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Introduction

Our aim is to prove that Bolza problem for two-players differential games with
state-constraints admits a value.

In the differential game we treat, the first player, playing with u, controls a
first system

{
y′(t) = g(y(t), u(t)), u(t) ∈ U
y(t0) = y0 ∈ KU

(1)

where t0 ∈ [0, T] and has to ensure the state constraint y(t) ∈ KU to be fulfilled
for any t ∈ [t0, T]. On the other hand the second player, playing with v, controls
a second system

{
z′(t) = h(z(t), v(t)), v(t) ∈ V
z(t0) = z0 ∈ KV

(2)

where t0 ∈ [0, T] and has to ensure the state constraint z(t) ∈ KV for any
t ∈ [t0, T]. Associated with any initial data (t0, x0) = (t0, y0, z0) and with any
couple of controls (u(·), v(·)) we consider the following payoff functional:

J(t0, x0; u(·), v(·)) =
T∫

t0

L
(
t, x(t), u(t), v(t)

)
dt + �

(
x(T)

)
, (3)

where x(t) = x[t0, x0; u(·), v(·)](t) = (y[t0, y0; u(·)](t), z[t0, z0; v(·)](t)) denotes
the solution of the systems (1) and (2). The function L is called running cost and
� is the final cost. The first player wants to maximize the functional J, while the
second player’s goal is to minimize J.

As is usual in differential game theory, one can define two value functions
for the game, the upper one v� and the lower one v� [see the definitions (7) and
(8) below]. Here the value functions are defined through nonanticipative strat-
egies [or Varayia–Roxin–Elliot–Kalton strategies, cf. Cardaliaguet et al. (2001)
or preliminaries below].

The purpose of this paper is to prove that this game admits a value, i.e. to
obtain the following equality:

∀(t, x) ∈ [0, T] × KU × KV v�(t, x) = v�(t, x).

Related works and different approaches to the problem can be found in
de Roquefort (1991), Bardi et al. (1995, 2000), Evans and Souganidis (1984)
and Rozyev and Subbotin (1988), see also the discussion in Cardaliaguet et al.
(2001). Here we follow closely the techniques developed in Cardaliaguet et al.
(1999, 2001), Cardaliaguet and Plaskacz (2000), which consider the problem
of existence of a value for pursuit-evasion games. The main idea amounts to
reduce the qualitative game (here the Bolza problem) to a quantitative one, for
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which we prove an alternative result (see Proposition 2.3). This in turn gives the
existence and a characterization of the value. Although this paper is strongly
inspired by Cardaliaguet et al. (2001), there are important differences, that we
explain now.

As is usual in state-constraint problems, the main difficulty comes from the
fact that the players have to use admissible controls and strategies, and in partic-
ular that the set of controls allowed to a player strongly depends on its position.
To overcome this difficulty, one has to be able, for two fixed initial positions
of a player, to approximate a given admissible control at one position by some
admissible control at the other position. This problem has been successfully
handled for control problems by several authors, under various assumptions
in Arisawa and Lions (1996), Frankowska and Rampazzo (2000), Loreti and
Tessitore (1994). However, in the case of differential games, it is very important
to build the approximating control in a nonanticipative way. Unfortunately, the
constructions of the above quoted papers are all anticipative. We note also that
this problem was overlooked in Cardaliaguet et al. (2001), and that, in particular,
the proof of Lemma 4.4 of Cardaliaguet et al. (2001) was not completely correct
because of this difficulty. The main technical result of this paper (Proposition
3.1) is the construction of such nonanticipative approximating control.

Another new aspect of the present paper is the regularity property and the
characterization of the value function. We prove, under suitable regularity con-
ditions on the running cost and the final cost, that the value function is Lipschitz
continuous and that it is the unique viscosity solution of some Hamilton–Jacobi
equation with a discontinuous Hamiltonian.

To obtain our results we need several assumptions on our system. Some com-
ments on these conditions are now in order. As explained above, we suppose
that the dynamics of the players are separated and that each player has to ensure
his own state-constraint to be fulfilled. This is a natural assumptions concerning
the applications [most games in Isaacs (1965) are of this form]. Moreover if
the system has not this structure, one has to decide which player is penalized
when both constraints are simultaneously violated. Then the game becomes a
non-zerosum game, for which little is known.

We also assume that the constraints KU and KV are smooth and that some
classical transversality conditions of the vector fields at the boundary of the
constraints hold [see assumptions (4) below]. Although the smoothness of the
constraints could be overcome (see Bettiol and Frankowska 2006), the trans-
versality condition is necessary for the construction of Sect. 3 and the regularity
of the value function. This is already the case for control systems (see Soner
1986). Moreover such conditions are often fulfilled in practice.

The other assumptions are more technical: we first need that, either the
running cost does not depend on the controls, or that both running cost and
dynamics are affine with respect to the controls and that there is a one-to-one
correspondence between velocities and controls [see condition 2 in (6)]. The
reason is the following: the presence of constraints on the state naturally imposes
some constraints on the velocities, which in turn restrict the possible controls.
When the running cost depends on the controls, then it becomes very sensitive
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of the way the controls depend on the velocity. Without condition 2 we are
unable to show the regularity of the value functions in Sect. 4. We are not even
sure that the “alternative” holds.

The last assumption upon which we wish to comment is the convexity of the
sets g(y, U) and h(z, V) [assumption (iii) in (4)]. This assumption is necessary
in our approach with discriminating kernels: it plays a central role in one of the
characterizations of the discriminating domains. It might not be required for
the construction of the approximated strategy in Sect. 3, but it simplifies the –
already complicated – proof. When the terminal payoff is Lipschitz continuous,
both existence and characterization of the value function probably hold without
this assumption, but some other approach is needed.

The paper is organized in the following way. Section 1 is devoted to the state-
ment of the main result (existence of a value) and to its proof, based on the
characterization of the value functions in terms of the so-called discriminating
kernel, which is a victory domain in the qualitative game. This characterization is
based on a result usually called “alternative” (Proposition 2.3), which is proved
in Sect. 4. As explained above, such a proof requires a technical tool allowing
to compare the sets of admissible controls at different points. This is the aim of
Sect. 3. Finally, Sect. 5 is devoted to the regularity and characterization of the
value function as a viscosity solutions of some Hamilton–Jacobi equation.

1 Preliminaries

1.1 Notations and assumptions

We first introduce some notations. Throughout this paper, |·| denotes the euclid-
ean norm of IRN . If K is a subset of IRN , dK(x) denotes the distance from x to
K, i.e., dK(x) = infy∈K |y − x|. We also denote by BN the closed unit ball of IRN

(and we write simply B when the dimension of the ball is understood). If K is a
subset of IRN and r > 0, we denote by K + rB the set of points x ∈ IRN such that
dK(x) ≤ r.

In the following lines we summarize all the assumptions concerning with the
vector fields of the dynamics:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) U and V are compact subsets of some finite
dimensional spaces;

(ii) f : IRn × U × V → IRn is continuous and
Lipschitz continuous (with Lipschitz constant M)
with respect to x ∈ IRn;

(iii)
⋃

u f (x, u, v) and
⋃

v f (x, u, v) are convex for any x;
(iv) KU = {y ∈ IRl, φU(y) ≤ 0} with φU ∈ C2(IRl; IR);

∇φU(y) �= 0 if φU(y) = 0;
(v) KV = {z ∈ IRm, φV(z) ≤ 0} with φV ∈ C2(IRm; IR),

∇φV(z) �= 0 if φV(z) = 0;
(vi) ∀y ∈ ∂KU , ∃u ∈ U such that < ∇φU(y), g(y, u) > < 0;
(vii) ∀z ∈ ∂KV , ∃v ∈ V such that < ∇φV(z), h(z, v) > < 0;

(4)
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For any x = (y, z) ∈ IRn, we set

U(y) := {u ∈ U| g(y, u) ∈ TKU (y)}

where TKU (y) is the tangent half-space to the set KU . Notice that under assump-
tions (4) the set-valued map y � g(y, U(y)) is lower semicontinuous with con-
vex compact values (for definitions and properties, see Aubin and Frankowska
1990).

For any starting point x0 = (y0, z0) ∈ KU ×KV , for any initial time t0 ∈ [0, T]
and for any measurable controls (u(·), v(·)) : [t0, T] → U × V, we denote by
x[t0, x0; u(·), v(·)](t) = (y[t0, y0; u(·)](t), z[t0, z0; v(·)](t)) the solution of system
(1–2).

The first player, controlling u(·), has to ensure that y(t) ∈ KU for any t ≥ t0,
while the second player, by using v(·), has to ensure the state constraint z(t) ∈
KV for any t ≥ t0.

We need to introduce the notions of admissible controls: ∀y0 ∈ KU , ∀z0 ∈ KV
and ∀t0 ∈ [0, T] we define

U(t0, y0) := {u(·) : [t0, +∞) → U measurable | y[t0, y0; u(·)](t) ∈ KU ∀t ≥ t0} ;

V(t0, z0) := {v(·) : [t0, +∞) → V measurable | z[t0, z0; v(·)](t) ∈ KV ∀t ≥ t0} .

Under the assumptions (4), the Viability Theorem (see Aubin 1991; or Aubin
and Frankowska 1990) assures that for all x0 = (y0, z0) ∈ KU × KV

U(t0, y0) �= ∅ and V(t0, z0) �= ∅.

Let X (t0) and Y(t0) be two spaces of time-measurable functions defined on
[t0, +∞). A map γ : X (t0) → Y(t0) is called non-anticipative if, for any τ > 0 and
any x1(·), x2(·) ∈ X (t0) such that x1(·) = x2(·) almost everywhere on [t0, t0 + τ ],
we have γ (x1(·)) = γ (x2(·)) almost everywhere on [t0, t0 + τ ]. In particular,
both players play non-anticipative strategies. A map α : V(t0, z0) → U(t0, y0)

is a non-anticipative strategy (for the first player Ursula and for the point
(t0, x0) := (t0, y0, z0) ∈ IR+ × KU × KV) if, for any τ > 0, for all controls v1(·)
and v2(·) belonging to V(t0, z0), which coincide a.e. on [t0, t0 + τ ], α(v1(·)) and
α(v2(·)) coincide almost everywhere on [t0, t0 + τ ]. The non-anticipative strat-
egies β for the second player Victor are symmetrically defined. For any point
x0 ∈ KU × KV and ∀t0 ∈ [0, T] we denote by SU(t0, x0) and by SV(t0, x0) the sets
of the non-anticipative strategies for Ursula and Victor respectively.

We consider costs with the following assumptions:

⎧⎨
⎩

i) L : [0, T] × IRn × U × V −→ IR is a bounded and Lipschitz
continuous with respect to all the variables of constant M;

ii) � : IRn −→ IR is bounded and lower semicontinuous.
(5)
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We also have to assume some structure conditions on g, h and L; namely,

one of the following conditions holds:
Condition 1– L := L(t, x) (L does not depend on u and v)

Condition 2– L := L(t, x, u, v) = L0(t, x) + L1(t, x)u + L2(t, x)v,
g(y, u) = g1(y)u + g2(y), h(z, v) = h1(z)v + h2(z)

where g1(y) and h1(z) are invertible bounded matrices
with inverse Lipschitz continuous w.r. to x.

(6)

We are now ready to define the value functions of the game. The lower value
v� is defined by:

v�(t0, x0) := inf
β∈SV(t0,x0)

sup
u(·)∈U(t0,y0)

J(t0, x0; u(·), β(u(·))), (7)

where J is defined by (3). On the other hand we define the upper value function
as follows:

v�(t0, x0) := lim
ε→0+ sup

α∈SU (t0,x0)

inf
v(·)∈V(t0,z0)

Jε(t0, x0; α(v(·)), v(·)) (8)

with

Jε(t0, x0; u(·), v(·)) :=
T∫

t0

L
(
t, x(t), u(t), v(t)

)
dt + �ε

(
x(T)

)
,

where x(t) = x[t0, x0; u(·), v(·)](t) and �ε is the lower semicontinuous function
defined by

�ε(x) := inf
{
ρ ∈ IR | ∃y ∈ IRn with |(y, ρ) − (x, �(x))| = ε

}
.

Remark 1.1 When the function � is continuous then it turns out that the upper
value function is also given by:

v�(t0, x0) = sup
α∈SU (t0,x0)

inf
v(·)∈V(t0,z0)

J(t0, x0; α(v(·)), v(·)). (9)

However when � is not continuous, we cannot expect that the game has a value
when v� is defined by the above formula [see for instance the counterexample
given in Cardaliaguet et al. (2001)]. The correct formulation for v� is (8).

Proof of Remark 1.1. Let v� be the value function given by (8) and w the func-
tion given by (9). Fix (t0, x0) and ε′ ∈ (0, 1). From (4), there exists M1 > 0 such
that for each control u(·) and v(·), x[t0, x0; u(·), v(·)]([t0, T]) ⊂ M1Bn. Since � is
uniformly continuous on (M + 1)Bn, there exists ε > 0 such that
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∀x ∈ (M + 1)B, ∀a ∈ B, |�(x + εa) − �(x)| ≤ ε′.

Thus

�(x) − 2ε′ ≤ inf
a∈Bn

�(x + εa) − ε′

≤ inf
(a,b)∈Bn+1

�(x + εa) + εb ≤ �ε(x).

Consequently, for any control u(·) and v(·), we have

|J(t0, x0; α(v(·)), v(·)) − Jε(t0, x0; α(v(·)), v(·))| ≤ 2ε′

which entails that |v�(t0, x0) − w(t0, x0)| ≤ 2ε′. Whence the desired result, ε′
being arbitrary. ��

1.2 Discriminating domains and kernels

We now introduce the notion of discriminating domain and kernel for a Ham-
iltonian function H [the original definition is given in Aubin (1991), cf. also
(Cardaliaguet et al. 1999)]. This notion is fundamental in our approach because
we will prove that the epigraphs of the values are discriminating kernels of
suitably defined Hamiltonians.

Definition 1.2 A closed subset D of IRN is a discriminating domain for H :
IRN × IRN → IR if and only if

∀x ∈ D, ∀p ∈ NPD(x), H(x; p) ≤ 0,

where NPD(x) denotes the set of proximal normal to D at the point x, i.e., the set
of p ∈ IRN such that the distance of x + p to D is equal to |p|.
Note that, if K is the closure of an open set with C2 boundary, then the above
definition reduces to the condition:

∀x ∈ ∂K, H(x; νx) ≤ 0,

where νx denotes the outward unit normal to K at x. Next we introduce the
notion of discriminating kernel: for a given closed set K – which is not a dis-
criminating domain in general – it is possible to define a largest discriminating
domain contained in K. This is the discriminating kernel of K.

Proposition 1.3 (Cardaliaguet 1997) Let H : IRN ×IRN → IR be a lower semicon-
tinuous map. If K is a subset of IRN, then K contains the largest (for the inclusion)
closed discriminating domain for H. This set, denoted by DiscH(K), is called the
discriminating kernel of K for H.



502 P. Bettiol et al.

2 Value functions

In this section we state the main result of this paper, namely the existence of a
value for our game. For this we have to consider separately the case of a running
cost independent of the control, i.e., L = L(t, x), and the more difficult situation
where L = L(t, x, u, v).

Theorem 2.1 Assume that (4, 5, 6) hold. Then the game has a value, and this
value is lower semi-continuous:

∀(t, x) ∈ [0, T] × KU × KV v�(t, x) = v�(t, x).

The proof of this result is obtained by identifying the epigraph of the value
function as the discriminating kernel of some closed set for a suitable dynamics.
We now explain this identification.

Let us define an “extended” dynamics function f̃ : IRn+2 × U × V → IRn+2

f̃
(
(t, x, ρ), u, v

)
:=
(

1, f (x, u, v), −L(t, x, u, v)
)

(10)

and a corresponding Hamiltonian:

H̃(t, x, ρ; pt, px, pρ) :=
{

supu∈U(y) infv∈V〈f̃ , p〉 if (t, x, ρ) /∈ E
min

{
0; supu∈U(y) infv∈V〈f̃ , p〉

}
if (t, x, ρ) ∈ E ,

(11)

where

E := {(t, x, ρ) ∈ [0, T] × KU × KV × IR| t = T, ρ ≥ �(x)} = {T} × Epi�.

We also define the set K := [0, T] × KU × KV × IR ⊂ IRn+2. Writing explicitly
the scalar product term, we get

〈f̃ , p〉 = pt + 〈f (x, u, v), px〉 − pρL(t, x, u, v) ∀p = (pt, px, pρ) ∈ IRn+2.

Hereafter, in order to simplify the notations, we will write X for the tri-
ple (t, x, ρ), i.e. X = (t, x, ρ) ∈ IRN where N := n + 2. In particular, once
X0 = (t0, x0, ρ0) and (u(·), v(·)) ∈ U(t0, y0) × V(t0, z0) are fixed, we denote by
X[X0; u(·), v(·)](s) the solution of the Cauchy problem

X ′(s) = f̃ (X(s), u(s), v(s)), X(t0) = X0. (12)

Let us point out that the t-component of X, denoted t(s) is always equal to s.

Theorem 2.2 Let H̃ be defined as in (11) and assume (4, 5, 6) hold. Then

Epi(v�) = DiscH̃(K) and Epi(v�) = DiscH̃(K).
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From Theorem 2.2 we can easily deduce the proof of Theorem 2.1.

Proof of Theorem 2.1 Since the epigraph of v�(t, x) and v�(t, x) coincide, both
functions are equal. Furthermore, since the discriminating kernel is a closed set,
their epigraph is closed, and therefore they are lower semicontinuous. ��

We now turn to the proof of Theorem 2.2, which is crucially related to the
following interpretation result of discriminating kernels:

Proposition 2.3 Suppose that assumptions of Theorem 2.2 hold true. Then the
Discriminating Kernel DiscH̃(K) can be characterized as follows

(i) DiscH̃(K) is the set of all the starting points X0 = (t0, x0, ρ0) ∈ [0, T]×KU ×
KV × IR for which there exists an admissible nonanticipative strategy β :
U(t0, y0) −→ V(t0, z0) such that, for any admissible control u(·) ∈ U(t0, y0),
the solution X[X0; u(·), β(u(·))] remains in K as long as it does not reach E ;

(ii) The set ([0, T]×KU ×KV ×IR)\DiscH̃(K) is the set of all the starting points
X0 = (t0, x0, ρ0) ∈ [0, T]×KU ×KV ×IR for which there exists ε > 0 and an
admissible nonanticipative strategy α : V(t0, z0) −→ U(t0, y0) such that, for
any admissible control v(·) ∈ V(t0, z0), the solution X[X0; α(v(·)), v(·)](s)
avoids E + εB for any time s.

This result can be viewed as an alternative Theorem [cf. Cardaliaguet (1996);
Krasovskii and Subbotin (1998)]. After some estimation results in Sect. 3, the
fourth section will be devoted to the proof of Proposition 2.3.

Proof of Theorem 2.2 Let us first check that Epi(v�) = DiscH̃(K). By i) of Prop-
osition 2.3 we get

DiscH̃(K)=
{
(t0, x0, ρ0)∈K for which ∃β ∈ SV(t0, x0) s. t. ∀u(·) ∈ U(t0, y0) the

trajectory X[X0, u(·), β(u(·))](·) remains in K until it reaches E
}

.

Suppose that (t0, x0, ρ0) ∈ DiscH̃(K). By the above characterization of DiscH̃(K)

we can choose a strategy β ∈ SV(t0, x0) such that, for any u(·) ∈ U(t0, y0), the
solution X(s) = (t(s), x(s), ρ(s)) of the system

⎧⎪⎪⎨
⎪⎪⎩

t′(s) = 1
x′(s) = f (x(s), u(s), β(u(·))(s)),
ρ′(s) = −L(s, x(s), u(s), β(u(·))(s)),
t(t0) = t0, x(t0) = x0, ρ(t0) = ρ0

(13)

satisfies

ρ(T) = ρ0 −
T∫

t0

L(r, x(r), u(r), β(u(·))(r))dr ≥ �(x(T)).



504 P. Bettiol et al.

Hence, we have

v�(t0, x0) ≤ sup
u(·)∈U(t0,y0)

J(t0, x0; u(·), β(u(·))) ≤ ρ0

and so (t0, x0, ρ0) ∈ Epi(v�).
On the other hand suppose that the point (t0, x0) belongs to the domain of

v�, and let ρ0 > v�(t0, x0). There exists a nonanticipative strategy β ∈ SV(t0, x0)

such that

v�(t0, x0) ≤ sup
u(·)∈U(t0,y0)

J(t0, x0; u(·), β(u(·))) ≤ ρ0 .

Hence for any u(·) ∈ U(t0, y0) we have

v�(t0, x0) ≤
T∫

t0

L(r, x(r), u(r), β(u(·))(r))dr + �(x(T)) ≤ ρ0,

and the ρ-component of X[X0, u(·), β(u(·))](·) – denoted by ρ(·) – satisfies

ρ(T) = ρ0 −
T∫

t0

L(r, x(r), u(r), β(u(·))(r))dr ≥ �(x(T)).

Therefore the trajectory X[X0, u(·), β(u(·))](·) remains in K until it reaches E .
Since this holds true for all u(·) ∈ U(t0, y0), thanks to i) of Proposition 2.3, we
have (t0, x0, ρ0) ∈ DiscH̃(K) for any ρ0 > v�(t0, x0). DiscH̃(K) being closed, we
obtain

Epi(v�) ⊂ DiscH̃(K).

Now, we prove that DiscH̃(K) = Epi(v�). Suppose that X0 = (t0, x0, ρ0) ∈
DiscH̃(K). Then, by (ii) of Proposition 2.3, for any ε > 0 and for any nonantic-
ipative strategy α(·) ∈ SU(t0, x0) there exists a control of Victor v(·) ∈ V(t0, z0)

such that for some τ ∈ [t0, T] X(τ ) = X[X0, α(v(·))(·), v(·)](τ ) ∈ E + εB. There-
fore we get the following two facts: T − τ ≤ ε and

(
x(τ ), ρ(τ)

) ∈ Epi(�ε). On
the other hand we have: |ρ(T) − ρ(τ)| ≤ MLε, |x(T) − x(τ )| ≤ Mf ε where ML
and Mf are the upper bounds of the function L and f respectively. So, since
dEpi(�)

(
x(τ ), ρ(τ)

) ≤ ε, we obtain:

dEpi(�)

((
x(T), ρ(T)

)) ≤ dEpi(�)

((
x(τ ), ρ(τ)

))+ |x(T) − x(τ )| + |ρ(T) − ρ(τ)|
≤ (ML + Mf + 1)ε
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which implies, calling ε′ := (ML + Mf + 1)ε,

ρ(T) ≥ �ε′(x(T)).

Hence, we obtain

ρ0 =
T∫

t0

L(s, x(s), α(v(·))(s), v(s))ds + ρ(T)

≥
T∫

t0

L(s, x(s), α(v(·))(s), v(s))ds + �ε′(x(T))

≥ Jε′(t0, x0, α(v(·)), v(·)) ≥ inf
v(·)∈V(t0,z0)

Jε′(t0, x0, α(v(·)), v(·)). (14)

Recalling that (14) holds true for any α(·) ∈ SU(t0, x0), we get

ρ0 ≥ sup
α(·)∈SU(t0,x0)

inf
v(·)∈V(t0,z0)

Jε′(t0, x0, α(v(·)), v(·))

Since the right hand side of the inequality above is bounded by ρ0 and increases
as ε′ ↘ 0+, we can pass to the limit:

ρ0 ≥ lim
ε′→0

sup
α(·)∈SU(t0,x0)

inf
v(·)∈V(t0,z0)

Jε′(t0, x0, α(v(·)), v(·)) = v�(t0, x0).

This implies DiscH̃(K) ⊂ Epi(v�).
Conversely, let us consider ρ0 > v�(t0, x0). Then for any ε > 0 we have

ρ0 > supα(·)∈SU(t0,x0)
infv(·)∈V(t0,z0) Jε(t0, x0, α(v(·)), v(·)) and, so, for any strategy

α ∈ SU(t0, x0)

ρ0 > inf
v(·)∈V(t0,z0)

Jε(t0, x0; α(v(·)), v(·)).

Now we take a control v(·) ∈ V(t0, z0) such that ρ0 ≥ Jε(t0, x0; α(v(·)), v(·)).
The ρ-component of the trajectory X[X0, α(v(·))(·), v(·)](·) satisfies the con-
dition ρ(T) = ρ0 − ∫ T

t0
L(s, x(s), α(v(·))(s), v(s))ds. Hence, we obtain ρ(T) ≥

Jε(t0, x0; α(v(·)), v(·)) − ∫ T
t0

L(s, x(s), α(v(·))(s), v(s))ds = �ε(x(T)) and, finally,
X(τ ) ∈ E + εB for a time τ ≤ T. ��

3 Approximation by constrained trajectories

An important problem in order to get suitable estimations on constrained tra-
jectories, is to obtain a kind of Filippov Theorem with constraints. Namely a
result which allows to approach – in a suitable sense – a given trajectory of
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the dynamics by a constrained trajectory. Note that similar results exist in the
literature (cf. Arisawa and Lions 1996; Frankowska and Rampazzo 2000; Loreti
and Tessitore 1994) but in the present paper we need a construction of the
constrained trajectory in a nonanticipative way. This result also contains, as a
particular case the correct proof of Lemma 4.4 in Cardaliaguet et al. (2001), and
can be seen as a Corrigendum of this proof. The present section is concerned
with the proof of the following

Proposition 3.1 Assume that conditions (4) are satisfied. For any R > 0 there ex-
ist C0 =C0(R)>0 such that for any initial time t0 ∈[0, T], for any y0, y1 ∈ KU with
|y0|, |y1| ≤ R, there is a nonanticipative strategy σ : U(t0, y0) −→ U(t0, y1) with
the following property: for any u0(·) ∈ U(t0, y0) and for any t ∈ [t0, T] we have

|y0(t) − y1(t)| +
t∫

t0

|g(y0(s), u0(s)) − g(y1(s), σ(u0(·))(s))|ds

≤C0|y0 − y1|eC0(t−t0) (15)

where we have set for simplicity y0(t) = y[t0, y0; u0(·)](t) and y1(t) = y[t0, y1;
σ(u0(·))](t).

In particular if g is affine with respect to the control u, namely

g(y, u) = g1(y)u + g2(y)

where g1(y) is an invertible matrix with Lipschitz continuous inverse, then we have

|y0(t) − y1(t)| +
t∫

t0

|u0(s) − σ(u0(·))(s)|ds ≤ C1|y0 − y1|eC1(t−t0). (16)

for some constant C1 = C1(R) > 0.

The rest of this section is devoted to the proof of Proposition 3.1. For
this, let us fix an admissible control u0(·) ∈ U(t0, y0), and let us set y0(·) =
y[t0, y0; u0(·)](·), take a new starting point ȳ ∈ KU . We wish to build in a nonan-
ticipative way a control ū(·) satisfying:

t∫
t0

|g(y[t0, y0; u0(·)](s), u0(s)) − g(y[t0, ȳ; ū](s), ū(s))ds

+|y[t0, y0; u0(·)](t) − y[t0, ȳ; ū](t)| ≤ C0|y0 − ȳ|eC0(t−t0). (17)

To this end, we consider the system:

{
y′(t) = πG(y(t))∩TKU (y(t))

(
g(y(t), u0(t))

)
y(t0) = ȳ ∈ KU ,

(18)
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where G(y) := g(y, U) and πG(y(t))∩TKU (y(t))
(
g(y(t), u0(t))

)
denotes the projection

of g(y(t), u0(t)) onto G(y(t)) ∩ TKU (y(t)). Notice that πG(y)∩TKU (y)

(
g(y, u0(t))

)
= g(y, u0(t)) whenever y belongs to the interior of KU or if y is on the boundary
of KU and

〈g(y(t), u0(t)), ∇φU(y(t))〉 ≤ 0.

Let us also underline that, since the set G(y) ∩ TKU (y) is convex, the projec-
tion onto G(y) ∩ TKU (y) is unique. We denote it by g(y, ū(y, u)) and we note
that the control ū(y, u) ∈ U is not necessarily unique. Our goal is to show
that ū(y, u) is a suitable feedback, which enables us to build the control ū in a
nonanticipative way. First we show that there is a solution to (18).

Lemma 3.2 System (18) admits at least one solution.

Proof of Lemma 3.2 We claim that the set of solutions of system (18) is the
same as the set of solutions of the following system

{
y′(t) ∈ G̃(t, y(t)), y(t) ∈ KU
y(t0) = ȳ ∈ KU ,

(19)

where

G̃(t, y) :=
{

g(y, u0(t)) if y ∈ Int(KU)

co {g(y, u0(t)); g(y, ū(y, u0(t)))} if y ∈ ∂KU

Before proving the claim, let us note that, since the set-valued function G̃ is
clearly Lebesgue–Borel measurable in (t, y) and upper semicontinuous with
respect to y, by the measurable Viability Theorem of Frankowska et al. (1995),
we obtain that system (19) and, so, according to the claim, also system (18), has
a solution for any starting point ȳ ∈ KU at any initial time t0.

We now prove the claim. Since

πG(y)∩TKU (y)

(
g(y, u0(t))

) ⊂ G̃(t, y)

then any solution of (18) is also a solution of (19). Conversely, suppose that y(·)
is a solution of (19) and consider the set

D :=
{

t | ∃y′(t) with y′(t) /∈ πG(y(t))∩TKU (y(t))
(
g(y(t), u0(t))

)}

We have D = D1 ∪D2 where D1 = {t ∈ D | y(t) ∈ ∂KU} and D2 = {t ∈ D | y(t) ∈
Int(KU)}. The measure of D2 is zero because

G̃(t, y)

∣∣∣
Int(KU)

≡ πG(y)∩TKU (y)

(
g(y, u0(t))

)
.
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On the other hand, the measure of D1 is also zero; indeed, for almost every t
such that y(t) ∈ ∂KU the derivative y′(t) exists, and, since t is a local maximum
for the function s �→ φU(y(s)), the derivative of φU(y(s)) with respect to s at
time t vanishes:

0 = d
ds

φU(y(s))

∣∣∣∣
s=t

= 〈y′(t), ∇φU(y(t))〉.

If 〈g(y(t), u0(t)), ∇φU(y(t))〉 > 0 then we obtain y′(t) = g(y(t), ū(y(t), u0(t)));
otherwise g(y(t), ū(y(t), u0(t))) = g(y(t), u0(t)). In any case we get

y′(t) ∈ πG(y)∩TKU (y)

(
g(y(t), u0(t))

)
. ��

Next Lemma allows to compare g(y, u) and g(y, ū(y, u)):

Lemma 3.3 Under assumption (4), for any R > 0, there is a constant C > 0 such
that for any y ∈ ∂KU with |y| ≤ R and any u ∈ U, we have

|g(y, ū(y, u)) − g(y, u)| ≤ C (〈g(y, u), ∇φU(y)〉)+, (20)

where (x)+ = max{x, 0}.
Proof of Lemma 3.3 From (4-vi), we can choose η > 0 such that:

sup
y∈∂KU , |y|≤R

inf
u∈U

〈g(y, u), ∇φU(y)〉 < −η < 0.

Fix y ∈ ∂KU and consider u1 ∈ U such that

〈g(y, u1), ∇φU(y)〉 < −η < 0.

Let us set

λ = (〈g(y, u), ∇φU(y)〉)+
η + (〈g(y, u), ∇φU(y)〉)+

.

Note that λ ∈ [0, 1]. From the convexity of g(y, U), we can find some uλ ∈ U
such that

g(y, uλ) = (1 − λ)g(y, u) + λg(y, u1).

Then

〈g(y, uλ), ∇φU(y)〉 ≤ −ηλ + (1 − λ) (〈g(y, u), ∇φU(y)〉)+ = 0.
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Hence, observing that λ ≤ 1
η

(〈g(y, u), ∇φU(y)〉)+, we obtain

|g(y, ū(y, u)) − g(y, u)| ≤ |g(y, uλ) − g(y, u)| ≤ λ|g(y, u1) − g(y, u)|
≤ M

η
(〈g(y, u), ∇φU(y)〉)+ ,

for some constant M = M(R). ��
If ȳ(·) is a solution of (18), by the measurable selection theorem there exists

an admissible control ū(·) such that

{
ȳ′(t) = g(ȳ(t), ū(t)) = πG(ȳ(t))∩TKU (ȳ(t))

(
g(ȳ(t), u0(t))

)
y(t0) = ȳ ∈ KU ,

(21)

Lemma 3.4 Assume that conditions (4) hold. For any positive constant R there
exists a positive C̃ = C̃(R) such that for any y0, ȳ ∈ KU with |y0|, |ȳ| ≤ R and for
any admissible control u0(·) ∈ U(t0, y0), the admissible control ū(·) ∈ U(t0, ȳ) is
such that for all t ∈ [t0, T]

t∫
t0

|g(ȳ(s), ū(s)) − g(y0(s), u0(s))|ds ≤ C̃

⎛
⎝|ȳ − y0| +

t∫
t0

|ȳ(s) − y0(s)|ds

⎞
⎠, (22)

where ȳ(s) := y[t0, ȳ; ū(·)](s) and y0(s) := y[t0, y0; u0(·)](s).
Proof Recall that (ū(·), ȳ(·)) denotes the couple control-trajectory which satis-
fies system (21).

In order to fix the ideas, let us assume that ȳ ∈ Int(KU). The case in which
ȳ belongs to the boundary of KU can be treated similarly. Let us define the
following set:

O := {s ∈ (t0, t) | ȳ(s) ∈ Int(KU)} = {s ∈ (t0, t) | φU(ȳ(s)) < 0}.

The set O is open in [t0, t] and it is an enumerable union of open disjoint
intervals, In,

O =
⋃
n∈IN

In.

For any ε > 0 we can choose a finite number of these intervals, say Ii for
i = 1, . . . , k, such that

∣∣∣∣∣∣O
∖ k⋃

i=1

Ii

∣∣∣∣∣∣ ≤ ε
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where by |E| we denote the Lebesgue measure of a subset E ⊂ IR. Let us

call Ok := Int
(⋃k

i=1 Ii
)
; notice that Ok = ⋃h

j=0 Jj, where Jj are open intervals:
Jj =]t2j, t2j+1[ with t2j+1 ≤ t2j+2. Observe that

∣∣∣∣∣∣Ok �
⎛
⎝ k⋃

i=1

Ii

⎞
⎠
∣∣∣∣∣∣ = 0

and that φU(ȳ(t2j)) = φU(ȳ(t2j+1)) = 0 for any j. Moreover we have

Oc
k = [t0, t]

∖
Ok = [t0, t] \

h⋃
j=0

Jj =
h⋃

j=0

[t2j+1, t2j+2],

where t2h+2 = t.
We claim that there is a constant C, independent of the control u0 and of the

initial positions y0 and ȳ, such that for almost every s ∈ Oc we have

|g(ȳ(s), ū(s)) − g(ȳ(s), u0(s))| ≤ C〈g(ȳ(s), u0(s)), ∇φU(ȳ(s))〉. (23)

For this we apply Lemma 3.3, for the constant R̃ such that any solution starting
from a point y ∈ RB ∩ KU remains in R̃B on the time interval [0, T]. We have
now to explain how to remove the “plus” in the inequality (20) of Lemma 3.3.
Let E be the set where the derivative of ȳ(·) exists. For any s ∈ E ∩ Oc, we
obtain

0 = d
dτ

φU(ȳ(τ ))

∣∣∣∣
τ=s

= 〈ȳ′(s), ∇φU(ȳ(s))〉 (24)

because s is a local maximum for τ �−→ φU(ȳ(τ )). Since |E ∩ Oc| = |Oc|, by
(24) we obtain that for almost every s ∈ Oc either ū(s) = u0(s) and, hence,

〈g(ȳ(s), u0(s)), ∇φU(ȳ(s))〉 = 〈g(ȳ(s), ū(s)), ∇φU(ȳ(s))〉 = 0,

or ū(s) �= u0(s) and, so, ū(s) = ū(ȳ(s), u0(s)) and

〈g(ȳ(s), u0(s)), ∇φU(ȳ(s))〉 > 〈g(ȳ(s), ū(s)), ∇φU(ȳ(s))〉 = 0.

Thanks to Lemma 3.3 we have (23).
Now, by using (23), we obtain

t∫
t0

|g(ȳ(s), ū(s)) − g(y0(s), u0(s))|ds

≤
∫

Oc

|g(ȳ(s), ū(s)) − g(ȳ(s), u0(s))|ds +
t∫

t0

|g(ȳ(s), u0(s)) − g(y0(s), u0(s))|ds
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≤ C
∫

Oc

〈g(ȳ(s), u0(s)), ∇φU(ȳ(s))〉ds + M

t∫
t0

|ȳ(s) − y0(s)|ds

= C

⎡
⎢⎣
∫

Oc
k

〈g(ȳ(s), u0(s)), ∇φU(ȳ(s))〉ds −
∫

Oc
k\Oc

〈g(ȳ(s), u0(s)), ∇φU(ȳ(s))〉ds

⎤
⎥⎦

+M

t∫
t0

|ȳ(s) − y0(s)|ds

≤ C

⎡
⎢⎣
∫

Oc
k

〈g(ȳ(s), u0(s)), ∇φU(ȳ(s))〉ds + ε‖〈g(ȳ, u0), ∇φU(ȳ)〉‖∞

⎤
⎥⎦

+M

t∫
t0

|ȳ(s) − y0(s)|ds
(
because

∣∣Oc
k \ Oc∣∣ ≤ ε

)

= C

⎡
⎢⎣

h∑
j=0

t2j+2∫
t2j+1

〈g(ȳ(s), u0(s)), ∇φU(ȳ(s))〉ds + εM̄

⎤
⎥⎦+ M

t∫
t0

|ȳ(s) − y0(s)|ds

≤ C
[ h∑

j=0

t2j+2∫
t2j+1

〈g(y0(s), u0(s)), ∇φU(y0(s))〉ds

+K0

h∑
j=0

t2j+2∫
t2j+1

|ȳ(s) − y0(s)|ds + εM̄
]

+ M

t∫
t0

|ȳ(s) − y0(s)|ds,

where K0 and M̄ are suitable constants depending on R.
Observe that

h∑
j=0

t2j+2∫
t2j+1

〈g(y0(s), u0(s)), ∇φU(y0(s))〉ds =
h∑

j=0

(
φU(y0(t2j+2)) − φU(y0(t2j+1))

)

= φU(y0(t2h+2)) − φU(y0(t1)) −
h∑

j=1

(
φU(y0(t2j+1)) − φU(y0(t2j))

)

= φU(y0(t2h+2)) − φU(y0(t1)) −
h∑

j=1

t2j+1∫
t2j

〈g(y0(s), u0(s)), ∇φU(y0(s))〉ds

≤ −φU(y0(t1)) −
h∑

j=1

t2j+1∫
t2j

〈g(ȳ(s), u0(s)), ∇φU(ȳ(s))〉ds
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+K0

h∑
j=1

t2j+1∫
t2j

|ȳ(s) − y0(s)|ds

= −φU(y0(t1))−
h∑

j=1

(
φU(ȳ(t2j+1))−φU(ȳ(t2j))

)+K0

h∑
j=1

t2j+1∫
t2j

|ȳ(s) − y0(s)|ds

= −φU(y0(t1)) + K0

h∑
j=1

t2j+1∫
t2j

|ȳ(s) − y0(s)|ds,

because the points ȳ(t2j) and ȳ(t2j+1) for each j = 1, . . . , h belong to the bound-
ary. Moreover, we have:

−φU(y0(t1)) ≤ −φU(ȳ(t1)) + K0|ȳ(t1) − y0(t1)|

≤ K0

⎡
⎣|ȳ − y0| +

t1∫
t0

|ȳ(s) − y0(s)|ds

⎤
⎦

because −φU(ȳ(t1)) = 0 and by applying Gronwall Lemma. Then, finally, we
obtain:

t∫
t0

|g(ȳ(s), ū(s)) − g(y0(s), u0(s))|ds

≤ C

⎧⎪⎨
⎪⎩K0

⎡
⎣|ȳ − y0| +

t1∫
t0

|ȳ(s) − y0(s)|ds

⎤
⎦

+ K0

h∑
j=1

t2j+1∫
t2j

|ȳ(s) − y0(s)|ds + K0

h∑
j=0

t2j+2∫
t2j+1

|ȳ(s) − y0(s)|ds + εM̄

⎫⎪⎬
⎪⎭

+M

t∫
t0

|ȳ(s)−y0(s)|ds ≤ C

⎧⎨
⎩K1

⎡
⎣|ȳ − y0| +

t∫
t0

|ȳ(s) − y0(s)|ds

⎤
⎦+ εM̄

⎫⎬
⎭,

for some constant K1 > 0. This gives (22) because ε is arbitrary. ��

Proof of Proposition 3.1 For any admissible control u0(·) ∈ U(t0, y0), we claim
that it is possible to construct (in a nonanticipative way) an admissible control
u1(·) ∈ U(t0, y1) such that ∀ t ∈ [t0, T]
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|y1(t)−y0(t)|+
t∫

t0

|g(y1(s), u1(s))−g(y0(s), u0(s))|ds ≤ C0|y1−y0|eC0(t−t0) (25)

where y0(t) = y[t0, y0; u0(·)](t) and y1(t) = y[t0, y1; u1(·)](t). Indeed, let (u1(·),
y1(·)) the couple control-trajectory which satisfies system (21) with the starting
point y1 = ȳ. We get

|y1(t) − y0(t)| ≤ |y1 − y0| +
t∫

t0

|g(y1(s), u1(s)) − g(y0(s), u0(s))|ds

≤ (1 + C̃)|y1 − y0| + C̃

t∫
t0

|y1(s) − y0(s)|ds, (26)

invoking Lemma 3.4. Thus

|y1(t) − y0(t)| +
t∫

t0

|g(y1(s), u1(s)) − g(y0(s), u0(s)|ds

≤ C0|y1 − y0| + C0

t∫
t0

|y1(s) − y0(s)|ds

for some positive constant C0 and, thanks to the Gronwall’s Lemma, we
obtain (25).

Finally, one can check that the set-valued map � : U(t0, y0) � U(t0, y1)

defined by:

�(u0(·)) := {u(·) ∈ U(t0, y1)|(u(·), y(·)) solves (21)}
is nonexpansive with nonempty (*)-closed values (cf. Cardaliaguet and Plaskacz
2000). Hence, by Plaskacz Lemma (see Lemma 2.7 of Cardaliaguet and Plaskacz
2000) there exists a nonanticipative selection σ of �: namely, σ(u0(·)) ∈ �(u0(·))
for any u0(·) ∈ U(t0, y0).

The proof of (16) is a direct consequence of the assumptions and of (15). ��
We now apply the result just proved to system (12).

Corollary 3.5 Under the assumptions (4, 5, 6), for any terminal time T > 0, for
any R > 0, there is a constant C2 such that, for any X0, X1 ∈ [0, T]×KU ×KV ×IR,
|X0| ≤ R, |X1| ≤ R, for any nonanticipative strategy α ∈ SU(t0, x0), there is a non-
anticipative strategy α′ ∈ SU(t1, x1) and a nonanticipative strategy τ : V(t1, z1) →
V(t0, z0), such that: ∀ t ∈ [t1, T] and ∀ v ∈ V(t1, z1)

∣∣X[X1, α′(v), v](t) − X[X0, α ◦ τ(v), τ(v)](t − t1 + t0)
∣∣ ≤ C2|X1 − X0|.
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Remark 3.6

(1) The strategy τ : V(t1, z1) → V(t0, z0) is nonanticipative in the follow-
ing sense: if two control v1, v2 of V(t1, z1) coincide on the time interval
[t1, t1 + θ ] for some θ > 0, then the images τ(v1) and τ(v2) coincide on
[t0, t0 + θ ].

(2) Of course a symmetric result holds true for a nonanticipative strategy
β ∈ SV(t0, x0).

(3) If z0 = z1 and t0 = t1, then we can take τ(v) = v for any v ∈ V(t1, z1).

Proof of Corollary 3.5 To fix the ideas, we suppose to be under condition 2 of
(6). Set T ′ = T +|t1 − t0|. From Proposition 3.1 [see estimate (16)] there is some
constant C1 > 0 and some nonanticipative strategy σ1 : V(t0, z1) → V(t0, z0)

such that: ∀ v ∈ V(t0, z1), ∀ t ∈ [t0, T ′],

|z[t0, z1, v](t) − z[t0, z0, σ1(v)](t)| +
t∫

t0

|v(s) − σ1(v)(s)|ds ≤ C1eC1(t−t0)|z0 − z1|.

(27)
Let us define τ1 and τ2 as the shifts τ1(φ)(s) = φ(s − t0 + t1) and τ2 = τ−1

1 . We
also set τ = σ1 ◦ τ1. Then we get: ∀ v ∈ V(t1, z1), ∀ t ∈ [t1, T],

|z[t1, z1, v](t) − z[t0, z0, τ(v)](t + t0 − t1)|

+
t∫

t1

|v(s) − τ2 ◦ σ1 ◦ τ1(v)(s)|ds ≤ C1eC1(t−t1)|z0 − z1|, (28)

by applying inequality (27) at time t + t0 − t1 to the control τ1(v). In the same
way, there is a nonanticipative strategy σ2 : U(t0, y0) → U(t0, y1) such that:
∀ u ∈ U(t0, y0), ∀ t ∈ [t0, T ′],

|y[t0, y1, σ2(u)](t) − y[t0, y0, u](t)| +
t∫

t0

|σ2(u)(s) − u(s)|ds

≤ C1eC1(t−t0)|y0 − y1|.

Hence we have: ∀ u ∈ U(t0, y0), ∀ t ∈ [t1, T],

|y[t1, y1, τ2 ◦ σ2(u)](t) − y[t0, y0, u](t − t1 + t0)|

+
t∫

t1

|τ2 ◦ σ2(u)(s) − τ2(u)(s)|ds ≤ C1eC1(t−t1)|y0 − y1|. (29)
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Let us set α′ = τ2 ◦ σ2 ◦ α ◦ σ1 ◦ τ1. Then we have: ∀v ∈ V(t1, z1), ∀t ∈ [t1, T],
∣∣X[X1, α′(v), v](t) − X[X0, α ◦ τ(v), τ(v)](t − t1 + t0)

∣∣
≤ ∣∣y[t1, y1, α′(v)](t) − y[t0, y0, α ◦ τ(v)](t − t1 + t0)

∣∣
+ |z[t1, z1, v](t) − z[t0, z0, τ(v)](t − t1 + t0)|

+

∣∣∣∣∣∣∣
ρ1 +

t∫
t1

L(s, x1(s), α
′(v)(s), v(s)]ds

−ρ0 −
t−t1+t0∫

t0

L(s, x0(s), α ◦ τ(v)(s), τ(v)(s))ds

∣∣∣∣∣∣
(where x0(·) = (y0(·), z0(·)) and x1(·) = (y1(·), z1(·)) are the x-component of
X[X0, α ◦ τ(v), τ(v)] and X[X1, α′(v), v] respectively)

≤ |y1(t) − y0(t − t1 + t0)| + |z1(t) − z0(t − t1 + t0)| + |ρ1 − ρ0|

+
t∫

t1

∣∣L(s, x1(s), α
′(v)(s), v(s))−

L(s − t1 + t0, x0(s − t1 + t0), τ2 ◦ α ◦ τ(v)(s), τ2 ◦ τ(v)(s))| ds

≤ |y1(t) − y0(t − t1 + t0)| + |z1(t) − z0(t − t1 + t0)| + |ρ1 − ρ0|

+M

t∫
t1

(|t1 − t0| + |x1(s) − x0(s + t1 − t0)| + |α′(v)(s) − τ2 ◦ α ◦ τ(v)(s)|

+|v(s) − τ2 ◦ τ(v)(s))|) ds

≤ C̄1eC1(t−t1)|X0 − X1|

for some constant C̄1 ≥ C1, thanks to (28) and (29) applied to u := α ◦ τ(v). ��

4 Proof of Proposition 2.3

Throughout this section we consider the dynamic (12). It is worth pointing
out that this new dynamic do satisfy assumptions (4) (when KU is replaced by
IR+×KU ×IR). Note also that under the conditions 1- or 2- of (6) the Hamiltonian
H̃ (defined by (11)) satisfies the Isaacs condition

inf
u∈U(y)

sup
v∈V(y)

〈f̃ , p〉 = sup
v∈V(y)

inf
u∈U(y)

〈f̃ , p〉, ∀ y, p

The following result expresses a property of discriminating domains in terms
of trajectories. Since this is a rather direct adaptation of results of Cardaliaguet
(1996), we omit its proof.
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Proposition 4.1 Assume that the conditions (4), (5) and (6) are satisfied. Then a
closed set D ⊂ [0, T]×KU×KV×IR is a discriminating domain for H̃ if and only if
for any X0 = (t0, x0, ρ0) ∈ D there is some nonanticipative strategy β ∈ SV(t0, x0)

such that, for any control u(·) ∈ U(t0, y0), the trajectory X[X0; u(·), β(u(·))](s)
remains in D until it reaches E .

Proposition 4.2 Assume that the conditions (4), (5) and (6) are satisfied. A closed
set D ⊂ [0, T] × KU × KV × IR is a discriminating domain for H̃ if and only if
for any X0 = (t0, x0, ρ0) ∈ D, for any nonanticipative strategy α ∈ SU(t0, x0),
for any ε > 0, there is some control v(·) ∈ V(t0, z0) such that the trajectory
X[X0; α(v(·)), v(·)](s) remains in D + εB on [t0, T], at least as long as it does not
reach E + εB: namely, there is a time T ′ ∈ [t0, T] such that

X[X0; α(v(·)), v(·)](s) ∈ D + εB ∀ s ∈ [t0, T ′]

with either T ′ = T, or X[X0; α(v(·)), v(·)](T ′) ∈ E + εB.

Proof The condition is sufficient. We claim that for any X0 ∈ D, for any admis-
sible strategy α ∈ SU(t0, x0) and for any ε > 0, there is a control v ∈ V(t0, z0)

and a time T ′ ∈ [t0, T] such that

dD(X[X0, α(v), v)](t)) ≤ ε ∀ t ∈ [0, T ′] (30)

with either T ′ = T, or X[X0; α(v(·)), v(·)](T ′) ∈ E + εB.
Let X0 ∈ D, α ∈ SU(t0, x0) and ε > 0. Since D is a discriminating domain,

Proposition 4.1 states that there is some nonanticipative strategy β0 ∈ SV(t0, x0)

such that, for any control u ∈ U(t0, y0), the solution X[X0, u, β0(u)] remains in
D as long as it does not reach the evasion set E .

Let us also fix v̄ ∈ V(t0, z0) and let us set z1 = z[t0, z0, v̄](τ ), for some τ > 0
to be defined later. Note for later use that |z0 −z1| ≤ Mgτ , where Mg is a bound
on g. We set X1 = (t0, y0, z1, ρ0). By Corollary 3.5 and Remark 3.6-3), (for any
β ∈ SV(t0, x0)) there is a nonanticipative strategy β1 ∈ SV(t1, x1) and a constant
C2 > 0 such that, for any u ∈ U(t0, y0) (recall that (t0, y0) = (t1, y1)), ∀t ∈ [t0, T],

|X[X1, u, β1(u)](t) − X[X0, u, β(u)](t)| ≤ C2|z1 − z0| ≤ C2Mgτ .

We then define β ∈ SV(t0, x0) by setting

β(u)(t) =
{

v̄(t) if t ∈ [t0, t0 + τ)

β1(u)(t − τ) if t ≥ t0 + τ

We note that β is a nonanticipative strategy with delay, i.e.,

if u1 = u2 on [t0, t] then β(u1) = β(u2) on [t0, t + τ ].
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The next step of the proof consists in comparing X[X0, u, β(u)] and X[X0, u,
β0(u)] for any control u ∈ U(t0, y0). Let us recall that

X[X0, u, β(u)](t) = (t, y[y0, u](t), z[t0, z0, β(u)](t), ρ[X0, u, β(u)](t))

and

X[X0, u, β0(u)](t) = (t, y[y0, u](t), z[t0, z0, β0(u)](t), ρ[X0, u, β0(u)](t)).

We note that the y-component of X[X0, u, β(u)] and X[X0, u, β0(u)] is the same.
It remains to compare the z and ρ components. We first compare z1(·) :=
z[t0, z0, β(u)](·) and z0(·) := z[t0, z0, β0(u)](·). For any t ≥ t0 + τ , we have
z1(t) = z[t0, z1, β1(u)](t − τ) and so

|z1(t) − z0(t)| ≤ |z[t0, z1, β1(u)](t − τ) − z0(t − τ)| + |z0(t − τ) − z0(t)|
≤ C2Mgτ + Mgτ .

Next we compare ρ1(·) := ρ[X0, u, β(u)](·) and ρ0(·) := ρ[X0, u, β0(u)](·). To
fix the ideas we work in the case 2 of assumption (6). For any t ≥ t0, we have

ρ1(t) = ρ0 −
t∫

t0

L(s, y0(s), z1(s), u(s), β(u)(s))ds.

So, setting x0(·) = (y[t0, y0, u](·), z0(·)), we get

∣∣∣∣∣∣ρ1(t) − ρ0 +
t∫

t0

L(s, y0(s), z0(s), u(s), β(u)(s))ds

∣∣∣∣∣∣ ≤ M

t∫
t0

|z0(s) − z1(s)|ds ≤ Cτ

for some constant C. Then, from the structure condition (6-condition 2), we
have

|ρ0(t)−ρ1(t)|≤
∣∣∣∣∣∣ρ0(t) − ρ0 +

t∫
t0

L(s, x0(s), u(s), β(u)(s))ds

∣∣∣∣∣∣+ Cτ

≤
∣∣∣∣∣∣

t∫
t0

(L2(s, x0(s))β0(u)(s) − L2(s, x0(s))β(u)(s)) ds

∣∣∣∣∣∣+ Cτ

≤
∣∣∣∣∣∣

t0+τ∫
t0

L2(s, x0(s))β(u)(s)ds

∣∣∣∣∣∣+
∣∣∣∣∣∣

t∫
t−τ

L2(s, x0(s))β0(u)(s)ds

∣∣∣∣∣∣
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+
∣∣∣∣∣∣

t−τ∫
t0

(L2(s, x0(s))β0(u)(s)−L2(s+τ , x0(s+τ))β1(u)(s))ds

∣∣∣∣∣∣+Cτ

≤C′τ

for some new constant C′ ≥ C which does not depend on u and β0.
From now on, we choose τ such that C′τ ≤ ε. We have proved that, for any

t ∈ [t0, T],

|X[X0, u, β(u)](t) − X[X0, u, β0(u)](t)| ≤ C′τ ≤ ε.

Since X[X0, u, β0(u)] remains in D until it reaches the target E at some time T ′,
we have

dD(X[X0, u, β(u)](t)) ≤ |X[X0, u, β(u)](t) − X[X0, u, β0(u)](t)| ≤ ε

for all t ∈ [0, T ′] and

dE (X[X0, u, β(u)](T ′)) ≤ |X[X0, u, β(u)](T ′) − X[X0, u, β0(u)](T ′)| ≤ ε.

Hence X[X0, u, β(u)] remains in D + εB until it reaches the target E + εB.
Since α is nonanticipative and β is nonanticipative with delay, it can be easily

proved that there is a unique pair (u, v) ∈ U(t0, y0) × V(t0, z0) such that

α(v) = u and β(u) = v.

Then, for this control v we have

X[X0, α(v), v] = X[X0, u, β(u)]

which shows that for this choice of v, the trajectory X[X0, α(v), v] remains in
D + εB until it reaches the target E + εB. This completes the proof of the
sufficiency part of the Proposition.

Now we show that the condition is necessary. We suppose to be under condi-
tion 1- of (6) for simplicity of notations (case 2- of (6) is quite similar). Assume
that D is not discriminating for H̃. Let X0 = (t0, x0, ρ0) ∈ ∂D \ E be such that
∃p ∈ NPD(X0) and ∃γ > 0 with the property:

H̃(X0, p) ≥ 2γ .

There exists ū ∈ U(y0) such that

pt + inf
V

{〈h(z0, v), pz〉 − pρL(t, x0)
}+ 〈g(y0, ū), pz〉 ≥ γ .
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The set valued map y �→ g(y, U(y)) is lower semicontinuous with convex
compact values, so by Michael’s selection Theorem [see for instance Aubin
and Frankowska (1990)] there exists ũ : KU −→ U such that

• y �→ g(y, ũ(y)) is continuous
• g(y0, ũ(y0)) = g(y0, ū).

Hence, there exists a neighborhood of (t0, x0), say I(t0,x0), such that ∀(t, x) ∈
I(t0,x0)

inf
V

{
〈f̃ (X, ũ(y), v), p〉

}
≥ γ

2
.

So, ∀ v(·) ∈ V(t0, z0), there exists a control u(·) = ũ(y(·)) such that for all
s ∈ (0, τ), there exists τ > 0 such that:

|X[X0, u(·), v(·)](s) − X0 − p|2

≤ |p|2 − 2

t0+s∫
t0

〈f̃ (X(σ ), ũ(y(σ )), v(σ )), p〉dσ + Cs2 ≤ |p|2 − γ s + Cs2.

Hence, we obtain

dD(X[X0, u(·), v(·)](s)) ≥ |p|2 − [|p|2 − γ s + Cs2] 1
2

which is positive ∀ s ∈ (0, τ) for τ > 0 sufficiently small. Therefore, there
exists a nonanticipative strategy is α : V(t0, z0) −→ U(t0, y0), defined by the
constant map α(v(·)) = u(·) for any v(·) ∈ V(t0, z0), such that the trajectory
X[X0, α(v(·)), v(·)](s) for all v(·) ∈ V(t0, z0) leaves D+ εB before the time τ for
ε > 0 suitably small. ��

Recall now the notation K ≤ [0, T]×R
n × IR. The next step toward the proof

of Proposition 2.3 is the characterization of the set

L :=
{

X0 ∈ K |∀α ∈ SU(t0, x0), ∀ ε > 0, ∃v(·) ∈ V(t0, z0), ∃T ′ ∈ [t0, T] s.t.

X[X0, α(v(·)), v(·)](T ′) ∈ E + εB
}

Lemma 4.3 Under the assumptions (4, 5, 6), suppose that X0 ∈ K \ L. Then
there is ηT > 0, ε > 0 and, for any X1 ∈ {X0 + ηTB}, a nonanticipative strat-
egy α ∈ SV(t1, x1) such that, for any control v(·)∈ V(t1, z1), the trajectory X[X1,
α(v(·)), v(·)](·) never reaches E + εB before T.

Proof By the very definition of L, there exists a strategy α0 ∈ SU(t0, x0) and a real
number ε0 > 0 such that for any v0(·)∈ V(t0, z0), the solution X[X0, α0(v0(·)),
v0(·)] never reaches E + ε0B between t0 and T.
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Let us set ηT := ε0/(2(M0 + C2)), where C2 is the constant which appears
in Corollary 3.5 for the time T + 1, R = |X0| + 1 and M0 is a bound on the
dynamics on a sufficiently large ball. From Corollary 3.5, for any X1 ∈ X0+ηTB,
there is a nonanticipative strategy α ∈ SU(t1, x1) and a nonanticipative strategy
τ : V(t1, z1) → V(t0, z0), such that: ∀v ∈ V(t1, z1), ∀ t ∈ [t1, T + 1],

|X[X1, α(v), v](t) − X[X0, α0(τ (v)), τ(v)](t − t1 + t0)| ≤ C2|X1 − X0|.

Let us fix v ∈ V(t1, z1) and let us set X1 := X[X1, α(v), v], X0 := X[X0, α0(τ (v)),
τ(v)] and T1 = min{T, T − t1 + t0}. Then, for any t ∈ [t1, T1],

dE (X1(t)) ≥ dE (X0(t − t1 + t0)) − |X0(t − t1 + t0) − X1(t)|
≥ ε0 − C2|X1 − X0| ≥ ε0/2

since dE (X0(t − t1 + t0)) ≥ ε on [t1, T1]. In conclusion, there is a nonantic-
ipative strategy α ∈ SU(t1, x1) such that, for any v ∈ V(t1, z1), the solution
X[X1, α(v), v](t) never reaches E + εB on [t0, T], where ε := ε0/2. ��

We now complete the proof of Proposition 2.3.

• Part (ii) of Proposition 2.3 can be easily deduced from the previous results.
We refer the reader to (Cardaliaguet et al. 2001) for the complete proof,
recalling only its scheme: Proposition 4.2 implies DiscH̃(K) ⊂ L. On the
other hand, DiscH̃(K) ⊃ L is given by Lemma 4.3. So (ii) is proved.

• Let us prove (i) of Proposition 2.3. From Proposition 4.2, we obtain that
DiscH̃(K) is contained in the set of points X0 = (t0, x0, ρ0) ∈ [0, T] × KU ×
KV × IR, for which there is some β ∈ SV(t0, x0), such that, for any control
u(·) ∈ U(t0, y0), the solution X[X0; u, β(u)] remains in K as long as it does
not reach E .

Let us prove the converse inclusion. Consider X0 ∈ K\DiscH̃(K). For any β:
U(t0, y0) �→ V(t0, z0), we want to construct u(·) ∈ U(t0, y0) such that X[X0; u(·),
β(u(·))] leaves K before reaching E . For doing this, we adopt a method described
in Cardaliaguet et al. (2001), Osipov (1971). We claim that

⋂
n Kn = DiscH̃(K)

where Kn is defined as follows:
⎧⎪⎪⎨
⎪⎪⎩

K0 = K

Kn+1 :=
⎧⎨
⎩X0 ∈ Kn |

∀ u(·) ∈ U(t0, y0), ∃v(·) ∈ V(t0, z0), ∃τ ∈ [0, +∞]
s.t. X[X0, u(·), v(·)](τ ) ∈ E if τ < +∞, and
∀t ∈ [0, τ), X[X0, u(·), v(·)](t) ∈ Kn

⎫⎬
⎭

.

Note that DiscH̃(K) ⊂ Kn for any n. One can also easily check that
⋂

n Kn is a
discriminating domain. Hence

⋂
n Kn ⊂ DiscH̃(K) which proves our claim.

Now let us fix some β ∈ SV(t0, x0). Since X0 ∈ K\DiscH̃(K), there exists
some i0 > 0 with X0 /∈ Ki0+1. Thus there exists u0(·) ∈ U(t0, y0) such that for
any v(·) ∈ V(t0, z0), the solution X[X0, u0, v] leaves Ki0 before reaching E . In
particular, this is the case for v = β(u0). Let τ0 be such that X[X0, u0, v](τ0) /∈ Ki0
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and X[X0, u0, β(u0)] /∈ E on [t0, τ0]. Then we can apply the same procedure for
X1 := X[X0, u0, β(u0)](τ0) which does not belong to Ki0 .

This leads to construct recursively a control u ∈ U(t0, y0) and a increasing
sequence of times (τi)i=0,...,i0+1 such that

X[X0, u, β(u)](τi) /∈ Ki0−i, X[X0, u, β(u)](s) /∈ E ∀s ∈ [t0, τi0+1].

In particular, X[X0, u, β(u)](τi0+1) /∈ K0 = K.
This proves that for any nonanticipative strategy β ∈ SV(t0, x0), there is

a control u ∈ U(t0, y0) such that the solution X[X0, u, β(u)] leaves K before
reaching E . ��

5 The Hamilton–Jacobi formulation of the problem

In this Section our aim is to characterize the value function studied before as
the unique viscosity solution to the Hamilton–Jacobi–Isaacs equation:

{
−∂tW(t, x) + H

(
t, x, ∂xW(t, x)

)
= 0 on (0, T) × KU × KV

W(T, x) = �(x) on KU × KV ,
(31)

where the Hamiltonian function, H, is given by:

H(t, x, p) := max
v∈V(z)

min
u∈U(y)

{−〈f (x, u, v), p〉 − L},

and where L is the running cost function. Since the function H is not continuous
in general, in order to consider the notion of solution in viscosity sense we have
to use the upper and lower semicontinuous envelope of H, denoted by H∗ and
H∗, respectively [see for instance Barles (1994) or Bardi and Capuzzo-Dolcetta
(1997)]. We remind that by definition these functions are:

H∗(t, x, p) := lim sup
(t′, x′, p′)→(t, x, p)

H(t′, x′, p′)

and

H∗(t, x, p) := lim inf
(t′, x′, p′)→(t, x, p)

H(t′, x′, p′).

Remark 5.1 Suppose that assumption (6) holds true. In this case, since the
set-valued maps y � U(y) and z � V(z) are lower semicontinuous and the
functions f and L are Lipschitz continuous, it is straightforward to see that

H∗(t, x, p) = max
v∈V

min
u∈U(y)

{−〈f (x, u, v), p〉 − L}
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and

H∗(t, x, p) = max
v∈V(z)

min
u∈U

{−〈f (x, u, v), p〉 − L}.

Definition 5.2 (Viscosity solution) A viscosity super-solution for the Hamilton–
Jacobi–Isaacs equation (31) is a lower semicontinuous function w : [0, T)×KU ×
KV −→ IR with the following property: for any test function ϕ ∈ C1 such that
w − ϕ has a local minimum at (t0, x0) then

−∂tϕ(t0, x0) + H∗(t0, x0, ∂xϕ(t0, x0)) ≥ 0.

An upper semicontinuous function w : [0, T)×KU ×KV −→ IR is called viscosity
subsolution of (31) if ∀ϕ ∈ C1 such that w − ϕ has a local maximum at (t0, x0)

then

−∂tϕ(t0, x0) + H∗(t0, x0, ∂xϕ(t0, x0)) ≤ 0.

We say that a continuous function is a viscosity solution of (31) if it is both
supersolution and subsolution of (31) at the same time.

5.1 Characterization of supersolution

In this section we show that the value function is the smallest supersolution of
the Hamilton–Jacobi–Isaacs equation (31). For this we give an equivalent for-
mulation of the supersolution, which involves the notion of proximal normal.

Define the set Q := [0, T) × KU × KV ⊂ IRn+1. Let w : Q −→ IR be a
lower semicontinuous function. Then any proximal normal to the epigraph of
w at the point (q, w(q)) belongs to IRn+1 × IR. If we take an element (pq, pρ) ∈
NPEpi(w)(q, w(q)) with pq ∈ IRn+1 and pρ ∈ IR, it is easy to check that pρ ≤ 0.

Theorem 5.3 (See Theorem 7.2 in Cardaliaguet et al. (1999)) Assume that the
Hamiltonian H : Q × IR × IRn+1 −→ IR is a lower semicontinuous and that
w : Q −→ IR ∪ {∞} is an extended lower semicontinuous map. Then w is a
viscosity super-solution to

H(q, w(q), Dw(q)) = 0

if and only if w satisfies

∀ q ∈ Q, ∀ (pq, pρ) ∈ NPEpi(w)(q, w(q)), pρ �= 0 then H
(

q, w(q),
pq

pρ

)
≥ 0.

Besides this theorem, we need an another result due to Rockafellar, in or-
der to explain what happens for the proximal normals of the form (pq, 0) ∈
NPEpi(w)(q, w(q)) and (pq, pρ) ∈ NPEpi(w)(q, ρ) with ρ > w(q) [see for instance
Lemma 7.3 and Lemma 7.4 of Cardaliaguet et al. (1999)].
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Lemma 5.4 Let w : Q −→ IR ∪ {∞} be a lower semicontinuous map and q̄ a
point of the domain of w, Dom(w).

(i) If (pq, 0) ∈ NPEpi(w)(q̄, w(q̄)), then there exists a sequence qn ∈ Dom(w)

and (pn
q, pn

ρ) ∈ NPEpi(w)(qn, w(qn)) such that

qn → q̄, w(qn) → w(q̄), pn
ρ < 0 and

(pn
q, pn

ρ)

|(pn
q, pn

ρ)| → (pq, 0)

|pq| .

(ii) If (pq, pρ) ∈ NPEpi(w)(q̄, ρ) with ρ > w(q̄), then we have pρ = 0 and
(pq, 0) ∈ NPEpi(w)(q̄, w(q̄)).

Theorem 5.5 Under the assumptions (4, 5, 6), the function ϑ := v� = v� is the
smallest lower semicontinuous super-solution to (31).

Proof of Theorem 5.5 By Theorem 2.2, the epigraph of ϑ is the discriminating
kernel of K for the Hamiltonian function H̃, DiscH̃(K). So, for any q = (t, x) /∈ E
and for any (pq, pρ) = (pt, px, pρ) ∈ NPEpi(ϑ)

(
(t, x), ϑ(t, x)

)
, by the definition of

H̃ and proximal normal, we get

pρ < 0 �⇒ H̃(t, x, ρ; pt, px, pρ) ≤ 0

that is:

− pt

|pρ | + H(t, x,
px

|pρ | ) ≥ 0.

So applying Theorem 5.3 with H(t, x; pt; px) = pt + H∗(t, x, px), we have
that ϑ is a lower semicontinuous super-solution of the Hamilton–Jacobi–Isaacs
equation (31).

On the other hand, we claim that the epigraph Epi(w) of any lower semi-
continuous viscosity super-solution of (31) w is a discriminating domain for the
Hamiltonian H̃. Since Epi(w) is contained in K, the discriminating domain of
Epi(w) is contained in DiscH̃(K) which is precisely equal to the epigraph of ϑ .

Indeed, choose a point (t, x) with t �= T and take any (pt, px, pρ) ∈ NPEpi(w)(t,
x, w(t, x)). If pρ < 0, just applying Theorem 5.3 we obtain that

pρ < 0 �⇒ − pt

|pρ | + H(t, x,
px

|pρ | ) ≥ 0

and, so,

H̃
(
t, x, ρ; pt, px, pρ

) ≤ 0.

If pρ = 0, then thanks to (i) of Lemma 5.4, it is possible to find sequences

(tn, xn) and (pn
t , pn

x , pn
ρ) ∈ NPEpi(w)(t

n, xn, w(tn, xn))
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such that

(tn, xn) → (t, x), w(tn, xn) → w(t, x), pn
ρ < 0 and

(pn
t , pn

x , pn
ρ)

|(pn
t , pn

x , pn
ρ)| → (pt, px, 0)

|(pt, px)| .

Since H̃(tn, xn, ρn; pn
t , pn

x , pn
ρ) ≤ 0, H̃ is lower semicontinuous and positively

homogeneous, we conclude that H̃(t, x, ρ; pt, px, 0) ≤ 0. If (pt, px, pρ) ∈ NPEpi(ϑ)

((t, x), ρ) for some ρ > w(t, x), then (ii) of Lemma 5.4 states that pρ = 0 and
(pt, px, 0) ∈ NPEpi(w)(t, x, w(t, x)). Hence, we obtain H̃(t, x, ρ; pt, px, 0) ≤ 0 ��

5.2 Lipschitz continuity of the value function

The aim of this part is to prove the following result:

Proposition 5.6 Under the assumptions (4, 5, 6), if the final cost � = �(x) is
locally Lipschitz continuous, then the value function ϑ := v� = v� is also locally
Lipschitz continuous.

Proof Since the dynamics have a linear growth, and that we work locally in
space, we can assume that f̃ defined by (10) and � are bounded by some con-
stant M0, and that � is Lipschitz continuous with Lipschitz constant M0.

Let (t0, x0), (t1, x1) ∈ [0, T] × KU × KV and ε > 0. From the definition of v�,
there is a nonanticipative strategy β such that

v�(t0, x0) + ε ≥ sup
u∈U(t0,y0)

J(t0, x0, u, β(u)).

Let us set ρ0 = ρ1 = 0, X0 = (t0, x0, ρ0) and X1 = (t1, x1, ρ1). From Corollary
3.5, there is a nonanticipative strategy β ′ ∈ SV(t1, x1) and a nonanticipative
strategy τ : U(t1, y1) → U(t0, y0), such that: ∀ t ∈ [t1, T + 1],

∣∣X[X1, u, β ′(u)](t) − X[X0, τ(u), β(τ(u))](t − t1 + t0)
∣∣ ≤ C2|X1 − X0|.

Let us denote by x0(·) and x1(·), and by ρ0(·) and ρ1(·) the x− and ρ−compo-
nents of X[X0, τ(u), β(τ(u))] and X[X1, u, β ′(u)], respectively. Then

ρ0(t) = −
t∫

t0

L(s, x0(s), τ(u)(s), β(τ(u))(s))ds ∀t ≥ t0

and

ρ1(t) = −
t∫

t1

L(s, x1(s), u(s), β ′(u)(s))ds ∀ t ≥ t1.
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From the choice of β, we have that

�(x0(T)) − ρ0(T) = J(t0, x0, τ(u), β(τ(u)) ≤ v�(t0, x0) + ε.

Hence

J(t1, x1, u, β ′(u)) = �(x1(T)) − ρ1(T)

≤ �(x0(T)) − ρ0(T) + M0|x0(T) − x0(T − t1 + t0)|
+M0|x0(T − t1 + t0) − x1(T)|
+|ρ0(T) − ρ0(T − t1 + t0)| + |ρ0(T − t1 + t0) − ρ1(T)|

≤ v�(t0, x0) + ε + 2M2
0|t1 − t0| + M0C2|X1 − X0|.

Taking in the above inequality the supremum over u ∈ U(t1, y1), then the infi-
mum over β ′ ∈ SV(t1, x1) and letting ε → 0 finally gives:

v�(t1, x1) ≤ v�(t0, x0) + C(|t1 − t0| + |x1 − x0|)

for some constant C. ��

5.3 Uniqueness of continuous viscosity solution

The last result of this paper amounts to characterize the value function as
unique viscosity solution of the Hamilton–Jacobi–Isaacs equation (31). For this
we assume from now on that the data satisfy the assumptions (4, 5, 6) and that
the final cost � is locally Lipschitz continuous. Under these assumptions we
have proved in the previous subsection that the value function ϑ is Lipschitz
continuous.

Let us start by recalling a well-known result:

Lemma 5.7 An upper semicontinuous function w : [0, T) × KU × KV −→ IR is
a viscosity subsolution of (31) if and only if −w is a viscosity supersolution of

−∂tW(t, x) − H
(

t, x, −∂xW(t, x)
)

= 0 (32)

Let us also recall that in our case the Hamiltonian function is given by

H(t, x, p) := max
v∈V(z)

min
u∈U(y)

{−〈f (x, u, v), p〉 − L},

by Remark 5.1 we deduce that

(−H)∗(t, x, −p) = min
v∈V(z)

max
u∈U

{−〈f (x, u, v), p〉 + L}.
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Lemma 5.8 The function ϑ is the largest viscosity subsolution of (31).

Proof First observe that

−ϑ(t0, x0) = sup
β∈SV (t0,x0)

inf
u(·)∈U(t0,y0)

−J(t0, x0; u(·), β(u(·)))

and recall that −� is continuous by the assumptions. We just apply the result
given by Theorem 5.5 to the function −ϑ with the Hamiltonian H̄(t, x, p) =
(−H)∗(t, x, −p). Finally, Lemma 5.7 allows us to conclude. ��
We conclude with the following uniqueness result.

Proposition 5.9 (Uniqueness) The Hamilton–Jacobi–Isaacs equation (31) ad-
mits a unique continuous viscosity solution, which is given by the value function
ϑ .

Proof We have to show that if w is a continuous viscosity solution of (31) then
w = ϑ . Indeed, by Theorem 5.5 we get that w ≥ ϑ . On the other hand, thanks
to Lemma 5.8 −w ≥ −ϑ and, so, w = ϑ . ��
Acknowledgements P. Bettiol acknowledges the financial support provided through the European
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