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Abstract. Limited data means that prior structure is needed when working
with large demand systems. The cost function is a convenient vehicle for
generating demand systems incorporating such structure. While the cost
function directly yields Hicksian demand functions they will not usually have
an explicit representation as Marshallian demand equations i.e. in terms of the
observable variables. With fast hardware and modern software, however, this
need not hinder the estimation of the (implied) Marshallian demand equa-
tions. This paper develops the formal theory for using cost functions in this
context, and reports on initial trials on the operational feasibility of the
method.
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1. Motivation and plan of paper

Most existing consumer demand systems su¨er from the following practical
shortcomings:

� It is di½cult to incorporate prior ideas about the structure of preferences
(yet such information is almost always required because of limited sample
size).

� Such systems remain regular over ranges that often are too narrow: (i) for
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realistic policy simulation in an environment of rapid income growth; (ii) for
historical analysis over long periods; or (iii) for empirical analysis of demand
using international comparisons data spanning countries widely separated
on the development spectrum.

This paper describes the ®rst stage in the development of a tool which aims to
overcome these limitations.

The use of extraneous information on the structure of demand is inevitable
in applied work at the level of detail used by large economy-wide models. This
information (which must be matched to the aggregation level at which esti-
mation is to proceed) often takes the form of statements about relative
substitutability among items within di¨erent commodity groups (see, e.g.,
Clements and Smith, 1983). The approach taken in this paper facilitates the
imposition of such constraints.

Due to the relative ease with which its structure can be related to that of
the Slutsky matrix, the cost function is a natural vehicle for generating em-
pirically oriented demand functions. Moreover, because concavity is preserved
under addition and nesting of concave functions, the generation of wide
classes of regular cost functions is straightforward. Di¨erentiation of a ®nally
chosen cost function with respect to prices yields the demand functions
(Shephard's Lemma). While these equations are explicit in the (unobservable)
utility level, they may lack a closed-form representation in terms of the ob-
servable variables (prices and expenditure). With modern software, this need
not hinder estimation (as was pointed out by McLaren, 1991, and imple-
mented in a related context by Rimmer and Powell, 1992 & 1996, and in a
®nance context by Brown, 1993). A simple one-dimensional numerical in-
version allows the estimation of the parameters of the cost function via the
parameters of the (implied) Marshallian demand equations.

Section 2 of the paper develops these theoretical foundations formally. In
Section 3 we explore some options for the speci®cation of the cost function.
These are meant to illustrate the feasibility of the method rather than to be
taken seriously in their own right. A good starting point is the familiar linear
expenditure system (LES), which has explicit closed forms for the direct and
indirect utility functions, and for the cost function. We show that the pro-
posed method generates all of the well-known results in this uncomplicated
exemplar. We then move to a rank three generalization of (and therefore a
more ¯exible system than) LES in which the indirect utility function lacks an
explicit closed form, illustrating both that the cost-function method is feasible
for the estimation of this GLES system, and that the more general Engel
speci®cation overcomes the second shortcoming mentioned above. The ®nal
part of Section 3 outlines an alternative candidate for empirical use, namely a
recursive linear expenditure system (RecLES) which embodies a principle for
the hierarchical disaggregation of commodities using cost-function ideas.

A ®rst empirical exploration of the models is reported in Section 4 where
the story is kept simple by working with just four commodities, and applying
simple corrections for autocorrelation if required. After identifying the time-
series data used, we describe empirical estimation of LES, GLES and RecLES
using the new methodology. The properties of the estimated GLES and
RecLES are brie¯y compared with LES estimates from the same data.

Section 5 contains concluding remarks and an agenda for further empirical
work.
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2. Theoretical foundations

Let RN represent N space, let WN represent the nonnegative orthant, and let
WN
� represent the strictly positive orthant. Let x A WN represent an N vector of

commodities, p A WN
� the corresponding N-vector of prices, and c A W1

� a level
of expenditure. Functions conditioned on expenditure and prices will be re-
ferred to as ``Marshallian'', while those conditioned on utility and prices will
be termed ``Hicksian''. The demand functions are written respectively as
X M�c; p� and X H�u; p�. This notation is followed below, where upper-case
letters denote functions whose values are indicated by the corresponding low-
er-case letters.

By duality theory, preferences may be equivalently expressed by the
(direct) utility function u � U�x�, the indirect utility function U M�c; p� �
U�X M�c; p��, or the cost function c � C�u; p� � p 0X H�u; p�, each subject to
appropriate regularity conditions (see, e.g., Blackorby, Primont and Russell
1978). If the aim is to derive a regular Marshallian demand system, then
usually one would begin with a regular indirect utility function, and apply
Roy's Identity; while if Hicksian demands are required, one usually would
apply Shephard's Lemma to a chosen indirect utility function. Since the exo-
genous variables in most applied work are prices and expenditure, it is
natural to search for general speci®cations of indirect utility functions (see
e.g., Cooper and McLaren, 1992, 1996). But other approaches to the speci®-
cation of regular demand systems may have merit. Since in practice any
speci®cation involving more than a few commodities will require that some
structure be imposed, it is important that the system be represented in a form
convenient for such imposition. Further, it is likely that such structure will be
built up by simple operations such as composition of lower dimensional
functions, and preservation of regularity will be simpler under some repre-
sentations than others. In general, it is the cost function speci®cation that is
most attractive in this regard. Finally, one might argue that the speci®cation
should be matched with the ®nal aim of the analysis, rather than the inter-
mediate step of parameter estimation. In welfare analysis, for example, an
empirically calibrated cost function may be more useful than the correspond-
ing indirect utility function.

The starting point for this paper will be the cost function, de®ned by

c � C�u; p�
� min

x
fp 0x : U�x�V u; x A WNg

� p 0X H�u; p�: �1�

The cost function satis®es the set of regularity conditions RC (see, e.g.,
Blackorby, Primont and Russell 1978 p. 24):

RC1: C : R�WN ! W1
RC2: C is continuous
RC3: C is a positive linearly homogeneous function of p
RC4: C is nondecreasing in p
RC5: C is increasing in u
RC6: C is concave in p.
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By Shephard's Lemma the Hicksian demand equations can be derived from
the cost function by di¨erentiation with respect to prices.

There are at least two ways by which general cost functions may be
constructed. The ®rst is the standard method by which duality is normally
exploited, in which a known functional form is generalized in a way which
preserves the regularity properties. Because of the form of the regularity
properties RC, it might be expected that the cost function would be more
easily generalized than other functions. For example, it is known that in-
creasing concave functions of concave functions are concave, whereas an
analogous result is not necessarily true for quasi-convex functions, as would
be required for generalizing indirect utility functions. In section 3.2, the cost
function corresponding to the linear expenditure system is generalized in this
way. A second way in which a functional form may be generated is by the
imposition of separable structure, and the successive composition of cost
functions. This procedure will be used in section 3.3 to construct general but
regular cost functions.

Consider now the possibility of using a cost function to specify preferences,
but with the use of data to estimate Marshallian demand equations. Take as
given a cost function C�u; p� satisfying RC. By Shephard's Lemma the ith
Hicksian demand equation is1

X H
i � Cpi

�u; p�: �2�

Now, if the explicit functional form of the corresponding indirect utility
function were available, then these Hicksian demands could be ``Marshal-
lianized'' by replacing the unobservable u by

u1U M�c; p� �3�

to give

X M
i �c; p� � X H

i �U M�c; p�; p� � Cpi
�U M�c; p�; p�: �4�

Indeed, this was exactly the procedure followed by Deaton and Muellbauer
(1980) in deriving the Almost Ideal Demand System, whereby they ®rst
speci®ed the PIGLOG cost function, then derived the Hicksian demand sys-
tem, and ®nally inverted the cost function to give the implied indirect utility
function that was used to eliminate the unobservable u. If such an explicit in-
version is available, then this procedure is of course equivalent to beginning
with the corresponding indirect utility function, and there is no gain in gener-
ality in starting with a cost function. But the class of preferences for which
there exists explicit solutions for both the cost function and the indirect utility
function is quite limited.

Of interest for this paper is the class of cost functions for which such ex-
plicit inversion is not available. Thus, for a given functional form for the cost
function with parameters p

C�u; p; p�; �5�

1 In general, subscripts other than indices denote partial di¨erentiation.
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the Marshallian demand equations can be expressed implicitly by the set of
equations

X H
i � Cpi

�u; p; p�; i � 1; . . . N

c � C�u; p; p�:
�6�

Given regularity condition RC5, then it is always possible numerically to
invert the cost function to express u as a function of c and p. At each iterative
step of the maximization of the likelihood function, there is a given set of pa-
rameter values. For these parameter values, (5) can be numerically inverted to
recover the value of utility u consistent with given values of expenditure c and
prices p, and this value of utility can then be used to eliminate the unknown
value of utility from the Hicksian demand equations. This requires one in-
version for each set of parameter values at each set of sample points, but is the
same solution for all N demand equations, and thus the order of numerical
complexity does not increase with the number of commodities. A similar
procedure will be implemented for demand equations expressed as shares.
This will be illustrated in the next section using the LES as an example.

3. Cost function speci®cation ± some options

3.1. The LES as a starting point and illustration

To illustrate the derivation of demand equations and of price and expenditure
elasticities in general, the methods will ®rst be applied to the LES without
resort to the analytical inversion of the cost function that is available in this
case. The general structure of the cost function generating the linear expendi-
ture system can be written as

C � uP1� P2 �7�
where P1 and P2 are two functions of prices satisfying those properties of RC
that relate to prices, and regularity requires that u > 0, or equivalently that
c > P2. The particular form of the LES results if these functions are speci®ed
as

P1�p� �
YN
i�1

p
bi

i

XN

i�1

bi � 1

 !
�8�

and

P2�p� �
XN

i�1

gi pi: �9�

Applying Shephard's Lemma gives Hicksian (compensated) demand functions
as

X H
i �

biuP1

pi

� gi �10�
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or in share form,

W H
i �

biuP1� pigi

C�u; p� : �11�

Elimination of u from (10) by the inversion of (7) leads immediately to the
familiar Marshallian demands. It is transparent that, for any given values of
the parameters, b and g, and for any given data on c and p, the numerical in-
version of (7) to give u in terms of c and p, and its substitution in (10), would
give the same result as analytical inversion.

The typical elements of the Slutsky substitution matrix are the partial
derivatives of the i th Hicksian demand with respect to the j th price, and (with
a slight abuse of notation) are given as:

X H
ii � ÿ

bi�1ÿ bi�
p2

i

uP1 �12�

X H
ij �

bibj

pi pj

uP1 �13�

which clearly illustrate the known properties of the LES that diagonal terms
are negative, and all o¨-diagonal terms are positive. These allow calculation
of the compensated price elasticities as:

E H
ij �

X H
ij pj

X H
i

: �14�

The Marshallian demands can be expressed as

X M
i �c; p� � X H

i �U M�c; p�; p� � bi

pi

�U M�c; p��P1� gi; �15�

di¨erentiating with respect to expenditure gives

X M
ic �

qX M
i

qc
� qX H

i

qu

qU M

qc

� qX H
i

qu

qC

qu

� �ÿ1

�16�

which, when evaluated using (7)±(10), directly gives

X M
ic � bi=pi: �17�

Because of the linearity in u of both the cost function and the Hicksian
demand function the above expression does not contain u. In the more general
models considered below, this is no longer the case, and in the ®nal step of the
derivation any dependence on u must then be eliminated by the inversion of
the cost function. Using this method, the expenditure elasticities in general
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are:

E M
ic �

X M
ic c

X M
i

�18�

which, for LES, gives the familiar result:

E M
ic �

bic

pigi � bi�cÿ P2� : �19�

3.2. GLES (a generalized LES)

The LES is known to have a number of restrictions over and above those
implied by demand theory: constant marginal budget shares; the fact that all
pairs of goods must be gross complements but Hicksian substitutes; the im-
possibility of inferior goods; and the implication of direct additivity that all
cross Allen-Uzawa partial substitution elasticities are proportional to the
product of the corresponding Engel elasticities. A ®rst generalization that does
not have these restrictions arises from the extension of (7)

C � uP1� P2; �20�

where, for this particular generalization, the price indices have the familiar
LES structure:

P1 �
YN
i�1

pBi

i �21�

P2 �
XN

i�1

gi pi: �22�

but the constant marginal budget shares, bi, from (8), are replaced by utility-
varying coe½cients

Bi � ai � biu
�

1� u�
where

X
ai �

X
bi � 1 �23�

and where u� � u=u0 is the normalization of utility which takes the value of
unity in the same base period as the price indexes pi. Note that, from the
de®nitions (21) and (23), it is possible to solve (20) explicitly for the value of u
in the base period, u0, solely in terms of parameters and the base period value
of c. Provided u > 0, the structure (20) maintains all of the regularity proper-
ties in prices of the cost function corresponding to the LES.

The Hicksian demands are given by:

X H
i �

Bi

pi

uP1� gi �24�
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or in share form,

W H
i �

BiuP1� pigi

C�u; p� : �25�

To convert these to Marshallian demands, the unobservable u is replaced
by the inversion of (20), noting that P1 and Bi are now also functions of u.

Compensated price elasticities of demand require the terms of the Slutsky
matrix, which are:

X H
ii � ÿ

Bi�1ÿ Bi�
p2

i

uP1 �26�

X H
ij �

BiBj

pi pj

uP1: �27�

Expenditure elasticities require the derivatives of demand with respect to
expenditure, which are derived by Marshallianizing and di¨erentiating (24)
with respect to the argument c:

X M
ic �

Bi

pi

�U M

pi

u0�bi ÿ ai�
�u0 �U M�2 �U Mu0 log

QN
j�1

p
bjÿaj

j

�28�

where U M 1U M�c; p� is the inversion of (20).
This model generalizes and nests the LES which is obtained when

ai 1 bi; Ei. The generalization is motivated by the AIDADS model of Rimmer
and Powell (1996), who derive an expenditure system with an underlying cost
function similar to (20) to (23) corresponding to their implicitly additive direct
utility function. This generalization is of particular interest because it gen-
erates regular demand equations with Engel rank equal to 3. While the gen-
eralization from rank 2 to rank 3 does not necessarily have implications for
the regularity of the cost function, it does mean that the dimension of the
function space spanned by the Engel curves has been increased from two
to three (see Lewbel (1991), p. 711), allowing far more ¯exible modelling of
Engel responses. On the basis of nonparametric estimation of Engel responses
in US and UK household survey data, Lewbel (1991) argues that rank 3 is
required to capture the stylized facts. This conclusion is supported by Rimmer
and Powell's (1994) nonparametric estimates from Australian household data.
This generalization thus goes a long way towards removing the empirically
unacceptable restrictions of the LES. The estimation of this example will be
illustrated in Section 4, and will be referred to as GLES.

3.3. RecLES (a recursive LES)

A second way in which a functional form may be generated is by the imposi-
tion of separable structure. Following Blackorby, Primont and Russell, de®ne
the commodity index set I as
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I � f1; 2; . . . ;Ng

and partition it as

Î � fI 1; I 2; . . . ; I mg mUN:

Then the price vector can be similarly partitioned as

p � �p1; p2; . . . ; pm�:

If C is separable in Î then C has the structure

C�u; p� � C�u;C1�u; p1�; . . . ;C r�u; pr�; . . . ;C m�u; pm��: �29�

Blackorby, Primont and Russell refer to this structure on preferences as felic-
itous decentralizability: in order to allocate expenditure optimally within
group r, the consumer need only know the aggregate level of expenditure on
all goods in group r, the prices in group r, and the level of utility or ``real
income'' u. If the cost function C satis®es RC and is separable, then it is
``almost'' necessary that the C r and C satisfy RC, the only property in ques-
tion being the strict monotonicity of C in u (see Blackorby, Primont and
Russell pp. 70±76 for a discussion of this point). Nevertheless, the use in (29)
of functions C r and C that satisfy RC is a su½cient condition to generate a
valid cost function, and hence provides an attractive means of construction of
regular cost functions from more basic regular generating functions. Because
the C r satisfy RC, it is tempting to think of them either as group expenditure
functions, or as group price indices. Neither of these interpretations is strictly
correct. The C r are not group cost functions because total expenditure is not
the sum of these C r (unless the aggregator function is a sum), and they are not
simple price indices because of their dependence on utility. However, as ela-
borated on below (and congruent with Shephard's Lemma), the C r do behave
somewhat like group cost functions, in that the share of commodity i expen-
diture in group r expenditure is given by

piC
r
pi

C r
; �30�

and also operate somewhat like group price indices, in that the total value of
expenditure on group r commodities is given by

CC r C r: �31�

The structure in (29) can be made more ¯exible by noting that, since condi-
tional on the level of utility, each of the C r acts like a price index, the sepa-
rable structure can be de®ned recursively, using at each stage a regular cost
function as the functional form for the generic function.

The interpretation of a function C as a cost function depends on the iden-
tity of its arguments: below we de®ne quasi-cost functions C r structured like C,
preserving the linear homogeneity in their arguments that are themselves
quasi-cost functions, but where the latter are functions of only a subset of
prices (namely, those relevant to the level at which these quasi-cost functions
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occur). Of itself this would not invalidate the interpretation of these C r as sub-
cost functions speci®c to the level at which they occur; it is the appearance of
the global utility level u as an argument of these functions which makes such
an interpretation inappropriate.

To introduce a notation to handle this recursive de®nition, subscripts will
be reserved to refer to individual commodities, while superscripts (other than
H and M) will be used to refer to groups of commodities, with the number of
successive superscripts indicating the order of successive levels of grouping.
Hence de®ne

C�u; p� � C u;
C 1�u; p1�

C1�0� ; . . . ;
C r�u; pr�

C r�0� ; . . . ;
C m�u; pm�

C m�0�
� �

�32�

where the notation C r�0� indicates evaluation at the base period values of the
arguments, and at the next level de®ne

C r�u; pr� � C
r

u;
C r1�u; pr1�

C r1�0� ; . . . ;
C rmr�u; prmr�

C rm r�0�
� �

; r � 1; . . . ;m: �33�

Proceed recursively with successive levels of nesting until remaining sets of
prices are singletons, at which point the dependence on utility is ignored and
the quasi-cost function is de®ned as that (normalized) price. To avoid the need
to use completely general notation, equation (33) will henceforth be used as an
archetype to illustrate general results. If at each stage in this recursive struc-
ture the functional form for the aggregator C is of the LES form (7)±(9), then
the resulting speci®cation will be referred to as RecLES (Recursive LES).
Thus for (33) this form is

C
r � uP1

C r1�u; pr1�
C r1�0� ; . . . ;

C rm r�u; prmr�
C rmr�0�

� �

� P2
C r1�u; pr1�

C r1�0� ; . . . ;
C rmr�u; prmr�

C rm r�0�
� �

� u
Ym r

i�1

C ri�u; pri�
C ri�0�

� �b ri

�
Xm r

i�1

gri C ri�u; pri�
C ri�0�

� �
: �34�

Via Shephard's Lemma, logarithmic di¨erentiation of C�u; p� with respect to
prices produces an equation system for the shares W H

i �i � 1; 2; 3; . . . ;N� of
the N commodities in total expenditure. While the LES parentage of the
recursive structure ensures that there will still be some (possibly quite com-
plicated) relationship between substitution and Engel elasticities, the un-
acceptable strict proportionality among them no longer applies. The above
recursive structure also allows a recursive de®nition of shares. De®ne S rs as
the share of expenditure on the second level group s in expenditure on the ®rst
level group r. (Note that the superscript H has been omitted from S for sim-
plicity). The usefulness of the quasi-cost functions, and their similarity to both
cost functions and price indices, is as follows:
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Proposition. Logarithmic di¨erentiation of a quasi-cost function at level r with
respect to lower-order quasi-costs produces a subsystem of equations for the sub-
shares of commodity groups in the level of expenditure on all the commodities
identi®ed by the quasi-cost function at level r. Shares of individual commodities
in total expenditure can be constructed by successive compounding of these
sub-shares.

Take, for example, the logarithmic di¨erentiation of C r with respect to C rs. In
this case the proposition states that S rs � q log C r=q log C rs.

Proof of Proposition: The proposition is proved using Shephard's Lemma, the
chain rule and the homogeneity of degree 1 in its arguments of each of the
aggregator functions.

To avoid the notational complications of a completely general recursive
system, we will now show how this notation applies to the empirical example
estimated in the next section. This example uses just four commodities, with
the commodities arranged in three levels as follows:

Top level The commodities f1; 2; 3g being taken as group 1, and com-
modity 4 as the remaining group

Middle level The commodities f1; 2g being taken as group 1, and commodity
3 as the remaining group

Bottom level Commodity 1 as group 1 and commodity 2 as group 2

Although this hierarchical allocation structure is recursive, the solution of
the equation system generated by it is simultaneous. This is because the utility
level u appears at all levels of the structure. Thus, conditional upon the level of
utility being enjoyed, the allocation of expenditure between good 4 and the
rest at the top level depends only on the price of good 4 relative to a suitable
price index of the remaining commodities. Likewise, at the middle level, and
again conditional on the level of utility, the allocation of expenditure net of
that devoted to commodity 4 depends only on the price of commodity 3
relative to a suitable index of the prices of commodities lower in the allocation
scheme (namely commodities 1 and 2). These considerations identify the type
of structure depicted in (32) as an analogue in the cost function space of the
utility tree used to depict separable preferences. More speci®cally, because the
allocation at each level of our scheme is binary, it is the analogue of a utility
tree in which bifurcations, but not higher-order branching, occur at each
node.

For this example the full structure and notation is:

C�u; p� � C u;
C 1�u; p1�

C1�0� ;
C2�u; p2�

C2�0�
� �

�35�

C 1�u; p� � C
1

u;
C11�u; p11�

C 11�0� ;
C 12�u; p12�

C12�0�
� �

�36�

C 2�u; p2� � C
2�u; p4� � p4 �37�
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C 11�u; p11� � C
11

u;
C111�u; p111�

C111�0� ;
C112�u; p112�

C112�0�
� �

�38�

C 12�u; p12� � C12�u; p3� � p3 �39�

C 111�u; p111� � C 111�u; p1� � p1 �40�

C 112�u; p112� � C 112�u; p2� � p2: �41�

The notation for parameters corresponding to the LES speci®cations for these
functions at each of the three levels is as follows:

b1; b2; g1; g2; b11; b12; g11; g12; b111; b112; g111; g112: �42�

To compose the system of equations for (Hicksian) shares W H
i of indi-

vidual commodities in aggregate expenditure we cascade the relevant sub-
shares multiplicatively. Thus from the top level we ®nd,

W H
4 � S2: �43�

From the top and middle levels we compose

W H
3 � S1S12: �44�

Finally, using all three levels we compose the ®nal two shares:

W H
1 � S1S11S111 �45�

and

W H
2 � S1S11S112: �46�

The detailed formulae required to carry out the computations reported in
the next Section can be found in the Appendix.

4. Illustrative estimation of demand systems

4.1. The data

For illustrative purposes, the models are estimated with annual Australian
time series data on four categories of private ®nal consumption expenditure
covering the period 1959/60 to 1995/96. The four categories are: Food; Alco-
hol and Tobacco; Clothing; and Other (including expenditure on household
durables, purchase and operation of motor vehicles, electricity, etc. but ex-
cluding expenditure on dwelling rent). Current and constant price data are
matched, and the price series is the implicit price de¯ator obtained by dividing
the current price series by the corresponding constant price series. A base year
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of 1979/80 was selected for the price indexes. Population was used to con-
struct per capita consumption.

4.2. Estimation

The computation of the maximum-likelihood estimates reported below was
feasible because the GAUSS language used to program the estimators handles
implicit representation of functional relationships well. All three models
were estimated in share form, with one equation deleted. As is common with
demand systems of this form, autocorrelation is clearly a problem. Some
experimentation was carried out with various autocorrelation schemes such as
the scalar autocorrelation parameter speci®cation, the order N parameter-
ization of the autocovariance matrix proposed by Moschini and Moro (1994),
and a complete �N ÿ 1�2 speci®cation. Such results add little to the illustration
of the use of the cost function approach, and are hence not all presented
below, but are available in a separate paper (McLaren, Rossiter and Powell
(1996)). The results reported below have been chosen solely to illustrate the
feasibility of the approach, and are based on a scalar autocorrelation correc-
tion calculated using the FIML algorithm of Beach and MacKinnon (1979).
The R2 values reported in Table 1 are constructed as the squares of the cor-
relations between the actual shares and the values of the shares predicted
using the explanatory variables and the estimated parameter values. If in
forming the predicted values, the serial correlation structure of the errors is
ignored, then the values reported for R2 are labelled ``Static'', while if this
structure of the errors is exploited, the values are referred to as ``Dynamic''.
The Durbin-Watson statistics reported relate to the properties of the implied
innovations.

4.3. Estimation results

Comparative results for the three speci®cations are presented in Table 1.
Engel elasticities and compensated (i.e., Hicksian) price elasticities of demand
for all three demand systems are presented in Table 2. The results for LES
were derived under the implicit estimation scheme to con®rm their equiva-
lence to estimates derived in the standard way, and are presented as a basis for
comparison with the new models.

For GLES the main point to make about these estimates is the substantial
improvement in the log-likelihood, indicating that the restrictions required in
moving from GLES to LES are not supported by the data on the basis of a w2

test. This improved ®t also manifests itself in the substantially lower value (in
the metric of distance from unity) of the scalar autocorrelation coe½cient r,
the corresponding improved ®t of the static share equations, and higher Dur-
bin-Watson statistics. Thus the generalization provided by moving from LES
to GLES goes a substantial way towards explaining variation that is usually
attributable to autocorrelation in LES. For RecLES on the other hand, the
enhanced generality over LES has contributed somewhat less to improved
®t, although this could well be a function of the particular nesting structure
chosen from the large number of possibilities. The elasticities reported in
Table 2 show that the price and expenditure elasticities for all three models are
broadly consistent. This is hardly surprising given the use of the same data set,
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and the common parentage of all three models. With this proviso, the amount
of variation across models in Table 2, particularly the low expenditure elas-
ticities for GLES for Alcohol and Tobacco, and for Clothing, demonstrates
the enhanced ¯exibility of these models. In particular, it can be seen from the
numerical results that the ®xed relationship between the substitution and
income elasticities that is re¯ected in the LES results is no longer present in
either of the two more general models. The potential regularity violations
caused by the negative parameter estimates is, however, a disappointing aspect
of all three models, although it is interesting to note that for LES and RecLES
it is the g parameters, while for GLES it is the b parameters that violate reg-
ularity regions. While constrained estimation would be a simple option for
these models, it is of course possible that the problem may be due to the level
of aggregation of the data, and more investigation along these lines would be
justi®ed in searching for a regular yet parsimonious representation of the data.

Table 1. Estimation results

Models

LES GLES RecLES

a1 0.0841 b1 0.0331*
a2 0.1728** b2 a0.9669**
a3 0.1982** b11 0.8849**
a4 a0.5449** b12 a0.1151**

b1 0.1162** b1 0.1469** b111 0.8914**
b2 0.0338** b2 ÿ0.0280* b112 a0.1086**
b3 0.0352** b3 ÿ0.0483* g1 1101.6**
b4 a0.8149** b4 a0.9295** g2 ÿ9149.0**
g1 401.3** g1 501.9** g11 ÿ2105.3
g2 179.1** g2 151.4** g12 981.3*
g3 177.2** g3 152.4* g111 ÿ2448.8
g4 ÿ685.1 g4 454.2 g112 1910.7**
r 0.9885** r 0.9041** r 0.9742**

Log-likelihood 537.29 542.36 541.33

R2 (``Static'')
I. Food 0.5044 0.9377 0.8029
II. Alcohol/Tobacco 0.5712 0.9479 0.8035
III. Clothing 0.5051 0.9424 0.7857
IV. Other 0.8100 0.9781 0.9230

R2 (``Dynamic'')
I. Food 0.9886 0.9886 0.9900
II. Alcohol/Tobacco 0.9902 0.9905 0.9900
III. Clothing 0.9886 0.9895 0.9891
IV. Other 0.9956 0.9960 0.9961

Durbin-Watson Statistics
I. Food 1.0389 1.2586 1.0464
II. Alcohol/Tobacco 0.9878 1.2664 0.9680
III. Clothing 1.2512 1.5497 1.3391
IV. Other 1.0959 1.1835 1.1124

a Estimated from adding-up condition.
* Signi®cant at the 10% level
** Signi®cant at the 1% level
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5. Concluding remarks and perspective for further work

The results reported above demonstrate the feasibility of the cost-function
approach to the speci®cation and estimation of systems of demand equations.
In particular, it is not necessary to have closed functional forms for Marshal-
lian demand curves, nor for direct or indirect utility functions. We should,
however, warn readers that the results reported here are for illustrative pur-
poses only.

Data is the key to future work. For the methods described here to pay o¨
in a policy context, we will need to work at a much greater level of dis-
aggregation. It is here that the composition of cost functions to re¯ect insights
(from whatever source) on the detailed structure of preferences will have its
practical pay-o¨. Disaggregation of the time-series data to the level of about
twenty commodities may be feasible.

A challenging goal is to develop routine procedures to implement the
above research agenda. For example, if the structure of demand within some
commodity group or sub-group is expected to have substitution elasticities
following a certain pattern, the facility for composing the cost function should
be able to accept this information readily and incorporate it routinely into a
demand speci®cation.

Table 2. Estimated Engel and compensated price elasticities of demand for the three systems*

Compensated Price Elasticities of Demand
LES GLES RecLES

I. Food, with respect to price of:
Food C0.4999 C0.3843 C0.3886
Alcohol/Tobacco 0.0191 0.0288 0.0417
Clothing 0.0199 0.0293 0.0896
Other 0.4609 0.3262 0.2572

II. Alcohol/Tobacco, with respect to price of:
Food 0.0513 0.0673 0.1073
Alcohol/Tobacco C0.4266 C0.5355 C0.4542
Clothing 0.0155 0.0386 0.0896
Other 0.3598 0.4295 0.2572

III. Clothing, with respect to price of:
Food 0.0571 0.0719 0.2487
Alcohol/Tobacco 0.0166 0.0405 0.0967
Clothing C0.4743 C0.5710 C0.6026
Other 0.4006 0.4586 0.2572

IV. Other, with respect to price of:
Food 0.1432 0.0990 0.0773
Alcohol/Tobacco 0.0416 0.0558 0.0301
Clothing 0.0433 0.0568 0.0279
Other C0.2282 C0.2116 C0.1353

Elasticities of Demand with Respect to Total Expenditure
Food 0.5737 0.6824 0.6223
Alcohol/Tobacco 0.4479 0.1949 0.3669
Clothing 0.4987 0.0763 0.2786
Other 1.2506 1.3153 1.2657

* Evaluated at values of the exogenous variables for 1984±85
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Appendix

This appendix contains the detailed formulae for the particular RecLES
speci®cation de®ned by equations (35) to (42). Using the notation of Section
3.1, the Hicksian (compensated) demand functions, in share form, can be
e½ciently de®ned recursively in terms of shares S at sub-levels. These shares
are derived below.

As a shorthand, de®ne price index 1 when evaluated for subgroup rs by
P1rs (with P1 indicating evaluation at the top level) and de®ne the normalized
value of the quasi-cost of subgroup rs as

~C rs � C rs=C rs�0�:

Then

S1 � �b1uP1� g1 ~C 1�=C �47�

S2 � �b2uP1� g2 p4�=C �49�

S11 � �b11uP11 � g11 ~C 11�=C 1 �50�

S12 � �b12uP11 � g12 p3�=C1 �51�

S111 � �b111uP111 � g111 p1�=C11 �52�

S112 � �b112uP111 � g112 p2�=C11: �53�

These shares, together with the functional form of the cost function, de®ne the
Marshallian share equations that were estimated.

Some idea of the generality allowed by this recursive structure can be
gained by considering substitution possibilities. The terms in the Slutsky sub-
stitution matrix are as follows:

X H
11 � ÿ�G�S11S111�2 � G1S1�S111�2 � G11S1S11� C

�p1�2
�54�

X H
22 � ÿ�G�S11S112�2 � G1S1�S112�2 � G11S1S11� C

�p2�2
�55�

X H
33 � ÿ�G�S12�2 � G1S1� C

�p3�2
�56�

X H
44 � ÿG

C

�p4�2
�57�

X H
12 � X H

21 � ÿ�G�S11�2S111S112 � G1S1S111S112 ÿ G11S1S11� C

p1 p2

�58�

X H
13 � X H

31 � ÿ�GS11S12S111 ÿ G1S1S111� C

p1 p3

�59�
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X H
23 � X H

32 � ÿ�G1S11S12S112 ÿ G2S1S112� C

p2 p3

�60�

X H
14 � X H

41 � GS11S111 C

p1 p4

�61�

X H
24 � X H

42 � GS11S112 C

p2 p4

�62�

X H
34 � X H

43 � GS12 C

p3 p4

�63�

where

G � b1b2uP1

C
�64�

G1 � b11b12uP11

C1
�65�

G11 � b111b112uP111

C11
: �66�

Using the same method as in the previous examples, the derivatives of the
Marshallian demands with respect to expenditure are:

X M
1c �

q�S1C�
qU

S11S111 � S1 qS11

qU
S111C � S1S11 qS111

qU
C

� ��
p1

qC

qU

� �� �
�67�

X M
2c �

q�S1C�
qU

S11S112 � S1 qS11

qU
S112C � S1S11 qS112

qU
C

� ��
p2

qC

qU

� �� �
�68�

X M
3c �

q�S1C�
qU

S12 � S1 qS12

qU
C

� ��
p3

qC

qU

� �� �
�69�

X M
4c �

q�S2C�
qU

� ��
p4

qC

qU

� �� �
�70�

where

q�S1C�
qU

� b1P1� �S1 ÿ G� C

C1

qC1

qU

� �
�71�

q�S2C�
qU

� b2P1� G
C

C1

qC1

qU

� �
�72�
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qS11

qU
� �b

11 ÿ S11�
C1

P11 � �S
11 ÿ G1 ÿ �S11�2�

C2
P111 �73�

qS12

qU
� �b

12 ÿ S12�
C1

P11 � �G
1 ÿ S11S12�

C11
P111 �74�

qS111

qU
� �b

111 ÿ S111�
C11

P111 �75�

qS112

qU
� �b

112 ÿ S112�
C11

P111 �76�

and

qC

qU
� P1� S1 C

C1
P11 � S1S11 C

C11
P111 �77�

qC 1

qU
� P11 � S11 C 1

C11
P111 �78�

and where, for all terms above that are functions of utility, this level of utility
is replaced by the inversion of the cost function.

References

Beach CM, MacKinnon JG (1979) Maximum Likelihood estimation of singular equation systems
with autoregressive disturbances. International Economic Review 20(2):459±464

Blackorby C, Primont D, Russell RR (1978) Duality, separability and functional structure:
Theory and economic applications. North-Holland, New York

Brown SJ (1993) Non-linear systems estimation: Asset pricing model application. In: Varian HR
(ed.) Economic and ®nancial modeling with mathematica, Springer-Verlag, New York, pp.
286±299

Clements KW, Smith MD (1983) Extending the consumption side of the ORANI model. Impact
Project Preliminary Working Paper No. OP-38, University of Melbourne

Cooper RJ, McLaren KR (1992) An empirically oriented demand system with improved regular-
ity properties. Canadian Journal of Economics 25:652±668

Cooper RJ, McLaren KR (1996) A system of demand equations satisfying e¨ectively global reg-
ularity conditions. Review of Economics and Statistics 78:359±364

Deaton A, Muellbauer J (1980) An almost ideal demand system. American Economic Review
70:312±326

Lewbel A (1991) The rank of demand systems: Theory and nonparametric estimation. Econo-
metrica 59:711±730

McLaren KR (1991) The use of adjustment cost investment models in intertemporal computable
general equilibrium models. Impact Project Preliminary Working Paper No. IP-48, University
of Melbourne ± see the Appendix

McLaren KR, Rossiter PD, Powell AA (1996) Using the cost function to generate ¯exible demand
systems ± An initial exploration. In: McAleer M, Miller P, Hall AD (eds) Proceedings of the
Econometric Society Australasian Meeting 1996, Volume 2: Econometric Theory, The Uni-
versity of Western Australia, pp. 379±418

Moschini G, Moro D (1994) Autocorrelation speci®cation in singular equation systems. Eco-
nomics Letters 46:303±309

226 K. R. McLaren et al.



Rimmer MT, Powell AA (1992) Demand patterns across the development spectrum: Estimates of
the AIDADS system. Impact Project Preliminary Working Paper No. OP-75, Monash Uni-
versity

Rimmer MT, Powell AA (1994) Engel ¯exibility in household budget studies: Non-parametric
evidence versus standard functional forms. Impact Project Preliminary Working Paper No.
OP-79, Monash University

Rimmer MT, Powell AA (1996) An implicitly additive demand system. Applied Economics
28(12):1613±1622

Using the cost function to generate Marshallian demand systems 227


