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Abstract. When production functions are estimated as frontier functions, the
deviations from the frontier can be interpreted as individual ine½ciency esti-
mates. Unfortunately, it has recently been shown that e½ciency di¨erences
across individuals are very often statistically insigni®cant. In this paper, we
will analyse the consequences of the consideration of con®dence statements
for the reliability of e½ciency rankings. The stochastic frontier and con®dence
intervals derived by Horrace and Schmidt are compared to the COLS app-
roach and bootstrap con®dence intervals. The membership function is pro-
posed as a simple Monte-Carlo approximation for the probability for an
individual to be the most e½cient in the sample.
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1. Introduction

It is well-known since Farrell (1957) and Aigner and Chu (1968) that pro-
duction (or cost) functions should be estimated as frontier functions because ±
consistent with microeconomic theory ± maximum possible output for given
inputs then can be estimated. In this approach, the deviations from the fron-
tier can be interpreted as individual ine½ciency estimates. Applications include
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the estimation of dairy farm e½ciency by Battese and Coelli (1988), the esti-
mation of electric-utility e½ciency by Reifschneider and Stevenson (1991),
the estimation of bank e½ciency by Caudill et al. (1995) or the estimation of
research e½ciency by Backes-Gellner (1989). In all these (and very many other)
studies, the respective vector of e½ciency estimates is carefully analysed and
explained ± in most cases unfortunately without any con®dence statements.

But, in recent years, the required results have been published. Taube (1988)
and Horrace and Schmidt (1996) derive con®dence intervals for individual
ine½ciency estimates in the stochastic frontier model. Simar (1992) introduces
the bootstrap approach to frontier models in order to analyse the sensitivity
of the e½ciency measures. Hall et al. (1995) apply the bootstrap approach to
panel data. Ferrier and Hirschberg (1997) and Simar and Wilson (1998) give
bootstrap con®dence intervals for individual e½ciency scores in DEA models.
And the extent of uncertainty about individual ine½ciency has been empha-
sized as well. Simar, considering FDH models with the help of bootstrap
con®dence intervals, notes that `the rankings . . . are certainly to be taken with
care' (1992, p. 191). Horrace and Schmidt ®nd out that ± in stochastic frontier
models ± e½ciency di¨erences across individuals are very often statistically
insigni®cant.

Of course, these results can have a disastrous e¨ect on the pro®table applic-
ability of frontier models. If ± e.g. in stochastic frontier models ± analysing
individual e½ciency vectors only means having trouble with indirectly con-
structed, inconsistent and imprecise estimates, there are few arguments for
undertaking this e¨ort. In this paper, we will analyse the consequences of the
consideration of con®dence intervals for the reliability of e½ciency rankings in
parametric frontier models. It is common practice ± not only in the applica-
tion of frontier functions ± to compile rankings without guarding them by
con®dence statements. E.g. in Germany, many e½ciency rankings of this kind
have been prepared for the evaluation of the research and teaching quality of
universities, a highly sensitive point of present-day controversy. What is the
value of those rankings if they are based on nothing more than sampling error?

The second section summarizes the necessary theory on frontier func-
tions, and it gives a critical review on the two parametric frontier models ±
stochastic frontier and COLS ± analysed in the subsequent sections. Sec-
tion 3 shortly reviews the illustrating empirical example. Section 4 presents
the dramatic consequences of con®dence statements on the explanatory
power of e½ciency rankings. But if one concentrates on e.g. calculating the
probability for an individual to be the most e½cient in the sample, uncertainty
is reduced to some extent. The membership function, a simple Monte-Carlo
approximation for this probability, is introduced. The subsequent section
analyses e½ciency rankings derived from a COLS approach (which does not
allow for statistical noise). A procedure for the calculation of bootstrap con-
®dence intervals for individual e½ciency estimates is proposed, and the mem-
bership function turns out to be useful again. Conclusions are drawn in the
last section.

2. Frontier functions

This section summarizes the theory on frontier functions that is needed in the
following.
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Aigner and Chu (1968) develop the ®rst parametric frontier model for the
estimation of a Cobb-Douglas production function

yi � a�
Xk

j�1

bjxij ÿ ui; ui V 0; i � 1; . . . ; n �1�

where yi is output in logs, xij are inputs in logs and ŷi is estimated maximum
possible output for given inputs (in line with microeconomic theory) of
individual no. i. The technical ine½ciency TEi � exp�ÿui� of individual no. i
can be estimated via ûi.

Thus, the task is to estimate a function lying `on top of the data cloud'. See
the surveys in Fùrsund et al. (1980) or Greene (1993) for the various theoret-
ical and practical problems arising in this ®eld. We will only mention three
of them:

� Of course, it is impossible to determine the theoretical frontier giving the
`true' maximum possible output. The estimation depends on the ®nite set of
individuals in the sample giving a so-called `best-practice frontier' which is
biased downwards.

� It will be seen in this section that it is a problem to develop techniques for
estimating frontiers with the ability to estimate individual ine½ciency
reliably.

� Schmidt (1976) was the ®rst to note that estimating frontier models often
means running into problems of irregularity because the range of yi depends
on the parameters to be estimated:

yi A ÿy; a�
Xk

j�1

bjxij

 !
�2�

In the following, we will introduce the two most popular parametric fron-
tier approaches (stochastic frontier and COLS).

2.1. Corrected OLS (COLS) approach

The `corrected OLS (COLS) method' is based on a very simple idea. With
E�ui� � mV 0, we can transform (1) to

yi � ~a�
Xk

j�1

bjxij ÿ ~ui; i � 1; . . . ; n �3�

with the centered constant and the centered residuals

~a � aÿ m and ~ui � ui ÿ m �4�

where the new error term ~u has zero mean. With the assumptions of the stan-
dard regression model (except normality), OLS now provides consistent and
BLU estimates for �~a; b1; . . . ; bk�. In the second (correction) step of the COLS
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method, the OLS function is simply shifted up to

â � ~̂aÿ min
i�1;...;n

f~̂uig �5�

(see Winsten (1957)) implying

ûi � ~̂ui ÿ min
i�1;...;n

f~̂uig �6�

(see Lovell (1993) for the `modi®ed OLS' or MOLS). The bj retain their opti-
mal OLS properties, and Greene (1980) shows the consistency of â. Bootstrap
con®dence intervals for the COLS constant can be constructed applying the
procedure by Hall et al. (1995) developed for stochastic panel frontiers.

If the untransformed output Yi � exp�yi� is modeled instead of yi, equa-
tion (1) becomes

Yi � exp�a� �
Yk

j�1

exp�bjxij� � exp�ÿui�; ui V 0; i � 1; . . . ; n �7�

Then, point estimates for the untransformed individual technical e½ciency
TEi � exp�ÿui� are

cTEi � exp�ÿûi� � exp ÿ ~̂ui ÿ min
j�1;...;n

f~̂uig
� �� �

; i � 1; . . . ; n �8�

The drawbacks of the COLS approach will now be discussed shortly. It is
not clear whether it is only a philosophical weakness to get a shifted average
function instead of a `genuine' frontier (see e.g. Kalirajan and Obwona
(1994)). Assuming the independence of inputs x and ine½ciency u certainly
can be problematic. But the most important di½culties ± see section 5 ± are
due to the lack of an error term in the model. The deviations of the observa-
tions from the frontier are assumed to stem only from ine½ciency.

2.2. Stochastic frontiers

Aigner et al. (1977) and Meeusen and van den Broek (1977) propose the sto-
chastic frontier (SF) or composed error (CE) approach which has dominated
both theory and applications since that time. They consider

yi � a�
Xk

j�1

bjxij � ei; ei � vi ÿ ui; ui V 0; i � 1; . . . ; n �9�

where the composed error term ei consists of a symmetric part vi representing
statistical noise and of the ine½ciency term ui following a one-sided distribu-
tion. It is assumed that vi and ui are independent. The distributional assump-
tions in section 4 will be

vi @N�0; s2
v � and ui @ jN�0; s2

u�j �10�
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The log-likelihood function then is

l�a; b; s; l� � ÿn ln�s� ÿ const�
Xn

i�1

ln F
ÿeil

s

� �
ÿ 1

2

ei

s

� �2
" #

�11�

with two `variance parameters'

l � su

sv
s2 � s2

v � s2
u �12�

and the moments

E�ui� �
���
2

p

r
su Var�ui� � p

2
ÿ 1

� �
s2

u �13�

See Greene (1993) for the distributional alternatives for u.
The best way to estimate (9) is via iterative maximization of the log-

likelihood (11), e.g. performed by LIMDEP (Greene (1989)). The ML esti-

mators â and b̂j are consistent and asymptotically e½cient.
The advantage of the stochastic frontier certainly is the inclusion of an

error term. But there are disadvantages as well: In general, stochastic frontiers
do not di¨er very much from a shifted average function (see Gong and Sickles
(1992)). The independence of x and u has to be assumed like in the preceding
COLS approach. But the greatest problem of the stochastic frontier is due to
its advantage:

The estimation residuals estimate

ei � yi ÿ âÿ
Xk

j�1

b̂jxij; i � 1; . . . ; n �14�

not ui. Individual ine½ciencies can only be estimated indirectly with the help
of

uijei @ trunc0N�m�i ; s2
��; m�i �

ÿs2
uei

s2
s� � susv

s
�15�

by

E�uijei� � sl

1� l2

f�eil=s�
F�ÿeil=s� ÿ

eil

s

� �
�16�

(Jondrow et al. (1982)). f��� and F��� are the standard normal density and cdf.
If the untransformed output Yi � exp�yi� is modeled instead of yi, equa-

tion (9) becomes

Yi � exp�a� �
Yk

j�1

exp�bjxij� � exp�vi� � exp�ÿui�; ui V 0; i � 1; . . . ; n �17�
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Then, since

E�eÿui jei�0 eÿE�ui jei � �18�

appropriate point estimates for the untransformed individual technical e½ci-
ency TEi � exp�ÿui� are

E�eÿui jei� � exp ÿm�i �
1

2
s2
�

� �
1ÿF�s� ÿ m�i =s��

1ÿF�ÿm�i =s�� �19�

(Battese and Coelli (1988)).
(16) and (19) provide unbiased but inconsistent estimators because the

variance does not approach zero for large n. Consistency is only available with
panel data where individual e½ciency estimation is based on more than one
observation per individual. It is simply impossible to seperate a sum of two
unobservables into its components satisfactorily with one observation.

2.3. ReÂsumeÂ

As a result, the researcher has to select one out of three drawbacks. The
standard OLS model lacks the ine½ciency term ui and consequently interprets
ine½ciency as misspeci®cation. In the COLS approach, there is no disturbance
term vi. That is why measurement errors and stochastic variation are inter-
preted as ine½ciency. The stochastic frontier comprises vi and ui but is no
longer able to provide consistent estimates for ui. A careful decision about this
trade-o¨ between model simplicity and descriptive accuracy depends on the
individual economic problem (see Jensen (1999b)).

3. Example: Earnings frontier

The results in the following sections will be illustrated by an empirical exam-
ple. Therefore, this section summarizes the necessary details of Jensen (1996
and 1999a) on the estimation of a stochastic earnings frontier.

Individual wages y are assumed to depend upon personal characteristics
H augmenting human capital stock, job characteristics C and information I
on labour market conditions, the wage distribution and job search methods.
Individuals stop their search when a wage o¨er exceeds the reservation wage
yr. For any set of H and C and perfect information I �, a potential maximum
attainable wage y� exists.

Then, y � y�H;C; I� is estimated as stochastic earnings frontier (9) where
y is empirical gross wage income in logs and ŷi � y�i is estimated maximum
possible income. x is a vector of k � 22 variables including a schooling
dummy (quali®cation for university entrance), 2 dummies for professional
training, 2 dummies for studies (technical college and university), experience
(age and age squared), 2 dummies for on-the-job-training, 3 variables mea-
suring ability, size of residence, dummies for sex and marital status, ®rm size,
job status, dummies for employees and public servants, working time, seni-
ority and a property variable. The ine½ciency term ui is interpreted as cost of
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imperfect information becoming apparent in the underemployment or over-
education of individual number i.

The data set consists of n � 1334 individuals from the tenth wave (1992) of
the German socio-economic panel (SOEP). See Jensen (1996 and 1999a) for
more details on the data, the results and a critical assessment of the model.
For the following sections, the complete sample and various subsamples have
been analysed. The results presented in sections 4 and 5 are reasonably stable.
That is why all ®gures and tables are prepared for a ®xed subsample of size
n � 195.

4. E½ciency ranking by stochastic frontiers

4.1. E½ciency ranking and con®dence intervals

The stochastic earnings frontier of section 3 and equation (9) has been estim-
ated and n � 195 individual ine½ciency estimates deÿui ± not eÿûi ± have been
calculated by (19). These estimates have been ordered from the most e½cient
to the most ine½cient giving the e½ciency ranking

deÿu�1� ; deÿu�2� ; . . . ; deÿu�195� �20�

Table 1 shows some selected ordered individual ine½ciency estimates. A value
of eÿui � 1 would mean no ine½ciency �ui � 0�. According to the estimate,
the most e½cient individual in the sample receives

deÿu�1� � 100A 96% �21�

of his/her maximum possible income.
Until Horrace and Schmidt (1996), in stochastic frontier models, almost

nobody guarded these point estimates with con®dence statements (see section
1 for the literature). Horrace and Schmidt derive the following two-sided
con®dence interval for eÿui from equation (15) and the monotonicity of the
exponential function:

P�exp�ÿm�i ÿ zLs��U �eÿui jei�U exp�ÿm�i ÿ zU s��� � 1ÿ g �22�

Table 1. SF: Ordered individual
e½ciencies

E½ciency rank E½ciency

1 0.9612
2 0.9577
4 0.9465
8 0.9369

16 0.9274
32 0.9142
64 0.8856

128 0.8203
195 0.5461
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where Z @N�0; 1� and

zL � Fÿ1 1ÿ g

2
1ÿF ÿ m�i

s�

� �� �� �
�23�

zU � Fÿ1 1ÿ 1ÿ g

2

� �
1ÿF ÿ m�i

s�

� �� �� �
�24�

See subsection 2.2 for the notation. Note that all parameters are treated as
known which is unimportant only for large n.

Table 2 is table 1 supplied with an additional column of con®dence inter-
vals (and two additional rows of remarkable observations).

These con®dence intervals overlap to a high degree. Horrace and Schmidt
(1996) make the same observation and come to a pessimistic conclusion: ` . . .
we found con®dence intervals that were wider than we would have anticipated
before this study began.' (p. 276) `However, frankly, in all cases that we con-
sidered the e½ciency estimates were rather imprecise. We suspect that, in many
empirical analyses using stochastic frontier models, di¨erences across ®rms in
e½ciency levels are statistically insigni®cant, and much of what has been care-
fully explained by empirical analysts may be nothing more than sampling error.'
(p. 281).

Horrace and Schmidt examine e½ciency di¨erences. We will analyse the
e¨ects of con®dence intervals on the reliability of e½ciency rankings. And, in
this connection, we will concentrate on the reliability of the selection of the
most e½cient individual. How sure can the individual on e½ciency rank no. 1
be to be the best? But the results of the following pages can easily be applied
to similar questions about rankings (being among the top 4, etc.).

Table 2 shows that the point estimates of e½ciency ranks 1 to 75 are includ-
ed in the con®dence interval of e½ciency rank 1. And the con®dence intervals
of e½ciency ranks 1 to 149 include the point estimate of e½ciency rank 1. This
means that the pessimistic conclusion of Horrace and Schmidt (1996) applies
to e½ciency rankings as well (if one looks only at the individual con®dence
intervals).

Figure 1 presents the absolute frequencies of the upper bounds of the 95%
intervals for exp�ÿui�. Figure 2 shows the length of the con®dence intervals

Table 2. SF: Ordered individual e½ciencies

E½ciency rank E½ciency 95% con®dence interval

1 0.9612 [0.8723, 0.9988]
2 0.9577 [0.8630, 0.9987]
4 0.9465 [0.8354, 0.9983]
8 0.9369 [0.8142, 0.9978]

16 0.9274 [0.7954, 0.9973]
32 0.9142 [0.7722, 0.9964]
64 0.8856 [0.7298, 0.9935]

j 75 0.8725 [0.7131, 0.9916]
128 0.8203 [0.6572, 0.9772]

j 149 0.7911 [0.6304, 0.9613]
195 0.5461 [0.4327, 0.6800]
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as a function of the e½ciency rank. The ®gures con®rm what the last column
of table 2 also tells: The con®dence intervals overlap to such a high degree
because the upper bounds don't get away fast enough from 0.99. . .

Fig. 1. SF: Abs. frequencies of upper bounds of 95% intervals for TE

Fig. 2. SF: Length of con®dence intervals as function of e½ciency rank
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4.2. Membership function

Should we stop analysing individual e½ciency estimates because this only
means rummaging about in sampling error? Should we therefore even stop
estimating frontier models because being able to provide reliable individual
ine½ciency estimates is a main feature of them? In this subsection, we will
look for a way out of this dilemma.

Horrace and Schmidt (1996) ®nd out that the con®dence intervals become
narrower when l � su=sv is large and when ± in the panel data case ± T (the
number of observations per individual) is large. They also work ± in the panel
data case ± with the `multiple comparisons with the best' technique (Edwards
and Hsu (1983)) without enourmously reducing the interval length.

It has been seen in the previous subsection that the individual con®dence
intervals are not able to give much con®dence in e½ciency rankings. There-
fore, we will now apply alternative ideas. One alternative would be to try
to calculate the probability that individual no. i is the most e½cient in the
sample:

P i � arg min
j�1;...;n

�uj�
� �

� P�ui U uj j j � 1; . . . ; n� � P ui ÿ min
j�1;...;n

�uj�U 0

� �
�25�

Of course, the calculation of this probability is possible but ± because of the
truncated normal distribution of uijei in (15) ± this is expected to involve
complicated integrals.

Another idea would be to follow the `subset selection approach' from the
`theory on statistical selection' (see e.g. Bechhofer et al. (1995) and the litera-
ture cited there) where the goal is to select a subset (as small as possible)
of individuals that contains the most e½cient individual with given proba-
bility. Once again, because of the truncated normal distribution there are no
results available in the literature (to my knowledge) and easy solutions are not
expected.

That is why we will pursue a very straightforward idea to concentrate the
information in the sample on the most e½cient individual. The following
procedure provides simple Monte-Carlo approximations for the probability
(25) and for subsets containing the most e½cient individual.

If the individual on e½ciency rank 149 should be the best in reality, his
true e½ciency value must be drastically better than his e½ciency estimate and
ALL other true e½ciencies must be (in some cases drastically) worse than their
estimates. This is very unlikely! Therefore, the proposed simulation procedure
is: Simulate IT times (IT su½ciently large) a vector of realizations of

�eÿu1 je1; . . . ; eÿun jen� with uijei @ trunc0N�m�i ; s2
�� for i � 1; . . . ; n �26�

(see equation (15)), identify the most e½cient individual in each iteration and
count the number m�i� of iterations where individual i is the most e½cient
one. Then, de®ne the membership function

mf : f�1�; �2�; . . . ; �n�g ! �0; 1�; �i� 7! m��i��
IT

�27�
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giving the relative frequencies of the maximum on the set of ordered indivi-
duals (ranked by the e½ciency ranking).

Concerning the appropriate choice of the number of iterations IT , we have
analysed IT � 500, 1000, 2000 and 4000. There are no substantial changes
in the results but ± of course ± the membership function is smoothed with
growing IT . So, the results for IT � 4000 are reported in the following.

Table 3 is table 2 supplied with two additional columns giving the mem-
bership function and the cumulative membership function

cmf : f�1�; �2�; . . . ; �n�g ! �0; 1�; �i� 7!
Xi

j�1

mf�� j�� �28�

(and two additional rows of remarkable observations). Figure 3 shows the
membership function for the empirical example.

The membership function is di¨erent from zero only for the e½ciency
ranks 1 to 34 meaning that ± if the Monte-Carlo approximation works prop-
erly ± there is reason to suppose that one of these 34 individuals is the most
e½cient individual in the sample. The cumulative membership function
crosses the value 0.95 for e½ciency rank 30 meaning that the subset contain-
ing the ordered individuals 1 to 30 is probably the smallest possible subset
containing the most e½cient individual with probability 0.95. The member-
ship function value for e½ciency rank no. 1 means that with probability pA
0:12 this individual is the most e½cient in the sample. Membership functions
can easily be de®ned and calculated for similar questions about e.g. the set of
individuals containing the top 4, etc.

It has been shown how the membership function can help to reduce
uncertainty about the most e½cient individual. But, of course, the properties
of this approximation for probability calculation and subset selection still
have to be explored. Furthermore, the ®gure suggests that some suitable
smoothing could improve its accuracy. Finally, in small samples, the estima-
tion error in �â; b̂� might in¯uence the results whereas the truncated normal
distribution of uijei in (15) only re¯ects the uncertainty about ui due to vi. A

Table 3. SF: Ordered individual e½ciencies

E¨. rank E¨. 95% conf. int. memb. fct cum. memb. fct.

1 0.9612 [0.8723, 0.9988] 0.1178 0.1178
2 0.9577 [0.8630, 0.9987] 0.0843 0.2020
4 0.9465 [0.8354, 0.9983] 0.0520 0.3088
8 0.9369 [0.8142, 0.9978] 0.0338 0.4268

16 0.9274 [0.7954, 0.9973] 0.0243 0.6308
j 30 0.9186 [0.7797, 0.9968] 0.0238 0.9503

32 0.9142 [0.7722, 0.9964] 0.0188 0.9875
j 34 0.9116 [0.7678, 0.9962] 0.0010 1

64 0.8856 [0.7298, 0.9935] 0 1
j 75 0.8725 [0.7131, 0.9916] 0 1

128 0.8203 [0.6572, 0.9772] 0 1
j 149 0.7911 [0.6304, 0.9613] 0 1

195 0.5461 [0.4327, 0.6800] 0 1
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bootstrap procedure reestimating the parameters might help in this respect.
But the solution of these problems lies beyond the scope of this paper.

After all, even when approximating probabilites or subset selections with
membership functions, uncertainty about the most e½cient individual in the
present sample cannot be reduced to less than being in a subset of roughly
15% individuals. So, this seems to be the price for choosing the stochastic
frontier model (with ine½ciency and noise) and having a cross-section dataset
with only one observation per individual.

5. E½ciency ranking by COLS

5.1. E½ciency ranking and bootstrap con®dence intervals

The stochastic frontier model is the only frontier model including an ine½-
ciency term and a noise term. It is one of the main objections against the
application of the non-parametric DEA or the deterministic LP or COLS
approaches that they do not account for statistical noise ± see the surveys in
Greene (1993) and Lovell (1993). For comparison, in this section, we will
therefore apply the COLS approach to the problem of identifying the most
e½cient individual in the sample.

The earnings frontier of section 3 has been estimated as COLS model
(equations (3) and (5)). n � 195 individual ine½ciency estimates cTEi have
been estimated following equation (8). Table 4 shows some selected values
eÿû�i� from the COLS e½ciency ranking compared with the correspond-
ing stochastic frontier e½ciency ranks from table 1. The COLS results are

Fig. 3. SF: Membership function

200 U. Jensen



interpreted like the stochastic frontier results in equation (21). But it has to be
kept in mind that there is no error term in the model and, therefore, mea-
surement errors and stochastic variation are interpreted as ine½ciency. That is
why the di¨erences between the eÿû�i� are larger (too large) than with the sto-
chastic frontier.

The individual ine½ciency di¨erences estimated by COLS are too large.
But, of course, this di¨erence between COLS and SF does not carry over to
the e½ciency rankings. The approaches agree reasonably well about the most
e½cient and the most ine½cient individuals, and e½ciency ranks 1 to 4 are
even identical. These ®ndings are in line with earlier results on this question.
And these ®ndings are to be expected because stochastic frontiers are known
to di¨er not very much from shifted OLS functions (see subsection 2.2) and
because stochastic frontier rankings based on estimates for ei, E�uijei� or
E�eÿui jei� are identical ± see equations (14), (16) and (19).

Because theoretically derived con®dence intervals are not available for
COLS residuals, we will now construct bootstrap con®dence intervals for the
eÿui ± see Efron and Tibshirani (1993) or Shao and Tu (1995) for a general
survey on the bootstrap and Hall et al. (1995) about bootstrap intervals for
the intercept in a ®xed e¨ect panel frontier model. The proposed procedure
employs the simple percentile method following an idea of Ferrier and
Hirschberg (1997) for the construction of bootstrap con®dence intervals for
individual e½ciencies in the DEA approach. The properties of this approach
and possible alternatives will be discussed subsequently.

1. Estimate the vector of centered predicted residuals ~u with

~̂ui � ~̂a�
Xk

j�1

b̂jxij ÿ yi; i � 1; . . . ; n �29�

2. For every i � 1; . . . ; n:

(a) For b � 1; . . . ;B (B su½ciently large):

i. Resampling: Denoting the bootstrap values of the bth resampling
run with `�b', keep ~u�bi :� ~̂ui ®xed and obtain the remaining nÿ 1

Table 4. Ordered individual e½ciencies

Stoch. Front. COLS

E¨. rank E½ciency E¨. rank E½ciency

1 0.9612 1 1.0000
2 0.9577 2 0.9704
4 0.9465 4 0.8614
8 0.9369 8 0.8038

16 0.9274 16 0.7578
32 0.9142 32 0.7170
64 0.8856 64 0.6475

128 0.8203 128 0.5598
195 0.5461 195 0.3336
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residuals

~u�b1 ; . . . ; ~u�biÿ1; ~u
�b
i�1; . . . ; ~u�bn �30�

by drawing nÿ 1 times with replacement from ~̂u.
ii. Construct the `fake data' y�b by

y�bl � ~̂a�
Xk

j�1

b̂jxlj ÿ ~u�bl ; l � 1; . . . ; n �31�

iii. Using x and y�b, calculate the reestimates �ca�b; cb�b;c~u�b� and

dTE�bi � exp�ÿcu�bi � � exp ÿ c~u�bi ÿ min
j�1;...;n

�c~u�bj �
� �� �

�32�

(b) The �1ÿ 2g� con®dence interval for TEi is the interval �dTE
�g
i ;

d
TE
��1ÿg�
i �

where dTE
�g
i and

d
TE
��1ÿg�
i are the 100g and 100�1ÿ g� percentiles of the

bootstrap distribution of dTE �i .

B � 1000 and B � 2000 resampling runs have been analysed, and the vast
majority of con®dence intervals becomes longer when increasing the number
of resampling runs from B � 1000 to B � 2000. Because of the discussion
around equation (33), the results for B � 2000 are reported in the following.
Note that n � B � 390; 000 resampling runs are needed for the construction of
n � 195 con®dence intervals. The result of every resampling run is one singledTE�bi giving a �n� B� matrix dTE � we will apply in the following subsection.
Now, table 5 is the right-hand side of table 4 with an additional column of
95% bootstrap con®dence intervals.

It can be seen that ± in contrast to the results of table 2 ± only the point
estimates of e½ciency ranks 1 and 2 are included in the con®dence interval of
e½ciency rank 1. And only the con®dence intervals of e½ciency ranks 1 to 4
include the point estimate of e½ciency rank 1. Figure 4 shows the absolute
frequencies of the upper bounds of the 95% intervals for TEi � exp�ÿui�.
Figure 5 presents the length of the bootstrap con®dence intervals as a function
of the e½ciency rank. The message of the ®gures is in line with the ®ndings in

Table 5. COLS: Ordered individual e½ciencies

E½ciency rank E½ciency 95% con®dence interval

1 1.0000 [0.9155, 1.0000]
j 2 0.9704 [0.8671, 1.0000]
j 4 0.8614 [0.7919, 1.0000]

8 0.8038 [0.7304, 0.9450]
16 0.7578 [0.6990, 0.8866]
32 0.7170 [0.6386, 0.8519]
64 0.6475 [0.6028, 0.7622]

128 0.5598 [0.5171, 0.6677]
195 0.3336 [0.3167, 0.4312]
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the table because the upper bounds do not stick to 1 (and most of the intervals
are shorter as in section 4.1).

Comparing theses results with table 2 and ®gures 1 and 2 leads to the
conclusion that COLS (in connection with bootstrap con®dence intervals) is

Fig. 4. COLS: Abs. frequencies of upper bounds of 95% intervals for TE

Fig. 5. COLS: Length of bootstrap intervals as function of e½ciency ranks
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very `powerful' in its decision about the most e½cient individual. Why is this
the case? Is this power reliable?

Two reasons can be given for the fact that the COLS bootstrap intervals
do not overlap as much as the stochastic frontier intervals. First, as mentioned
at the beginning of this section, the di¨erences between the TEi or ui are too
large because there is no error term in the model and, therefore, measurement
errors and stochastic variation are included in the ine½ciency term.

Secondly, the bootstrap intervals mostly are too short. The simple percen-
tile method is known to have problems in the tails when the theoretical dis-
tribution has an in®nite support whereas the sample support is ®nite (see e.g.
Efron and Tibshirani (1993)). Of course, this e¨ect gets worse with smaller
sample sizes. From the theoretical side, the simple percentile method is only
®rst-order accurate meaning

P�TEi U dTE
�g
i � � g�O�nÿ1=2� �33�

whereas improved techniques like BCa, percentile-t or the iterated percentile
method often are second-order accurate (see e.g. Shao and Tu (1995) for
detailed results).

Unfortunately, the use of the percentile-t and BCa is limited because the
former requires a good variance estimator whereas the latter requires a good
estimator of the `acceleration parameter' (see Shao and Tu (1995, p. 151)).
Therefore, the iterated percentile method is recommended in Jeong and
Maddala (1993) and Hall et al. (1995). But this method is ` . . . almost prohib-
itively laborious . . .' (Hall (1986)). If C denotes the number of re-resampling
runs, it would take n � B � C A 195;000;000 (re-)resampling runs to construct
n � 195 con®dence intervals (see Booth and Presnell (1998) for appropriate
choices of B and C). That is why the simple percentile method has been chosen
despite its drawbacks.

But Hall et al. (1993 and 1995) show even another potential problem of the
simple percentile method in this application. If the goal is to construct a
bootstrap con®dence interval for the ith largest TE�i�, the bootstrap estimator
of the distribution of dTE�i� is consistent if and only if there are no ties for TE�i�.
Of course, exact ties are very unlikely. But, in small to moderate samples,
two or more close values competing for TE�i� can cause coverage inaccuracies
of the bootstrap con®dence interval for TE�i�. Therefore, Hall et al. (1995)
suggest to correct for coverage error with the iterated bootstrap.

Because of these three disadvantages, the (simple percentile) bootstrap
intervals in the COLS approach have to be interpreted very cautiously. But, in
the next subsection, the membership function will at least help avoiding the
second problem of this approach.

Finally, some comments are due to the similarities and di¨erences between
the bootstrap procedure in the COLS approach in this paper and the boot-
strap procedure for the DEA approach by Ferrier and Hirschberg (1997).
Both procedures are developed for the construction of bootstrap con®dence
intervals for individual e½ciencies, and this paper has adopted the idea of
Ferrier and Hirschberg of keeping the i-th centered predicted residual ~u�bi :�
~̂ui ®xed in all b � 1; . . . ;B resampling runs (see step 2.(a)i. of the bootstrap
procedure) when constructing the con®dence interval for the i-th individual
e½ciency. But apart from that, there are no important similarities of the two
bootstrap procedures.
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This is essential since the bootstrap procedure by Ferrier and Hirschberg
(1997) has been heavily criticized in a recent paper by Simar and Wilson
(1999) for being inconsistent. This inconsistency of the simple percentile
method in the DEA approach occurs for e½cient observations because there
can be probability mass at the frontier in the bootstrap distribution. Table 2 of
Ferrier and Hirschberg (1997, p. 26f ) shows that 28 of the 94 bootstrap dis-
tributions for the TEi are even degenerate (mean 1 and variance 0). But this
problem is a speciality of the non-parametric DEA estimator and does not
carry over (see table 5) to the COLS approach based on the linear model
(because there is variation in the regressors).

One referee has asked why the i-th centered predicted residual ~u�bi is ®xed
in all resampling runs in step 2.(a)i. of the bootstrap procedure. The reason is
that I don't see any better way of calculating con®dence intervals especially
for the e½ciency of a very e½cient (or very ine½cient) individual i. These
individuals ARE very (in)e½cient and, consequently, this property has to
enter in the resampling runs. But since ~u�bj for j 0 i is drawn from the com-
plete vector ~̂u, many other individuals have the opportunity to be more e½-
cient than i in some resampling runs.

In any case, keeping the i-th centered predicted residual ®xed does not
overcome the inconsistency of the Ferrier and Hirschberg procedure (see
Simar and Wilson (1999, p. 73¨ )) and it does not cause inconsistency in the
bootstrap procedure of this paper.

5.2. Membership function

In the stochastic frontier case, the calculation of the membership function
required a laborious simulation procedure. In case of COLS, we simply apply

the �n� B� bootstrap matrix dTE � : Count the number of columns of dTE �
where individual i is the most e½cient one and calculate the membership
function and the cumulative membership function according to the de®nitions
(27) and (28). All comments in subsection 4.2 concerning properties, smooth-
ing and interpretation apply as well.

Table 6 is table 5 supplied with two additional columns giving the mem-
bership function and the cumulative membership function (and two additional

Table 6. COLS: Ordered individual e½ciencies

E¨. rank E¨. 95% conf. int. memb. fct. cum. memb. fct.

1 1.0000 [0.9155, 1.0000] 0.3705 0.3705
j 2 0.9704 [0.8671, 1.0000] 0.2460 0.6165
j 4 0.8614 [0.7919, 1.0000] 0.0820 0.8890
j 7 0.8069 [0.7050, 0.9475] 0.0220 0.9585

8 0.8038 [0.7304, 0.9450] 0.0165 0.9750
j 14 0.7687 [0.6961, 0.9015] 0.0005 1

16 0.7578 [0.6990, 0.8866] 0 1
32 0.7170 [0.6386, 0.8519] 0 1
64 0.6475 [0.6028, 0.7622] 0 1

128 0.5598 [0.5171, 0.6677] 0 1
195 0.3336 [0.3167, 0.4312] 0 1
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rows with remarkable observations). Figure 6 presents the membership func-
tion for the empirical example. The membership function is di¨erent from
zero for the e½ciency ranks 1 to 14, and the cumulative membership function
crosses the value 0.95 for individual no. 7.

Whereas the membership function reduces the uncertainty about the most
e½cient individual in the stochastic frontier approach, it increases the uncer-
tainty in this case. This had to be expected because now the decision about the
most e½cient individual is made directly with the dTE � matrix and not with
the simple percentile bootstrap intervals which are known to be too short.

6. Conclusions

In this paper, we have analysed the consequences of the consideration of
con®dence statements for the reliability of e½ciency rankings. In this connec-
tion, we have concentrated on the reliability of the selection of the most e½-
cient individual. Regarding only con®dence intervals, the stochastic frontier
approach is very powerless con®rming the disappointed result of Horrace and
Schmidt (1996): E½ciency di¨erences across individuals or e½ciency rankings
of individuals are probably often `nothing more than sampling error'. In the
cross-section case, the inconsistency of individual e½ciency estimates (one
observation per individual) once more turns out to be problematic. But with
the aid of the membership function, this uncertainty could be reduced to some
extent.

Alternatively, the COLS ranking was analysed and a procedure for the
calculation of bootstrap con®dence intervals for the individual ine½ciency

Fig. 6. COLS: Membership function
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estimates was proposed. This approach seems to be very powerful in the
decision on the most e½cient individual. But Cornwell and Schmidt (1996) are
right to remark that this precision is only faked: `Using a deterministic model
does not remove this uncertainty; it only hides it.' This warning addresses
not only to COLS, but also to the LP approach and the very popular DEA.
Because there are no error terms in these models, estimated individual ine½-
ciency di¨erences are di¨erences in ine½ciency and error. And only boot-
strapping a badly speci®ed `residual' does NOT provide a stochastic model
with ine½ciency term and noise. Secondly, the con®dence intervals turned out
to be too small because the simple percentile method is known to have prob-
lems in the tails. This problem could be by-passed by the application of the
membership function. But ®nally, higher coverage inaccuracy can occur
because of `near-inconsistency' of the bootstrap procedure.

Summing up, it may be said that it IS e½cient to analyse e½ciency rank-
ings if you take into account the ine½ciency of the techniques. Con®dence
statements should always be mentioned. Suppressing them does not increase
the precision of the results. At least if one is interested in individual e½ciency
estimation, frontier models should allow for ine½ciency and noise. Suppress-
ing the latter leads to overestimation of precision.

Finally, analysing cross-section data (and not panel data with large T)
seems to lead very often to very imprecise individual e½ciency estimates. That
is why only large ine½ciency di¨erences or large e½ciency rank di¨erences
should be regarded as serious. In an evaluation of the research and teaching
quality of 100 universities, a university on e½ciency rank 15 might as well be
on the ®rst rank. And analysing this e½ciency (rank) di¨erence may be `much
ado about nothing more than sampling error'.
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