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Abstract For solvable roommate problems with strict preferences Diamantoudi et al.
(Games Econ Behav 48: 18–28, 2004) show that for any unstable matching, there exists
a finite sequence of successive myopic blocking pairs leading to a stable matching.
In this paper, we define P-stable matchings associated with stable partitions and, by
using a proposal-rejection procedure, generalize the previous result for the entire class
of roommate problems.
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462 E. Inarra et al.

1 Introduction

The roommate problem was introduced in 1962 by Gale and Shapley. A roommate
problem is solvable if a stable matching exists; otherwise it is said to be unsolvable.
The solvable problem has been investigated extensively in matching literature, see for
instance Gale and Shapley (1962), Irving (1985), Roth and Sotomayor (1990) and Tan
(1991). However, to the best of our knowledge few papers have analyzed unsolvable
roommate problems. See for instance, Tan (1990) and Abraham et al. (2005).

Regarding the issue of paths to stability, the question is whether in the absence of
a centralized procedure there exists a finite sequence of successive myopic blocking
pairs leading to stable matchings. Knuth (1976) addresses this problem for a marriage
problem (a special case of the roommate problem) and gives an example in which
a process of decentralized decision making may cycle. Roth and Vande Vate (1990)
solve this question by showing that there is a convergence path to a stable match-
ing.1 These authors construct a sequence of matchings associated with a sequence of
increasing sets of agents without blocking pairs until a stable matching is reached.2

There are several works on random paths to stability based on the idea of Roth and
Vande Vate (1990). Chung (2000) introduces a restriction on the preferences for the
roommate problem and, labeling the agents as men and women, uses the Roth-Vande
Vate convergence process and extends their result. With regard to two-sided markets,
Kojima and Unver (2006) study the convergence to stability in many-to-many match-
ing problems, whereas Klaus and Klijn (2007) analyze this convergence for matching
markets with couples.

Diamantoudi et al. (2004) use a different strategy for proving the convergence to
stability for roommate problems with strict preferences. In particular, these authors,
by fixing a stable matching, generate a path to stability that avoids cyclicity. The path
gives a sequence of matchings obtained by satisfying an increasing number of block-
ing pairs common with pairs of the matching fixed until a stable matching is reached.
This result suggests that the convergence path to a stable matching is not exclusively
generated by the two-sided structure of the problem but seems to be implied by the
existence of stability.

For the roommate problem, Tan (1991) obtains a necessary and sufficient condition
for the existence of a stable matching under strict preferences. This author defines
what is called “stable partition”, which is a partition of the agents into ordered sets
satisfying a notion of stability between sets and also within each set. He proves that if
there exists a stable partition containing an odd ring, then there is no stable matching.
In this paper, we define some specific matchings called P-stable matchings associated
with stable partitions.

Following the approach used by Diamantoudi et al. (2004), we show that from any
matching, there exists a path, given by a proposal-rejection procedure, that reaches a
P-stable matching. Since P-stable matchings coincide with stable ones for solvable

1 Abeledo and Rothblum (1995) derive a family of algorithms, including the Roth and Vande Vate process,
that determines stable matchings for the marriage problem.
2 Biro et al. (2006) study the dynamics of the Roth-Vande Vate mechanism and its generalization by Tan
and Hsueh (1995).
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Random paths to P-stability in the roommate problem 463

roommate problems, this result is a generalization of that of Diamantoudi et al. (2004)
and, by extension, of the Chung (2000) under strict preferences and of the Roth and
Vande Vate (1990).

This paper is organized as follows: Sect. 2 contains the preliminaries of the paper.
In Sect. 3 the notion of P-stable matching is introduced. Section 4 contains the main
result, which is discussed in Sect. 5 along with some further research. Appendix con-
tains the proofs of some Remarks and certain details of the proof of the main result.

2 Preliminaries

A roommate problem is a pair (N , (�x )x∈N ) where N is a finite set of agents and for
each agent x ∈ N , �x is a complete, transitive preference relation defined over N .
Let �x be the strict preference associated with �x . In this paper, we only consider
roommate problems with strict preferences, which we denote by (N , (�x )x∈N ).

A matching µ is a one to one mapping from N onto itself such that for all x , y ∈ N
if µ(x) = y, then µ(y) = x . Let µ(x) denote the partner of agent x under the matching
µ. If µ(x) = x , then agent x is single under µ.

A pair of agents {x, y} ⊆ N (without ruling out x = y) blocks the matching µ if

y �x µ(x) and x �y µ(y). (1)

That is, x and y prefer each other to their current partners at µ. If x = y, 1 means that
agent x prefers being alone to being matched with µ(x). When 1 holds, we call {x, y}
a blocking pair of µ.

A matching satisfies individual rationality if it is not blocked by any pair {x, y}
such that x = y. A matching is called stable if it is not blocked by any pair.

Let {x, y} be a blocking pair of µ. A matching µ′ is obtained from µ by satisfying
{x, y} if µ′(x) = y and for all z ∈ N\{x, y},

µ′(z) =
{

z i f µ(z) ∈ {x, y}
µ(z) otherwise.

That is, once {x, y} is formed, their partners (if any) at µ are alone in µ′ while the
remaining agents are matched as in µ.

The abstract system associated with a roommate problem (N , (�x )x∈N ) is the pair
(M, R) where M is the set of matchings and R is the binary relation defined over M
as follows: Given µ, µ′ ∈ M, µ′ Rµ if and only if µ′ is obtained from µ by satisfying
a blocking pair of µ. Let RT denote the transitive closure of R. Then µ′ RT µ if and
only if there exists a finite sequence of matchings (µ = µ0, µ1, . . . , µk = µ′) such
that for all i ∈ {1, . . . , k} µi Rµi−1.

3 P-stable matchings

In this section, we define the P-stable matching concept associated with the notion of
stable partition introduced by Tan (1991).
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464 E. Inarra et al.

Let (N , (�x )x∈N ) be a roommate problem. Let A = {a1, . . . , ak} ⊆ N be an
ordered set of agents. The set A is a ring if k ≥ 3 and for all i ∈ {1, . . . , k}, ai+1 �ai

ai−1 �ai ai (subscript modulo k). The set A is a pair of mutually acceptable agents
if k = 2 and for all i ∈ {1, 2}, ai−1 �ai ai (subscript modulo 2).3 The set A is a
singleton if k = 1.

A stable partition is a partition P of N such that:

(i) For all A ∈ P , the set A is a ring, a mutually acceptable pair of agents or a
singleton, and

(ii) For any sets A = {a1, . . . , ak} and B = {b1, . . . , bl} of P (possibly A = B),
the following condition holds:

if b j �ai ai−1 then b j−1 �b j ai ,

for all i ∈ {1, . . . , k} and j ∈ {1, . . . , l} such that b j �= ai+1.

This condition may be interpreted as a notion of stability over partitions.

Let P be a stable partition and A ∈ P . We say that A is an odd (even) set of P if
the cardinal of A is odd (even).

Remark 1 The following assertions are proved by Tan (1991):

(i) For any roommate problem (N , (�x )x∈N ), there exists at least one stable par-
tition. Furthermore, any two stable partitions have exactly the same odd sets.

(ii) Each even ring of a stable partition can be broken into pairs of mutually accept-
able agents preserving stability.

(iii) A roommate problem (N , (�x )x∈N ) has no stable matchings if and only if there
exists a stable partition with an odd ring.

Definition 1 Let P be a stable partition. A P-stable matching is a matching µ such
that for each A = {a1, . . . , ak} ∈ P , µ(ai ) ∈ {ai+1, ai−1} for all i ∈ {1, . . . , k} except
for a unique j where µ(a j ) = a j if A is odd.

We illustrate the notion of P-stable matching with the following example.

Example 1 Consider the following 6-agent roommate problem:

2 �1 3 �1 1 �1 4 �1 5 �1 6

3 �2 1 �2 2 �2 4 �2 5 �2 6

1 �3 2 �3 3 �3 4 �3 5 �3 6

5 �4 4 �4 1 �4 2 �4 3 �4 6

4 �5 5 �5 1 �5 2 �5 3 �5 6

6 �6 1 �6 2 �6 3 �6 4 �6 5

It is easy to verify that P = {{1, 2, 3}, {4, 5}, {6}} is a stable partition where A1 =
{1, 2, 3} is an odd ring, A2 = {4, 5} is a pair of mutually acceptable agents and
A3 = {6} is a singleton. Partition P can be represented graphically as follows:

3 Hereafter we omit subscript modulo k.
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The P-stable matchings associated with the stable partition P are:

µ1 = [{1}, {2, 3}, {4, 5}, {6}]
µ2 = [{2}, {1, 3}, {4, 5}, {6}]
µ3 = [{3}, {1, 2}, {4, 5}, {6}].

Remark 2 If µ is a P-stable matching, then the matching that results if the single
agents from odd rings are excluded from µ is stable.4

Remark 3 For a solvable roommate problem (N , (�x )x∈N ) the set of P -stable match-
ings for all stable partitions coincides with the set of stable matchings.5

4 Random paths to P-stable matchings

For solvable roommate problems with strict preferences Diamantoudi et al. (2004)
prove that “for any matching µ, there exists a finite sequence of matchings (µ =
µ0, µ1, . . . , µm = µ) such that for all i ∈ {1, . . . , m}, µi is obtained from µi−1 by
satisfying a blocking pair of µi−1 and µ is a stable matching”. We generalize the
previous result by proving the following:

Theorem 1 Let (N , (�x )x∈N ) be a roommate problem. Then, for any matching µ,
there exists a finite sequence of matchings (µ = µ0, µ1, . . . , µm = µ) such that for
all i ∈ {1, . . . , m}, µi is obtained from µi−1 by satisfying a blocking pair of µi−1 and
µ is a P-stable matching for some stable partition P.

Proof Let µ be an arbitrary matching. Suppose that µ is not a P -stable matching for
any stable partition P (if µ is a P -stable matching for some stable partition P , m = 0
and we are done). We prove that there exists a P-stable matching µ such that µRT µ.

Fix a stable partition P∗.6 Given any A∗ = {a∗
1 , . . . , a∗

k } ∈ P∗, let NA∗(µ) denote
the set of agents a∗

i ∈ A∗ such that µ(a∗
i ) ∈ {a∗

i+1, a∗
i−1} or µ(a∗

i ) = a∗
i if µ(a∗

j ) ∈
{a∗

j+1, a∗
j−1} for all j �= i . Let n(µ) be the number of pairs (including singletons)

matched under µ and contained in NA∗(µ) for some A∗ ∈ P∗.
It suffices to prove the following:

4 See Tan (1990).
5 See the proof in Appendix.
6 From Remark 1, we can assume, without loss of generality, that P∗ has no even rings.
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Claim For any matching µ which is not a P-stable matching for any stable partition
P , there exists a matching µ′ such that µ′ RT µ and n(µ′) ≥ n(µ) + 1.

Without loss of generality, we introduce two assumptions.
S1 The matching µ is individually rational.
Otherwise, there exists an individually rational matching µ̃ such that µ̃RT µ and

n(µ̃) ≥ n(µ).
Let N (µ) denote the set of agents that belong to some set A∗ ∈ P∗ such that

A∗ = NA∗(µ) and let N ′(µ) = N\N (µ).
S2 The matching µ is blocked by a pair {x, y} � N (µ).
Otherwise, there exists a matching µ̃ verifying S2 such that µ̃RT µ and n(µ̃) =

n(µ).7

To prove the claim we distinguish two cases:

Case 1 There is an agent in N ′(µ) who is alone under µ.

In this case we give a proposal-rejection procedure intuitively described as follows.
Let y ∈ N ′(µ) who is alone under µ and let y0 = y and A∗

0 ∈ P∗ such that y0 ∈ A∗
0.

Let x1 denote the predecessor of y0 in A∗
0, y1 = µ(x1) and A∗

1 ∈ P∗ such that y∗
1 ∈ A∗

1.
As agent y0 prefers x1 to being alone, y0 proposes x1. If x1 accepts the proposal (that
is, x1 prefers y0 to his partner under µ) the pair {y0, x1} blocks µ and the procedure
concludes. Otherwise, let x2 be the predecessor of y1 in A∗

1, y2 = µ(x2) and A∗
2 ∈ P∗

such that y2 ∈ A∗
2. Since agent x1 prefers y1 to y0, then, by stability of P∗, agent

y1 prefers x2 to x1. So y1 becomes a new proposer in the process and offers x2 the
possibility of forming a new pair. Then, if x2 accepts the proposal, the pair {y1, x2}
blocks µ and the procedure concludes. Otherwise, it may continue iteratively in this
manner.

Formally, the procedure described above considers a sequence of pairs, {xt , yt }∞t=0,
that are matched under µ and a sequence of sets of P∗, {A∗

t }∞t=0, defined inductively
as follows:

(i) for t = 0, x0 = µ(y), y0 = y and A∗
0 ∈ P∗ such that y0 ∈ A∗

0.
(ii) for t ≥ 1, xt is the predecessor of yt−1 in A∗

t−1, yt = µ(xt ) and A∗
t ∈ P∗ such

that yt ∈ A∗
t .

Given that N is finite there exists a r ∈ N such that yt �xt yt−1 for all t = 1, . . . ,

r −1 and yr−1 �xr yr . Then the procedure generates the blocking pair {yr−1, xr } of µ

which induces a matching µ1 for which {yr−1, xr } ⊆ NA∗
r−1

(µ1). If n(µ1) ≥ n(µ)+1,
then the claim follows. Otherwise, n(µ1) = n(µ) and {yr−1, xr } breaks {xr , yr } ⊆
NA∗

r−1
(µ). We distinguish two cases: (a) If r ≥ 2 the procedure applied to µ1 and

y0 generates the blocking pair {yr−2, xr−1} of µ1, which induces a matching µ2 for
which {yr−2, xr−1} ⊆ NA∗

r−2
(µ2). Since µ1(xr−1) = xr−1 then n(µ2) ≥ n(µ1) + 1

and therefore n(µ2) ≥ n(µ) + 1. (b) If r = 1, we have {x1, y1} ⊆ NA∗
0
(µ) where

y1 = µ(x1). As µ1(y1) = y1 and y1 ∈ N ′(µ1), we can apply the procedure to µ1 and
y1. Now, if after applying the procedure to µ1 and y1 we are again in case (b) and so
on successively, then it is easy to verify that A∗

0 = NA∗
0
(µ). Hence y0 ∈ N (µ), which

is not possible since y0 ∈ N ′(µ). Consequently, the claim is also satisfied in this case.

7 See the proof in Appendix.
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Random paths to P-stability in the roommate problem 467

Remark 4 If N ′(µ) has s agents (z1, . . . , zs) that are single under µ with at most two
of them belonging to the same odd ring, such that {zi , z j } is not a pair of mutually
acceptable agents of P∗ for all i, j ∈ {1, . . . , s}, then there exists a matching µ′ such
that µ′ RT µ and n(µ′) ≥ n(µ) + s.8

Case 2 There is no agent in N ′(µ) who is alone under µ.

We consider two cases:

(i) If the matching µ restricted to N ′(µ) is not stable, then µ is blocked by a
pair {x, y} ⊆ N ′(µ) which induces a matching µ1 such that n(µ1) ≥ n(µ) −
1, since by the stability of P∗ at most there exists a z ∈ {x, y} such that
{z, µ(z)} ⊆ NA∗(µ) for some A∗ ∈ P∗. Now, if {µ(x), µ(y)} ⊆ N (µ1) then
n(µ1) ≥ n(µ) + 1. If µ(x) ∈ N (µ1) and µ(y) /∈ N (µ1) then n(µ1) ≥ n(µ)

and as µ(y) is alone under µ1, by applying the proposal-rejection procedure
(given in Case 1), the claim follows. If µ(x) /∈ N (µ1) and µ(y) ∈ N (µ1), the
same argument applies. If {µ(x), µ(y)} ∩ N (µ1) = ∅ then, if {µ(x), µ(y)}
is a pair of mutually acceptable agents of P∗, it blocks µ1 and induces a
matching µ2 with n(µ2) ≥ n(µ) + 1. Otherwise, from Remark 4, the claim is
implied.

(ii) If the matching µ restricted to N ′(µ) is stable, by S2 the matching µ is blocked
by a pair {x, y} � N (µ) which induces a matching µ1. Now, by stability of µ

in N ′(µ), z ∈ N (µ) for some z ∈ {x, y}. Suppose, without loss of generality,
that z = x . Then we have x ∈ N (µ) and y /∈ N (µ). From Remark 1 (iii), all
odd sets of P∗ are contained in N (µ). Hence µ(y) /∈ N (µ1). Let A∗ ∈ P∗
such that x ∈ A∗. Then {x, y} breaks the pair {x, µ(x)} ⊆ NA∗(µ). If A∗ is
even we have n(µ1) = n(µ) − 1. But, as µ(x), µ(y) /∈ N (µ1) and they are
alone under µ1, by Remark 4, the claim is satisfied. So, we can assume that
A∗ is odd. Let z denote the agent belonging to A∗ such that µ(z) = z. We
distinguish two cases: (a) If z = x we have n(µ1) = n(µ) − 1. Applying the
proposal-rejection procedure to µ1 and µ(y) there exists a matching µ̃ such that
µ̃RT µ1 and n(µ̃) ≥ n(µ1) + 1. Hence n(µ̃) ≥ n(µ). If µ(y) /∈ N (µ̃) apply-
ing the proposal-rejection procedure to µ̃ and µ(y) one more time, the claim
follows. Otherwise, it is easy to verify that µ̃ satisfies the condition of Case 1
(the agent µ1(u) ∈ N ′(µ̃) is alone under µ̃, where u is the predecessor of µ(y)

in P∗), hence the claim is implied. (b) If z �= x we have that {x, y} breaks
the singleton {z} ⊆ N (µ). Hence, n(µ1) = n(µ) − 2. But, as in N ′(µ1) there
are three single agents (µ(x), µ(y) and z) under µ1, from Remark 4, the claim
follows. 
�

In what follows we introduce two examples of roommate problems that illustrate
the proposal-rejection procedure for solvable and unsolvable roommate problems
respectively.

8 See the proof in Appendix.
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Example 2 Consider the 9-agents example given in Diamantoudi et al. (2004)

2 �1 7 �1 6 �1 3 �1 4 �1 8 �1 5 �1 1 �1 9

5 �2 3 �2 1 �2 4 �2 8 �2 7 �2 6 �2 2 �2 9

4 �3 2 �3 7 �3 5 �3 6 �3 1 �3 8 �3 3 �3 9

8 �4 5 �4 3 �4 6 �4 1 �4 2 �4 7 �4 4 �4 9

6 �5 4 �5 2 �5 8 �5 7 �5 3 �5 1 �5 5 �5 9

1 �6 8 �6 5 �6 7 �6 3 �6 4 �6 2 �6 6 �6 9

3 �7 1 �7 8 �7 2 �7 5 �7 6 �7 4 �7 7 �7 9

7 �8 6 �8 4 �8 1 �8 2 �8 5 �8 3 �8 8 �8 9

9 �9 1 �9 2 �9 3 �9 4 �9 5 �9 6 �9 7 �9 8

In this example, P∗ = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9}} is a stable partition. Since
P∗ has no odd rings, then there exists a stable matching. Consider the following
matching µ = [{2, 3}, {4, 5}, {6, 1}, {7, 8}, {9}], which is unstable. Then n(µ) = 2,
N (µ) = {7, 8, 9} and N ′(µ) = {1, 2, 3, 4, 5, 6}. Since there is no agent in N ′(µ)

who is alone under µ we are in Case 2. This matching is blocked only by {1, 7},
which induces µ1 = [{2, 3}, {4, 5}, {6}, {1, 7}, {8}, {9}]. Hence, we are in Case 2 (ii).
Notice that {1, 7} breaks {7, 8} ⊆ N (µ), hence n(µ1) = 1 = n(µ) − 1. Now, under
µ1, agents 6 and 8 are alone. Applying the proposal-rejection procedure (given in
Case 1) to µ1 and agent 8, the procedure considers the following sequence of pairs
that are matched under µ1: {8}, {7, 1}, {2, 3}, {4, 5} and {6} and generates the block-
ing pair {5, 6}, which induces µ2 = [{2, 3}, {4}, {5, 6}, {1, 7}, {8}, {9}]. Since under
µ2 agent 8 is alone, the procedure applied to µ2 and 8 generates the blocking pair
{3, 4} and µ3 = [{2}, {3, 4}, {5, 6}, {1, 7}, {8}, {9}] is reached. For this matching
n(µ3) = 3 = n(µ) + 1 as the claim states.

To complete the sequence that leads to µ, since agent 8 is still alone under µ3, we
apply the procedure to them. Then µ3 is blocked by {1, 2}, which generates the match-
ing: µ4 = [{1, 2}, {3, 4}, {5, 6}, {7}, {8}, {9}] and µ4 is blocked by {7, 8}, inducing
the stable matching: µ5 = [{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9}].
Example 3 Consider the following 9-agent roommate problem:

2 �1 3 �1 1 �1 4 �1 5 �1 6 �1 7 �1 8 �1 9

4 �2 1 �2 2 �2 3 �2 5 �2 6 �2 7 �2 8 �2 9

1 �3 4 �3 5 �3 3 �3 2 �3 6 �3 7 �3 8 �3 9

6 �4 3 �4 2 �4 4 �4 1 �4 5 �4 7 �4 8 �4 9

3 �5 6 �5 5 �5 1 �5 2 �5 4 �5 7 �5 8 �5 9

5 �6 8 �6 4 �6 6 �6 1 �6 2 �6 3 �6 7 �6 9

8 �7 9 �7 7 �7 1 �7 2 �7 3 �7 4 �7 5 �7 6

9 �8 6 �8 7 �8 8 �8 1 �8 2 �8 3 �8 4 �8 5

7 �9 8 �9 9 �9 1 �9 2 �9 3 �9 4 �9 5 �9 6
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Random paths to P-stability in the roommate problem 469

P1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8, 9}} and P2 = {{1, 3}, {2, 4}, {5, 6}, {7, 8, 9}} are
the stable partitions for this roommate problem that do not contain any even ring.9

Since they have an odd ring, then there is no stable matching. Fix P∗ = P1 and
consider the matching µ = [{1, 2}, {3, 5}, {4, 6}, {7, 9}, {8}] which is not a P -sta-
ble matching for any stable partition P . Then n(µ) = 3, N (µ) = {1, 2, 7, 8, 9}
and N ′(µ) = {3, 4, 5, 6}. The matching µ is blocked by {6, 8} � N (µ) which
induces µ1 = [{1, 2}, {3, 5}, {4}, {7, 9}, {6, 8}] with n(µ1) = 2 = n(µ) − 1. Hence,
we are in Case 2 (ii)(a). Then we apply the proposal-rejection procedure to µ1 and
agent 4. The procedure generates the blocking pair {3, 4} and the matching µ2 =
[{1, 2}, {3, 4}, {5}, {7, 9}, {6, 8}] for which n(µ2) = 3 = n(µ), N (µ2) = {1, 2, 3, 4}
and N ′(µ2) = {5, 6, 7, 8, 9}. Since agent 5 is alone under µ2, applying the proposal-
rejection procedure again now to µ2 and 5, we obtain µ3 = [{1, 2}, {3, 4}, {5, 6},
{7, 9}, {8}], which is a P1-stable matching.

Notice that starting from matching µ = [{1, 3}, {2, 4}, {5}, {6}, {7, 9}, {8}], and
applying the proposal-rejection procedure, a P2-stable matching is reached, but never
a P1-stable matching.

5 Concluding remarks

In this paper, we have generalized the result of Diamontoudi et al. (2004). In par-
ticular, Theorem 1 establishes that the set of P-stable matchings has the property of
“outer stability” in the following sense. If µ is not a P-stable matching for any stable
partition, then there exists a P-stable matching µ such that µRT µ. On the other hand,
Example 3 allows to see the interest of P -stable matchings for unsolvable roommate
problems.

In this example, the set of the P-stable matchings is the union of two disjoint sets:
the set of the P1-stable matchings and the set of the P2-stable matchings, associated
with the stable partitions P1 and P2 respectively. It is easy to verify that the matchings
of each such set are symmetrically connected by the relation RT , that is, given any
two matchings of the same set, there is a path from one to another. However, any two
matchings belonging to two distinct sets are not RT comparable, that is, there is not a
path from a P1-stable matching to a P2 -stable matching, and conversely. Moreover,
notice that from any matching of the set of P-stable matchings, there is not a path to
any other matching outside this set. These ideas will be addressed in further research.

Appendix

Proof of Remark 3 If a stable matching exists, then by Remark 1 (iii), no stable parti-
tion P contains odd rings. Hence, by Remark 2, if µ is a P-stable matching, then µ is
a stable matching. Conversely, if µ is a stable matching, then µ is a P-stable matching
where the partition P is formed by all pairs matched under µ. 
�

9 P3 = [{1, 2, 4, 3}, {5, 6}, {7, 8, 9}] is also a stable partition.
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Proof of S2 Consider the partition P of N such that for each A ∈ P , A = A∗ for
some A∗ ∈ P∗ such that A∗ = NA∗(µ) or A = {x, µ(x)} where x /∈ N (µ). Since µ is
not a P -stable matching, P is not stable, hence there exist two sets A = {a1, . . . , ak}
and B = {b1, . . . , bl} of P such that

b j �ai ai−1 and ai �b j b j−1 (2)

for some i ∈ {1, . . . , k} and j ∈ {1, . . . , l}. If ai , b j /∈ N (µ), then ai−1 = µ(ai ) and
b j−1 = µ(b j ). Hence, by (2) the pair {ai , b j } � N (µ) blocks µ. So, we can assume
that ai or b j ∈ N (µ). Now, by stability of P∗, only one of them (ai or b j ) belongs
to N (µ). Suppose, without loss of generality, that ai ∈ N (µ) and b j /∈ N (µ). Then
b j−1 = µ(b j ). As ai ∈ N (µ) and ai ∈ A we have A = A∗ for some A∗ ∈ P∗
such that A∗ = NA∗(µ). Thus, µ(ai ) ∈ {ai−1, ai , ai+1}. Now, if µ(ai ) ∈ {ai−1, ai }
or µ(ai ) = ai+1 and b j �ai ai+1 then by [2] the pair {ai , b j } blocks µ. Thus, we
assume that µ(ai ) = ai+1 and ai+1 �ai b j . But then A∗ is an odd ring, hence there
exists a j ∈ {1, . . . , k} such that µ(a j ) = a j . Now, a j−1 �a j a j . As µ(a j−1) = a j−2
and a j �a j−1 a j−2, then the pair {a j , a j−1} blocks µ, which induces a matching µ1
for which µ1(a j−2) = a j−2. If i = j − 2 we have µ1, which verifies S2, µ1 Rµ and
n(µ1) = n(µ). Otherwise, by reasoning in a similar way for µ1 and so on we conclude
that there exists a matching µ̃ verifying S2 such that µ̃RT µ and n(µ̃) = n(µ). 
�
Proof of Remark 4 As µ(z1) = z1 and z1 ∈ N ′(µ) we apply the proposal-rejection
procedure to µ and z1. We can assume, without loss of generality, that we are not in
Case 1b. Then, there exists a matching µ̃ such that µ̃RT µ and n(µ̃) ≥ n(µ) + 1. (If
there is a r ∈ {1, . . . , s} such that {z1, zr } ⊆ A∗ for some odd ring A∗ ∈ P∗, and
zr is the predeccesor of z1 in A∗, then we apply the procedure to µ and zr .) Now, if
s = 1 the result follows. Otherwise, it is easy to see that at least (s − 1) agents of
{z1, . . . , zs} are single under µ̃. Let k be the number of agents of {z1, . . . , zs} that are
single under µ̃ and contained in N (µ̃). Then, we have n(µ̃) ≥ n(µ) + 1 + k. Hence,
if k ≥ s − 1, n(µ̃) ≥ n(µ) + s and we are done. If k < s − 1, then N ′(µ̃) contains at
least (s − 1 − k) agents of {z1, . . . , zs} that are single under µ̃. Hence by reasoning
in a similar way for µ̃ and so on we conclude that there exists a matching µ′ such that
µ′ RT µ and n(µ′) ≥ n(µ) + s. 
�
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