, b2, . . . , bl }, and v for the
vector of variables v(1), v(2), . . . , v(n). The sentence is as follows:
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�β(s, α) = ∃x1, . . . , xn . ∃y1, . . . , yn . ∃v. �(x1, x2, . . . , xn, y1, y2, . . . , yn)∧ ∧
s∈S,b∈�2(s)

(
u(s,b,1)(xs, v, β) ≥ 0

) ∧ ∧
s∈S,a∈�1(s)

(
u(s,a,2)(ys, v, β) ≤ 0

)
∧

(v(s) − α > 0),

where�(x1, x2, . . . , xn, y1, y2, . . . , yn) specify the constraints that x1, x2, . . . , xn and
y1, y2, . . . , yn are valid randomized strategies and is defined as follows:

�(x1, x2, . . . , xn, y1, y2, . . . , yn) =
∧
s∈S

⎛
⎝

⎛
⎝ ∑

a∈�1(s)

xs(a)

⎞
⎠ − 1 = 0

⎞
⎠ ∧

∧
s∈S,a∈�1(s)

(xs(a) ≥ 0)

∧
∧
s∈S

⎛
⎝

⎛
⎝ ∑

b∈�2(s)

ys(b)

⎞
⎠ − 1 = 0

⎞
⎠ ∧

∧
s∈S,b∈�2(s)

(ys(b) ≥ 0) .

The total number of polynomials in �β(s, α) is 1+∑
s∈S(3·|�1(s)|+3·|�2(s)|+2) =

O(|δ|). In the above formula we treat β as a variable; it is a free variable in �β(s, α).
Given a stochastic limit-average game G, for all 0 < β < 1, the correctness of
�β(s, α) to specify that v

β
1 (s) > α can be proved from the results of Shapley (1953).

Value of a game as limit of discounted games. The result of Mertens and Neyman
(1981) established that the value of a stochastic limit-average game is the limit of the
β-discounted values, as β goes to 0. Formally, we have

v1(s) = lim
β→0+ v

β
1 (s).

Sentence for the value of a stochastic game. From the characterization of the
value of a stochastic limit-average game as the limit of the β-discounted values and
the monotonicity property of the β-discounted values in a neighborhood of 0, we
obtain the following sentence �(s, α) stating that the value at state s is strictly greater
than α. In addition to variables for �β(s, α), we have the variables β and β1. The
sentence �(s, α) specifies the expression

∃β1 > 0. ∀β ∈ (0, β1). �β(s, α),

and is defined as follows:

�(s, α) = ∃β1. ∀β. ∃x1, . . . , xn . ∃y1, . . . , yn . ∃v. �(x1, x2, . . . , xn, y1, y2, . . . , yn)∧
(β1 > 0)

∧ [
(β1 − β ≤ 0)

∨
(β ≤ 0)

∨ (
(β1 − β > 0)∧ ∧

s∈S,b∈�2(s)

(
u(s,b,1)(xs, v, β) ≥ 0

)
∧ ∧

s∈S,a∈�1(s)

(
u(s,a,2)(ys, v, β) ≤ 0

) )]
∧

(v(s) − α > 0),
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where�(x1, x2, . . . , xn, y1, y2, . . . , yn) specify the constraints that x1, x2, . . . , xn and
y1, y2, . . . , yn are valid randomized strategies (the same formula used for �β(s, α)).2

Observe that �(s, α) contains no free variable (i.e., the variables xs , ys , v, β1, and
β are quantified). A similar sentence was used in Bewley and Kohlberg (1976) for
values of discounted games. The total number of polynomials in �(s, α) is O(|δ|);
in addition to the O(|δ|) polynomials of �β(s, α) there are four more polynomials in
�(s, α). In the setting of Theorem 2 we obtain the following bounds for �(s, α):

m = O(|δ|); k = O(|δ|);
∏

i

(ki + 1) = O(|δ|); r = O(1); d = 3; (5)

and hence we have

m
∏

i (ki +1) · d
∏

i O(ki ) = O(|δ|)O(|δ|) = 2O(|δ|·log(|δ|)).

Also observe that for a stochastic game G, the sum of the lengths of the polynomials
appearing in the sentence is O(|δ|). The present analysis along with Theorem 2 yields
Theorem 3. The result of Theorem 3 holds for stochastic limit-average games where
the transition probabilities and rewards are specified as symbolic constants.

Theorem 3 Given a stochastic limit-average game G with reward function r , a state
s of G, and a real α, there is an algorithm to decide whether v1(s) > α using
2O(|δ|·log(|δ|)) · O(|δ|) arithmetic operations (addition, multiplication, and sign deter-
mination) in the ring generated by the set

{ r(s, a, b) | s ∈ S, a ∈ �1(s), b ∈ �2(s) } ∪ { δ(s, a, b)(t) | s, t ∈ S, a ∈ �1(s),

b ∈ �2(s) } ∪ { α }.

4.2 Algorithmic analysis

For algorithmic analysis we consider rational stochastic games, i.e., stochastic games
such that r(s, a, b) and δ(s, a, b)(t) are rational for all states s, t ∈ S, and moves
a ∈ �1(s) and b ∈ �2(s). In the sequel we will only consider rational stochastic
games. Given the sentence �(s, α) to specify that v1(s) > α, we first reduce it to an
equivalent sentence �̂(s, α) as follows.

• For every rational coefficient � = q1
q2

, where q1, q2 ∈ Z, appearing in �(s, α) we
apply the following procedure:
1. introduce a new variable z�;
2. replace � by z� in �(s, α);
3. add a polynomial q2 · z� − q1 = 0 as a conjunct to the quantifier-free body of

the formula; and

2 Our detailed formulas �β(s, α) and �(s, α) can be shortened, however, the present formulas make it
easier to understand the bound on parameters required for complexity bounds.

123



230 K. Chatterjee et al.

4. existentially quantify z� in the block of existential quantifiers after quantifying
β1 and β.

Thus we add O(|δ|) variables and polynomials, and increase the degree of the poly-
nomials in �(s, α) by 1. Also observe that the coefficients in �̂(s, α) are integers,
and hence the ring D̂ generated by the coefficients in �̂(s, α) is Z. Similar to the
bounds obtained in (5), in the setting of Theorem 2 we obtain the following bounds
for �̂(s, α):

m̂ = O(|δ|); k̂ = O(|δ|);
∏

i

(̂ki + 1) = O(|δ|); r̂ = O(1); d̂ = 4;

and hence

m̂
∏

i O (̂ki +1) · d̂
∏

i O (̂ki ) = O(|δ|)O(|δ|) = 2O(|δ|·log(|δ|)).

Also observe that the length of the sentence �̂(s, α) can be bounded by O(|δ|), and
the sum of the bit sizes of the coefficients in �̂(s, α) can be bounded by O(|G|+ |α|),
where |α| is the space required to express α in binary. This along with (4) of Remark 1
yields the following result.

Theorem 4 Given a rational stochastic limit-average game G, a state s of G, and a
rational α, there is an algorithm that decides whether v1(s) > α in time

2O
(|δ|·log(|δ|)) · O(|δ|) · O

(
|G|2 + |α|2

)
= 2O(|δ|·log(|δ|)) · O

(
|G|2 + |α|2

)
.

4.3 Approximating the value of a stochastic game

We now present an algorithm that approximates the value v1(s) within a tolerance of
ε > 0. The algorithm (Algorithm 1) is obtained by a binary search technique along
with the result of Theorem 4. Algorithm 1 works for the special case of normalized
rational stochastic games. We first define normalized rational stochastic games and
then present a reduction of rational stochastic games to normalized rational stochastic
games.

Normalized rational stochastic games. A rational stochastic game is normalized
if the reward function satisfies the following two conditions: (1) min{ r(s, a, b) | s ∈
S, a ∈ �1(s), b ∈ �2(s) } ≥ 0; and (2) max{ r(s, a, b) | s ∈ S, a ∈ �1(s), b ∈
�2(s) } ≤ 1.

Reduction. We now present a reduction of rational stochastic games to normalized
rational stochastic games, such that by approximating the values of normalized rational
stochastic games we can approximate the values of rational stochastic games. Given
a reward function r : S × A × A → R, let

M = max{ abs(r(s, a, b)) | s ∈ S, a ∈ �1(s), b ∈ �2(s) },

where abs(r(s, a, b)) denotes the absolute value of r(s, a, b). Without loss of gene-
rality we assume M > 0. Otherwise, r(s, a, b) = 0 for all states s ∈ S, and moves
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Algorithm 1 Approximating the value of a stochastic game

Input: a normalized rational stochastic limit-average game G,
a state s of G, and a rational value ε > 0 specifying the desired tolerance.

Output: a rational interval [l, u] such that u − l ≤ 2ε and v1(s) ∈ [l, u].

1. l := 0; u := 1; m = 1
2 ;

2. repeat for �log
(

1
ε

)
� steps

2.1. if �(s, m), then
2.1.1. l := m; u := u; m := l+u

2 ;
2.2. else

2.2.1. l := l; u := m; m := l+u
2 ;

3. return [l, u];

a ∈ �1(s) and b ∈ �2(s), and hence v1(s) = 0 for all states s ∈ S (i.e., the value func-
tion can be trivially computed). Consider the reward function r+ : S× A× A → [0, 1]
defined as follows: for s ∈ S, a ∈ �1(s), and b ∈ �2(s), we have

r+(s, a, b) = r(s, a, b) + M

2M
.

The reward function r+ is normalized and the following assertion hold. Let v1 and v+
1

denote the value functions for the reward functions r and r+, respectively. Then for
all states s ∈ S we have

v+
1 (s) = v1(s) + M

2M
.

Hence it follows that for rationals α, l, and u, such that l ≤ u, we have

v1(s) > α iff v+
1 (s) >

α + M

2M
; and

v+
1 (s) ∈ [l, u] iff v1(s) ∈ [M · (2l − 1), M · (2u − 1)].

Given a rational ε > 0, to obtain an interval [l1, u1] such that u1 − l1 ≤ ε and v1(s) ∈
[l1, u1], we first obtain an interval [l, u] such that u − l ≤ ε/2M and v+

1 (s) ∈ [l, u].
From the interval [l, u] we obtain the interval [l1, u1] = [M · (2l − 1), M · (2u − 1)]
such that v1(s) ∈ [l1, u1] and u1 − l1 = 2 · M · (u − l) ≤ ε. Hence we present the
algorithm to approximate the values for normalized rational stochastic games.

Running time of Algorithm 1. In Algorithm 1 we denote by �(s, m) the sentence
to specify that v1(s) > m, and by Theorem 4 the truth of �(s, m) can be decided in
time

2O
(|δ|·log(|δ|)) · O

(
|G|2 + |m|2

)
,

for a stochastic game G, where |m| is the number of bits required to specify m. In
Algorithm 1, the variables l and u are initially set to 0 and 1, respectively. Since the
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game is normalized, the initial values of l and u clearly provide lower and upper bounds
on the value, and provide starting bounds for the binary search. In each iteration of
the algorithm, in Steps 2.1.1 and 2.2.1, there is a division by 2. It follows that after
i iterations l, u, and m can be expressed as q/2i , where q is an integer and q ≤ 2i .
Hence l, u, and m can always be expressed in

O

(
log

(
1

ε

))

bits. The loop in Step 4 runs for �log (1/ε)� = O (log (1/ε)) iterations, and every
iteration can be computed in time 2O(|δ|·log(|δ|)) · O

(|G|2 + log2 (1/ε)
)
. This gives the

following theorem.

Theorem 5 Given a normalized rational stochastic limit-average game G, a state
s of G, and a rational ε > 0, Algorithm 1 computes an interval [l, u] such that
v1(s) ∈ [l, u] and u − l ≤ 2ε, in time

2O
(|δ|·log(|δ|)) · O

(
|G|2 · log

(
1

ε

)
+ log3

(
1

ε

))
.

The reduction from rational stochastic games to normalized stochastic games suggest
that for a rational stochastic game G and a rational tolerance ε > 0, to obtain an interval
of length at most ε that contains the value v1(s), it suffices to obtain an interval of
length of at most ε/2M that contains the value in the corresponding normalized game,
where M = max{ abs(r(s, a, b)) | s ∈ S, a ∈ �1(s), b ∈ �2(s) }. Since M can be
expressed in |G| bits, it follows that the size of the normalized game is O(|G|2). Given
a tolerance ε > 0 for the rational stochastic game, we need to consider the tolerance
ε/2 · M for the normalized game. The above analysis along with Theorem 5 yields
the following corollary (the corollary is obtained from Theorem 5 by substituting |G|
by |G|2, and log (1/ε) by |G| · log (1/ε)).

Corollary 1 Given a rational stochastic limit-average game G, a state s of G, and
a rational ε > 0, an interval [l, u] such that v1(s) ∈ [l, u] and u − l ≤ 2ε, can be
computed in time

2O
(|δ|·log(|δ|)) · O

(
|G|5 · log

(
1

ε

)
+ |G|3 · log3

(
1

ε

))
.

The complexity class EXPTIME. A problem is in the complexity class EXPTIME
(Papadimitriou 1994) if there is an algorithm A that solves the problem, and there is a
polynomial p(·) such that for all inputs I of |I | bits, the running time of the algorithm
A on input I can be bounded by 2O(p(|I |)). In case of rational stochastic limit-average
games, the input is the size of the game G, i.e., the input requires |G| bits. Hence from
Theorem 4 and Corollary 1 we obtain the following result.

Theorem 6 Given a rational stochastic limit-average game G, a state s of G, rational
ε > 0, and rational α, the following assertions hold.
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1. (Decision problem) Whether v1(s) > α can be decided in EXPTIME.
2. (Approximation problem) An interval [l, u] such that u−l ≤ 2ε and v1(s) ∈ [l, u]

can be computed in EXPTIME.

Approximate analysis of games with approximate description. Let G = 〈S, A,�1,

�2, δ, r〉 and G ′ = 〈S, A, �1, �2, δ
′, r ′〉 be two stochastic games such that

1. for all s, t ∈ S and for all a ∈ �1(s) and b ∈ �2(s), we have

δ(s, a, b) < (1 + η) · δ′(s, a, b)(t) and δ′(s, a, b) < (1 + η) · δ(s, a, b)(t),

for η < 1
2|S| ; and

2. for all s ∈ S and for all a ∈ �1(s) and all b ∈ �2(s) we have

abs(r(s, a, b) − r ′(s, a, b)) ≤ γ.

Let ρ(G, G ′) be defined as the infimum over
(

2η·|S|
(1−2η·|S|) · ||r || + γ

)
, where η, γ ranges

over all pairs that satisfy the above two inequalities. From the result of Solan (2003)
it follows that the absolute difference in the values of a player at all states in G and
G ′ is bounded by ρ(G, G ′). Hence given a game G and an auxiliary game G ′ that
approximates G within η, i.e., ρ(G, G ′) ≤ η, we can approximate the values of the
game G ′ for ε > 0, and obtain a η+ε approximation of the values of the game G. This
enables us to approximate the values of stochastic games described approximately.

Unfortunately, the only lower bound we know on the complexity of the decision
problem is PTIME-hardness (polynomial-time hardness). The hardness follows from
a reduction from alternating reachability (Beeri 1980; Immerman 1981). Even for the
simpler case of perfect-information deterministic games, no polynomial time algo-
rithm is known (Zwick and Paterson 1996), and the best known deterministic algo-
rithm for perfect information games is exponential in the size of the game. In case
of perfect-information stochastic games, deterministic and stationary optimal strate-
gies exist (Liggett and Lippman 1969). Since the number of deterministic stationary
strategies can be at most exponential in the size of the game, there is an exponen-
tial time algorithm to compute the values exactly (not approximately) (also see the
survey; Neyman and Sorin 2003). From the polynomial time algorithm to compute
values in Markov decision processes (Filar and Vrieze 1997) and the existence of
pure stationary optimal strategies in perfect-information games (Liggett and Lippman
1969), it follows that the decision problem for perfect-information games lie in NP
∩ coNP. Better complexity bounds than EXPTIME to solve the decision and the ap-
proximation problem for stochastic games is an interesting open problem; and even
for deterministic games no better bound is known.
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