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Abstract In 1951, Dvoretzky, Wald and Wolfowitz (henceforth DWW) showed
that corresponding to any mixed strategy into a finite action space, there exists
a pure-strategy with an identical integral with respect to a finite set of atomless
measures. DWW used their theorem for purification: the elimination of random-
ness in statistical decision procedures and in zero-sum two-person games. In this
short essay, we apply a consequence of their theorem to a finite-action setting of
finite games with incomplete and private information, as well as to that of large
games. In addition to simplified proofs and conceptual clarifications, the unifica-
tion of results offered here re-emphasizes the close connection between statistical
decision theory and the theory of games.
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1 Introduction

Dvoretzky, Wald and Wolfowitz (henceforth DWW), in a theorem proved in
Dvoretsky et al. (1951b, Theorem 4), and announced in Dvoretsky et al. (1951b,
Theorem 1) and in Dvoretsky et al. (1951b, Theorem 2.1), showed that correspond-
ing to any mixed strategy into a finite action space,1 there exists a pure-strategy
such that the two strategies have the same integral with respect to a finite set of
atomless measures. They proved their theorem using the Lyapunov theorem for
vector measures, and formulated, as a simple consequence of the theorem, a gen-
eral purification principle that any mixed strategy can be purified to yield the same
expected payoffs and distributions. The general principle is then applied to the puri-
fication of statistical decision procedures, and of mixed strategies in two-person
zero-sum games with finite action sets.2

In this paper, we observe that the general purification principle of DWW is appli-
cable to finite games with incomplete information in Radner and Rosenthal (1982)
as well as to large non-anonymous games in Schmeidler (1973), both presented in
a finite-action setting. The relevance of the DWW insight to the purification prob-
lem in finite games with incomplete and diffuse information was already suggested
in Radner and Rosenthal (1982, Footnote 3) 3 and in Milgrom and Weber (1985,
section 5)4. However, the purification result in Milgrom and Weber (1985)does
not follow directly from the original result in Dvoretsky et al. (1951a) as claimed
therein, but from a new corollary of the DWW Theorem formulated here. In this
context, we also clarify different notions of purification implicit in Dvoretsky et al.
(1951a), Milgrom and Weber (1985) and Radner and Rosenthal (1982), and prove
some results for games with incomplete information, based on what we term strong
purification. This concept is stronger than all of the purification concepts in the
relevant literature. With the alternative mathematical framework in place, it is also
straightforward to derive the symmetrization result on equilibria in large anony-
mous games, as in Khan and Sun (1991) and Mas-Colell (1984).We point out that
the derivation of each of the purification results in this paper is not available in the
literature, and their directness and simplicity may perhaps be surprising.

To summarize, this essay, in giving a central location to the DWW theorem,
re-emphasizes the intimate connection between statistical decision theory and the

1 We alert the reader to the fact that what we term a mixed strategy here is called a behavioral
strategy in Radner and Rosenthal (1982) and Milgrom and Weber (1985), while a mixed strategy
there carries a different meaning.

2 See respectively Dvoretsky et al. (1950, Theorems 5 and 6), Dvoretsky et al. (1951a, The-
orems 3.1 and 3.2, section 4, Theorems 5.1 and 5.2) on statistical decision procedures, and
Dvoretsky et al. (1950, Theorems 2 and 3), Dvoretsky et al. (1951a, section 9) on two-person
zero-sum games. In Dvoretsky et al. (1950, Theorem 4) and Dvoretsky et al. (1951a, section 8),
they also consider approximate purification, an issue that is outside the scope of this paper.

3 Radner and Rosenthal (1982, Footnote 3) noted that their method for the proof of their
Theorem 1 is reminiscent of the DWW theorem without giving a proof based on it.

4 However, the relevance of the DWW insight to the issue of purification in large games has
apparently not been noticed in a large and growing literature; see the references in Khan and Sun
(2002).
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theory of games, an interdisciplinary thrust clearly evident in the classical papers,
and one that may possibly suggest fruitful new questions for both subjects.5

2 The DWW theorem

Let IRn denote n-dimensional Euclidean space and IRn
+ its non-negative orthant.

For any two measurable spaces (X, X ) and (Y, Y), Meas(X, Y ) denotes the space
of (X , Y)-measurable functions. Where needed, IRn will be endowed with its Borel
σ -algebra. We reproduce the DWW theorem for the reader’s convenience.6

Theorem [DWW] Let (T , T ) be a measurable space; µk, k = 1, . . . , m, finite,
atomless measures on (T , T ); and fi ∈ Meas(T , IR+), i = 1, . . . , n, such that
for all t ∈ T ,

∑n
i=1 fi(t) = 1. Then there exist measurable functions f ∗

i ∈
Meas(T , {0, 1}), i = 1, . . . , n, such that

∑n
i=1 f ∗

i (t) = 1 for all t ∈ T and
∫

T

fi(t)dµk(t) =
∫

T

f ∗
i (t)dµk(t) for all k = 1, . . . , m, and i = 1, . . . , n.

For a finite set A, let M(A) be the set of probability measures on A, and since
it can be embedded in a finite-dimensional Euclidean space, we shall assume it to
be endowed with its Borel σ -algebra.

We shall now present a corollary of the DWW Theorem that is used to derive a
variety of purification results for atomless games. It also has independent interest.
Note that Assertions (1) and (2) in the corollary are stated separately in Dvoretsky
et al. (1951a, section 3) as Theorems 3.1 and 3.2 for atomless distribution func-
tions; we put them together for general atomless probability measures. Assertions
(2) and (3) are quoted in Milgrom and Weber (1985, last paragraph on page 629)
as a result in Dvoretsky et al. (1951a). However, Assertion (3) is not proved in
Dvoretsky et al. (1951a) as is claimed in Milgrom and Weber (1985); we prove
it here and put it together with Assertions (1) and (2). The proof of the corollary
we present here adapts the proof in Dvoretsky et al. (1951a, section 3) along with
the additional trick of applying the DWW theorem to a specially chosen function
v�+n+1(a, t) = 1A\F(t) for proving Assertion (3).

Corollary 1 Let (T , T ) be a measurable space; µk, k = 1, . . . , m, atomless
probability measures on (T , T ); A a finite set represented as {a1, . . . , an}; vj ,
j = 1, . . . , �, elements of Meas(A×T , IR) that are integrable with respect to each
of the measures µk; and g ∈ Meas(T , M(A)). Let g(t; S) represent the value of
the probability measure g(t) at S ⊆ A and g(t; da) the integration operator with
respect to it. Then there exists g∗ ∈ Meas(T , A) such that for all k = 1, . . . , m,

1. For all j = 1, . . . , �,
∫
T

∫
A

vj (a, t)g(t; da)dµk(t) = ∫
T

vj (g
∗(t), t)dµk(t);

2. For all B ⊆ A,
∫
T

g(t; B)dµk(t) = µkg
∗−1(B);

5 In this connection, we refrain from the consideration of sequential statistical procedures,
and, as noted above, from issues relating to approximate purification, see Dvoretsky et al. (1950);
Dvoretsky et al. (1951a) and Wald and Wolfowitz (1951).

6 See Dvoretsky et al. (1951a, Theorem 2.1) and the proof of Theorem 4 in Dvoretsky et al.
(1951b).
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3. g∗(t) ∈ {ai ∈ A : g(t; {ai}) > 0} ≡ supp g(t) for µk-almost all t ∈ T .

Proof We shall supplement the � given functions vj by n+ 1 additional functions.
Towards this end, let vj be the indicator function 1{aj−�} on A for j = �+1, . . . , �+n
and v�+n+1(a, t) = 1A\F(t), where F(t) = {a ∈ A : g(t; {a}) > 0}, A \ F(t)
denotes set-theoretic subtraction, and for a set B, 1B is the indicator function of the
set B. Certainly vj is bounded and in Meas(A×T , IR) for each j = �+1, . . . , �+
n + 1. For notational convenience, let � + n + 1 = q.

We first establish that there exists g∗ ∈ Meas(T , A) such that

∫

T

∫

A

vj (a, t)g(t; da)dµk(t)

=
∫

T

vj (g
∗(t), t)dµk(t) for all k = 1, . . . , m and j = 1, . . . , q.

(1)

Towards this end, define for any W ∈ T , νijk(W) = ∫
W

vj (ai, t)dµk(t) for all
i = 1, . . . , n, j = 1, . . . , q, and k = 1, . . . , m. Certainly νijk are atomless finite
(signed) measures. Define for each i = 1, . . . , n, fi(t) = g(t)({ai}). Certainly∑n

i=1 fi(t) = 1. On applying the DWW Theorem to νijk and to fi, we are guar-
anteed the existence of functions f ∗

i ∈ Meas(T , {0, 1}), i = 1, . . . , n such that∑n
i=1 f ∗

i (t) = 1 for all t ∈ T , and

∫

T

fi(t)dνijk(t)

=
∫

T

f ∗
i (t)dνijk(t) for all i = 1, . . . , n;

j = 1, . . . , q and k = 1, . . . , m. (2)

On substituting the values of νijk in (2), we obtain

∫

T

vj (ai, t)fi(t)dµk(t) =
∫

T

vj (ai, t)f
∗
i (t)dµk(t)

for all i = 1, . . . , n; j = 1, . . . , q and k = 1, . . . , m,

which, in turn, implies that for any j = 1, . . . , q, and k = 1, . . . , m,

∫

T

n∑

i=1

vj (ai, t)fi(t)dµk(t) =
∫

T

n∑

i=1

vj (ai, t)f
∗
i (t)dµk(t). (3)

For each i = 1, . . . , n, let Ti = {t ∈ T : f ∗
i (t) = 1} and g∗ : T −→A, g∗(t) = ai

for all t ∈ Ti. It is clear from the properties of f ∗
i that {Ti} is a measurable decom-

position of T , and that therefore g∗ is well-defined. Then, equation (3) implies that
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for any j = 1, . . . , q and k = 1, . . . , m,

∫

T

∫

A

vj (a, t)g(t; da)dµk(t) =
∫

T

n∑

i=1

vj (ai, t)g(t; {ai}))dµk(t)

=
∫

T

n∑

i=1

vj (ai, t)fi(t)dµk(t)

=
∫

T

n∑

i=1

vj (ai, t)f
∗
i (t)dµk(t)

=
n∑

i=1

∫

Ti

vj (ai, t)dµk(t)

=
n∑

i=1

∫

Ti

vj (g
∗(t), t)dµk(t)

=
∫

T

vj (g
∗(t), t)dµk(t),

and the proof of the claim is complete.
Now, on choosing j = 1, . . . , �, in Equation (1), we obtain the first assertion

of the corollary.
Next, to show that the distribution induced by g∗(t) is the same as that induced

by g on A for any of the m measures, we apply equation (1) to the function
vj , j = � + 1, . . . , � + n, to obtain that for any k = 1, . . . , m,

∫

T

g(t; {ai})dµk(t) =
∫

T

∫

A

1{ai }(a)g(t; da)dµk(t)

=
∫

T

1{ai }(g
∗(t))dµk(t) = µkg

∗−1({ai})

holds for all i = 1, . . . , n. This implies Assertion (2).
Finally, on choosing j = � + n + 1, in equation (1), we obtain for any k =

1, . . . , m,

∫

T

∫

A

1A\F(t)(a)g(t; da)dµk(t) =
∫

T

1A\F(t)(g
∗(t))dµk(t).

Since the first element of the equality is zero by construction, so is the second
element, and this implies that 1A\F(t)(g

∗(t)) equals zero for µk-almost all t ∈ T .
Thus, for µk-almost all t ∈ T , g∗(t) ∈ supp g(t). ��



96 M. Ali Khan et al.

3 Finite games with incomplete information: conditional independence

In this section, we consider finite games with incomplete information as formulated
by Milgrom and Weber (1985). A game with incomplete information �MW consists
of a finite set of � players and an information space available to them. Each player
i is endowed with a finite action set Ai (denote the product space ��

j=1Aj by A),
a measurable space (Ti, Ti ) representing his possible types, and a payoff function
ui : A × T0 × Ti −→ IR. Let the measurable space (T0, T0), T0 = {t01, . . . , t0m},
represent the space of common states that affect the payoffs of all the players. The
product measurable space (T , T ) ≡ (��

j=0Tj , �
�
j=0Tj ) equipped with a probabil-

ity measure η constitutes the information space of the game. Assume that for any
a ∈ A, ui(a, t0, ti) is integrable on (T , T , η).7

For each t0k ∈ T0, k = 1, . . . , m, let η(·; t0k) denote the conditional probabil-
ity8 on the space (��

j=1Tj , �
�
j=1Tj ). Following Milgrom and Weber (1985), we

shall assume that for each i = 1, . . . , �, the marginal ηi(·; t0k) of η(·; t0k) on the
space (Ti, Ti ) is atomless and that η(·; t0k) = ��

i=1ηi(·; t0k). The latter condition is
simply a formalization of the intuitive statement that conditional on T0, the play-
ers’ types are independent. It is also abbreviated to as conditional independence of
probability measures. We shall denote the measure ηi(·; t0k) by µik. The marginal
of η on (T0, T0) is denoted by η0, and η0(t0k) by µ0k for each k = 1, . . . , m.

For any player i, a mixed strategy is an element of Meas(Ti, M(Ai)), and a
pure strategy is an element of Meas(Ti, Ai). A pure strategy fi ∈ Meas(Ti, Ai)
can also be viewed as a mixed strategy gi by taking gi(ti) to be the Dirac mea-
sure δfi(ti ) at fi(ti) for each ti ∈ Ti . A mixed (pure) strategy profile is a collection
g = {gi}�i=1 of mixed (pure) strategies that specify a mixed (pure) strategy for
each player. For a player i = 1, . . . , �, we shall use the following (conventional)
notation: A−i = �1≤j≤�,j 	=iAj , T−i = �1≤j≤�,j 	=iTj , a = (ai, a−i ) for a ∈ A,
(t1, . . . , t�) = (ti , t−i ) for (t1, . . . , t�) ∈ ��

j=1Tj , and g = (gi, g−i ) for a strategy
profile g.9

Assume that the players play the mixed strategy profile g = {gi}�i=1. Then, the
resulting expected payoff for player i can be written as

Ui(g) = Ui(g1, . . . , g�) =
∫

T

∫

A

ui(a, ti , t0)g1(t1; da1) · · · g�(t�; da�)dη

=
m∑

k=1

µ0k

∫

Ti

∫

Ai

v
g

ik(ai, ti)gi(ti; dai)dµik(ti), (4)

where v
g

ik(ai, ti) (which depends on the mixed strategy profile g) equals

∫

t−i∈T−i

∫

a−i∈A−i

ui(ai, a−i , ti , t0k)
∏

j 	=i

gj (tj ; daj )d
∏

j 	=i

µjk(tj ), (5)

7 A boundedness condition on the payoffs is assumed in Milgrom and Weber (1985, p. 623).
8 It always exists since T0 is finite.
9 From now on, without any ambiguity, we shall abbreviate �1≤j≤�,j 	=i to �j 	=i .
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and the second equality in equation (4) is obtained from the assumption of condi-
tional independence. The fact that the functions v

g

ik(ai, ti) are in Meas(Ai ×Ti, IR)

is a consequence of Fubini’s theorem.10 For each j = 1, . . . , �, denote the measure∫
Tj

gj (tj , ·)dµjk(tj ) on Aj by γ
gj

jk . Then we can rewrite equation (5) as

v
g

ik(ai, ti) =
∫

a−i∈A−i

ui(ai, a−i , ti , t0k)d
∏

j 	=i

γ
gj

jk (a−i ). (6)

Thus, the ith player’s expected payoff depends on the actions of the other players
only through the conditional distribution of their strategies induced on their action
spaces.

In the following, we define different types of equivalent strategy profiles, and
this furnishes different types of purification concepts.

Definition 1 Let g = {gi}�i=1 and g∗ = {g∗
i }�i=1 be two mixed strategy profiles.

1. The strategy profile g is said to be payoff equivalent to g∗ if Ui(g) = Ui(g
∗)

for all players i = 1, . . . , �.
2. The strategy profiles g and g∗ are said to be strongly payoff equivalent if (i)

they are payoff equivalent; (ii) for any player i and any given mixed strategy
g′

i ∈ Meas(Ti, M(Ai)), Ui(g
′
i , g−i ) = Ui(g

′
i , g

∗
−i ).

3. For a player i, the strategy gi is said to be distribution equivalent to the strategy
g∗

i if they have the same conditional distribution on the action space Ai in the
sense that for all k = 1, . . . , m,

∫
Ti

gi(ti; ·)dµik(ti) = ∫
Ti

g∗
i (ti; ·)dµik(ti).

The strategy profile g is said to be distribution equivalent to the strategy profile
g∗ if gi is distribution equivalent to g∗

i for all players i = 1, . . . , �.
4. For a player i, the pure strategy g∗

i is said to be strongly distribution equiv-
alent to the strategy gi if g∗

i is distribution equivalent to gi , and for each
k = 1, . . . , m, g∗

i (ti) ∈ supp gi(ti) for µik-almost all ti ∈ Ti . The pure strategy
profile g∗ is said to be strongly distribution equivalent to the strategy profile g
if g∗

i is strongly distribution equivalent to gi for all players i = 1, . . . , �.
5. A pure strategy profile g∗ is said to be a strong purification of the strategy profile

g if g∗ is both strongly payoff equivalent and strongly distribution equivalent
to g.

Item (2)(ii) above says that the expected payoff of player i from an arbitrary
mixed strategy is the same irrespective of whether his opponents play g−i or g∗

−i .
It is thus clear that if two strategy profiles are strongly payoff equivalent and one
is an equilibrium of the game �MW , then the other is also an equilibrium.

The following two examples establish, in the simple context of a single player
games, that payoff equivalence and distribution equivalence are independent con-
cepts. The first example shows that strong distribution equivalence does not imply
payoff equivalence.

Example 1 Let (T , T , λ) be the unit Lebesgue interval. Let the action set A =
{0, 1}. Let ν be the uniform distribution on A, which is to say ν({0}) = 1/2 =

10 For the details of this theorem, see, for example, Ash (1972).
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ν({1}), and let g ∈ Meas(T , M(A)) such that g(t) = ν for all t ∈ T . Let g∗ :
T −→ A be such that

g∗(t) =
{

1 for 0 ≤ t < 1
2 ,

0 for 1
2 ≤ t ≤ 1.

It is clear that g∗(t) ∈ supp g(t) for all t ∈ T , and the induced distribution λg∗−1

on A is identical to ν. Hence, g∗ is strongly distribution equivalent to the pure
strategy g.

Next, let u : A × T −→ IR be such that for all t ∈ T ,

u(a, t) =
{

0 for a = 1,
g∗(t) for a = 0.

We can now compute the two expressions:

U(g) =
∫

T

∫

A

u(a, t)g(t; da)dλ(t) = 1

2

∫

T

[u(0, t) + u(1, t)]dλ(t)

= 1

2

∫

T

g∗(t)dλ(t) = 1

4
,

U(g∗) =
∫

T

∫

A

u(a, t)δg∗(t)(da)dλ(t) =
∫

T

u(g∗(t), t)dλ(t)

=
1/2∫

0

u(1, t)dλ(t) +
1∫

1/2

u(0, t)dλ(t) = 0.

Thus, g∗ is not payoff equivalent (thus not strongly payoff equivalent) to g.
The second example shows that (strong) payoff equivalence does not imply

distribution equivalence; and furthermore, (strong) payoff equivalence and distri-
bution equivalence do not imply strong distribution equivalence.

Example 2 Let (T , T , λ) be the unit Lebesgue interval. Let the action set A =
{0, 1}. Let u : A×T −→ IR be the constant payoff function with value 1, and ν the
uniform distribution on A (ν({0}) = 1/2 = ν({1})), and let g ∈ Meas(T , M(A))
be such that

g(t) =
{

ν for 0 ≤ t < 1
2 ,

δ{1} for 1
2 ≤ t ≤ 1.

Define g′, g∗ : T → A such that g′(t) = 0 for all t ∈ T , and

g∗(t) =
{

1 for 0 ≤ t < 3
4 ,

0 for 3
4 ≤ t ≤ 1.

Then, g′ is payoff equivalent to g but not distribution equivalent to g; g∗ is both
payoff and distribution equivalent to g but not strongly distribution equivalent to g.
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Various notions of purification have been used in the literature. Both payoff
equivalence and distribution equivalence are used for the purification of statistical
decision procedures in Dvoretsky et al. (1951a, p. 2).11 Payoff equivalence is used
for purification of mixed strategies in two-person zero-sum games in Dvoretsky et
al. (1950, Theorems 2 and 3, p. 257) and Dvoretsky et al. (1951a, p. 20), and of
mixed strategy equilibria in finite games with incomplete information in Radner
and Rosenthal (1982, p. 403).

Milgrom and Weber (1985) defined a notion of purification in section 5 that is
weaker than the strong distribution equivalence in Definition 1; they also claimed
in the last paragraph on page 629 and in the proof of their Theorem 4 that DWW
proved in Dvoretsky et al. (1951a) that any (possibly non-equilibrium) mixed strat-
egy profile has a strongly distribution equivalent pure strategy profile. We can make
two observations in this connection. The first point is that this latter result is not
contained in Dvoretsky et al. (1951a) as claimed in Milgrom and Weber (1985)
(though it follows from our Corollary 1 here).12 The second point concerns payoff
equivalence. Since expected payoffs provide a starting point for discussing play-
ers’ behavior in a game with incomplete information, a reasonable purification
concept for a general mixed strategy profile ought at least to lead to equivalent
expected payoffs; however, Example 1 shows that this (minimal) requirement does
not follow from strong distribution equivalence.

The following theorem provides a result in terms of strong purification.

Theorem 1 In the game �MW , every mixed strategy profile has a strong purifica-
tion.

Proof Let g = (g1, . . . , g�) be a mixed strategy profile for the game �MW . Fix
any player i = 1, . . . , �. For each k = 1, . . . , m, compute µik and v

g

ik. Now apply
Corollary 1 to the collection

{(Ti, Ti ), {µik}mk=1, Ai, {vg

ik}mk=1, gi}
to obtain a pure strategy g∗

i ∈ Meas(Ti, Ai) such that for all k = 1, . . . , m,

(i)
∫
Ti

∫
Ai

v
g

ik(ai, ti)gi(ti; dai)dµik(ti) = ∫
Ti

v
g

ik(g
∗
i (ti), ti)dµik(ti);

(ii) for all B ⊆ Ai,
∫
Ti

gi(ti; B)dµik(ti) = µikg
∗−1
i (B) = γ

gi

ik ;
(iii) g∗

i (ti) ∈ supp gi(ti) for µik-almost all ti ∈ Ti .

Let g∗ = (g∗
1 , . . . , g

∗
� ). Then (ii) and (iii) above imply that the pure strategy profile

g∗ is strongly distribution equivalent to the strategy profile g. All that remains to
be shown is the strong payoff equivalence of g∗ and g.

Towards this end, consider any mixed strategy g′
i ∈ Meas(Ti, M(Ai)). Denote

(g′
i , g−i ) by g′ and (g′

i , g
∗
−i ) by g′∗. By equations (4) and (6), the expected payoffs

of player i with g′ and g′∗ are respectively given by

Ui(g
′) =

m∑

k=1

µ0k

∫

Ti

∫

Ai

v
g′
ik(ai, ti)g

′
i (ti; dai)dµik(ti), (7)

11 The notions of payoff equivalence and distribution equivalence here are called respectively
equivalence and strong equivalence in the bottom of page 2 in Dvoretsky et al. (1951a).

12 It is claimed in Dvoretsky et al. (1951a, p. 6) that equations (4.5) to (4.8) can be obtained
by applying equations (3.3) and (3.5) to the loss functions W(Fi, dm1···m�

, x). While (4.5), (4.6)
and (4.8) can be obtained in this way, (4.7) cannot. The authors thank Zhixiang Zhang for this
observation.
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Ui(g
′∗) =

m∑

k=1

µ0k

∫

Ti

∫

Ai

v
g′∗
ik (ai, ti)g

′
i (ti; dai)dµik(ti), (8)

where v
g′∗
ik (ai, ti) = ∫

a−i∈A−i
ui(ai, a−i , ti , t0k)d�j 	=iγ

g∗
j

jk (a−i ). By (ii) above and

the fact that g′
−i = g−i and g′∗

−i = g∗
−i , we have γ

g
′∗j

jk = γ
g∗

j

jk = γ
gj

jk = γ
g′

j

jk for

all j = 1, . . . , � with j 	= i and k = 1, . . . , m. Hence v
g′∗
ik (·, ·) = v

g′
ik(·, ·) for all

k = 1, . . . , m. By equations (7) and (8), we have Ui(g
′) = Ui(g

′∗), and also

Ui(g
∗) =

m∑

k=1

µ0k

∫

Ti

v
g

ik(g
∗
i (ti), ti)dµik(ti). (9)

Hence, Ui(g
∗) = Ui(g) by equation (4) and (i) above. Therefore, g∗

i is strongly
payoff equivalent to gi . Since player i was chosen arbitrarily, the proof is finished.

��

4 Finite games with private information: mutual independence

Next, we turn to finite games with private information as formulated by Radner
and Rosenthal (1982). We shall reformulate it as a special case of the game �MW

considered in the last section. This allows a synthetic treatment of finite games
with private information that is independent or conditionally independent. A game
with private information �RR consists of a finite set of � players, each of whom
is endowed with a finite action set Ai (as above, A denotes the product space
��

j=1Aj ), an information space constituted by a pair of � measurable spaces (Ti, Ti )
and (Si, Si ) together with a probability measure µ on the product measurable
space (S, S) ≡ (��

j=1(Tj × Sj ), �
�
j=1(Tj ⊗ Sj ), and finally, a payoff function

ui : A × Si −→ IR.
For any point s = (t1, s1, . . . , t�, s�) ∈ S, and for any i = 1, . . . , �, let (ζi, σi)

be the coordinate projections, which is to say that ζi(s) = ti and σi(s) = si . We
shall assume that for every player i, the distribution ηi = µζ−1

i of ζi is atomless,
and that the random variables {ζj : j 	= i} together with the random variable
ξi ≡ (ζi, σi) form a mutually independent set of random variables. Assume that
for any a ∈ A, ui(a, σi(·)) is integrable on (S, S, µ).

Mixed (pure) strategies as well as mixed (pure) strategy profiles for the game
�RR can be defined as in section 3. For a given mixed strategy profile g = {gi}�i=1,
the resulting expected payoff for player i is given by

Ui(g) = Ui(g1, . . . , g�)

=
∫

S

∫

A�

· · ·
∫

A1

ui(a, σi(s))g1(ζ1(s); da1) · · · g�(ζ�(s); da�)dµ(s). (10)

Denote the measure
∫
S
gj (ζj (s), ·)dµ(s) = ∫

Ti
gj (tj , ·)dηj (tj )byγ

gj

j .The assump-
tion of independence implies that

Ui(g) =
∫

A−i

∫

S

∫

Ai

ui(a, σi(s))gi(ζi(s); dai)dµ(s)d
∏

j 	=i

γ
gj

j (a−i ). (11)
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The definition of equivalent strategy profiles in the game �MW in Definition 1 is
still valid here for the game �RR .

Next, choose vi ∈ Meas(A × Ti, IR) such that vi(a, ζi(·)) is the conditional
expectation E(ui(a, σi(·))|ζi).13 Then, the property of conditional expectation im-
plies that for any a−i ∈ A−i ,

∫

S

∫

Ai

ui(a, σi(s))gi(ζi(s); dai)dµ(s) =
∫

S

∫

Ai

vi(a, ζi(s))gi(ζi(s); dai)dµ(s)

=
∫

Ti

∫

Ai

vi(a, ti)gi(ti; dai)dηi(ti). (12)

By equations (11) and (12), we obtain that

Ui(g) =
∫

Ti

∫

A

vi(a, ti)gi(ti; dai)dηi(ti)d
∏

j 	=i

γ
gj

j (a−i )

=
∫

��
j=1Tj

∫

A

vi(a, ti)g1(t1; da1) · · · g�(t�; da�)d

�∏

j=1

ηj . (13)

We shall now define a special case of the game �MW in section 3 by tak-
ing T0 to be a singleton {t01}. The payoff function for player i is vi instead of
the ui there in the definition of the game �MW in section 3. The measure η on
(T , T ) ≡ (��

j=0Tj , �
�
j=0Tj ) is the product measure δt01 ×��

j=1ηj . The remaining
elements of the model are the same as those in section 3.

For a mixed strategy profile g = {gi}�i=1, the expected payoff for player i is

Vi(g) =
∫

T

∫

A

vi(a, ti)g1(t1; da1) · · · g�(t�; da�)dη, (14)

which equals Ui(g) by equation (13). Thus, we obtain a special case of the game
�MW that has the same expected payoffs as the game �RR . The following theorem
follows obviously from Theorem 1.

Theorem 2 In the game �RR , every mixed strategy profile has a strong purification.

In comparison with Radner and Rosenthal (1982, Theorem 1), the above the-
orem provides a strong purification result not only for an equilibrium but also for
an arbitrary mixed strategy profile. On the other hand, a consequence of the DWW
theorem that is available in Dvoretsky et al. (1951a) [i.e., Parts (1) and (2) of Cor-
ollary 1] already implies that any mixed strategy equilibrium is strongly payoff
equivalent to a pure strategy equilibrium; one can simply ignore the argument used
to establish (iii) in the first paragraph of the proof of Theorem 1.

13 It is easy to see such a function vi exists since A is finite.
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5 Large non-anonymous games

Next, we turn to games with many players as in Schmeidler (1973). Let (T , T , λ) be
an atomless probability space formalizing the space of players andA = {a1, . . . , an}
be the space of actions. A payoff function u is a continuous function on A×M(A).
Let U be the space of payoff functions endowed with its Borel σ -algebra gener-
ated by the sup-norm topology. A large non-anonymous game G is an element of
Meas(T , U). We shall also denote G(t) by ut , and since one can always rescale the
payoffs, we assume without any loss of generality that there is M > 0 such that
for all t ∈ T , ‖ut‖ ≤ M .

A mixed strategy profile g (respectively a pure strategy profile g∗) is an ele-
ment of Meas(T , M(A)) (Meas(T , A)). Let the distribution induced on A by the
mixed strategy profile g be denoted by γ g, where for all B ⊆ A, γ g(B) =∫
T

g(t; B)dλ(t). For any mixed strategy profile g, the expected payoff of player t

is given by
∑n

i=1 ut(ai, γ
g)g(t; {ai}) = ∫

A
ut (a, γ g)g(t; da). The average payoff

U(g) is
∫
T

∫
A

ut (a, γ g)g(t; da)dλ.
An equilibrium in mixed strategies g is an element of Meas(T , M(A)) such

that for λ-almost all t ∈ T , player t maximizes her expected payoff. Thus, for
λ-almost all t ∈ T ,

n∑

i=1

ut(ai, γ
g)g(t; ai) ≥

n∑

i=1

ut(ai, γ
g)pi for all p ∈

{

p ∈ IRn
+ :

n∑

i=1

pi = 1

}

,

which implies that if g(t; {ai}) > 0, then ut(ai, γ
g) ≥ ut(a, γ g) for all a ∈ A;

this means that ut(ai, γ
g) and

∫
A

ut (a, γ g)g(t; da) take the maximum value of
ut(·, γ g) on A.

An equilibrium in pure strategies is simply a pure strategy profile g∗ such that
for λ-almost all t ∈ T , player t maximizes her payoff ut (·, γ g∗

). It is clear that for
any pure strategy profile g∗, γ g∗

is simply λg∗−1. An equilibrium in pure strategies
g∗ is a purification of an equilibrium g in mixed strategies, if γ g = γ g∗

. The proof
of the following theorem only uses a consequence of the DWW theorem that is
already available in Dvoretsky et al. (1951a), which is to say, Parts (1) and (2) of
Corollary 1 above.

Theorem 3 Any mixed strategy equilibrium g for the game G has a purification.

Proof We also write ut(a, γ g) as u(a, t, γ g). Apply parts (1) and (2) of Corollary
1 to the collection {(T , T ), λ, A, u(·, ·, γ g), g} to obtain a pure strategy profile
g∗ ∈ Meas(T , A) such that λg∗−1 = ∫

T
g(t; ·)dλ = γ g and

∫

T

∫

A

ut (a, γ g)g(t; da)dλ =
∫

T

ut (g
∗(t), γ g)dλ. (15)

For λ-almost all t ∈ T , since
∫
A

ut (a, γ g)g(t; da) takes the maximum value of
ut(·, γ g) on A, we have

∫
A

ut (a, γ g)g(t; da) ≥ ut(g
∗(t), γ g). equation (15) im-

plies that
∫
A

ut (a, γ g)g(t; da) = ut(g
∗(t), γ g) for λ-almost all t ∈ T . Hence, for

λ-almost all t ∈ T , ut(g
∗(t), γ g) = ut(g

∗(t), λg∗−1) takes the maximum value of
ut(·, γ g) on A, which means that g∗ is an equilibrium in pure strategies and hence
also a purification of g. ��
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6 Large anonymous games

Finally, we turn to anonymous games considered in Mas-Colell (1984) and Khan
and Sun (1991). A large anonymous game is a probability measure µ in M(U),
where U is the space of payoff functions as specified in the previous section. The
game is said to be dispersed if µ is atomless.

An equilibrium τ of the game µ is an element of M(A × U) with marginal
measures τA and τU such that (i) τU is µ, and (ii) τ(Bτ ) = τ({(u, a) ∈ (U × A) :
u(a, τA) ≥ u(x, τA) for all x ∈ A}) = 1. An equilibrium τ can be symmetrized
if there exist h ∈ Meas(U, A) and another equilibrium τ s such that τA = τ s

A and
τ s(Graphh) = 1, where Graphh = {(u, h(u)) ∈ (U × A) : u ∈ U}. In this case, τ s

is said to be a symmetric equilibrium.

Theorem 4 Every equilibrium of a dispersed large anonymous game can be sym-
metrized.

Proof For an equilibrium τ of a dispersed large anonymous game µ, there exists
g ∈ Meas(U, M(A)) such that τ(B) = ∫

U g(u; Bu)dµ(u) where B is the Borel
product σ -algebra on U ×A and Bu the section of B in A.14 Since τ(Bτ ) = 1, it is
easy to see that for µ-almost all u ∈ U , g(u; (Bτ )u) = 1 and supp g(u) ⊆ (Bτ )u.
Apply Corollary 1 to the collection {(U, B(U)), µ, A, g} to obtain a pure strategy
h ∈ Meas(U, A) such that µh−1 = ∫

U g(u; ·)dµ = τA and h(u) ∈ supp g(u) ⊆
(Bτ )u for µ-almost all u ∈ U .

Let τ s be the distribution µ(idU , h)−1. Then, τ s
U = µ and τ s

A = µh−1 = τA,
and Bτ = Bτs . We can thus obtain that h(u) ∈ (Bτs )u for µ-almost all u ∈ U . Since
τ s(Graphh) = 1, we have τ s(Bτs ) = 1, and hence τ s is a symmetric equilibrium
that is a symmetrization of τ .

7 Concluding remarks

The primary motivation of this short essay has been to show that the general purifi-
cation principle of DWW can be applied synthetically to games based on atomless
measure spaces: one-shot, finite player games with incomplete information as well
as one-shot large non-anonymous and anonymous games, all in a finite-action set-
ting. In conclusion, we note that the theorems invoked and extended here, along
with the strengthened purification concepts to which they have been applied, may
have further application to more general settings; in particular, to pure-strategy
equilibria in atomless Bayesian games with infinite action sets or over time; see
Yannelis and Rustichini (1991), Balder (2002), Khan and Sun (2002) and their
references.

References

Ash RB (1972) Real analysis and probability. Academic, New York
Balder EJ (2002) A unifying pair of Cournot–Nash equilibrium existence results. J Econ Theor

102:437–470

14 For the existence of such a disintegration, see for example, Ash (1972).



104 M. Ali Khan et al.

Dvoretsky A, Wald A, Wolfowitz J (1950) Elimination of randomization in certain problems of
statistics and of the theory of games. Proc Nat Acad Sci USA 36:256–260

Dvoretsky A, Wald A, Wolfowitz J (1951a) Elimination of randomization in certain statistical
decision procedures and zero-sum two-person games. Ann Math Stat 22:1–21

Dvoretsky A, Wald A, Wolfowitz J (1951b) Relations among certain ranges of vector measures.
Pac J Math 1:59–74

Khan MA, Sun YN (1991) On symmetric Cournot–Nash equilibrium distributions in a finite-
action, atomless game. In: Khan MA,Yannelis NC (eds) Equilibrium theory in infinite dimen-
sional spaces. Springer, Berlin Heidelberg New York, pp 325–332

Khan MA, Sun YN (2002) Non-Cooperative games with many players. In: Aumann RJ, Hart S
(eds) Handbook of game theory, vol 3. chap 46. Elsevier, Amsterdam, pp 1761–1808

Mas-Colell A (1984) On a theorem of Schmeidler. J Math Econ 13:201–206
Milgrom PR, Weber RJ (1985) Distributional strategies for games with incomplete information.

Math Oper Res 10:619–632
Radner R, Rosenthal RW (1982) Private information and pure-strategy equilibria. Math Oper

Res 7:401–409
Schmeidler D (1973) Equilibrium points of non-atomic games. J Stat Phys 7:295–300
Wald A, Wolfowitz J (1951) Two methods of randomization in statistics and the theory of games.

Ann Math 53:581–586
Yannelis NC, Rustichini A (1991) Equilibrium points of non-cooperative random and Bayesian

games. In: Aliprantis CD, Border KC, Luxemberg WAJ (eds) Positive operators, Riesz spaces,
and economics. Springer, Berlin Heidelberg New York, pp 23–48


