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Abstract We study the problem of spreading a particular behavior among
agents located in a random social network. In each period of time, neighboring
agents interact strategically playing a 2 × 2 coordination game. Assuming myo-
pic best-response dynamics, we show that there exists a threshold for the degree
of risk dominance of an action such that below that threshold, contagion of the
action occurs. This threshold depends on the connectivity distribution of the
network. Based on this, we show that the well-known scale-free networks do
not always properly support this type of contagion, which is better accomplished
by more intermediate variance networks.

JEL Classification C73 · O31 · O33 · L14

Keywords Contagion · Coordination games · Scale-free networks ·
Mean-field theory

1 Introduction

In this paper we present a simple model in which individuals located in a social
network play a 2 × 2 coordination game with each neighbor. We provide a
threshold (the contagion threshold) for the degree of risk dominance of a cer-
tain action that determines when the action spreads to a significant fraction
of the population and becomes persistent. One feature that distinguishes our
approach from previous work in economics is the way in which the social net-
work is modeled (see Ellison 1993; Morris 2000; Young 1998, among others).
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More precisely, in this paper we use mean-field theory to study random networks
(networks that have been generated by a random process of link formation).1

A random network is characterized by its connectivity distribution, where the
connectivity of an agent refers to the number of links he has. We obtain the con-
tagion threshold for random networks with different connectivity distributions
and show that, unlike standard epidemiology models, networks with interme-
diate variance in the connectivity distribution can be optimal for this diffusion
process.

This paper is closely related to Morris (2000). The contagion process in the
two papers is the same and their major focus, namely the characterization of the
contagion threshold, is also similar. However, the generalizability of Morris’s
results only allows us to compute precisely the contagion threshold in networks
with some recurrent pattern. Therefore, the main advantage of this work with
respect to Morris (2000) is that here knowledge of the connectivity distribution
of the network is enough to compute the exact value of the contagion thresh-
old for random networks, provided we use the mean-field approach. Some of
the results found in Morris (2000) also hold in our model. For instance, an
action can only spread if it is risk dominant. Moreover, in an homogeneous
network case (i.e. where all nodes have the same connectivity) the threshold
equals the inverse of the connectivity. Another related work is Watts (2002) that
analyzes, using percolation theory instead of mean-field theory, how diffusion
waves (unidirectional processes of propagation) advance in a large population.
Also, Jackson and Yariv (2006) propose a similar model and analyze, through
a slightly stronger mean-field approximation of the dynamics, the size of the
fraction of initial adopters required to obtain diffusion.

2 The model

Consider a finite population of individuals N = {1, 2, ..., i, ..., n} that interact
with each other to form a social network � = (N, L), where (i, j) ∈ L means
that i and j are linked in the social network. We consider undirected networks
i.e. (i, j) ∈ L if and only if (j, i) ∈ L . Let Ni be the neighborhood of i, i.e. the
set of individuals with whom i is directly linked. Formally, Ni = {j ∈ N, s.t.
(i, j) ∈ L} . In addition, let ki = |Ni| be the number of neighbors of i, often
referred as his connectivity (or degree). The connectivity can differ across indi-
viduals in the population. The connectivity distribution P(k) displays for each
k = 0, 1, ..., n − 1 the fraction of nodes with connectivity k. More precisely,
P(k) = 1

n |{i ∈ N s.t. ki = k}|. Denote by � to the set of networks with connec-
tivity distribution P(k). A random network � characterized by P(k) is simply
a realization of a random variable that selects uniformly at random one of the
networks in �.

1 The mean-field approach is a standard tool in statistical physics (see e.g., Goldenfeld 1992; Pastor-
Satorrás and Vespignani 2001, among others) which is recently being applied in economic studies
on networks (see e.g. Vega-Redondo 2006; Jackson 2006 for updated and detailed reviews).
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We consider the following dynamics to describe the evolution of players’
choices through time. At time t, each agent plays a 2 × 2 game with each neigh-
bor and chooses an action from the space S = {0, 1}. The assumption that an
agent cannot make his action contingent on his neighbor’s action is natural in
this context. Otherwise, the behavior of an agent would be independent of the
network structure. Payoffs from each interaction in each period are given by
a function π(s, s′) where s, s′ ∈ S, and they are summarized in the following
symmetric matrix:

j
i

1 0

1 d e
0 f b

(1)

We assume that d > f and b > e. This implies that the game is a coordina-
tion game [whose strict Nash equilibria are (0, 0) and (1, 1)]. Player i’s payoff
from playing si ∈ {0, 1} when the strategy profile of the remaining players is
s−i is given by �i(si, s−i) = ∑

j∈Ni
π(si, sj). Thus, an individual’s payoff is simply

the sum of the payoffs obtained across all the bilateral games in which he is
involved.

With a certain probability agents are chosen each period to revise their strat-
egy. If agent i is chosen, then he selects the action that maximizes his benefits
given the action of others in the previous period (a myopic best response).
Therefore, if at time t the proportion of his neighbors choosing 1 is higher than
q = b−e

d−f+b−e , then i’s best response is to choose 1. Otherwise i chooses 0. Let us
also assume that if the proportion of neighbors choosing 1 equals q, action 0 is
chosen. The value q, namely the degree of risk dominance of action 1, specifies
a lower bound for the fraction of individuals that must be choosing 1 in order
to make action 1 preferred to action 0. If q ≤ 1/2 action 1 is risk dominant.2

Also, the more risk dominant action 1 is the lower the value of q.
The dynamics outlined above defines a Markov process over the set of pos-

sible states Sn. In what follows, we assume that action 0 is the incumbent (or
default) action. Our aim is to obtain the conditions under which a small seed of
agents adopting action 1 can spread to a significant fraction of the population.
We want to study how this depends on the properties of the social network.

3 Mean-field theory

We consider the following approximations which allow us to derive analytical
results. First, the stochastic dynamics is substituted by deterministic dynamics
in continuous time. This approximation is appropriate when dealing with large
populations as described by Benaim and Weibull (2003) who show that if the

2 An action is risk dominant in a 2×2 game if it is a best response to the mixed strategy that assigns
equal probability to both actions.
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deterministic population flow remains forever in some subset of the state space,
then the stochastic process will remain in the same subset space for a very long
time with a probability arbitrarily close to one, provided that the population
is large enough. Thus, hereafter we assume that the population is infinite and
therefore, the network is characterized by a connectivity distribution P(k) with
an infinite support, that is, where k = {1, 2, ...}. Second, we assume no spatial
correlation of the set of adopters across time, namely, an homogeneous mixing
hypothesis. To put it differently, the model that we analyze with the mean-
field equations is analogous to one where the random network is generated
every period, although the connectivity of each individual remains constant.
We believe that the qualitative results of this alternative model coincide with
the results of the original model where the network is fixed throughout the
dynamics but has been generated by a random process. The main reason why
random networks are suitable for these types of mean-field approximations is
that the characteristics of any given node in random networks is unaffected by
structural correlations.

Now consider the following notation. Let ρk(t) be the proportion of agents
with k links that are choosing action 1 at time t . Notice that kP(k)

〈k〉 is the prob-
ability that a link points to a node with connectivity k. Thus, the probability
that any given link points to a an agent choosing 1, denoted by θ(t), can be
calculated as

θ(t) = 1
〈k〉

∑

k≥1

kP(k)ρk(t), (2)

where the average connectivity is 〈k〉 = ∑
k≥1 kP(k). Therefore, the probabil-

ity that an individual with k links has exactly k1 neighbors choosing 1 equals
( k

k1
)θk1(1 − θ)(k−k1). Note that θ(t) is a mean-field parameter since it is con-

sidered the same for all nodes independently of their connectivity or position
in the network. This simplification, a consequence of the homogenous mixing
hypothesis, makes the analysis tractable. Then, an individual with k neighbors
and with k1 of them choosing 1 adopts action 1 with a probability denoted by
Pq(1 | k1, k) and action 0 with probability 1 − Pq(1 | k1, k). Given that our
model assumes that individuals use a deterministic myopic best response these
probabilities are degenerated. Specifically, Pq(1 | k1, k) = 1 if k1/k > q and
Pq(1 | k1, k) = 0 otherwise.

Let λ > 0 be the rate at which an individual revises his action. If this individ-
ual has connectivity k, he chooses action 1 at an overall rate

rate(1 | k, θ(t)) =
k∑

k1=0

λPq(1 | k1, k)
(

k
k1

)
θ(t)k1(1 − θ(t))(k−k1),

where the rate of choosing 0 is denoted by rate(0 | k, θ(t)) and equals λ − rate
(1 | k, θ(t)).
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Hence, for each k ≥ 1 the dynamical mean-field equation may be written as

dρk(t)
dt

= −ρk(t)rate(0 | k, θ(t)) + (1 − ρk(t))rate(1 | k, θ(t)). (3)

Equation (3) says the following: the variation of the relative density of agents
with connectivity k choosing 1 at time t equals the proportion of agents with
connectivity k choosing 0 that switch to 1 at time t minus the proportion of
agents with connectivity k choosing 1 that switch to 0 at time t. Substituting the
value for rate(0 | k, θ(t)) in Eq. (3) we obtain that

dρk(t)
dt

= −λρk + rate(1 | k, θ(t)). (4)

The stationary condition
dρk (t)

dt = 0 implies that ρk = 1
λ

rate(1 | k, θ). Then,
replacing ρk in Eq. (2) we obtain that

θ = Hq(θ), (5)

where Hq(θ) = 1
〈k〉

∑
k≥1 kP(k)

∑k
k1=0 Pq(1 | k1, k)

(
k
k1

)
θk1(1 − θ)(k−k1). The

solutions of equation (5) are the stationary values of θ . Given θ , we can also
compute the fraction of players choosing 1 in the stationary state of the dynam-
ics as ρ = ∑

k≥1 P(k)ρk.

4 The results

Consider the mean-field dynamics described above and a network with con-
nectivity distribution P(k). We say that there is contagion of action 1 if, starting
at an initial state with an infinitesimally small fraction of agents choosing 1,
the mean-field dynamics converges to a stable state with a positive fraction of
agents choosing action 1. We have the following result:

Theorem 1 Given a random network with connectivity distribution P(k) and
the mean-field dynamics described above, there exists a threshold for the degree
of risk dominance of action 1, q∗ ∈ [0, 1] (the contagion threshold), such that
contagion occurs if and only if q < q∗.

Proof The stationary values of θ are implicitly determined by equation (5).
Replacing the value of Pq(1 | k1, k) in equation (5) we obtain the fixed point
equation
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θ = Hq(θ) = 1
〈k〉

∑

k≥1

kP(k)

k∑

k1=[kq]+1

(
k
k1

)
θk1(1 − θ)(k−k1),

where [x] stands for the highest integer smaller or equal to x.
Also, notice that the derivative of θ(t) is equal to dθ(t)

dt = 1
〈k〉

∑
k≥1 kP(k)

dρk(t)
dt

and replacing the value of dρk(t)
dt given by Eq. (4) we find that dθ(t)

dt = −λθ(t) +
λHq(θ(t)) which therefore implies that dθ(t)

dt > 0 if and only if Hq(θ(t)) > θ(t) .
Notice that, for any given q ∈ [0, 1] the states corresponding to θ = 0 and θ = 1,
i.e. the states where all players are choosing the same action (either 0 or 1) are
stationary. We want to study when starting from a infinitesimally small value
θ0 � 0, the mean-field dynamics converges to a state where there is a positive
fraction of individuals choosing 1 (i.e. where θ > 0). Thus, we must determine
which values of q make the state θ = 0 unstable (see Fig. 1). This corresponds
with the values of q such that H′

q(0) > 1. Notice that

H′
q(θ) = 1

〈k〉
∑

k≥1

kP(k)

k∑

k1=[kq]+1

(
k
k1

)
(k1θ

(k1−1)(1 − θ)(k−k1)

−(k − k1)θ
k1(1 − θ)k−k1−1.

If we substitute θ = 0 in the previous equation the only non-zero term of
the second sum is obtained for the value k1 = 1. This implies that only when
[kq] = 0 (or equivalently k ≤ [1/q]) the second sum is different than zero. Thus,

H′
q(0) = 1

〈k〉
[1/q]∑

k≥1

kP(k)
(

k
1

)
= 1

〈k〉
[1/q]∑

k≥1

k2P(k)

We can therefore implicitly determine the contagion threshold q∗ as follows

q∗ = arg min
q∈Q

1
〈k〉

[1/q]∑

k≥1

k2P(k) (6)

Fig. 1 Hq(θ) for three values
of q. The shape of Hq(θ) is
concave for low values of q,
convex for high values of q,
and might be neither concave
nor convex for intermediate
values of q

θ
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where Q is defined as the set of q ∈ [0, 1] such that 1
〈k〉

∑[1/q]
k≥1 k2P(k) ≥ 1 . 	


Several interesting points follow from Theorem 1. Note that action 1 must
be risk dominant for contagion to occur.3 Also, if there exists a maximum con-
nectivity in the network, say kmax, and the network is connected (i.e. there
exists a path connecting any two pairs of nodes) then for q sufficiently low (i.e.
q < 1

Kmax
) there is global contagion. In other words, action 1 will eventually be

played by the whole population.
To continue we would now like to determine which types of networks, in

terms of their connectivity distributions, support contagion better.

Proposition 2 Let P(k) and P̂(k) be two connectivity distributions with the
same average connectivity and where P(k) Second Order Stochastic Dominates
(SOSD) P̂(k). Let M be the minimum integer such that

M∑

k≥1

k2P̂(k) ≥
M∑

k≥1

k2P(k) (7)

for all M ≥ M. Then, if

1
〈k〉

M∑

k≥1

k2P̂(k) ≤ 1 (8)

the contagion threshold is higher for P̂(k) than for P(k). That is, q∗(P̂) ≥ q∗(P).

Proof Given that P(k) SOSD P̂(k) then
〈
k2〉

P̂ >
〈
k2〉

P, where
〈
k2〉

P stands for
the second order moment of P.4 This implies that M exists. By assumption

1
〈k〉

M∑

k≥1

k2P̂(k) ≤ 1 (9)

which implies that

1
〈k〉

M∑

k≥1

k2P(k) ≤ 1 (10)

Let M∗ = [1/q∗] and M̂∗ = [1/̂q∗], where q∗ and q̂∗ are the contagion thresh-
olds for the distributions P(k) and P̂(k) respectively. Equations (9), (10) and

3 This follows from the fact that if action 1 is not risk dominant (i.e. q > 1
2 ) a necessary condition

for contagion derived from the characterization of the contagion threshold given by Theorem 1 is
P(1)
〈k〉 ≥ 1 which never holds when 〈k〉 > 1.

4 This is a consequence of the following property (see e.g. Mas-collel et al. 1995): If P(k) and P̂(k)

have the same average connectivity and P(k) SOSD P̂(k) then
∑

k≥1
u(k)P̂(k) ≥ ∑

k≥1
u(k)P(k) for any

convex function u(k).
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the characterization of the contagion threshold given by Theorem 1 imply that
M∗, M̂∗ > M. And, given that for all M ≥ M Eq. (7) holds, M∗ ≥ M̂∗ which in
particular implies that q̂∗ ≥ q∗. 	


Therefore, under certain conditions, broader connectivity distributions are
better than more homogeneous ones for contagion purposes (i.e. have a higher
contagion threshold). However, these conditions also suggest that the rela-
tionship between the contagion threshold and the connectivity variance of the
network is non-monotonic. To further illustrate this point, it is useful to consider
some examples.

5 Examples

We compare the contagion thresholds of homogeneous, exponential and scale-
free networks. Specifically, let m ≥ 1 and consider a scale-free network with con-
nectivity distribution PSF(k) ∝ k−2.5 for k ≥ m and PSF(k) = 0 otherwise, where
∝ means equal up to a multiplicative constant.5 The second network consid-
ered is an exponential network with connectivity distribution PE(k) ∝ e−k/2m

for k ≥ m and PE(k) = 0 otherwise. Finally, we consider a homogeneous net-
work PH(k) = 1 if k = 3m. Notice that the three networks introduced above
have an average connectivity equal to 3m whereas the variance is higher in the
scale-free network than in the exponential network, and higher in the exponen-
tial network than in the homogenous network. More precisely PH(k) SOSD
PE(k) and PE(k) SOSD PSF(k).6

Given the characterization of the contagion threshold given by Theorem 1,
and through numerical computations, we find that q∗(PH) ≤ q∗(PSF) ≤ q∗(PE).
This result, illustrated in Fig. 2, indicates that the network with an intermediate
variance (the exponential network) is the one with the highest threshold, which
implies that contagion of action 1 is easier in the exponential network than in
any of the other two networks.7 The intuition for such a result is the following:

5 The interest in the study of scale-free networks is enhanced by the empirical evidence that many
paradigmatic examples of complex networks such as the WWW, the Internet and the human sexual
contact network, among others, are characterized by scale-free connectivity properties (see e.g.
Barabasi et al. 2000).
6 To calculate the average connectivity we approximate the connectivity distribution P(k) by a
continuous distribution where k ∈ [m, +∞). First, we compute the multiplicative constant. For
example, in the exponential network case, P(k) = Ce−k/2m and we can solve for C in the equation
∫ +∞

m Ce−k/2mdk = 1. Notice that, once we know C, we can easily compute the average connectivity
as

∫ +∞
m kP(k)dk. Furthermore, to show that P(k) SOSD P̂(k) we simply apply the condition that

for all x ≥ 0,
∫ x

0 F̂(k)dk − ∫ x
0 F(k)dk ≥ 0, where F̂(k) and F(k) are the cummulative distribution

functions of P̂(k) and P(k) respectively (see Mass-Colell et al. 1995).
7 Another simple example that leads to the same conclusion is to consider a family of connectivity
distributions Pa(k) with the same average connectivity 〈k〉 where, given a ∈ [0, 〈k〉] half of the
population has connectivity 〈k〉 – a and the other half has connectivity 〈k〉 + a. Then Pa1 (k) SOSD
Pa2 (k) if and only if a1 < a2. It is rather straightforward to show that the contagion threshold is
highest for an intermediate variance connectivity distribution, specifically when a∗ = 〈k〉 − √

2〈k〉.
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Fig. 2 The contagion threshold (q∗, ordinate) for the exponential (E), the scale-free (SF) and the
homogenous (H) networks, as a function of the average connectivity (〈k〉, abscissa)

on the one hand, although higher connectivity nodes (which are more frequent
in broader networks) tend to enhance diffusion of the new action once they
become adopters, they are less likely to adopt (since they require more neigh-
bors to adopt) which offsets their relevance for the diffusion process. Moreover,
low connectivity nodes are important since they are typically the initial adopters
of the diffusion process. However, they must be well connected and form a giant
cluster in order for the action to take off. This implies that their connectivity
cannot be too low. Consequently, networks with intermediate variance (where
the connectivity of the lowest connectivity nodes are not so low) are best for
diffusion purposes.

Besides the analytical (and numerical) results described above we have also
run simulations of the stochastic dynamics to compare their predictions with
those based on the mean-field version of the model. To perform these simu-
lations we have generated three random networks: homogenous, exponential
and scale-free; each with n = 1, 000 nodes and an average connectivity of
〈k〉 = 9. We consider the discrete version of the continuous time dynamics used
to derive the theoretical results for the particular value of q = 1

6 . In this respect
we assume that in every period one (and only one) agent is chosen to revise his
action. Note that the definition of contagion cannot be applied in the exact same
way as in the mean-field dynamics since we now have a finite population. We
therefore simply compute the fraction of individuals choosing action 1 in the
long run and compare the results for the three different networks generated. In
Fig. 3 we represent the number of agents choosing 1 (ordinate) as a function of
the period (abscissa) for the homogenous, exponential and scale-free networks.
We decided to stop at t = 3 × 104 since the dynamics seem to reach a stationary
state before that. The data are the average of 100 simulations. For each simula-
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Fig. 3 Proportion of individuals choosing 1 (ordinate) as a function of the periods (abscissa) for
the exponential (highest curve), the scale-free (intermediate curve) and the homogeneous (lowest
curve) networks, when q = 1/6

tion, the initial condition is such that agents are choosing 1 in period t = 1 with
probability 0.01.

Notice that action 1 spreads significantly only for the exponential network
which would indicate that the contagion threshold is above q = 1/6 for the
exponential network, but below q = 1/6 for the scale-free and homogenous
networks. Therefore, as suggested by the mean-field theory, the exponential
network has a higher contagion threshold than the scale-free and homogenous
networks.
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