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Abstract We study a simple model of a population of agents whose interac-
tion network co-evolves with knowledge diffusion and accumulation. Diffusion
takes place along the current network and, reciprocally, network formation
depends on the knowledge profile. Diffusion makes neighboring agents tend to
display similar knowledge levels. On the other hand, similarity in knowledge
favors network formation. The cumulative nonlinear effects induced by this
interplay produce sharp transitions, equilibrium co-existence, and hysteresis,
which sheds some light on why multiplicity of outcomes and segmentation in
performance may persist resiliently over time in knowledge-based processes.

Keywords Network formation · Diffusion · Transition · Hysteresis · Growth ·
Social norms
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1 Introduction

The generation and diffusion of new knowledge is typically viewed as a crucial
ingredient in processes of economic growth. In the language of Quah (1996),
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for example, the sustained growth of an economy involves the composition
of two mechanisms: “pushing back” (say, the frontier of technological know-
how) and “catching up” (approaching the leaders’ performance). Indeed, one
can argue that, in an abstract sense, most processes of knowledge buildup in
social environments display these two sides to it: individually-fuelled advances,
complemented by interaction-mediated diffusion.

Here we study a very stylized model of the interplay between those twin
phenomena (knowledge generation and diffusion) in a context where the chan-
nels of dissemination of knowledge are given by a network that co-evolves
endogenously over time. To fix ideas, let us think of knowledge as “technologi-
cal know-how.”1 Then, the key feature that characterises network formation in
our model is quite intuitive: new links are created only if the individuals/nodes
involved are sufficiently similar or compatible, i.e. as long as they display tech-
nological levels that are not too far apart. Existing links, on the other hand,
are assumed to vanish at a constant rate. In this latter respect, one possible
interpretation is that the environment is subject to some background volatility
that removes existing links due to, say, obsolescence considerations or capacity
constraints.

In addition to such a network dynamics, we posit that there is a process of
knowledge diffusion and/or growth taking place on the current network. Spe-
cifically, we suppose that “innovation” proceeds independently at each node,
while there is a simultaneous process of diffusion among neighbours that tends
to close their technological differences.

In the context just outlined, we raise a number of questions:

1. When will the co-evolutionary process succeed in building up a dense (i.e.
highly connected) network?

2. How will the network emerge when the conditions (i.e. model’s parameters)
are adjusted so as to make this possible? In particular, do we expect gradual
(i.e. continuous) or sharp (discontinuous) transitions?

3. What is the effect of the process of network formation on the technological
convergence among the agents involved? How does it influence the overall
rate of technological advance?

Admittedly, the model and questions we pose are too abstract to be directly
useful in understanding particular instances of growth and technological change
in socioeconomic environments. They highlight, however, what we believe is an
important issue in these phenomena in the real world, namely, the interplay
between the technological proficiency of individuals/nodes and their pattern
of connectivity, which in turn affects their ensuing prospects of (technological)
growth and thus their future connections as well.

To be more specific, and merely by way of illustration, the model might shed
light on questions that have triggered an important and heated controversy in

1 As explained below, however, only one of our two different formulations of diffusion is best
conceived as reflecting technological diffusion. The alternative one suggests more naturally an
interpretation where the social diffusion concerns either opinions or social norms.
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the modern literature of growth and development. At least since the empirical
work of Baumol (1986), researchers have debated whether there is an under-
lying force towards global growth convergence or, alternatively, the world is
best viewed as segmented in disjoint “convergence clubs” with very different
performance.2 While the former view has been championed by researchers such
as Barro and Sala-i-Martin (1992) and Mankiw et al. (1993), the latter has been
stressed by others such as Durlauf and Johnson (1995) or Quah (1997).

Here, of course, we need not enter into the dispute, which is not only empir-
ical but also theoretical. At a theoretical level, the discussion in the main-
stream literature has focused on variations of the neoclassical growth model,
suitably enriched with “complications” such as externalities, human capital,
market imperfections, etc., see Galor (1996) for an excellent discussion of the
alternative theoretical approaches. In contrast, our model directs attention to
a mechanism that has been mostly ignored by this literature but has been
instead underscored by authors in the historico-evolutionary tradition—see,
e.g. Abramovitz (1986), Verspagen (1993), and Fagerberg (1994). The so-called
technological-gap approach to economic growth casts the issue as one of techno-
logical convergence–divergence. And it tailors the growth or shrinkage of the
technological divide between countries to the laggards’ (in)ability to close the
technological gap. In this somewhat eclectic literature, a wide array of different
factors are singled out as the main culprits in the case of catch-up failure. But,
formally or informally,3 the existence of essential nonlinearities in the diffusion
process always play a prominent role in the story. As we shall see, such nonlin-
earities are also central to the rich growth and diffusion performance exhibited
by our model.4

More generally, a certain version of our model admits an interpretation of
the agents’ attributes as the behavior they choose under the local influence of
neighbors. The model can then be brought to bear on the important issue of the
evolution of social norms and the force towards conformity exerted in a context
of local interaction—see, e.g. Ellison (1983). Recently, this issue has been stud-
ied in a dynamic context where, as here, the social network itself coevolves with
the other dimensions of behavior. See, specifically, Jackson and Watts (2002)
and Goyal and Vega-Redondo (2005) , in which agents decide both on whom
to connect to as well as their behavior in an underlying coordination game.

2 For a brief but useful review of this literature, see the critical piece by Durlauf (2003).
3 See, for example, how Abramovitz’s (1986) heuristic notion of social capability is modelled,
explicitly as a nonlinearity, by Verspagen (1993).
4 Another important phenomenon to which our model may contribute some insights is the evo-
lution of patterns of collaboration among academic scientists and industry researchers. In the
academic realm, recent empirical work on collaboration networks has covered a wide variety of
disciplines. For example, Newman (2001) has studied the fields of physics, biomedical research, and
computer science, Grossman (2002) that of mathematics, and Goyal et al. (2003) economics. The
latter authors report, for example, that in merely two decades the average degree of collaboration
has doubled among economic researchers. Interestingly, such a sharp increase in the density of
interactions is indeed one of the main consequences of the interplay between knowledge diffusion
and network evolution in our model.
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In contrast with this evolutionary literature, our model emphasizes the role of
complexity, assuming that network formation is subject to persistent and siz-
able perturbations. Under these conditions, the analysis focuses on the interplay
between the (in)ability to reach a dense social network and the rise (or not) of a
coherent pattern of social behavior (say, in the form of a uniform convention).
An important limitation of our approach is that we do not explicitly model
individual incentives. These are accounted for only implicitly through our for-
mulation of diffusion and some “compatibility requirements” on link creation.
For a comprehensive survey of the strategic approach to network formation,
with incentives playing a central role in the analysis, the reader is referred to
Jackson (2005).

Finally, we mention that the present approach to the study of diffusion shares
some of its key features with the booming recent field of complex networks [see
Albert and Barabási (2002) or Newman (2003) for quite exhaustive surveys].
As in much of this literature, a central concern here is the induced dynamics of
network formation. Our theoretical framework, nevertheless, is neither station-
ary nor growing, cf. Albert and Barabási and Albert (1999). We posit instead
a context persistently affected by volatility, identified with a random process
of link removal. The model, therefore, bears some similarities with that stud-
ied by Marsili et al. (2004). There, however, agents/nodes display no genuine
interaction and the only dimension of change pertains to the network itself.

The rest of the paper is organised as follows. In Sect. 2, we present the gen-
eral model as well as the different particular specifications consistent with it
that will be studied in the paper. Section 3 undertakes the analysis of the model
through extensive numerical simulations, while some theoretical insights on the
resulting behavior are offered in the Appendix. The main body of the paper
concludes in Sect. 4 with a summary and a short discussion.

2 The model

Consider a set N = {1, . . . , n} of n agents who evolve in continuous time t ≥ 0.
Each agent i is characterised by an attribute hi(t)—which we generically call
knowledge—capturing her level of expertise or technological development.
The agents’ interaction network at time t is described by a non-directed graph
g(t) ⊂ {ij, i, j ∈ N }, where ij ∈ g(t) if i and j interact at time t. The network g(t)
is the social backbone through which diffusion proceeds, as explained next.

We assume that each agent i receives an attribute update (or upgrade) pos-
sibility at a rate ν, meaning that the probability that hi is updated in the time
interval [t, t + dt) will be νdt. If agent i receives such an opportunity at time t,
we posit that

hi(t+) = D{hj, j ∈ Ni(t)} + ηi(t), (1)

where t+ is time immediately after the update and

• ηi(t) is a random term capturing the idiosyncratic change of expertise due
to i’s own (say research) efforts;
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• the function D{·} captures knowledge diffusion in the current neighborhood
Ni(t) = {j : ij ∈ g(t)} ⋃{i} of agent i (including i herself).

We will take ηi(t) to be Gaussian i.i.d. random variables with zero average
and variance �. Concerning diffusion, on the other hand, we will consider two
alternative possibilities that, to fix ideas, we shall respectively label as Best-per-
formance imitation and Merging behavior.
Best-performance imitation (BI): The revising player i attains a level hi(t+) equal
to the maximum available in her neighbourhood. Formally, this corresponds to
the following formulation:

D{hj, j ∈ Ni(t)} = max
j∈Ni(t)

hj(t), (2)

where Ni(t) includes i and |Ni(t)| is the number of agents in i’s neighborhood.5

Merging behavior (MB): The revising player i “merges” her behavior with that
displayed by her neighbors. This is formalized by making

D{hj, j ∈ Ni(t)} = 1
|Ni|

∑

j∈Ni(t)

hj(t). (3)

The first formulation, imitation of best-performance, is common in evolu-
tionary literature—see, e.g. Vega-Redondo (1997) or Eshel et al. (1998). In our
context, as suggested, it may be interpreted as modelling a process of techno-
logical growth under individual innovation and network-channeled diffusion.
The second formulation, on the other hand, can be conceived as reflecting a
process of opinion exchange (with no idea of relative “advance” in the levels
displayed by different individuals), as in Weisbuch (2002) or DeMarzo et al.
(2003). Alternatively, MB could be viewed as representing a context where the
payoffs of interaction are enhanced by conformity (say, in social norms or tech-
nological standards) and, therefore, agents adjust their behavior towards that
displayed by their neighbors.

The dynamics of Eq. (2) has been extensively studied on finite dimen-
sional lattices and Cayley trees, because of its relation to a number of impor-
tant physical processes such as turbulence and stochastic surface growth—see
Halpin-Healy and Zhang (1995). The properties of (unidirectional) diffusion
processes (Eq. 3) on fixed graphs have also been studied extensively (see the
Appendix).

Here, in addition to the diffusion (sub)process, the interaction network of
agents also evolves according to two further stochastic (sub)processes: link
destruction and link creation, as we describe next.

First, each existing link decays (i.e. disappears) at a constant rate λ. This
process models environmental volatility, e.g. link breakdown due to errors, or
the fact that those conditions under which a particular link was formed might

5 Note that, if i has no neighbor, Ni = {i} and hence D = hi in both cases.
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change over time, thus leading one of the two parties to discontinue the rela-
tionship.

Second, links are formed as follows. At a rate ξ , each agent i is given the
opportunity to form a new link. In this event, a partner j is chosen at random in
the population and the link ij is created (with probability one, if not already in
place) provided |hi − hj| ≤ d̄, where d̄ is a parameter of the model. Otherwise
(if this inequality is violated), the link is assumed formed only with some prob-
ability ε, to be conceived as small. The differences in h might also be introduced
as one of the factors affecting link decay. While this is certainly plausible for
many applications, we prefer to keep our discussion as simple as possible. It is
intuitive, however, that if the rate λ at which link ij disappears were an increas-
ing function of |hi − hj|, the non-linear feedback effects discussed below will be
enhanced, thus strengthening our results.

The rate ξ at which agents receive link-formation opportunities can be seen
as a proxy for the intensity with which agents meet or, relatedly, the “network-
ing” efforts exerted by agents. The parameters d̄ and ε, on the other hand,
determine how important it is that two agents be similar in order for the link
to be formed. In general, we might expect that two agents with very different
knowledge levels seldom form a link since it is unlikely that, in the foreseeable
future, both of them may profit significantly from it. Heuristically, one could
relate the magnitude of d̄ and ε to the extent to which agents are forward look-
ing and patient. To see this, suppose that (3) applies and identify the level hi
displayed by an agent i at some t with her instantaneous payoff. Then, if agents
do pay sufficient attention to long-run payoffs, they will understand that, even if
it might be unprofitable in the short run to establish a link with a less advanced
individual, this may well induce higher payoffs in the future due to an enhanced
potential of innovation.

Naturally, the relative magnitudes of ξ and λ will play a key role in the model.6

In a nutshell, the basic intuition of the analysis is embodied by the following
points.

1. A dense network promotes a uniform society, which in turn makes it easier
to establish new links. Under these conditions, the decay of obsolete links
can be efficiently balanced by a vigorous link formation process.

2. When a society has only few connections, agents tend to display very diverse
attribute levels. This renders the creation of new relationships typically hard,
which makes it impossible to overcome the link decay imposed by volatility.

The aforementioned points suggest that, within the same environment (i.e.
identical underlying parameters), two polar configurations can materialise as
stable states. In one of them, there is a dense network and an homogeneous
society; in the other, the network is sparse and the society very heterogeneous.

6 Notice that, a time rescaling t → t/λ does not affect the properties of the stationary state. This
implies that results only depend on the ratio ξ/λ and ν/λ. Likewise, a rescaling hi → hi/

√
� implies

that results only depend on the ratio d̄/
√

�. Hence, for example, the dependence of the results on
d̄ can be inferred from their dependence on � in a trivial manner.
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This is indeed what the numerical experiments in Sect. 3 will show. Further-
more, the contrast between (2) and (3) will provide a useful insight on how
the directionality of the diffusion process affects the overall performance of
the system. The specific implications of our conclusions for phenomena such as
technological growth or social conformity will then be summarized in Sect. 4.

3 Analysis

The interesting region in parameter space is when the diffusion dynamics plays
a key role in building the network. Consider the case where the distribution
of hi across the population is extremely broad with respect to d̄, so that the
probability p that |hi − hj| < d̄ is negligible. Then link creation occurs at an
effective rate 2ξε, the factor 2 coming from the fact that link creation can be
initiated by both partners. The rate at which links are removed is instead λ〈k〉,
where 〈k〉 is the expected degree (i.e. number of neighbours) of an agent. In
the stationary state, these processes must balance yielding an average degree
〈k〉 = 2ξε/λ. Our numerical experiments focus on the case where λ 	 2ξε, so
that the emergence of a dense network is not possible in the absence of the
diffusion process. In what follows, we take λ = 1 and ε = 0.001 which ensures
that the condition is met when ξ varies in the range 1–20.

Knowledge update is taken to occur at a rate ν = 10, which is relatively fast
compared to link decay process. In the polar case of slow knowledge update
(ν 
 λ) links typically disappear before they can have an impact on the diffu-
sion process. We set d̄ = 2. The variance of the noise, �, is set differently for
the two models: For BI (Eq. 2) we set � = 0.1 whereas for MB (Eq. 3) we set
� = 1. The reason for this difference is that MB is much more effective than
BI in achieving uniform knowledge levels, hence stronger shocks ηi are needed
with the BI model to maintain a distribution of hi with a spread of order d̄.

System sizes of n = 200, 500 and 10, 00 agents are simulated. Each depicted
point represents a system which was run up to t = 1, 000 in order to reach a sta-
tionary state. Then averages were taken in the time interval t ∈ [1, 000, 1, 100].
In a first set of simulations, we took the empty network as the initial condi-
tion, whereas in a second set, simulations were started from a highly connected
network. In an ideal experiment where, starting from low values, networking
effort ξ increases very slowly to high values we would expect the system to go
through the states visited in the first set of simulations. Likewise, the second
data set describes what one may expect if, starting from high ξ , we decrease it
very slowly. 7

Results for the behaviour of network density are shown in Figs 1 and 2 for the
cases of directional (BI) and unidirectional (MB) diffusion, respectively. These

7 In the coexistence region, we found that rare fluctuation sometimes cause the system to jump
from the low connected to the high connected state (this can be seen to occur occasionally in
Fig. 1). Reverse jumps also may occur in a finite system, though they are much more rare. Hence
in a real experiment where the parameter ξ is increased very slowly, the system may jump to the
dense network phase earlier than in Figs. 1 and 2.
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Fig. 1 Plot of the mean connectivity, 〈k〉, and probability that two nodes’ attributes are within d̄ of
each other, p, as a function of ξ . The model is the BI model of Eq. (2). Plots are for agent numbers
of n = 200 (squares and circles), n = 500 (crosses and plusses) and n = 1, 000 (triangles down
and triangles up). Squares, crosses and triangles down represent the initially coordinated states.
Circles, plusses and triangles up represent the initially uncoordinated states. Arrows denote the
approximate points ξ1, ξ2 at which the system jumps between states. The difference between the
coordinated and uncoordinated data points at low ξ is due to the very low connectivity and low
noise not equilibrating the h values within the runtime of t = 1, 100

report the average degree 〈k〉 and the probability p that two randomly chosen
agents have compatible knowledge levels, |hi − hj| < d̄. In the stationary state,
the rate at which links are lost should balance that at which links form, so that

〈k〉 = 2ξ

λ

[
ε + (1 − ε)p

]
, (4)

a relation which is fully confirmed by numerical simulations.
In both figures, we observe the same behavior: As long as ξ is small, only a

stationary state with a sparse network (small 〈k〉) is possible. As the networking
effort ξ increases, the global situation does not improve much, because still most
attempts to create new links fail due to technological levels being too different
(i.e. p small). When ξ gets large enough, however, this situation becomes unsta-
ble and a dense network forms in an abrupt manner. The network formation is a
stochastic event and it may take place at slightly different values of ξ . Typically
in societies with a larger number n of agents the sparse network is found to



Diffusion and growth in an evolving network 391

0 5 10 15 20

ξ

0

10

20

30

40
<

k>

0 5 10 15 20
ξ

0

0.2

0.4

0.6

0.8

p

ξ1 ξ2

Fig. 2 Plot of the mean connectivity, 〈k〉, and probability that two nodes’ attributes are within d̄
of each other, p, as a function of ξ . The model is the MB model of Eq. ( 3). Plots are for agent
numbers of n = 200 (squares and circles) and n = 500 (crosses and plusses). Squares and crosses
represent the initially coordinated states. Circles and plusses represent the initially uncoordinated
states. Arrows denote the approximate points ξ1, ξ2 at which the system jumps between states. Also
shown are results of simulations started from dense (filled triangle left) or sparse (filled diamond)
network for ν = 0.1 (slow updating of the hi) with n = 200

be more stable than in societies with small n. This is because the flip from the
sparse to the dense network phases is triggered by large fluctuations, which are
relatively more likely in small systems.

Once a dense network emerges, it remains stable both if the networking
effect increases and if it decreases. Indeed, a dense network makes diffusion
of knowledge (hi) very effective, thus narrowing society’s spread in hi. This
in turn makes the replacement of obsolete links fast (large p), thus sustaining
a densely networked society. This points to the fact that such socio-economic
networks not only exhibit a sharp transition but also a resilient one, i.e. after
a dense network has formed it remains stable even when external conditions
deteriorate. Figures 1, 2 show that the dense network reverts again to a sparse
one when the networking effort ξ falls below a threshold ξ1.

We remark that results depend on the population size n, we also found that,
other things being equal, p decreases with �. On the other hand, increasing the
rate ν of hi updates makes the population more uniform, hence p increases.
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Directionality of diffusion impinges on the results in several ways. First, MB
is much more efficient than BI in achieving a uniform society. This is reflected
in the values of � used in Fig. 2 for unidirectional diffusion, which is ten times
larger than that used in Fig. 1. In both cases, the region of ξ where the transitions
take place increases with increasing �.

Second, and most importantly, while for undirected diffusion (MB) the popu-
lation average of hi does not change significantly over time, for directed diffusion
of knowledge (BI) we have:

〈h(t)〉 = 1
n

n∑

i=1

hi(t) = vt. (5)

That is, hi(t) grows with time at a rate (velocity) v.8 Figure 3 shows both the ξ

dependence of the velocity and also some examples of the distribution of h.
We found that v is an increasing function of the average degree 〈k〉. One can

think of this as agents having more choices of whom to copy “best practice”
from and such practice diffusing faster in dense networks. The growth per-
formance of the population then mirrors the behavior of network density, as
the parameters change. The sparse network phase corresponds to a “stagnant”
situation of slow growth whereas, as shown in Fig. 3, at the transition where
a dense network emerges, growth accelerates abruptly. This shows that sharp
transitions in growth rates can be related to the transition in the underlying
socio-economic network. It is worth remarking that the individual “innovation
process” is neutral, i.e. ηi can both be positive or negative and it has zero mean.
A positive growth rate occurs solely because positive innovations are selectively
transmitted through the network by the diffusion process.

The distributions of h are shown in Fig. 3. Below the transition, the agents
are rarely connected and consequently do not share “best performance” so
much. This is reflected in the broad distribution of h values seen and also by
the fact that the peak of the distribution is far from the “best” agent. Above
the transition, the agents are more highly connected and also have a higher v.
The nodes in the giant component are much closer in h to the best agent and
the distribution is narrower. Nodes not in the giant component get left behind
(since their v is much lower) in the lagging smaller peak which can be seen far
to the right of the main peak in Fig. 3. Such nodes only catch up again through
the unconditional ε process, which is relatively slow.

By contrast, the distributions (not plotted) of h for the model based on MB
are symmetric9 and approximately Gaussian. The width of the distribution is
much smaller in the highly connected phase, as expected.

8 This can be understood by observing that Eq. (2) does not depend on absolute time and is
invariant under translations in the h direction (i.e. hi → hi + c for all i with c constant). The only
non-degenerate solution of the associated equation for the probability distribution of hi’s which
is consistent with this property is a travelling wave solution P({hi}, t) = f ({hi − vt}), for a suitably
chosen value of v. It is clear from Eq. (2) that, on average, hi increases at any update, hence v ≥ 0.
9 Indeed Eq. (3) enjoys the further symmetry hi → −hi for all i.
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Fig. 3 Upper Plot of the mean velocity, v, as a function of ξ for the BI model of Eq. (2). Plots are for
agent numbers of n = 200 (squares and circles), n = 500 (crosses and plusses) and n = 1, 000 (trian-
gles down and triangles up). Squares, crosses and triangles down represent the initially coordinated
states. Circles, plusses and triangles up the initially uncoordinated states. Lower The distributions of
the hi for n = 1, 000 and three values of ξ , ξ = 10 (solid line), ξ = 15 (dotted line) and ξ = 20 (dashed
line), starting in the coordinated state. The histograms are taken from t = 1, 000 to t = 2, 000 and
are of wi(t) = ln(1 + maxj(hj(t)) − hi(t)). Note the second smaller peaks in the distributions for
ξ = 15 and ξ = 20. The logarithmic scales were necessary in order to plot the histograms clearly on
the same figure

Figure 3 shows that the ξ = 20 curve is slightly broader than the ξ = 15
curve. This is related to the decrease in p with ξ for large ξ which can be
observed in Fig. 1, because p is a decreasing function of the spread of the
distribution of hi. There are two possible factors which act in the direction of
broadening the distribution of h and hence may be responsible for this behavior.
Firstly, the variance of the maximum of k random variables with unbounded
domain increases with k, see Galambos (1987). Given that we have a giant
component, this effect will act to broaden the distribution as ξ and hence 〈k〉 is
increased.

Secondly, the velocity also increases with 〈k〉. Most progress is generated in
the most highly connected part of the giant component. Nodes on the periphery
of the giant component get “dragged along”, their lag increasing with their dis-
tance from the core region and with the velocity, v. Thus when v increases these
peripheral nodes lag farther behind. Both factors are not at work in the case
of Eq. (2): the average of k random variables has a variance which decreases
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with k and there is no velocity (v = 0). Indeed, for Eq. (2), p is a monotonically
non-decreasing function of ξ .

4 Summary and conclusions

The paper examines a simple model of network co-evolution in which the cur-
rent network is the basis for a (relatively fast) diffusion process. The main
insight that is gained from our analysis is that such interplay between network
change and the diffusion of knowledge or behavior can generate the outcome
multiplicity that is observed in many network-based phenomena in the real
world, e.g. in technological change and development or the evolution of social
norms. The entailed equilibrium multiplicity also displays many of the charac-
teristics that are common in phase transitions of nonlinear dynamical systems.
Especially important among them is hysteresis, which may be interpreted as a
manifestation of the robustness and history-dependence that impinge on the
system dynamics.

The general adjustment dynamics proposed here has been specialized in two
different directions. One of them, labelled BI, seems more appropriate to study
processes of diffusion of knowledge and growth such as those fuelled by tech-
nological change. The second one, referred to as MB, is better suited to model
processes of opinion change and norm evolution. In both cases we find the same
qualitative behavior, as it concerns sharp transitions, equilibrium multiplicity
and hysteresis. But the implications and interpretation of those phenomena is
different in each case. Under BI, the transition to a high-connectivity phase
entails a marked jump in the overall rate of advance of the system, due to the
large synergies then made available by much more intense imitation. Under
MB, on the other hand, no such effect in the rate of advance occurs (nor would
be really meaningful) and the transition entails a swift move towards social
convergence and conformity (in opinions, social norm, etc.).

The theoretical framework studied in this paper is kept simple and stylised,
in order to highlight the main forces involved in the resulting phenomenol-
ogy. However, it can and should be extended in a number of directions. One
of them is to enrich the network formation by introducing topology-based
considerations of search in meeting new partners. For example, it could be
posited that new potential partners are met through current neighbours, mak-
ing link creation depend on the current network architecture. [In a different
context, this approach has been explored by Marsili et al. (2004).] Another
interesting extension of the model would be to couple the diffusion process
with other phenomena that are economically relevant in growth and develop-
ment processes. A natural one, of course, is capital accumulation, which then
suggests the importance of introducing explicit economic incentives and, pos-
sibly, forward-looking considerations into the analysis. This, however, is bound
to complicate the analysis very substantially. It also requires the combination
of different methodologies and paradigms, an endeavour that usually proves
markedly difficult.
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Appendix: Some analytical insights for MB diffusion

We detail in what follows simple arguments which provide some insight for the
behavior observed in numerical simulations and discussed in the text.

The MB model of Eqs. (1,3) can be analyzed analytically in the limit ν 	 1.
We will assume that the network can be well approximated by an Erdos–Renyi
random graph with average degree 〈k〉. Our strategy will be that of deriving
the distribution of hi − hj in the stationary state for a random Erdos–Renyi
graph with average degree 〈k〉, and then using this to estimate the probability
p that two randomly chosen nodes have |hi − hj| < d̄. Then Eq. (4) can be
used to obtain 〈k〉. In effect, the distribution of hi will depend, in general, on
the degree ki of the node. Hence the probability a node gets a new neighbor
will also depend on its degree and therefore the degree distribution will deviate
from the Poisson law. We assume that these deviations are weak and do not
affect the qualitative nature of the results.

In the limit ν 	 1 the dynamics is well described by a continuous Langevin
equation10

ḣi = − ν

|Ni|
∑

j∈Ni

(hj − hi) + ζi ≡ −ν
∑

j

Li,jhj + ζi, (6)

where 〈ζi(t)ζj(t′)〉 = ν2�δi,jδ(t − t′) and we have introduced the (normalized)
Laplacian matrix of the graph L. The dynamics of this model with a fixed
network is well known in physics. We observe that (i) the distribution of hi is
Gaussian, as it is a combination of Gaussian variables; (ii) the dynamics is easily
integrated in the normal modes of the diffusion operator. In other words, let vµ

be the eigenvectors of L, i.e. Lvµ = µvµ. Then the normal modes hµ = ∑
i vµ

i hi
satisfy

ḣµ = −νµhµ − ζµ, (7)

where, in view of the orthogonality of the transformation i → µ, ζµ is again a
white noise with the same statistical properties of ζi. The fluctuations of hµ in
the stationary state are 〈(hµ − 〈hµ〉)2〉 = ν�

2µ
. Back transforming to the variables

hi one finds that

〈(hi − 〈hi〉)2〉 =
∑

µ>0

ν�

2µ
= ν�

2

∫
dµ

µ
ρ(µ). (8)

Here ρ(µ) is the density of eigenvalues of the Laplacian matrix and it can be
computed for a random graph in the limit n → ∞. No simple closed form is

10 In order to derive such an equation, fix a small time interval dt. If νdt 	 1 the number of updates
on each site will be large and hence, by the central limit theorem, the corresponding increments in
the hi’s are well approximated by a deterministic term equal to the expected value of the r.h.s. of
Eq. (1), times dt, plus a random Gaussian contribution.
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available—see e.g. Dorogovtsev (2003) for details. However we notice that the
integral in µ, for Erdos–Renyi graphs, is a function R(〈k〉) of the average degree
〈k〉 alone. The function R(c) (i) decreases monotonically and (ii) it diverges as
c → 1+, when the giant component vanishes. At our level of approximation,
we will assume that for 〈k〉 < 1 the levels hi are infinitely spread, i.e. R(c) = ∞
for c < 1. This allows us to write

〈(hi − 〈hi〉)2〉 = ν�

2
R

(〈k〉)

and to estimate the probability

p = P{|hi − hj| < d̄} = θ(〈k〉 − 1)erf
[
d̄/

√
2ν�R(〈k〉)

]
. (9)

Here θ(x) = 1 if x > 0 and θ(x) = 0 otherwise, thus ensuring that p = 0 in
unconnected graphs (〈k〉 ≤ 1).

This equation, combined with Eq. (4) captures the feedback effects which
are responsible for the phenomenology observed in numerical simulations. A
graphical solution of these equations shows that there is a value ξ1 below which
only one solution with 〈k〉 < 1 exists and a value ξ2 above which only a solution
with 〈k〉 > 1 exists. In the interval [ξ1, ξ2] both solutions are possible.

The sharp dependence of 〈(hi − 〈hi〉)2〉 on 〈k〉 for 〈k〉 ≈ 1, which generates
the non-linearities which are responsible for the phase transition, gets smoothed
as ν decreases. Indeed, in the opposite limit where the network evolves much
faster than the dynamics of hi, i.e. ν 
 λ, the network is completely different
each time an hi is updated. The network is now no longer relevant—it is as if
neighbours are drawn at random from the entire population, with a preference
for neighbours whose hj’s are within d̄. We do not expect a strong dependence
of the distribution of hi’s on 〈k〉 for 〈k〉 ≈ 1.

Figure 2 shows results for ν = 0.1—i.e. a slow update of hi compared to the
change of the network. For this plot, the hysteresis region is greatly reduced.
Thus the hysteresis appears to rely on the fact that connections (links) last for
several updates of hi .
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