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Abstract We study the dynamics of stable marriage and stable roommates markets.
Our main tool is the incremental algorithm of Roth and Vande Vate and its general-
ization by Tan and Hsueh. Beyond proposing alternative proofs for known results, we
also generalize some of them to the nonbipartite case. In particular, we show that the
lastcomer gets his best stable partner in both incremental algorithms. Consequently,
we confirm that it is better to arrive later than earlier to a stable roommates market. We
also prove that when the equilibrium is restored after the arrival of a new agent, some
agents will be better off under any stable solution for the new market than at any stable
solution for the original market. We also propose a procedure to find these agents.
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334 P. Biró et al.

1 Introduction

The stable marriage problem was introduced and solved by Gale and Shapley (1962).
In terms of graphs, this is the bipartite case of the stable matching problem, where the
two sets of agents are that of men and women. The solution obtained by the authors’
deferred-acceptance algorithm was proved to be optimal for men if men make pro-
posals. This means that each man gets his best stable partner, so no man can have a
better partner in any other stable matching.

The nonbipartite version, the stable roommates problem, is also defined in Gale
and Shapley (1962). It is shown by an example that in a stable roommates instance a
stable matching does not always exist. Irving (1985) constructed the first polynomial
algorithm that finds a stable matching if one exists at all (see also the book of Gusfield
and Irving (1990)). Later, Tan (1991) gave a compact characterisation of the stable
roommates problem by a half-integer solution.

For the bipartite case, Knuth (1976) asked whether it is possible to obtain a stable
matching by starting from an arbitrary matching and successively satisfying blocking
pairs. Roth and Vande Vate (1990) gave a positive answer by a decentralized algo-
rithm, in which pairs or single agents enter the market in a random order, and stability
is achieved by a proposal-rejection process. Knuth’s question for the bipartite case
was also answered by Abeledo and Rothblum (1995) by a common generalization
of the Roth–Vande Vate and the Gale–Shapley algorithms. Later, Diamantoudi et al.
(2004) solved the same problem for the roommates case. They proved that one can
always reach a stable matching, if one exists, from an arbitrary matching by succes-
sively satisfying blocking pairs. Recently, Inarra et al. (2007) generalized this result
for insolvable stable roommates problems by proving the same statement for the so
called, P-stable matchings instead of stable matchings.

However the original goal of Roth and Vande Vate was different, their algorithm can
be used to model the dynamics of the two-sided matching market as well. In fact, they
considered the situation when a new agent enters the market and the stability is restored
by the natural proposal-rejection process. This mechanism also yields an algorithm to
find a stable matching for a market by letting the agents enter the market in a random
order. Independently, Tan and Hsueh (1995) constructed an algorithm, that finds a
stable half-matching for general graphs by using a similar incremental method. In the
bipartite case, the Tan–Hsueh algorithm is equivalent to the Roth–Vande Vate algo-
rithm. In the nonbipartite case infinite repetitions can occur, these are handled by the
introduction of cycles. These two algorithms are abbreviated hereafter as “incremental
algorithms”.

Blum et al. (1997) described the properties of a dynamic two-sided matching mar-
ket. They showed that their proposed algorithm is similar to the McVitie and Wilson
(1970) of the original deferred-acceptance algorithm. So, the output of the process
is predictable: if some men enter the market then each man either remains matched
with the same partner (if it is possible) or gets a worse (but his best) stable partner
for the new market. Blum and Rothblum (2002) pointed out that these results imply
that the lastcoming agent gets his best stable partner in the Roth–Vande Vate algo-
rithm. Moreover, an agent can only benefit from entering the market later (we assume
here that the others enter the market in the same order). Independently, Ma (1996)
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The dynamics of stable matchings and half-matchings 335

observed on an example of Knuth, that if agents enter the market successively then the
Roth–Vande Vate algorithm may not find all stable matchings in general. Cechlárová
(2002) strengthened Ma’s result by justifying that in a stable matching output by the
incremental algorithm for a bipartite graph some agent gets his best stable partner. Here
we give direct proofs for the above results in the bipartite case, and we generalize most
of them to general graphs with the help of our Key Lemma.

Gale and Sotomayor (1985) showed that if some man expands his preference-list
then no other man is better off in the new men-optimal stable matching. This implies
that the same statement is true if a number of men enter the market. Roth and Sotomayor
(1990) proved that if a man arrives and becomes matched, then certain women will be
better off, and some man will be worse off under any stable matching for the new market
than at any stable matching for the original market. We generalize this theorem by using
an improved version of a result of Pittel and Irving (1994) on the core configuration.

Our results have an economic interpretation. Matching markets are well-known
applications of the stable matching problem. A detailed description of two-sided mar-
kets can be found in the book of Roth and Sotomayor (1990). An important example
is job matching. Blum et al. (1997) studied the dynamics of the two-sided matching
market in this context by analysing the formation of the “vacancy chains”.

The dynamic formation of social and economic networks can be described by sta-
ble matching models as Jackson and Watts considered in Jackson and Watts (2002).
They illustrated the occuring mechanisms with the Roth–Vande Vate algorithm in the
bipartite case. We believe that the same model can be used in the nonbipartite case,
where the connections between individuals might correspond to mutual “best friend”
relationships. By similar reasons, Eriksson and Strimling (2005) used the same stable
roommates model to analyse the mate searching processes for special preferences.
Recently, the dynamics of the firm mergers was also described as a one-sided stable
matching market by Angelov (2006).

Another important application of the stable roommates problem is the pairwise
exchange of indivisible goods. Yuan (1996) considered the resident exchange prob-
lem in China by this approach, and the stable roommates model was also mentioned
by Roth et al. (2005) as a possible solution of the kidney exchange problem. However
in these one-sided matching markets the dynamic processes are not typical.

This paper is organized as follows. In Sect. 2, we define stable matchings and
half-matchings. In Sect. 3, the Roth–Vande Vate and the Tan–Hsueh algorithm are
described. We prove our main results in Sect. 4.

2 Stable matchings and half-matchings

Let us model the stable matching problem with a graph G, where the agents are rep-
resented by vertices, and two vertices are linked by an edge if the agents are both
acceptable to each other. For every vertex v, let <v be a linear order on the edges
incident with v. That is, every agent has strict preferences on his possibles partner-
ships. We say that agent v prefers edge f to e (in other words f dominates e at v) if
e <v f holds. A matching M is a set of edges with pairwise distinct vertices. If an
edge e = {u, v} belongs to M , then u and v are matched in M , so u and v are partners
in the market. An agent is single, if his vertex is uncovered in M , i.e. it is not incident
with a matched edge.
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A matching M is called stable if every nonmatching edge, e /∈ M is dominated
by some matching edge, f ∈ M . Alternatively, a stable matching can be defined as a
matching without a blocking edge: an edge e = {u, v} is blocking for a matching M if
u is either unmatched or prefers edge e to the matching edge that covers u in M , and
at the same time, v is either unmatched or prefers edge e to the matching edge that
covers v in M . For a matching market, the stability means that no pair of agents can
benefit by leaving their actual partners and establishing a new mutual partnership.

We notice that an advantage of the graph terminology is that it can handle parallel
edges that correspond to the case where two agents can make several types of partner-
ship with each other. Moreover, this basic model can be improved easily to describe
more general problems, for example the case, where an agent can have many partners
(see Cechlárová and Fleiner 2005). However in this article we deal only with simple
graphs,1 we chose the graph model because the notion of half-matching also can be
defined naturally in this way, that is crucial in our work.

Alternatively, stable matchings can be described with compact formulas. If M is a
set of edges then let xM : E(G) −→ {0, 1} be its characteristic function i.e.

xM (e) =
{

1, e ∈ M
0, e /∈ M

Subset M of E(G) is a stable matching if the following conditions hold:

(M) Matching: (S)Stability:∑
v∈e

xM (e) ≤ 1 for every vertex v ∈ V (G) for every edge e ∈ E there exists a vertex

v ∈ e such that
∑

v∈ f, f ≥ve
xM ( f ) = 1

We consider the stable marriage problem if the graph is bipartite, and the stable
roommates problem if the graph is general. Gale and Shapley (1962) proved that a
stable matching always exists for the marriage problem but may not exists for the
roommates problem. They gave the following example to show the non-existence:

Example 1

Agents Pre f erence − lists
A : [B, C, D]
B : [C, A, D]
C : [A, B, D]
D : arbitrary

1 A graph is simple if it does not have parallel edges. In this case instead of partnerships, the agents can
have preferences on their possible partners, so each vertex can have a linear order on his neighbours in the
graph. Then, as a widely used definition, a matching can be described equivalently by an involution µ on
the set of agents, where µ(u) = v implies µ(v) = u, and this means that u and v are matched (µ(w) = w

corresponds to the case when w is unmatched).
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The dynamics of stable matchings and half-matchings 337

Let us imagine that these agents are tennis-players, each is looking for a partner to
play with for 1 h a week. For example Andy would like to play mostly with Bill, then
with Cliff and finally he prefers Daniel the least. (In fact, everybody tries to avoid
Daniel.) There is no stable solution. If a pair is formed from the first three players,
say Andy plays with Bill, then the third one, Cliff must be matched with Daniel, but
in this case Bill and Cliff block this matching.

Tan (1991) discovered, that if the agents can create half-time partnerships then a
stable solution always exists in the sense that no pair of agents would simultaneously
like to increase the intensity of their partnership.

Considering the above example, we suppose that Andy, Bill and Cliff agree to meet
once a week and play half-time games in each formation. Thus, each of them play
1 h in sum, only Daniel remains without any tennis-partner. Stability in this case is
that no pair of tennis-players want to play more time together with each other. For
example Andy plays with Daniel no time at all, because Andy fills his 1-h by playing
two half-hour games with better partners. Andy and Bill will not play more than a
half-hour, because Bill fills the rest of his time (a half-hour) by playing with a better
partner, Cliff.

A half-matching hM consists of matching edges M and half-weighted edges H , so
that hM = H ∪ M and each vertex is incident either with at most one matching edge
or with at most two half-weighted edges. In a matching market an agent can have at
most one partner or at most two half-partners. A half-matching hM is stable if for each
edge e not in hM there exists a vertex v, where e is dominated either by one matching
edge or by two half-weighted edges, and for every half-weighted edge h there exists
a vertex v, where h is dominated by another half-weighted edge. So no pair of agents
wants to improve their partnership simultaneously, because for each pair of agents who
are not matched, one of them fills his capacities with better partnership(s). Otherwise,
if a half-matching is unstable, then a blocking edge is an undominated edge.

If xhM : E(G) −→ {0, 1
2 , 1} is a weight-function that describes the set of matching

edges, M and the set of half-weighted edges, H so that

xhM (e) =

⎧⎪⎪⎨
⎪⎪⎩

1, e ∈ M

1
2 , e ∈ H

0, e /∈ hM

then the same (M) and (S) inequalities preserve the half-matching and the stability-
property.

The fact, that every half-weighted edge must be dominated by another half-weighted
edge at one of its endvertices implies that the half-weighted edges form cycles, where
the direction of the domination between two consecutive half-weighted edges is the
same along the cycle. To illustrate this property in the figures, we orient each half-
weighted edge to its endvertex, where it is dominated by the other half-weighted
edge. Tan (1991) observed that an even-cycle can be replaced by matched pairs, but
if an odd-cycle C occurs in hM then C must belong to the H -part of any stable
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half-matching for the given graph, so no stable matching exists. He characterized the
stable half-matching2 in the following way:

Theorem 1 (Tan) For a stable roommates problem there always exists a stable half-
matching3 that consists of matched pairs and odd-cycles formed by half-weighted
pairs. The set of agents can be partitioned into:

(a) unmatched (or single) agents,
(b) cycle-agents and
(c) matched agents.

Furthermore, for any instance the same agents remain unmatched and the same odd-
cycles are formed in each stable half-matching.

If for a half-matching hM = H ∪ M an edge e = {u, v} is in M , then we say that
the agents u and v are partners. If two agents can be partners in a stable half-matching
we call them stable partners. If an edge e = {u, v} ∈ H is in an odd-cycle, then u and
v are half-partners. If u prefers v to his other half-partner, then v is the successor of
u and u is the predecessor of v.

To consider the stable half-matchings of a matching market can have many moti-
vations. First of all, if the stable half-matching does not contain any odd-cycle, then
we receive a stable matching, otherwise we know the reason of the non-existence.
Secondly, we can obtain a matching, by leaving one agent from each odd-cycle and
forming pairs from the rest of the cycles. This matching is stable for the remain-
ing agents. In other words every blocking edge is incident with one of the removed
agents, so by compensating them somehow we can reach a kind of stability for the
market.4 Thirdly, in some real applications (like in the case of the tennis-players) the
half-solutions are feasible in practice.

3 The incremental algorithms

Suppose a matching market is in an equilibrium with a stable matching. A natural
question is how the situation changes if a new player enters the game and the prefer-
ences over the former partnerships are unchanged. Let the newcomer make proposals
according to his preference order. If no one accepts, then everybody has a better part-
ner, so the former matching remains stable. If somebody accepts a proposal, then a
new pair is formed along the proposal. The possible left-alone partner has to leave the

2 Originally, Tan used the term stable partition. We have several reasons to use this alternative notion.
The expression “stable partition” is also used as a core-solution of a coalition formation game, that can
be confusing. If we consider more general models (where agents can have several partners, or multiple
activities are possible) definition of stable half-matching can be easily extended. Finally, the half-solution
may interpret real partnerships with half-intensities.
3 Aharoni and Fleiner (2003) showed, that the existence of the stable half-matching is a consequence of
the famous theorem of Scarf (1967).
4 This idea can be used as a heuristic to find a matching that contains as few blocking edges as possible. It
is reasonable to apply such a method, since even to approximate the minimal number of the blocking pairs
for general graphs is theoretically hard (see Abraham et al. 2006).
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market and enter as a newcomer. Note that the same situation happen, when an agent
leaves the market. If he was single, then the matching remains stable. Otherwise, if he
was matched, then his partner has to leave the market and enter again as a newcomer.

The Roth–Vande Vate algorithm for the stable marriage problem

Suppose, that a bipartite graph G is built up step by step in the algorithm by adding
vertices to the graph in some order. In a phase of the algorithm we add a new agent
and restore the stability. To describe a phase, let us add a vertex v to G − v, where a
stable matching Mv exists. Our task is to find a stable matching M for G.

If v is not incident to any blocking edge, then Mv remains stable for G, too. In this
case the phase is called inactive.

A phase is active if the newcomer v is a member of some blocking pair, let {v, u}
be the best blocking pair for v. Let v = a0 and u = b1. If b1 was unmatched in
Mv = Ma0 , then Ma0 ∪ {a0, b1} is a stable matching for G. Otherwise, b1 had a
partner a1 in Ma0 , whom he leaves after receiving a better proposal. In this case, the
matching Ma1 = Ma0 \ {a1, b1} ∪ {a0, b1} is stable for G − a1. So we have a similar
situation as in the beginning: a1 enters the market and makes proposals. Continuing the
process, a proposal-rejection sequence, S = (A|B) = a0, b1, a1, . . . is constructed
with the following properties:

1. Mak = Mak−1 \ {ak, bk} ∪ {ak−1, bk} is a stable matching for G − ak .
2. ak−1 is a better partner for bk than ak and
3. bk+1 is a worse partner for ak than bk .

Note that here, a0, a1, . . . are from the same side, and b1, b2, . . . are from the other
one. Property 2 is true, since bk accepted the proposal of ak−1 while he left ak . To see
3, realize that pairs (ak, bk) and (bk+1, ak+1) are in Mak−1 , so 2. and the assumption
that ak prefers bk+1 to bk would imply that (ak, bk+1) is a blocking pair for Mak−1 .

A proposal-rejection process is illustrated in Fig. 1. In this and subsequent figures,
a little arrow is directed from a dominated edge to a dominating one and thick lines
correspond to matching and half-weighted edges of the current (half-)matching.

Observe that by this process, each ai ∈ A improves his situation and each b j ∈ B
gets worse off. Consequently, the same agents cannot occur as new pairs. So a phase
terminates in O(m) time, when m denotes the number of the edges in the graph. A
phase has two possible outcomes: either nobody accepts the proposals of some ai

a1 a2 ak− 1 ak ak+1

b2 bk bk+1

v = a0

u = b1

M ak

Fig. 1 Proposal-rejection sequence in the Roth–Vande Vate algorithm
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(then the size of the matching remains the same) or the last b j was unmatched, hence
the size of the matching increases by one.

We illustrate with an example the mechanism of the incremental algorithm and we
introduce briefly our results. The preferences of the agents on their possible partner-
ships in this two-sided market are the following:

Example 2

a1 : e1 > d1 > f1 b1 : f3 > d2 > n1 > e1
a2 : e2 > d2 > f2 b2 : f2 > d1 > e3
a3 : e3 > d3 > f3 b3 : f1 > d3 > e2
a4 : s b4 : s > n2
a5 : m1 > m2 b5 : m2 > n3
a6 : n1 > n2 > n3 > n4 b6 : n4 > m1

Let d = {d1, d2, d3}, e = {e1, e2, e3}, f = { f1, f2, f3}. Suppose, that at the begin-
ning a6 is not present in the market. Partnerships {e, s, m1} form a stable matching in
the market. (It is the best one for every agent ai .)(Fig. 2)

When agent a6 enters the market, four new possibles partnerships are created. The
best one for the newcomer is n1, that is blocking the actual matching. Following the
algorithm of Roth and Vande Vate let us satisfy this blocking edge: b1 and a6 form a
new pair, and partnership e1 terminates, so agent a1 has to find a new partner as a new-
comer. Continuing this process, the following edges will be satisfied and terminated
in sequence: d1, e3; d3, e2; d2, n1. Afterwards, agent a6 makes proposals again, that b1
and b4 refuse, because they prefer their partners to a6. We will prove later, that if a new
partnership is not blocking, then it cannot be present in any stable matching. In the last
step of our example, a single agent b5 accepts the proposal of a1, and {d, s, m1, n3}
is a stable matching. This stable solution is the best possible one for the newcomer
a6, since the better partnerships, that were refused by his possibles partners cannot
appear in any stable matching. This argument also shows that every agent that receives
a partner by making a proposal during the process gets his best stable partner (Fig. 3).

Note, that if we started with the stable matching { f, s, m1}, then the process would
stop in one step, since b5 accepts first the proposal of a6. The obtained stable matching

d2

e, s, m 1

d, s, m 1

f, s, m 1

e3

f 3

f 1

d1
m 2

n2

e1
e2

f 2

m 1

n4

n1

d3

s

n3

a3

b3

b1 b5

a5b6

a2

b2
b4 a4

a6

a1

Fig. 2 A stable matching and the lattice of the stable matchings for Example 2 before the arrival of a6
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d2

d, s, m 1, n 3

d, s, m 2, n 4 f, s, m 1, n 3

f, s, m 2, n 4

e3

f 3

d1
m 2

n2

n3

e1
e2

f 2

s

m 1

n4

n1

d3

f 1

a3

b3

b1 b5

a5b6

a2

b2
b4 a4

a6

a1

Fig. 3 The obtained stable matching, and the lattice of the stable matchings for Example 2

{ f, s, m1, n3} yields the best stable partner to the newcomer a6 again, but the other
agents ai do not get necessarily their best stable partners.

The Tan–Hsueh algorithm for the stable roommates problem

Tan and Hsueh (1995) proposed an incremental algorithm to find a stable half-match-
ing. In this more general setting we use the terminology of the Roth–Vande Vate
algorithm. The only difference is that G is not bipartite, so instead of a matching, we
maintain a half-matching hMv for G − v.

Hereafter, we suppose that the stable half-matchings have no even-cycles. As we
mentioned before, an even-cycle can be always separated into matching pairs, more-
over, as we will see later, incremental algorithm does not create even-cycles. By
Theorem 2 we know, that for a fixed stable roommates problem, the same odd-cycles
are present in each stable half-matching hMi = H ∪ Mi , so H is determined, only the
Mi part, the matching pairs can differ for two stable half-matchings for a given graph.
In fact, H can be considered as a disjoint union of half-weighted cycles, so whenever
we modify a stable half-matching during the processes, we will only add or remove
matching edges or half-weighted odd-cycles.

If nobody accepts the newcomer’s proposal, then the phase is called inactive again
and the current stable half-matching is unchanged.

If some agent u accepts the proposal of v then three cases are possible:

(a) If u is unmatched in hMv , then hM = hMv ∪ {v, u} is a stable half-matching
for G.

(b) If u is a cycle-vertex in hMv , so u =c0 for some cycle C =(c0, c1,. . ., c2k−1, c2k),
then hM = hMv \ C ∪ {v, u} ∪ {c1, c2}∪, . . . ,∪{c2k−1, c2k} is a stable half-
matching for G (i.e. we remove the half-weighted cycle C and we add some
matching edges).

(c) If u is matched with x in hMv , then hMx = hMv \ {u, x} ∪ {v, u} is a stable
half-matching for G − x .

The current phase ends in cases (a) and (b). Here, unlike in the bipartite case, it can
happen that an agent, that made a proposal earlier can receive a proposal later during
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the same phase. So the proposal-rejection sequence might never end. One result of
Tan and Hsueh (1995) was that a repetition always occurs along an odd-cycle.

Theorem 2 (Tan–Hsueh) If S = (A|B) = a0, b1, a1, . . . is a proposal-rejection
sequence and ai = bk (i < k) is the first return, then this proposal-rejection sequence
can be extended in such a way that it will return to ak at bk+m+1, and the following
properties are true: {ak, bk+1, . . . , bk+m, ak+m} are distinct vertices, and in the inverse
order they form an odd-cycle C, and hM = hMak \{ak+1, bk+1}\· · ·\{ak+m, bk+m}∪C
is a stable half-matching.

Example in Figs. 4 and 5 illustrate the Tan–Hsueh algorithm: here, vertex v enters.
The first vertex accepting v’s proposal is u, and u’s previous partner x is left alone.
Figure 4 shows the stable half-matching hMx for G − x . In the next step, x makes
proposals. Figure 5 illustrates the termination of this phase by obtaining an odd cycle,
namely the three-cycle containig vertex x and edges c1 and c2.

Fig. 4 The Tan–Hsueh
algorithm in an example

x

b

c1
c2

a

u

v

Fig. 5 The obtained stable
half-matching

xc1
c2

b a

u

v
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4 Properties of the dynamic solutions

In this section we prove our results.

Getting the best stable partner by making proposals

Lemma 3 (Key Lemma) If hMv is a stable half-matching for G − v, and edge {v, u}
is not blocking hMv , then v and u cannot be matched in a stable half-matching for G.

Proof Let us suppose that {v, u} is not blocking hMv but there is a stable half-matching
hM of G, where v and u are matched. Let v = a0 and u = b1. First we consider the
case where none of hM and hMv contains an odd-cycle. Then b1 has a partner in Mv

(say a1), who is better than a0. So {a0, b1} <b1 {a1, b1}, where {a0, b1} ∈ M \ Mv .
Since M cannot dominate {a1, b1} at b1, this edge must be dominated at a1 by some
edge {a1, b2} of M . As {a1, b2} is not in Mv , it must be dominated at b2 by an edge
{a2, b2} of Mv , and so on. The alternating sequence (a0, b1, a1, b2, . . . ) has the follow-
ing property: {ai−1, bi } ∈ M \ Mv and {bi , ai } ∈ Mv \ M , furthermore the domination
is also in sequence: {ai−1, bi } <bi {ai , bi } and {ai , bi } <ai {ai , bi+1} for every i . We
call this sequence alternating preference sequence. Because a0 is not covered by the
stable matching Mv , the sequence can return neither to a0, nor to any other vertex.
Otherwise, the first such a repeted vertex would be covered by two matching edges, a
contradiction. (This part of the proof already confirms the bipartite case.)

The other case is, when hMv or hM may contain odd-cycles. The properties of the
alternating preference sequence remain the same, the difference is that the edges can
be half-weighted edges as well. To avoid repetition, the idea is the following: when an
edge {ai , bi } ∈ hMv is dominated at ai in hM by two edges (so ai is in a cycle in hM),
then we chose for bi+1 the predecessor of ai . Edge {ai , bi+1} is still not in hMv , so
it must be dominated at bi+1. But then the edge(s) that dominate(s) {ai , bi+1} is (are)
better than either of the edges that cover bi+1 in hM , so they are not in hM . This is
why every new edge in this sequence will be alternately in hM \ hMv and hMv \ hM
(Fig. 6).

We have a finite number of agents, so the alternating preference sequence must
return. We consider the first such repetition. If ak = ai for some k �= i then {bk, ai }
and {bi , ai } would be in the same odd-cycle in hMv , but ai would be the predecessor
of both bi and bk by the inductive definition of the sequence, that is impossible. In
the other case, assume that ak = bi for some k �= i . This means that {bk, bi } and
{bi , ai } are in the same odd-cycle in hMv . By definition, ai is the predecessor of bi ,
so bk should be the successor of bi , that would imply {ai , bi } <bi {bk, bi }. On the
other hand, since {bk, bi } ∈ hMv \ hM , it must be dominated at bi in hM . By the
inductive rules {ai−1, bi } ∈ hM , this means {bk, bi } <bi {ai−1, bi } <bi {ai , bi }, a
contradiction.

Similarly, If bk = bi for some k �= i then {ak, bi } and {ai , bi } would be in the same
odd-cycle in hM , but bi would be the predecessor of both ai and ak by the induc-
tive definition of the sequence, that is impossible. Finally, assume that bk = ai for
some k �= i . This means that {ak, ai } and {ai , bi } are in the same odd-cycle in hMv .
By definition, bi is the predecessor of ai , so ak should be the successor of ai , that
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Fig. 6 Alternating preference
sequence with half-weighted
edges

a1 a2

b2

hM

v = a0

u = b1

hM v

would imply {bi , ai } <ai {ak, ai }. On the other hand, since {ak, ai } ∈ hM \ hMv , it
must be dominated at ai in hMv . By the inductive rules {bi−1, ai } ∈ hMv , this means
{ak, ai } <ai {bi−1, ai } <ai {bi , ai }, a contradiction. ��

The following Lemma is well-known.

Lemma 4 If v is the best stable partner for u then u is the worst stable partner for v.

Proof If indirectly, v and u are matched in a stable half-matching hM , but v has an
even worse partner u′ in a stable half-matching hM ′, then u would have some other
partner v′ worse than v, because v was u’s best stable partner. So {u, v} would be a
blocking edge for hM ′, contradiction. ��

To generalize the results of Blum et al. (1997) we prove that a newcomer gets his
best stable partner in the output of the incremental algorithm in the nonbipartite case
as well.

Theorem 5 Suppose that an agent v enters the market and the stability is restored by
a proposal-rejection process along the sequence S = (A|B). Then each agent a ∈ A,
who became matched by making (accepting) a proposal gets his best (worst) stable
partner in the obtained stable half-matching.

Proof If an agent a is matched in the output, and receives a partner by making a pro-
posal, then later he cannot accept any proposal because then he would be a cycle-agent.
The last time when agent a makes a proposal during the process he does not prefer
his last partner only to some agents that refused him. Because of the Key Lemma, no
one of these agents can be a partner of a in a stable solution, so obviously agent a
received his best stable partner. Similarly, each matched agent b ∈ B gets his worst
stable partner by Lemma 4. ��
Corollary 6 If an agent enters the market last and becomes matched, then he gets his
best stable partner. ��
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If a phase is inactive in the incremental algorithm, then each stable half-matching
of the extended graph is also a stable half-matching in the original. That is, if hM is
a stable half-matching for G not covering some vertex x , then hM is a stable half-
matching for G − x too, because after deleting x from G no blocking edge can appear.
So, by using the Key Lemma, we can confirm our main result:

Theorem 7 Each matched agent, that gets a partner in the last active phase by making
(accepting) a proposal, receives his best (worst) stable partner in the stable solution
output by the incremental algorithm. ��
Remark The vertices that remained uncovered in the last active phase or entered later
in an inactive phase, will still be uncovered at the end of the algorithm, just like they are
in every stable matching. The vertices that form an odd-cycle in the last active phase
will form an odd-cycle at the end of the algorithm, just like they do in every stable
half-matching. Hence these agents also get their best stable partners in this sense.

Corollary 8 A stable matching, where no matched agent gets his best stable partner,
cannot be output by the incremental algorithm. ��

Let us remark that we did not prove that any stable matching where somebody gets
his best stable partner or contains an odd-cycle can be obtained with an incremental
algorithm. Our result gives only a necessary condition not a sufficient one.

Blum et al. (1997) proved, that if a man m enters the market and another man m′
was matched with w′ in Mm , then m′ and w′ remain matched in the obtained stable
matching M for the new market if and only if they are stable partners for the new
market. Otherwise m′ and w′ get those agents to whom they are matched in the men-
optimal stable matching of the new market. (So m′ receives his best stable partner, and
w′ receives her worst stable partner in this case.) Below, we generalize this statement
for the nonbipartite case.

Theorem 9 Suppose that w and u are matched in a stable half-matching hMv for
G − v. They remain matched in the stable half-matching hM, obtained by the
proposal-rejection process after the arrival of v if and only if they are stable part-
ners for G as well. Otherwise, if they are not involved in a cycle, then one of them gets
a better partner than he had in hMv but receives his worst stable partner, the other
one becomes single or gets a worse partner than he had in hMv but receives his best
stable partner in hM .

Proof If w and u are not involved in the proposal-rejection process, then obviously
they remain matched. Otherwise, if S = (A|B) is the proposal-rejection sequence,
then one of them, w is in A and the other one must be in B. As they are not involved in
a cycle, u improves his situation and w gets worse off during the process, and finally
(by Theorem 7) u gets his worst stable partner (better than w) and w gets his best
stable partner (worse than u), so u and w cannot be stable partners in the output. ��

Improving the situation by accepting proposals

Our next goal is to generalize the following result of (Roth and Sotomayor 1990,
Theorem 2.26). First we give its proof implied by the previous results of this paper.
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Theorem 10 (Roth–Sotomayor) Suppose a woman w is added to the market G − w.
Let MW be the woman-optimal stable matching for the new market, G and let M M

w

be the man-optimal stable matching for G − w. If w is not single in MW , then there
exists a nonempty subset of men, S, such that each man in S is better off, and each
woman in S′ is worse off under any stable matching for the new market than at any
stable matching for the original market, when S′ denotes the partners of men in S
under matching M M

w .

Proof After adding w to the market during the proposal-rejection process each man
that gets a partner by accepting a proposal gets his worst possible partner at the end of
the process by Theorem 7. So they get the same partners as in MW . But these partners
are strictly better than their original partners in M M

w , that were actually their best stable
partners for G − w. Similarly, each woman that gets a new partner during the process
by making a proposal gets her best stable partner for G, so they get the same partners
as in MW . But these partners are strictly worse than their original partners in M M

w ,
that were actually their worse stable partners for G − w. ��

Pittel and Irving (1994) considered the following situation. A new agent v enters the
market, and a perfect stable matching (i.e. a stable matching where no agent is single)
is achieved in such a way that the proposal-rejection sequence is as short as possible.
They called this special half-matching with the associated alternating sequence a core
configuration relative to v. Pittel and Irving (1994) proved the following interesting
property.

Theorem 11 (Irving–Pittel) If hMv is a core configuration relative to v, then the
associated proposal-rejection sequence v = a0, b1, a1, . . . , ak−1, bk consists of 2k
distinct persons, it is uniquely defined, and for every i = 1, . . . , k − 1

1. bi is the worst stable partner of ai for G − v;
2. ai is the best stable partner of bi for G − v.

We generalize Theorem 11 by extending the notion of core configuration. A stable
half-matching hMv is a core configuration relative to v if after adding v to the graph,
the associated proposal-rejection sequence S(hMv) is as short as possible, by assum-
ing that in case of cycling the sequence is restricted till bk , where ai = bk is the first
return.

Theorem 12 If hMv is a core configuration relative to v, then the associated proposal-
rejection sequence a0(= v), b1, a1, . . . , ak−1, bk(, ak) consists of distinct persons, it
is uniquely defined, and for every agent in the sequence, who is matched for G, the
following properties are true:

(a) bi is the worst stable partner of ai for G − v and bi+1 is the best stable partner
of ai for G;

(b) ai is the best stable partner of bi for G − v and ai−1 is the worst stable partner
of bi for G.

Proof In our proof we construct a core configuration. Suppose that hM0 is an arbitrary
stable half-matching for G. Let a new agent u enter the market in such a way that u
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is acceptable only for v and u is the most preferred partner for v. Let us denote the
proposal-rejection sequence by S(hM0) and the output stable half-matching for G +u
by hM0+u . Obviously, u and v are partners in any stable half-matching hM ′+u for G+u,
moreover hM ′+u is a stable half-matching for G+u if and only if hM ′

v = hM ′+u \{u, v}
is a stable half-matching for G − v. So, by deleting {u, v} from hM0+u we get a stable
half-matching, say hMv for G − v. We prove that hMv is a core configuration relative
to v. (We denote the associated proposal-rejection sequence by S(hMv) and the output
stable half-matching for G by hM .)

To prove that S(hMv) is as short as possible we show that each agent that is involved
in S(hMv) must be involved in any other proposal-rejection sequence as well, and each
agent occurs exactly once in S(hMv) (unless a new odd-cycle is created, when ai = bk

occurs twice.)
First, we prove that if x ∈ S(hMv) then x ∈ S(hM ′

v) for any stable half-matching
hM ′

v for G − v. We consider the cases according the status of x (unmatched, cycle-
agent or matched) in the stable half-matchings for G − v and G.

1–2. No agent can be unmatched for G − v and a cycle-agent for G, similarly no
agent can be a cycle-agent for G − v and unmatched for G.

3–4. If an agent is unmatched/cycle-agent for G − v and remains unmatched/cycle-
agent for G then he cannot be involved in any proposal-rejection sequence.

5. If x is matched for G − v and becomes unmatched for G then x = ak , so x is
the last agent in S(hMv) (nobody accepts his proposal) and obviously x must
be the last agent in any other S(hM ′

v) as well.
6. If x is unmatched for G − v and becomes matched for G then x = bk , so x is

the last agent in S(hMv) (he accepts the last proposal) and obviously x must be
the last agent in any other S(hM ′

v) as well.
7. If x is a cycle-agent for G − v and becomes matched for G then x = bk ,

so x is the last agent in S(hMv) (he accepts the last proposal). We prove that
for any stable half-matching hM ′

v x is the last agent in S(hM ′
v) as well. Let

C = (c0, c1, . . . , c2k) be the cycle that eliminates when v enters the market. We
suppose indirectly that two different cycle-agents x = c0 and ci accept the last
proposals, made by y and y′ in S(hMv) and S(hM ′

v), respectively. Obviously,
the agent who made the final proposal is better than the predecessor of that cycle-
agent who accepts it, (so y >c0 c2k and y′ >ci ci−1). From Theorem 7, we also
know that c0 and ci get their worst stable partners in hM and hM ′, respectively.
This is a contradiction, because if i is even then ci would be matched with ci−1
in hM and if i is odd then c0 would be matched with c2k in hM ′.

8. If x is matched for G − v and became a cycle-agent for G then x must occur
in any proposal-rejection sequence until the first return, since Tan and Hsueh
(1995) proved that no new agent occurs in the sequence after the first return.

9. Finally we consider the case where x is matched for G − v and for G as well.
Let us denote x’s partners by y0, yv and y in hM0, hMv and hM , respectively.

(a) If y <x yv , then x must receive y during S(hMv) by making a proposal, so from
Theorem 7 y is the best stable partner of x for G. Thus, y0 ≤ y implies y0 <x yv ,
it means that x must receive yv during S(hM0) by accepting a proposal, so yv
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is the worst stable partner of x for G − v. It is obvious now that x gets a worse
partner under any stable half-matching for G than at any stable half-matching
for G − v, so x must be involved in any proposal-rejection sequence.

(b) Similarly, if y >x yv , then x must receive y during S(hMv) by accepting a
proposal, so from Theorem 7 y is the worst stable partner of x for G. Thus,
y0 ≥ y implies y0 >x yv , it means that x must receive yv during S(hM0) by
making a proposal, so yv is the best stable partner of x for G. It is obvious now
that x gets a better partner under any stable half-matching for G than at any
stable half-matching for G − v, so x must be involved in any proposal-rejection
sequence.

(c) If y = yv , then x cannot be involved in S(hMv).

Now, we prove that each agent occurs exactly once in S(hMv). Let us consider the
above sequence with an extra stopping rule: if a j looks for a new partner let choose
the best one among those that either form a blocking pair with a j or a bi for i < j
such that bi prefers a j to ai (and not to his actual partner ai−1). Assume that the first
repetition (according to the extra stopping rule) would occur at b j+1.

Case 1 If bi = b j+1 for some i < j then let hMa j be the actual stable half-matching
for G − a j . We construct a new stable partition for G − v: hM ′

v = hMa j ∪ {a j , bi } \
{{ap−1, bp}, 1 ≤ p ≤ i}∪{{ap, bp}, 1 ≤ p ≤ i −1}. It is stable, because by compair-
ing with hMv only agents {aq , i ≤ q ≤ j} get worse partners, but the extra stopping
rule preserves that no edge {{aq , bp}, 1 ≤ p < i ≤ q ≤ j} can block hM ′

v (and
obviously no other edge).

Since in hM ′
v every agent {bq , i ≤ q ≤ j} gets a better partner than in hMv , and

every agent {aq , i ≤ q ≤ j} gets a worse partner than in hMv . If some of these agents
is matched for G − v and G as well, then it is a contradiction, because in hMv they
are matched with their best/worst stable partners, respectively.

The last case that we have to consider, that all of these agents are matched for G −v

and become a cycle-agent for G. These agents are obviously in the same cycle [let say
(c0, c1, . . . , c2k)] in hM0 as well. So, when S(hM0) ends at c0 by eliminating this
cycle, each of these agents becomes matched in hMv to either with his successor or
with his predecessor (so {c2i−1, c2i } ∈ hMv for all 1 ≤ i ≤ k). We show that ai−1
must also be a cycle-agent for G. Otherwise ai−1 must receive a worse partner than bi

in hM , and for bi his predecessor is also worse than ai−1 (that is why bi accepted the
proposal of ai−1), so ai−1 and bi would block hM . By continuing this argument, for
some p < i , ap must be c0, [the cycle-agent in hMv that accepted the last proposal
in S(hM0)]. But then bp+1 must be the predecessor of c0: c2k . Otherwise, if for some
1 ≤ r < 2k, cr = bp+1 then c2k <c0 cr (since c2k is matched with c2k−1 in hMv , so
he would accept the proposal of c0) and cr−1 <cr c0 (since cr accepted the proposal
of c0), so c0 and cr would form a blocking pair in hM . Similarly, we can prove that the
sequence goes along this odd-cycle, so for each d (0 < d < j − p) ap+d = c2(k−d)+1
and bp+d = c2(k−d). Finally, bi = b j+1 cannot be the predecessor of a j in hM , a
contradiction.

Case 2 If the first repetition is such that ai = b j+1, then the extra stopping rule
was not used. This proves that a new odd-cycle can be created, so hM = hMa j \
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{{aq , bq+1}, i ≤ q ≤ j} ∪ (ai , a j , b j , a j−1, . . . , ai+1, bi+1) is the output stable half-
matching for G. ��

Theorem 12 implies the following generalization of Theorem 10.

Theorem 13 Suppose that a new agent is added to the market and a new stable solu-
tion is reached by the proposal-rejection process. There may exist some agents that
are better off, and some other agents that are worse off under any stable half-matching
for the new market than at any stable half-matching for the original market. We can
find all of these agents algorithmically. ��

The arrival order determines the benefits

If we suppose that a centralized matching program uses the incremental algorithm, or
if we model the dynamics of the matching market by the natural proposal-rejection
process, then the received solutions are determined by the arrival order of the agents.
We discuss here, as a consequence of the theorems from the last subsections, how the
benefits of an agents depend on the arrival orders.

Blum and Rothblum (2002) realized that an agent can only benefit by arriving
later to the market in the Roth–Vande Vate algorithm. By a similar argument, we can
generalize this result for the nonbipartite case.

Lemma 14 Let us suppose that u is a matched agent for both G − v and G, and
let hMv and hM ′

v be two half-matchings for G − v such that u gets at least as good
partner in hMv as in hM ′

v(denoted by hMv ≥u hM ′
v). Let hM and hM ′ be the outputs

received by the proposal-rejection process after the arrival of v, respectively. Then u
gets at least as good partner in hM as in hM ′ (so hM ≥u hM ′).

Proof Indirectly, assume that u gets a better partner in hM ′ than in hM , so hM <u

hM ′. This implies hMv >u hM or hM ′
v <u hM ′. In the first case u gets a worse

partner by the proposal-rejection process, so by the Theorem 9 u gets his best stable
partner in hM , a contradiction. Similarly, in the second case u gets a better partner
by the proposal-rejection process, so by Theorem 9 u gets his worst stable partner in
hM ′, a contradiction. ��
Lemma 15 Let hMv and hM ′

v be two half-matchings for G − v such that u is in
the same situation in hMv as in hM ′

v , so u gets the same partner or u is unmatched
or a cycle-agent. Let hM and hM ′ be the outputs received by the proposal-rejection
process after the arrival of v, respectively. Then u is in the same situation in hM ′ as
in hM, so u gets the same partner if he is matched for G.

Proof If u is matched for G − v, then Theorem 9 preserves the above property. If u is
unmatched or a cycle agent for G − v, then the statement is an easy consequence of
the points 6 and 7 from the proof of Theorem 12, respectively. ��
Theorem 16 Let in the incremental algorithm two arrival orders O and O ′ differ only
in one agent v in such a way that v arrives later in O. Let hM and hM ′ be the outputs
of the algorithm realized with the orders O and O ′, respectively. If v is a matched
agent, then he gets at least as good partner in hM as in hM ′.
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Proof Consider the market at the moment when v arrives according to O . Now, the
same agents are present in the market according both arrival orders. Since v is the
lastcomer according O , Theorem 7 implies that after the proposal-rejection processes
v cannot be better off in the stable solution according to O ′. Afterwards, during the
incremental algorithm, the same agents enter the market in each phase, so by the
above Lemmas 14 and 15 it follows, that v cannot be better off in the stable solutions
according to O ′ anymore. ��

Let us define two relations, B∗ and W ∗ between the agents in the following way:
we denote by u B∗v if agent v occurs as an agent that makes a proposal in S(hMu)

(the proposal-rejection sequence according to the core configuration relative to u). As
an easy consequence of Theorem 12, u B∗v implies that v gets his best stable partner
if u enters the market last, moreover the same Theorem says, that v gets an even better
partner if u does not enter the market at all. So v can only benefit if u is out of the mar-
ket, or he arrives as late as possible. That is why we may regard u as a nightmare-agent
of v.

Similarly, we denote by uW ∗v if agent v occurs as an agent that receives a proposal
in S(hMu). Here, uW ∗v implies that v gets his worst stable partner if u enters the
market last, but v gets an even worse partner if u is not present in the market. So v

can only benefit if u is in the market, and he arrives as soon as possible. We call u as
a dream-agent of v in this case.

Obviously, neither B∗ nor W ∗ is symmetric. Moreover, the following Lemma
proves, that u B∗v implies that vB∗u cannot be true, so the relation B∗ is antisymmetric.

Lemma 17 If u B∗v, then S(hMv) is the restriction of S(hMu).

The proof is trivial from the proof of Theorem 12, so it is omitted.

Corollary 18 The relation B∗ is transitive, so u B∗v and vB∗w imply u B∗w. More-
over, u B∗v and vW ∗w imply uW ∗w.

To show, that the relation B∗ is not a linear order, one can easily find an example,
where u B∗w and vB∗w, but there is no B∗ relation between u and v. We believe that
there should be some further relevant questions to consider about these relations.

The increasing side gets worse off

Finally, we give alternative proofs for some special results that have so far been known
only for two-sided matching markets. Lemma 19 is a straightforward consequence of
Theorem 2 in Gale and Sotomayor (1985).

Lemma 19 If a man enters the market then no man can have better partner in the
new men-optimal stable matching than in the former men-optimal stable matching.

Proof Let m be the man that enters the market last. We shall prove that if a man m′ gets
w′ in the men-optimal stable matching M M , then m′ cannot have a worse partner in
the men-optimal stable matching M M

m for G −m. If m is unmatched in M M , then M M
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is also stable for G −m. If {m, w} ∈ M M , then M M \ {m, w} is stable for G −{m, w}.
After w reenters the market, during the proposal-rejection process m′ either remains
matched with w′ or receives a proposal from a better woman for him. ��
Theorem 20 If some men enter the market one after another then at the end of the
proposal-rejection process they all get their best stable partners in the resulting stable
matching.

Proof Suppose that a man m′ is matched with his best stable partner w′ before a new
man, m enters. If m′ remains matched with w′ in the new obtained matching, then by
Lemma 19 w′ is still his best stable partner. If m′ gets a new partner during the phase,
then he must receive her by making a proposal, so Theorem 7 proves that m′ gets his
best stable partner again. ��

The following theorem of Blum et al. (1997) can be proved in the same way by
using Theorem 9.

Theorem 21 If some men enter the market then any other man m either remains
matched with his original partner w if w is still a stable partner for m or m receives
his best stable partner in the output. ��

If the arrival order is such that women enter the market first and men follow after
that, then the output will be the same as the output of the deferred-acceptance algorithm
with men proposing by Gale and Shapley (1962). Theorem 20 shows alternatively, that
the received stable matching is optimal for the men.

Conclusion and further questions

We have studied matching markets, where agents enter and leave one after another,
and they are able to terminate and build new partnerships without restrictions. By this
assumption, a new stable state is created for the market by a natural decentralized
process if such an equilibrium exists. For a two-sided market a new stable matching,
for a general market a new stable half-matching can always be obtained this way.

The main lesson of our study is that an agent can benefit if he enters the market as
late as possible. This fact may encourage an agent to leave the market and enter again
with the hope of getting a better partner. We can avoid this kind of instability if and
only if the stable solution is unique.

Accepting a proposal always means an improvement for the agent. Moreover,
among the agents that accept proposals during the process, some are strictly better
off under any stable solution for the new market than at any stable solution for the
former one. Finally, if in a two-sided market the number of men increases then the
best stable partner for each man gets worse.

To generalize these results further, it is reasonable to consider the cases, where an
agent can be matched with more than one partners. Cantala (2004) studied many-to-one
matching markets under q-substitutable preferences, Kojima and Ünver (2007) con-
sidered many-to-many matching markets under categorywise-responsive preferences.
Cantala used the idea of Blum et al. (1997) to analyse the restabilizing mechanism of
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that market, Kojima and Ünver proved that a pairwise stable matching can be obtained
by successively satisfying blocking edges by an algorithm similar to the one of Roth
and Vande Vate (1990). A natural question is the study of nonbipartite versions of
these dynamic matching markets.

In this paper we study the automatism of the dynamic matching market, where the
processes are predicted by the preferences of the agents and their arrival order. But
we do not consider the strategic issues, i.e. whether an agent can benefit by not acting
according his true preference. This is a relevant question that can become the subject
of a further research.
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