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Abstract This paper studies two classical solution concepts for the structure of
bicooperative games. First, we define the core and the Weber set of a bicoopera-
tive game and prove that the core is always contained in the Weber set. Next, we
introduce a special class of bicooperative games, the so-called bisupermodular
games, and show that these games are the only ones in which the core and the
Weber set coincide.
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1 Introduction

A cooperative game with transferable utility is given by a finite set of play-
ers and a real-valued worth function defined on the set of all the subsets, or
coalitions, of players such that the worth of the empty set is zero. For each
coalition, the worth can be interpreted as the maximal gain or minimal cost that
the players in this coalition can achieve by themselves against the best offensive
threat by the complementary coalition. Classical market games for economies
with private goods are examples of cooperative games. Here, we say that such
a game has orthogonal coalitions (see Myerson 1991, Chap. 9).

Games with non-orthogonal coalitions are games in which the worth of a
coalition depends on the actions of its complementary coalition. Clearly, social
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situations involving externalities and public goods are such cases. For instance,
the joint owners of a building are considering hiring a gardener to work in the
common areas of their residence. The garden is a public good. Each owner
can decide to support the proposal or to veto it. However, some of them may
decide not to take part in the decision making and would thus not necessarily
be defenders or detractors of the project.1

Situations of this kind may be modeled in the following manner. We consider
ordered pairs of disjoint coalitions of players. Each such pair yields a partition
of the set of all players in three groups. Players in the first coalition are in favor
of the proposal, and players in the second coalition object to it. The remaining
players are not convinced of its benefits, but they have no intention of objecting
to it. This leads us in a natural way into the concept of bicooperative game
introduced by Bilbao (2000).

A central question in game theory is to define a solution concept for a game,
or a class of games. A solution concept for a class of games is a function which
assigns to every game a set of real-valued vectors, each one of them represents
a payoff distribution among the players. The core (Gillies 1953) is one of the
most studied solution concepts. The core of a game consists of all payoff vectors
which distribute the worth of the grand coalition under the condition that the
players in each coalition receive at least the amount that they can obtain by
cooperating. The core is a very natural solution concept, and it is nonempty for
convex games (Shapley 1971). However, in many cases, it is empty. This leads
us to considering other solution concepts. In 1978, Weber (1988) proposed a set
that is always nonempty. It is now called the Weber set. Weber showed that the
core of any cooperative game is a subset of the Weber set, and Ichiishi (1981)
proved that if the Weber set is a subset of the core of a game, then the game is
convex.

In this paper, we extend the above solution concepts to bicooperative games.
Since the Weber set of a bicooperative game is the convex hull of its marginal
worth vectors, it is nonempty. Moreover, we prove that the core is always con-
tained in the Weber set. In establishing this relation, the class of bisupermodular
games, defined in the fourth section, play an important role. We show that bi-
supermodular games are the only ones for which the Weber set and the core
coincide, which establishes a characterization of these games.

2 Bicooperative games

Let N = {1, . . . , n} be a finite set and 3N = {(A, B) : A, B ⊆ N, A ∩ B = ∅} .
Grabisch and Labreuche (2005a) proposed the partial order in 3N given by

(A, B) � (C, D) ⇐⇒ A ⊆ C, B ⊇ D.

1 This is the case with multicriteria decision making when underlying scales are bipolar, i.e., a
central value exists on each scale and it is considered a neutral value.
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We denote by � the relation defined by means of the strict inclusion, that is,
(A, B) � (C, D) if and only if A ⊂ C, B ⊃ D.

The set
(
3N , �)

is a partially ordered set (poset) with the following properties:

1. (∅, N) is the first element: (∅, N) � (A, B) for all (A, B) ∈ 3N .
2. (N, ∅) is the last element: (A, B) � (N, ∅) for all (A, B) ∈ 3N .
3. Every pair {(A, B) , (C, D)} of elements of 3N has a join

(A, B) ∨ (C, D) = (A ∪ C, B ∩ D) ,

and a meet

(A, B) ∧ (C, D) = (A ∩ C, B ∪ D) .

Moreover,
(
3N , �)

is a finite distributive lattice.

Two pairs (A, B) and (C, D) in 3N are comparable if (A, B) � (C, D) or
(C, D) � (A, B); otherwise, (A, B) and (C, D) are non-comparable. A chain in
3N is an induced subposet of 3N in which any two elements are comparable.
Moreover, if two pairs are comparable, there exists at least one chain that con-
tains them. In

(
3N , �)

, all maximal chains have the same number of elements
and this number is 2n + 1.

We model above mentioned class of non-orthogonal situations by mean of
the set of all ordered pairs of disjoint coalitions, that is, the set 3N and a worth
function b : 3N → R. For each (S, T) ∈ 3N , the number b (S, T) can be inter-
preted as the gain (whenever b (S, T) > 0) or loss (whenever b (S, T) < 0) that
S can achieve when T is the opposer coalition and N \ (S ∪ T) is the neutral
coalition. The pair (∅, N) represents the situation if all the players object to
the change and (N, ∅) represents the situation where all the players wish the
change.

Definition 1 A bicooperative game is a pair (N, b) , where N a finite set of
players and b : 3N → R is a function such that b (∅, ∅) = 0.

A bicooperative game b ∈ BGN is monotonic if for all pairs (S1, T1), (S2, T2) in
3N with (S1, T1) � (S2, T2) , we have b (S1, T1) ≤ b (S2, T2) , that is, the addition
of players to the defender coalition and the desertion of players from the detrac-
tor coalition does not decrease the worth. A bicapacity Grabisch and Labreuche
(2005a,b) is a function v : 3N → R such that v (∅, ∅) = 0 and A ⊆ B ⊆ N implies
v (A, ·) ≤ v (B, ·) and v (·, A) ≥ v (·, B) . Although bicooperative games and bi-
capacities were proposed independently and for different domains, bicapacities
are monotonic bicooperative games.

As for standard cooperative games, where each coalition S ∈ 2N can be iden-
tified with a {0, 1}-vector, each (S, T) ∈ 3N can be identified with the {−1, 0, 1}-
vector 1(S,T) defined, for all i ∈ N, by

1(S,T) (i) =
⎧
⎨

⎩

1 if i ∈ S,
−1 if i ∈ T,
0 otherwise.
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In voting games, each voter has three choices: voting for a proposal, voting
against it, and abstaining. Thus, only knowing who is in favor of the proposal
is not enough to describe the situation. These games have been studied by
Felsenthal and Machover (1997) under the name of ternary voting games. They
generalize the standard voting games by recognizing abstention as an option
alongside yes and no votes. They are formally described by mappings u : 3N →
{−1, 1} satisfying the following three conditions: u (N, ∅) = 1, u (∅, N) = −1,
and 1(S,T) (i) ≤ 1(S′,T ′) (i) for all i ∈ N, implies u (S, T) ≤ u

(
S′, T ′) . A nega-

tive outcome, −1, is interpreted as defeat and a positive outcome, 1, as victory,
the passing of a bill. More recently, Chua and Huang (2003) have studied the
Shapley-Shubik index for ternary voting games.

More generally, one may imagine that each player can “participate” at differ-
ent levels, ranging from no participation to full participation. If there is a finite
number of such participation levels, we have a multi-choice game (see Hsiao
and Raghavan 1993, Nouweland et al. 1995). When the degree of participation
is defined on

[
0, 1

]
we have a fuzzy game (see Aubin 1991, Tijs et al. 2004). In a

multi-choice game, each player has at his/her disposal a linear ordered set of lev-
els of participation labelled 0, 1, . . . , m where 0 indicates no participation, and m
full participation. A multi-choice game is a function v : {0, 1, . . . , m}N → R such
that v (0, . . . , 0) = 0. The number v (x) is the amount for profile of participation
x ∈ {0, 1, . . . , m}N . Since {0, 1, 2}N is isomorphic to the set 3N , the domains of bi-
cooperative games and multi-choice games with m = 2 coincide. But the lattice
structures of these sets are different. For instance, the element (∅, ∅) is central in
the structure

(
3N , �)

and (0, 0, 0) is the least element in
(
3N , �)

, where � is the
coordinatewise order. In a 2-choice game, the levels of participation are 0 (non
participation), 1 (mild participation), and 2 (full participation). However, in a bi-
cooperative game, the value 0 is central, and −1, 1 are symmetric extremes. This
suggests that bicooperative games are a symmetrization of classical cooperative
games, given by the lattice 2̃N = {

(A, B) : A, B ∈ 2N , A ∩ B = ∅}
endowed with

the order

(A, B) � (C, D) ⇐⇒ A ⊆ C, B ⊇ D.

Throughout this paper, we use S ∪ i and S \ i instead of S ∪ {i} and S \ {i}
respectively. The number of players in S is denoted by |S| .

3 Solution concepts for bicooperative games

Since in a bicooperative game, b (∅, N) is the cost (or expense) incurred when
all the players object to a proposal and b (N, ∅) is the gain obtained when all
players are in its favor, then the net profit is given by b (N, ∅) − b (∅, N) . A
solution concept for bicooperative games is a function that assigns to every bi-
cooperative game a set of payoff vectors that distribute the net profit among the
players. In this section, we introduce two solution concepts for bicooperative
games: the core and the Weber set.
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A vector x ∈ R
n which satisfies

∑
i∈N xi = b (N, ∅) − b (∅, N) is an efficient

vector and the set of all efficient vectors, denoted by I∗(N, b), is the preimputa-
tion set, that is,

I∗(N, b) =
{

x ∈ R
n :

∑

i∈N

xi = b (N, ∅) − b (∅, N)

}

.

The imputations for game b are the preimputations that satisfy the individual
rationality principle for all players, that is, each player gets at least the difference
between the amount that he can attain by himself against the rest of the players
and the value of the pair (∅, N) ,

I(N, b) = {
x ∈ I∗(N, b) : xi ≥ b(i, N \ i) − b (∅, N) for all i ∈ N

}
.

The set I(N, b) is determined by a finite number of inequalities and thus, it
is a polyhedron. A polyhedron P = {x ∈ R

n : Ax ≥ b} , where A is a ma-
trix and b is a column vector, is bounded if and only if its characteristic
cone {x ∈ R

n : Ax ≥ 0} = {0} (see Schrijver 1986, Sect. 8.2). Clearly, I(N, b)

is bounded since the cone
{
x ∈ R

n :
∑

i∈N xi = 0, xi ≥ 0
} = {0} .

We propose the following distribution criterion: every pair (S, T) ∈ 3N re-
ceives at least the amount it contributes to the pair (∅, N) , the difference
b(S, T) − b (∅, N) . Now, two different sets of players contribute to the for-
mation of each (S, T) ∈ 3N . On the one hand, the players who are in N \ T do
not act against the players of S and so, they must receive a payoff (represented
by a vector z ∈ R

n). On the other hand, those players in N \ T who also are in
S must get an additional payoff (represented by a vector y ∈ R

n). This leads us
to the following definition of the core of a bicooperative game. Given u ∈ R

n

and S ⊆ N we denote by u (S) = ∑
i∈S ui with u (∅) = 0.

Definition 2 Let b ∈ BGN . The core of b is the set

C(N, b) =
{

x ∈ I∗(N, b) : there exist y, z ∈ R
n such that x = y + z, and

y (S) + z (N \ T) ≥ b(S, T) − b (∅, N) , for all (S, T) ∈ 3N

}
.

Let x ∈ C(N, b) and i ∈ N. Since xi = yi + zi ≥ b(i, N \ i) − b (∅, N) , we
obtain x ∈ I(N, b), and hence C(N, b) is a bounded set.

Let x ∈ I∗(N, b) be such that x = y + z. Then

y (S)+z (N \ T) ≥ b(S, T)−b (∅, N) ⇐⇒ y (N \ S)+z (T) ≤ b(N, ∅)−b (S, T) .

Therefore, C(N, b) is also the set of vectors x ∈ I∗(N, b) such that there exist
y, z ∈ R

n with x = y + z and y (N \ S) + z (T) ≤ b(N, ∅) − b (S, T) for all
(S, T) ∈ 3N , that is, for each (S, T) ∈ 3N the payoff y (N \ S) plus the payoff
z (T) must not exceed b(N, ∅) − b (S, T) , which is the amount that is foregone
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by forming the coalition (S, T) instead of the coalition (N, ∅) . Notice also that
x ∈ C(N, b) if and only if there exist y, z ∈ R

n such that x = y + z, and

y (S) + z (N \ T) ≥ b(S, T) − b (∅, N) ,

y (N \ S) + z (T) ≤ b(N, ∅) − b (S, T) ,

for all (S, T) ∈ 3N . These inequalities are similar in the bicooperative context
to the inequalities characterizing the core in a cooperative game v : 2N → R.
Indeed

C(N, v)={
x ∈ R

n : x (S) ≥ v (S)−v (∅) , x (N \ S)≤v (N) − v (S) , ∀S ∈ 2N}
.

Given a cooperative game (N, v) , each permutation π = (i1, . . . , in) of the ele-
ments of N represents a sequential process of formation of the grand coalition
N. The corresponding marginal worth vector, aπ (v) ∈ R

n, gives the marginal
contribution of every player to the coalition formed by his predecessors, that
is, aπ

ij (v) = v
(
π

(
ij
)) − v

(
π

(
ij
) \ {

ij
})

for all ij ∈ N, where π
(
ij
) = {

i1, . . . , ij
}

is
the set of the predecessors of player ij in the order π . The Weber set of game
(N, v) is the convex hull of all marginal worth vectors.

In order to extend the idea of the Weber set to a bicooperative game (N, b) ,
it is assumed that all players think that (N, ∅) is formed by a sequential process
where at each step a player joins the defender coalition or a player leaves the
detractor coalition. These sequential processes are obtained for each chain from
(∅, N) to (N, ∅) . For each chain, a player can evaluate his contribution when
he joins the defenders or when he leaves the detractors. These contributions
are given as vectors in R

n, called superior marginal worth vectors and infe-
rior marginal worth vectors. To formalize this idea, we introduce the following
notation.

For N = {1, . . . , n}, let N = {−n, . . . , −1, 1, . . . , n} . Let � : 3N → 2N be
the isomorphism defined by �(S, T) = S ∪ {−i : i ∈ N \ T} ∈ 2N , for each
(S, T) ∈ 3N . For instance, �(∅, N) = ∅ and �(N, ∅) = N. As S ⊆ N \ T, we see
that i ∈ �(S, T) and i > 0 imply −i ∈ �(S, T) .

In the lattice
(
3N , �)

, let �
(
3N

)
denote the set of all maximal chains going

from (∅, N) to (N, ∅) . We identify a maximal chain θ ∈ �
(
3N

)
given by

(∅, N) � (S1, T1) � · · · �
(
Sj, Tj

)
� · · · �

(
S2n−1, T2n−1

)
� (N, ∅) ,

with an ordering θ = (i1, . . . , i2n) on N in such a way that �
(
Sj, Tj

) = θ
(
ij
)

for all j = 1, . . . , 2n, where θ
(
ij
) = {

i1, . . . , ij
}

is the set of predecessors of ij in
the order θ and its elements are written following the order of incorporation
in the defender coalitions or desertion from the detractor coalitions. That is,
if ij > 0, ij is the last player who joins Sj

(
ij ∈ Sj and ij /∈ Sj−1

)
and, if ij < 0,

−ij is the last player who leaves Tj−1
(−ij /∈ Tj and − ij ∈ Tj−1

)
. In particular

�−1 [θ (i2n)] = (N, ∅) and �−1 [θ (i1) \ i1] = (∅, N) .
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For example, let N = {1, 2, 3} and let θ ∈ �
(
3N

)
be given by

(∅, N) � (∅, {1, 3}) � ({2} , {1, 3}) � ({2} , {1}) � ({2} , ∅) � ({2, 3} , ∅) � (N, ∅) .

Its associated chain of sets in 2N is

∅ ⊂ {−2} ⊂ {−2, 2} ⊂ {−2, 2, −3} ⊂ {−2, 2, −3, −1} ⊂ {−2, 2, −3, −1, 3} ⊂ N,

and the maximal chain can also be represented by the order θ = (−2, 2, −3,
−1, 3, 1).

Definition 3 Let θ ∈ �
(
3N

)
and b ∈ BGN . The inferior and superior marginal

worth vectors with respect to θ are the vectors mθ (b) , Mθ (b) ∈ R
n given by

mθ
i (b) = b

(
�−1 [θ (−i)]

) − b
(
�−1 [θ (−i) \ −i]

)
,

Mθ
i (b) = b

(
�−1 [θ (i)]

) − b
(
�−1 [θ (i) \ i]

)
,

for all i ∈ N. The vector aθ (b) = mθ (b) + Mθ (b) is called the marginal worth
vector with respect to θ .

We consider a bicooperative game (N, b) such that for all S ⊆ N, and for all
T, T ′ ⊆ N such that S ∩ T = S ∩ T ′ = ∅, we have b (S, T) = b

(
S, T ′) . Then

we define the cooperative game v (S) = b (S, T) for all T ⊆ N with S ∩ T = ∅.
First note that v (∅) = b (∅, N) = b (∅, ∅) = 0 and v (N) = b (N, ∅) . We show
that C(N, b) = C(N, v). Indeed, if x ∈ C (N, b) then there exist y, z ∈ R

n such
that x = y + z and y (S) + z (N \ T) ≥ b(S, T) − b (∅, N) , for all (S, T) ∈ 3N . By
setting T = N \ S, we obtain that for all S ⊆ N,

x (S) = y (S) + z (S) ≥ b (S, N \ S) − b (∅, N) = v (S) .

Therefore x ∈ C (N, v) . Conversely, if x ∈ C (N, v) then x (S) ≥ v (S) for all
S ⊆ N and x (N) = v (N) . We take z = 0 and y = x, and we obtain x ∈ C (N, b) .
Furthermore, the marginal worth vectors of b coincide with those of the cooper-
ative game v since mθ

i (b) = 0 and Mθ
i (b) = aπ (v) , where π is the permutation

of N given by θ restricted to N.

Proposition 4 Let b ∈ BGN and θ ∈ �
(
3N

)
. Then,

∑

j∈S

Mθ
j (b) +

∑

j∈N\T

mθ
j (b) = b (S, T) − b (∅, N) ,

for every (S, T) in the chain θ .

Proof Let θ ∈ �
(
3N

)
and (S, T) in θ be such that �(S, T) = {i1, . . . , in+s−t} ,

where s = |S|, t = |T|, s+ t ≤ n. Since θ
(
ij
) = {

i1, . . . , ij
}

for all 1 ≤ j ≤ n+ s− t,
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we obtain

∑

j∈S

Mθ
j (b) +

∑

j∈N\T

mθ
j (b) =

∑

{ij∈�(S,T):ij>0}
Mθ

ij (b) +
∑

{ij∈�(S,T):ij<0}
mθ−ij (b)

=
∑

ij∈�(S,T)

[
b
(
�−1 [

θ
(
ij
)] ) − b

(
�−1 [

θ
(
ij
) \ ij

] )]

=
n+s−t∑

j=1

[
b
(
�−1 [

θ
(
ij
)] ) − b

(
�−1 [

θ
(
ij
) \ ij

] )]

= b (S, T) − b (∅, N) .

��

Notice that (S, T) = (N, ∅) implies
∑

j∈N
[
Mθ

j (b)+mθ
j (b)

]=b (N, ∅)−b (∅, N) ,

and hence all the marginal worth vectors aθ (b) are efficient.

Definition 5 Let b ∈ BGN . The Weber set of b is the convex hull of the marginal
worth vectors of b, that is, W (N, b) = conv

{
aθ (b) : θ ∈ �

(
3N

)}
.

Now we prove that the core of a bicooperative game is always included in its
Weber set. The proof is closely related to the proof given by Derks (1992) of
the parallel result for cooperative games.

Theorem 6 If b ∈ BGN , then C (N, b) ⊆ W (N, b) .

Proof Assume that there exists x ∈ C (N, b) such that x /∈ W (N, b). Since
x ∈ C (N, b) , then

∑
i∈N xi = b (N, ∅) − b (∅, N) , and there exist y, z ∈ R

n such
that x = y + z and y (S) + z (N \ T) ≥ b(S, T) − b (∅, N) for all (S, T) ∈ 3N .

Since W (N, b) is convex and closed, by the Separation Theorem (see
Rockafellar 1970), there exists u ∈ R

n such that

w · u > x · u for all w ∈ W (N, b) . (1)

In particular, the above inequality holds for all marginal worth vectors w =
aθ (b) with θ ∈ �

(
3N

)
. If the components of u are ordered in non-increasing

order

ui1 ≥ ui2 ≥ · · · ≥ uin−1 ≥ uin ,

let θ ∈ �
(
3N

)
be the maximal chain given by θ = (−i1, i1, −i2, i2, . . . , −in, in) .

Note that θ
(
ij
) \ ij = θ

(−ij
)

for all 1 ≤ j ≤ n, θ
(−ij

) \ −ij = θ
(
ij−1

)
for all



The core and the Weber set for bicooperative games 217

2 ≤ j ≤ n, and �−1 [θ (−i1) \ −i1] = (∅, N) . Then,

aθ (b) · u =
n∑

j=1

aθ
ij (b) uij =

n∑

j=1

[
Mθ

ij (b) + mθ
ij (b)

]
uij

=
n∑

j=1

uij

[
b

(
�−1 [

θ
(
ij
)]) − b

(
�−1 [

θ
(
ij
) \ ij

])]

+
n∑

j=1

uij

[
b

(
�−1 [

θ
(−ij

)]) − b
(
�−1 [

θ
(−ij

) \ −ij
])]

= uin b (N, ∅) +
n−1∑

j=1

uij b
(
�−1 [

θ
(
ij
)]) − ui1 b (∅, N)

−
n∑

j=2

uij b
(
�−1 [

θ
(
ij−1

)])

= uin b (N, ∅) − ui1 b (∅, N) +
n−1∑

j=1

(
uij − uij+1

)
b

(
�−1 [

θ
(
ij
)])

≤ uin b (N, ∅) − ui1 b (∅, N) +
n−1∑

j=1

(
uij − uij+1

)

×
⎡

⎣
j∑

k=1

yik +
j∑

k=1

zik + b (∅, N)

⎤

⎦

= uin

[
n∑

k=1

yik +
n∑

k=1

zik + b (∅, N)

]

− ui1 b (∅, N)

+
n−1∑

j=1

(
uij − uij+1

)
⎡

⎣
j∑

k=1

yik +
j∑

k=1

zik + b (∅, N)

⎤

⎦

=
n∑

j=1

uij
(
yij + zij

) =
n∑

j=1

uij xij = u · x,

which is in contradiction with (1). We conclude that C (N, b) ⊆ W (N, b) . ��
An anonymous referee proposed the following model to analyze a bicoop-

erative game (N, b) . We consider an alternative set of players

N = {(i, t) : i ∈ N, t ∈ {1, 2}} .

A coalition S ⊆ N is feasible if (i, 2) ∈ S implies (i, 1) ∈ S. The set F of
feasible coalitions, ordered by inclusion, is the distributive lattice (F , ∪, ∩) and
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there exists a lattice isomorphism � : (F , ∪, ∩) → (3N , ∨, ∧) given by �(S) =
(S2, N \ S1) , where St = {i ∈ N : (i, t) ∈ S}, t ∈ {1, 2} . Note that S2 ∩(N \ S1) =
∅ ⇐⇒ S2 ⊆ S1.

Since �(∅) = (∅, N), we can define the restricted cooperative game v : F →
R as v(S) = b(S2, N \S1)−b(∅, N). Thus, there is coincidence between the core
and the Weber set of (N, b) and the core and Weber set of the corresponding
restricted game (F , v), and Theorem 6 is a direct consequence of Theorem 3.5
in Derks and Gilles (1995).

Although the model is formally similar, our approach focuses on the defender
and detractor coalitions (S, T) ∈ 3N of the player set N. Therefore, we provide
the definitions and direct results using our model. Bicooperative games are
defined in combinatorial structures on the player set N and there exists a rela-
tionship with bisubmodular polyhedra. This fact will allow us in future research
to apply some results of combinatorial optimization to the analysis of bicooper-
ative games. Furthermore, classical solution concepts as the Shapley or Banzhaf
values for cooperative games are defined for each player, and hence to extend
them to bicooperative games it is more natural than to work with values for
restricted games (F , v), where F is a set of feasible coalitions of the duplicated
set of players N .

4 Bisupermodular games

We now introduce a special class of bicooperative games.

Definition 7 A bicooperative game b ∈ BGN is bisupermodular if, for all
(S1, T1), (S2, T2) ∈ 3N we have

b((S1, T1) ∨ (S2, T2)) + b ((S1, T1) ∧ (S2, T2)) ≥ b (S1, T1) + b (S2, T2) ,

or equivalently

b(S1 ∪ S2, T1 ∩ T2) + b (S1 ∩ S2, T1 ∪ T2) ≥ b (S1, T1) + b (S2, T2) .

The next proposition characterizes the bisupermodular games as those bico-
operative games for which the marginal contribution of a player to a pair in 3N

is never less than the marginal contribution of this player to any pair contained
in it. This characterization will be used in the proof of the following results.

Proposition 8 The bicooperative game b is bisupermodular if and only if for all
i ∈ N and all (S1, T1), (S2, T2) ∈ 3N\i such that (S1, T1) � (S2, T2) , we have

b (S2 ∪ i, T2) − b (S2, T2) ≥ b (S1 ∪ i, T1) − b (S1, T1) ,

b (S2, T2) − b (S2, T2 ∪ i) ≥ b (S1, T1) − b (S1, T1 ∪ i) .
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Proof
Necessary condition. Let (S1, T1), (S2, T2) ∈ 3N\i be such that (S1, T1) �

(S2, T2). Let S′
1 = S1∪i. Applying the definition of bisupermodularity to

(
S′

1, T1
)

and (S2, T2), it follows that

b
(
S′

1 ∪ S2, T1 ∩ T2
) + b

(
S′

1 ∩ S2, T1 ∪ T2
) ≥ b (S1 ∪ i, T1) + b (S2, T2)

and hence

b (S2 ∪ i, T2) + b (S1, T1) ≥ b (S1 ∪ i, T1) + b (S2, T2) .

Analogously, taking T ′
2 = T2 ∪ i and applying the definition of bisupermodu-

larity to (S1, T1) and
(
S2, T ′

2

)
, it follows that

b (S1, T1 ∪ i) + b (S2, T2) ≥ b (S1, T1) + b (S2, T2 ∪ i) .

Sufficient condition. Let (S1, T1), (S2, T2) ∈ 3N . If (S1, T1) � (S2, T2) or (S2, T2)

� (S1, T1), the equality trivially holds. So, we consider the case (S1, T1) ∧
(S2, T2) �= (S1, T1) and (S1, T1) ∧ (S2, T2) �= (S2, T2). Let θ ∈ �

(
3N

)
be a

maximal chain that contains (S2, T2) and (S1, T1) ∨ (S2, T2) . Since �(S1, T1) \
�(S2, T2) �= ∅, let k = |�(S1, T1) \ �(S2, T2)| and so �(S1, T1) \ �(S2, T2) =
{i1, . . . , ik} , where the ij are in the same order as they appear in the order θ , i.e.,

�−1 [θ (i1)] � �−1 [θ (i2)] � · · · � �−1 [θ (ik)] .

Then, the chain θ is given by

∅⊂ · · · ⊂�(S2, T2)⊂�(S2, T2)∪{i1} ⊂ · · · ⊂ �(S2, T2) ∪ {i1, . . . , ik} ⊂ · · · ⊂ N

or equivalently

(∅, N) � · · · � (S2, T2) � · · · � (S1, T1) ∨ (S2, T2) � · · · � (N, ∅) .

Let A0 = ∅, Aj = {
i1, . . . , ij

}
, for all 1 ≤ j ≤ k, and (P, Q) = (S1, T1) ∧ (S2, T2) .

Then, we have

�−1 [
�(P, Q) ∪ Aj

]
� �−1 [

�(S2, T2) ∪ Aj
]

for all 1 ≤ j ≤ k.

We apply the hypothesis to �−1 [
�(P, Q) ∪ Aj

]
and �−1 [

�(S2, T2) ∪ Aj
]
, and

hence

b
(
�−1 (

�(P, Q) ∪ Aj
)) − b

(
�−1 (

�(P, Q) ∪ Aj−1
) )

≤ b
(
�−1 (

�(S2, T2) ∪ Aj
) ) − b

(
�−1 (

�(S2, T2) ∪ Aj−1
) )
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for all 1 ≤ j ≤ k. Thus,

b ((S1, T1)) − b ((S1, T1) ∧ (S2, T2))

= b
(
�−1 (� (P, Q) ∪ Ak)

)
− b (P, Q)

=
k∑

j=1

[
b

(
�−1 (

�(P, Q) ∪ Aj
)) − b

(
�−1 (

�(P, Q) ∪ Aj−1
))]

≤
k∑

j=1

[
b

(
�−1 (

�(S2, T2) ∪ Aj
)) − b

(
�−1 (

�(S2, T2) ∪ Aj−1
))]

= b ((S1, T1) ∨ (S2, T2)) − b (S2, T2) .

��
The following result allows the identification of the games for which the

marginal worth vectors are in the core.

Theorem 9 A bicooperative game b ∈ BGN is bisupermodular if and only if all
the marginal worth vectors of b are in the core C (N, b) .

Proof
Necessary condition. Let θ ∈ �

(
3N

)
. The marginal worth vectors are efficient

and by Proposition 4, for every (S, T) in the chain θ , the marginal worth vector
aθ

i (b) = mθ
i (b) + Mθ

i (b) satisfies

∑

j∈S

Mθ
j (b) +

∑

j∈N\T

mθ
j (b) = b (S, T) − b (∅, N) .

We prove that for every pair (S, T) not in the chain θ ,

∑

j∈S

Mθ
j (b) +

∑

j∈N\T

mθ
j (b) ≥ b (S, T) − b (∅, N) .

Indeed, let (S, T) be a pair in 3N that does not belong to θ and such that
�(S, T) = {

i1,i2, . . . , ik
}
, k = n + s − t, where

�−1 [θ (i1)] � �−1 [θ (i2)] � · · · � �−1 [θ (ik)] .

Let A0 = ∅ and Aj = {
i1, i2, . . . , ij

}
for all 1 ≤ j ≤ k. Note that, for all 1 ≤ j ≤ k,

we have Aj = �(S, T)∩�
(
�−1 [

θ
(
ij
)])

, that is, �−1 (
Aj

) = (S, T)∧�−1 [
θ

(
ij
)]

.
Since b is bisupermodular, Proposition 8 implies that

b
(
�−1 [

θ
(
ij
)]) − b

(
�−1 [

θ
(
ij
) \ ij

]) ≥ b
(
�−1 (

Aj
)) − b

(
�−1 (

Aj−1
))

,
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for all 1 ≤ j ≤ k, and we obtain

∑

j∈S

Mθ
j (b) +

∑

j∈N\T

mθ
j (b) =

∑

{ij∈�(S,T):ij>0}
Mθ

ij (b) +
∑

{ij∈�(S,T):ij<0}
mθ

j (b)

=
∑

ij∈�(S,T)

[
b

(
�−1 [

θ
(
ij
)]) − b

(
�−1 [

θ
(
ij
) \ ij

])]

=
n+s−t∑

j=1

[
b

(
�−1 [

θ
(
ij
)]) − b

(
�−1 [

θ
(
ij
) \ ij

])]

≥
n+s−t∑

j=1

[
b

(
�−1 (

Aj
)) − b

(
�−1 (

Aj−1
))]

= b (S, T) − b (∅, N) .

Sufficient condition. For all (S1, T1) , (S2, T2) ∈ 3N , let θ ∈ �
(
3N

)
be a maxi-

mal chain which contains the pairs (S1, T1) ∧ (S2, T2) = (S1 ∩ S2, T1 ∪ T2) , and
(S1, T1)∨ (S2, T2) = (S1 ∪ S2, T1 ∩ T2) . As the marginal worth vectors of (N, b)

are elements of C (N, b) , we have that

∑

j∈Sk

Mθ
j (b) +

∑

j∈N\Tk

mθ
j (b) ≥ b (Sk, Tk) − b (∅, N) , k = 1, 2.

By Proposition 4, the maximal chain θ also satisfies

∑

j∈S1∩S2

Mθ
j (b) +

∑

j∈N\(T1∪T2)

mθ
j (b) = b ((S1, T1) ∧ (S2, T2)) − b (∅, N) ,

∑

j∈S1∪S2

Mθ
j (b) +

∑

j∈N\(T1∩T2)

mθ
j (b) = b ((S1, T1) ∨ (S2, T2)) − b (∅, N) .

Therefore, b (S1, T1) + b (S2, T2) − 2b (∅, N)

≤
∑

j∈S1

Mθ
j (b) +

∑

j∈N\T1

mθ
j (b) +

∑

j∈S2

Mθ
j (b) +

∑

j∈N\T2

mθ
j (b)

=
∑

j∈S1∪S2

Mθ
j (b) +

∑

j∈S1∩S2

Mθ
j (b) +

∑

j∈N\(T1∪T2)

mθ
j (b) +

∑

j∈N\(T1∩T2)

mθ
j (b)

= b ((S1, T1) ∧ (S2, T2)) + b ((S1, T1) ∨ (S2, T2)) − 2b (∅, N) .

Hence, b (S1, T1) + b (S2, T2) ≤ b ((S1, T1) ∧ (S2, T2)) + b ((S1, T1) ∨ (S2, T2)) .
��

Since the core of a bicooperative game b ∈ BGN is a convex set, a conse-
quence of this theorem is the following characterization.
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Corollary 10 A bicooperative game b ∈ BGN is bisupermodular if and only if
W (N, b) = C (N, b) .

Note that the bicooperative game (N, b) is bisupermodular if and only if
the restricted game (F , v), defined in the third section is convex. Taking into
account the relation between the lattices

(
3N , ∨, ∧)

and (F , ∪, ∩), and hence,
the relation between the concepts of the core and the Weber set of the bico-
operative game (N, b) and the corresponding sets of the restricted game (F , v),
the above results are a direct consequence of Theorem 4.2 in Derks and Gilles
(1995).
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