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Abstract. Researchers have become increasingly interested in estimating mix-
tures of stochastic frontiers. Mester (1993), Caudill (1993), and Polachek and
Yoon (1987), for example, estimate stochastic frontier models for di¤erent
regimes, assuming sample separation information is given. Building on earlier
work by Lee and Porter (1984), Douglas, Conway, and Ferrier (1995) estimate
a stochastic frontier switching regression model in the presence of noisy sam-
ple separation information. The purpose of this paper is to extend earlier work
by estimating a mixture of stochastic frontiers assuming no sample separation
information. This case is more likely to occur in practice than even noisy
sample separation information. In order to estimate a mixture of stochastic
frontiers with no sample separation information, an EM algorithm to obtain
maximum likelihood estimates is developed. The algorithm is used to estimate
a mixture of stochastic (cost) frontiers using data on U.S. savings and loans
for the years 1986, 1987, and 1988. Statistical evidence is found supporting the
existence of a mixture of stochastic frontiers.
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1. Introduction

For many years economists interested in examining firm e‰ciency have esti-
mated regression models with composite errors. These regression models are

* I am grateful to Ram Acharya, Janice Caudill, and especially James R. Barth for several helpful
comments on an earlier version of the paper. During the revision process I benefitted greatly from
the suggestions of the Associate Editor and three anonymous referees.



called stochastic frontier models and they have been estimated in numerous
studies (for an overview of the applications of frontier methods in the financial
services industry, see Berger and Mester (1997)). Researchers have recently
become interested in estimating mixtures of stochastic frontiers. Mester
(1993), Caudill (1993), and Polachek and Yoon (1987), for example, estimate
stochastic frontier models for di¤erent regimes, assuming sample separation
information is given. Extending earlier work by Lee and Porter (1984),
Douglas, Conway, and Ferrier (1995) also estimate a stochastic frontier
switching regression model in which sample separation information is avail-
able, but may be incorrect. This paper extends earlier work by Douglas, Con-
way, and Ferrier by developing an expectations maximization, or EM, algo-
rithm to estimate a mixture of stochastic frontiers in the presence of no sample
separation information. This case is more likely to occur in practice than noisy
sample separation information but presents more computational di‰culties.

The estimation of a mixture of stochastic frontier regressions represents a
breakthrough in the measurement of firm e‰ciency. Earlier work by Beard,
Caudill, and Gropper (1991, 1997) estimated a mixture of two cost functions.
BCG justify the estimation of a mixture model by arguing that firms in an
industry may use di¤erent, but unobservable, technologies. If the di¤erent
technologies in use could be observed, firms could be separated into groups
based on the underlying technology prior to estimation and separate cost
functions could be estimated for each. If the technology each firm employs is
not observed, that is no sample separation information is available, cost func-
tions associated with di¤erent regimes can still be estimated with a mixture
model. In the estimation of mixture models, firms are probabilistically sepa-
rated into groups and separate cost functions are estimated for each without
any information about which firms use which technology. The estimation of a
mixture model also permits statistical testing of the null hypothesis of a single
cost regime.

Furthermore, if two or more underlying technologies are present and a
single cost function is estimated, a specification error results that can lead to
misleading conclusions about e‰ciency rankings. The method presented here
avoids problems caused by this specification error by extending the earlier
work of BCG to the estimation of a mixture of stochastic frontiers.

In order to estimate a mixture of stochastic frontiers, this paper develops
an EM algorithm to obtain maximum likelihood estimates. The algorithm has
its origins in the work of Dempster, Laird, and Rubin (1977) who adapted the
EM algorithm for use in incomplete data problems. The EM algorithm pre-
sented here is directly based on the work of Huang (1984) and Hartley (1978),
who developed EM algorithms for the maximum likelihood estimation of
stochastic frontiers and mixtures of normal regressions, respectively.1

Why estimate a mixture model using the EM algorithm? There are several
well-known algorithms available to estimate model parameters by maximum
likelihood, but most, like the algorithm of Berndt, Hall, Hall, and Hausman
(1974), have problems estimating mixture models due to singularities in the
likelihood surface.2 Until the work of Hartley (1978), the estimation of mix-

1 An excellent reference to many applications of the EM algorithm, along with details, is pro-
vided by McLachlan and Krishnan (1997). For an important early application of the EM algo-
rithm in economics see Stewart (1983).
2 For a discussion of these problems see, for example, Quandt (1988), section 2.4, pp. 35 to 40.
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ture models by maximum likelihood was questionable. The advantages and
disadvantages of the EM algorithm when compared to Newton-Raphson and
the method of scoring are discussed by Titterington, Smith, and Makov (1985,
pp. 88–89). These authors list the strengths of the EM algorithm as being: 1)
simplicity of application, and 2) guaranteed monotonic convergence to, at
least, a local maximum. The weaknesses are: 1) slower convergence than other
methods, 2) no estimator of covariance matrix is provided, and 3) there is no
guarantee of convergence to a global maximum.

For the estimation problem considered here, the advantages of the EM
algorithm clearly outweigh the disadvantages. The major benefit of EM is
programming simplicity. As for the disadvantages, 1) EM’s slower conver-
gence rate is not particularly troublesome because computing time is not a
concern, 2) variance estimates are obtained by using a single iteration of the
algorithm of Berndt, Hall, Hall, and Hausman (1974) on the converged EM
values, and 3) none of the available derivative-based methods is guaranteed to
converge to a global maximum.3 For the estimation of a mixture of stochastic
frontiers, the EM algorithm has many virtues.

The paper is organized as follows. First, the mixture of stochastic frontiers
model is developed along with a discussion of estimation by maximum like-
lihood using the EM algorithm. Next, stochastic frontier models, mixture
models, and a mixture of stochastic frontiers model are estimated using data
on U.S. savings and loans for the years 1986, 1987, and 1988. The statistical
evidence supports the presence of a mixture of stochastic frontiers.

2. A mixture of stochastic frontiers

Maximum likelihood estimation via the EM algorithm for a mixture of sto-
chastic frontiers requires that the two EM algorithms for estimating stochastic
frontiers and normal mixtures be combined into a single EM algorithm. In the
following sections the EM algorithms for the estimation of both stochastic
frontiers and mixtures models are detailed. Then, these results are combined
into a single EM algorithm for the estimation of a mixture of stochastic
frontiers by maximum likelihood.

The Stochastic Frontier Model. The composite error model examined here
is called a stochastic frontier regression model (see Aigner, Lovell, and
Schmidt (1977), Battese and Corra (1977), or Meeusen and van den Broeck
(1977)). The composite error in this regression model is the sum (or di¤erence)
of a symmetric error and a one-sided error. In this model, the symmetric error
is assumed to be normally distributed and the one-sided error is assumed to
be half-normally distributed.4 These two error components are assumed to be
independent. Following Huang (1984), the stochastic frontier (cost) regression

3 There are other non-derivative based algorithms that are guaranteed to converge to a global
maximum, for example, the simulated annealing approach of Go¤e, Ferrier, and Rogers (1994).
4 Stevenson (1980) generalized the usual half-normal assumption for the one-sided error by
considering a normal distribution truncated at points other than zero. Lee (1983) assumed the
one-sided error term came from a four parameter Pearson family of distributions. Beckers and
Hammond (1987) and Greene (1990) assumed a gamma distribution. Recently, some of the spec-
ifications of the ine‰ciency error have been distribution-free, see Berger (1993).
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model can be written as

Yi ¼ Zi þ vi

where

Zi ¼ Xib þ wi

) Yi ¼ Xib þ wi þ vi

ð1Þ

where Yi is observable cost, Zi, is the unobservable frontier cost, and vi is the
half-normally distributed random variable derived from a normally distributed
random variable with mean zero and variance, s2

v . This unobservable frontier
cost, Zi, is related to several independent variables, Xi, a vector of unknown
parameters to be estimated, b, and a random error term, wi, assumed to be
normally distributed with mean zero and variance, s2

w.
Huang (1984) provides the complete data loglikelihood function, based on

the joint density of Y and Z, which is given by

f ðYi;ZiÞ ¼
1

psvsw
exp � 1

2

Zi � Xib

sw

� �2

� 1

2

Yi � Zi

sv

� �2
( )

: (2)

First order conditions can be obtained by di¤erentiating (2), first with
respect to b, which yields

qE lnL

qb
¼

Xn
i¼1

ðEðZijYiÞ � XibÞX 0
i ¼ 0: (3)

The solution of this equation is the familiar least squares regression estimator
with Xi as the vector of independent variables and EðZijYiÞ as the dependent
variable. The remaining derivatives yield

s2
v ¼ 1

n

Xn
i¼1

ðY 2
i � 2EðZijYiÞYi þ EðZ2

i jYiÞÞ

s2
w ¼ 1

n

Xn
i¼1

ðEðZ2
i jYiÞ � 2EðZijYiÞXib þ ðXibÞ2Þ:

ð4Þ

To evaluate the expressions above, moments of the conditional density of Z
given Y are needed. The conditional density of Zi given Yi is shown by Huang
and Jondrow, Lovell, Materov, and Schmidt (1982) to be Nðm	

i ; s
2
	 Þ truncated

from above at Yi, where

m	
i ¼ s�2½s2

wYi þ s2
vXib� and s2

	 ¼ s2
ws

2
v =s

2 (5)

where

s2 ¼ s2
w þ s2

v :

The EM algorithm requires the first two moments of the resulting trun-
cated normal density. Letting Y 	

i ¼ ðYi � mÞ=s, these moments, with the trun-
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cation in this case being from above, are given by Maddala (1983a) as

EðZijYiÞ ¼ EðZi jZi aYiÞ ¼ m	
i � s	

f 	i
F 	
i

EðZ2
i jYiÞ ¼ EðZ2

i jZi aYiÞ ¼ s2
	 1 � Y 	

i

f 	i
F 	
i

� f 	i
F 	
i

� �2

m	
i � s	

f 	i
F 	
i

� �2
" #

ð6Þ
where f 	i and F 	

i are the standard normal density and distribution functions,
respectively, evaluated at Y 	

i . These moments can be substituted into (3) and
(4) and evaluated iteratively until convergence.

A Mixture of Normal Regressions. The estimation of a mixture of normal
regression models is a problem that has recently received much attention.5
Early work on mixture models or switching regressions is provided by Quandt
(1972), Quandt and Ramsey (1978), and Goldfeld and Quandt (1976). These
models are closely related to disequilibrium models. For important early work
in this area, see Fair and Ja¤ee (1972), Maddala and Nelson (1974), and
Maddala (1983b).

An early application of mixture models in the production area is given by
Aigner, Amemiya, and Poirer (1976). These authors estimate a regression
model in which the error term is a mixture of a positive and negative half-
normal. Recently, mixtures of statistical cost functions with normal errors
have been estimated by Beard, Caudill, and Gropper (1991) and Beard, Cau-
dill, and Gropper (1997). These authors argue that firms in an industry may
use di¤erent technologies of production and, as a consequence, may operate
on di¤erent cost functions. If no information is available about which firms
use which technologies (no sample separation information is available), BCG
argue that the estimation of a mixture model is appropriate.

Hartley (1978) and Quandt (1988) provide the details of the estimation
of a mixture of normal regressions by maximum likelihood using the EM
algorithm. For the case of a mixture of two normal regressions (or switching
regressions), consider

Yi ¼ Xib1 þ e1i with probability y

Yi ¼ Xib2 þ e2i with probability 1 � y;
ð7Þ

where e1i and e2i are mutually independent, iid normal with zero means and
variances s2

1 and s2
2 , respectively. Following Hartley (1978), the typical com-

plete-data density function is given by

f ðdi1;YiÞ ¼
yffiffiffiffiffiffi

2p
p

s1

exp �ðYi � Xib1Þ
2

2s2
1

( )( )di1

 1 � yffiffiffiffiffiffi
2p

p
s2

exp �ðYi � Xib2Þ
2

2s2
2

( )( )1�di1

:

ð8Þ

5 For overviews of mixture models, see McLachlan and Basford (1988), Everitt and Hand (1981),
and Titterington, Smith, and Makov (1985).
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These densities comprise the logarithm of the complete-data likelihood func-
tion that is given by

lnL ¼
Xn
i¼1

fdi1ðln yþ ln fi1Þ þ ð1 � di1Þðlnð1 � yÞ þ ln fi2Þg; (9)

where fi1 and fi2 are the respective normal density functions.
In the E step of the EM algorithm, the expected value of the loglikeli-

hood is needed, which requires replacing d in (9) by its expectation given
the data. This expectation is given by Eðdi1jYiÞ ¼ ð1Þ½ðPðdi1 ¼ 1 jYiÞ� þ
ð0Þ½Pðdi1 ¼ 0 jYiÞ� ¼ Pðdi1 ¼ 1 jYiÞ. This expected value or probability can be
evaluated by using Bayes’ Rule which, when applied to Eðdi1jYiÞ yields

Pðdi1 ¼ 1 jYiÞ ¼
Pðdi1 ¼ 1ÞPðYi j di1 ¼ 1ÞP2
j¼1 Pðdij ¼ 1ÞPðYi j dij ¼ 1Þ

¼ yfi1

yfi1 þ ð1 � yÞfi2
¼ wi1:

(10)

Evaluation of (10) provides estimates of the expected values or probabil-
ities or weights, wi1 and 1 � wi1. Once these weights have been calculated, they
can be substituted into the log of the complete-data likelihood which is then
maximized in the M step of the EM algorithm with respect to the unknown
parameters in the model. To obtain the expressions for evaluation in the EM
algorithm, let W1 and W2 be given by

W1 ¼ diag½w11;w21; . . . ;wn1�

W2 ¼ diag½w12;w22; . . . ;wn2�:
ð11Þ

Clearly, wi1 ¼ 1 � wi2, for all I, so W1 ¼ In �W2. Di¤erentiating the ex-
pected loglikelihood function and solving yields

b̂b1 ¼ ðX 0W1X Þ�1
X 0W1Y

b̂b2 ¼ ðX 0W2X Þ�1
X 0W2Y

ŝs2
1 ¼ 1Pn

i¼1 wi1

Xn
i¼1

wi1ðYi � Xib̂b1Þ
2

ŝs2
2 ¼ 1Pn

i¼1ð1 � wi1Þ
Xn
i¼1

ð1 � wi1ÞðYi � Xib̂b1Þ
2

ð12Þ

ŷy ¼
Xn
i¼1

wi1:

These solutions are the familiar WLS expressions for the regression param-
eters in the case of maximum likelihood estimation via the EM algorithm.
Given starting values, this algorithm can be used to generate a convergent
sequence of parameter estimates.
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A Mixture of Stochastic Frontiers. Maximum likelihood estimation via the
EM algorithm for a mixture of stochastic frontiers requires that the two EM
algorithms for estimating stochastic frontiers and normal mixtures be com-
bined into a single EM algorithm. In the mixture of stochastic frontiers model
there are two latent variables; one is the sample separation indicator and the
other is the frontier cost. The new EM algorithm must provide expectations for
these two variables. This is ultimately achieved by the insertion of a weight-
ing matrix, like that in the mixture-of-normals algorithm, into the stochastic
frontier expressions.

For a mixture of stochastic frontiers the density function of the complete-
data likelihood is given by

f ðdi1;Yi;ZiÞ ¼
y

psv1sw1
exp � 1

2

Zi �Xib1

sw1

� �2

� 1

2

Yi �Zi
sv1

� �2
( )( )di1

� 1� y

psv2sw2
exp � 1

2

Zi �Xib2

sw2

� �2

� 1

2

Yi �Zi
sv2

� �2
( )( )1�di1

:

ð13Þ
The logarithm of the complete-data likelihood function is

lnL ¼
Xn
i¼1

fdi1ðln yþ ln gi1Þ þ ð1 � di1Þðlnð1 � yÞ þ ln gi2Þg; (14)

where the gs represent the component stochastic frontier density functions.
The EM algorithm replaces both di1 and Zi by their respective expectations,
given Yi. These calculations are greatly simplified by assuming E½dZ jY � ¼
E½djY �E½ZjY � and E½dZ2 jY � ¼ E½djY �E½Z2jY �.6 Then, analogous to the
previous result on mixtures, Eðdi1jYiÞ ¼ Pðdi1 ¼ 1 jYiÞ is given by

Pðdi1 ¼ 1 jYiÞ ¼
Pðdi1 ¼ 1ÞPðYi j di1 ¼ 1ÞPk
j¼1 Pðdij ¼ 1ÞPðYi j dij ¼ 1Þ

¼ ygi1

ygi1 þ ð1 � yÞgi2
¼ wi1:

(15)

Also, EðZijYiÞ is needed to complete the E step. These expectations are
obtained in the same manner as described in equation (6).

If derivatives are taken of the expected loglikelihood equation above, and
solved, one obtains

b̂b1 ¼ ðX 0W1X ÞX 0W1Y

b̂b2 ¼ ðX 0W2X ÞX 0W2Y
ð16Þ

6 Following Hartley (1978), the mixture of stochastic frontier regressions can be regarded as a
three-equation system consisting of two stochastic frontier equations and a choice equation, in our
case containing no explanatory variables. The calculation of these conditional expectations is
greatly simplified by assuming that the disturbance term in the choice equation is independent of
each of the two-sided error terms in the stochastic frontier equations (these error terms are usually
associated with factors outside firm control or ‘‘luck’’). It is reasonable to assume that a higher
than expected likelihood of being in a particular regime is unrelated to deviations from frontier
cost or ‘‘luck.’’ I am grateful to an anonymous referee for this insight.
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s2
v1 ¼ 1Pn

i¼1 wi1

Xn
i¼1

wi1ðY 2
i � 2EðZijYiÞYi þ EðZ2

i jYiÞÞ

s2
v2 ¼ 1Pn

i¼1ð1 � wi1Þ
Xn
i¼1

ð1 � wi1ÞðY 2
i � 2EðZijYiÞYi þ EðZ2

i jYiÞÞ

s2
w1 ¼ 1Pn

i¼1 wi1

Xn
i¼1

wi1ðEðZ2
i jYiÞ � 2EðZijYiÞXib1 þ ðXib1Þ

2Þ

s2
w2 ¼ 1Pn

i¼1ð1 � wi1Þ
Xn
i¼1

ð1 � wi1ÞðEðZ2
i jYiÞ � 2EðZijYiÞXib2 þ ðXib2Þ

2Þ

ŷy ¼
Xn
i¼1

wi1:

These equations form the basis of the EM algorithm which can be used to
estimate parameters in a mixture of normal/half normal stochastic frontier
regression models. Given starting values, the algorithm can be iterated until
convergence is obtained. After convergence, variance estimates are once again
obtained by using the converged parameter values in a single iteration of the
algorithm of Berndt, Hall, Hall, and Hausman (1974). In the BHHH method
the covariance matrix is estimated by taking the inverse of the sum of the
outer products of the gradient vectors, evaluated at the converged parameter
values. The virtue of the BHHH method is that only first derivatives of the
loglikelihood function are required.

3. Data and model

In a statistical cost function, the dependent variable is total cost and the
independent variables are output quantities and input prices. Time is also
included as an independent variable, using a suggestion of Berndt (1991). The
inclusion of time allows for technical innovations, such as improvements in
computing power and software, that presumably can improve the e‰ciency of
any technology.

The selection and specification of regression variables generally follows
LeCompte and Smith (1990) and Beard, Caudill and Gropper (1991), and is
consistent with the ‘‘intermediation’’ model of the financial firm in which
savings and loans take deposits and other inputs and produce loans and
related outputs. The three outputs specified are the volume of mortgage loans
(MORTGAGE), other loans (OTLOAN), and investments (INVEST) in
thousands of real 1986 dollars. Total costs in real 1986 dollars (TOTCOST)
are taken as the sum of interest, labor, and capital costs resulting in three
input prices. Average real wages (WAGE) by year are obtained from Bureau
of Labor Statistics state wage surveys for financial workers. Interest costs per
annum on deposits and other loanable fund sources (INTRATE) and physical
capital costs (PCAP), inclusive of rent, depreciation, and maintenance, are
obtained for each institution for each sample year from the Thrift Financial
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Report Tapes of the O‰ce of Thrift Supervision. Our model uses information
on three outputs, three input prices, and time.

Only solvent FSLIC insured savings and loan associations are included
in the analysis. The raw data were screened for a variety of problems, includ-
ing some institutions that reported negative expenditures, several where total
assets did not equal total liabilities plus capital accounts, and others with miss-
ing values for any of our regression variables. Also omitted were institu-
tions in Alaska, Hawaii, Guam, and Puerto Rico. Further, no sample S&Ls
switched to bank charters during the sample period.

The final data set contained 1,113 institutions in each year, so that the
panel contained 3,339 observations. Forty-four of the forty-eight contiguous
United States were represented; there were no institutions from Idaho, Mis-
sissippi, North Dakota or Wyoming that met all our criteria. The institutions
analyzed are widely distributed geographically and exhibited substantial vari-
ations in size and output mix. Descriptive statistics are given in Table 1.

The popular translog (transcendental logarithmic) form is used for all the
cost estimations. The resulting equation form is:

lnC ¼ a0 þ
X

aj ln qj þ
X

bk ln pk þ ð1=2Þ
XX

aij ln qi ln qsubj

þ ð1=2Þ
XX

blk ln pl ln pk þ
XX

djk ln qj ln pk

þ c1 ln tþ c2ðln tÞ
2 þ

X
ctk ln t ln pk þ

X
ctj ln t ln qj;

ð17Þ

where C is total cost, q’s are output levels, p’s are input prices, t is calendar
time, and the a’s, b’s, d’s, and C ’s are parameters to be estimated. Homo-
geneity in input prices requires

P
bk ¼ 1,

P
blk ¼

P
bkl ¼ 0 over 1 and k,P

djk ¼ 0 for any qj and
P

dtk ¼ 0. These restrictions are imposed in the

Table 1. Regression variables: Descriptive statistics

Variables Definition Sample
Mean

Sample
Standard
Deviation

TOTCOST The sum of interest, labor, and capital costs in
thousands of 1986 dollars

28,212 131,954

MORTGAGE Total volume of mortgage loans in a year in
thousands of 1986 dollars

168,160 815,712

OTLOAN Total volume of loans other than mortgages in a year
in thousands of 1986 dollars

15,658 77,197

INVEST Total volume of investments in a year in thousands
of 1986 dollars

60,452 308,301

WAGE Average annual earnings workers in the financial
sector by state in 1986 dollars

24,705 4,401

CAPITAL Annual real cost per thousand 1986 dollars of
physical capital including rent, depreciation, and
maintenance

.51 .78

INTRATE Annual real cost per thousand 1986 dollars borrowed .073 .008

Source: Thrift Financial Report Tapes, O‰ce of Thrift Supervision, various years, and Bureau of
Labor Statistics Wage Surveys, various years (1987–1989).
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estimation. In particular, all prices and quantities are normalized (divided)
by the price of capital (PCAP). Also, data are mean-scaled (divided by their
means) in order to facilitate calculation of scale economies.

4. Empirical results

The results from estimating the regression models discussed previously are
given in Table 2. The second column of Table 2 presents the results of esti-
mating the usual normal-half normal stochastic frontier regression model. The
model clearly fits the data well, as is usually the case with cost functions esti-
mated using data from financial institutions. When estimated by OLS, the
translog cost function used in all estimations produced an R2 of 0.986. For the
stochastic frontier results in column 2, twenty-five of the twenty-eight regres-
sion coe‰cients are significant at the a ¼ :10 level, or better. The coe‰cients
on the output variables are all positive, as expected, and highly significant.
The fact that the sum of the output coe‰cients is less than one suggests that,
at the mean output vector, there are scale economies. A t-ratio of 4.06 indi-
cates that the null hypothesis of constant returns to scale can be rejected in
favor of the alternative of increasing returns to scale at any of the usual levels
of significance. The coe‰cients of the input price variables are positive, as
expected, and the coe‰cient of the interest rate is highly significant. The neg-
ative and significant coe‰cient of time indicates that costs have generally been
falling over the time period.

In the estimation of a stochastic frontier model the variance parameters are
also important. In the stochastic frontier model the estimates of sv and sw are
0.241 and 0.104, respectively. These results show that deviations from the
frontier due to the ine‰ciency error are much larger (2.3 times as great) than
deviations due to factors outside firm control.

The results of estimating a mixture of two normal regressions are given in
columns 3 and 4 of the table. The mixing parameter is equal to .16 indicating
that sixteen percent of the observations are associated with regime 1 and
eighty-four percent of the observations are associated with regime 2. Wolfe
(1971) developed an adjustment to the usual likelihood ratio statistic for test-
ing for the presence of a mixture. The value of the test statistic in this case is
1454.68, which far exceeds the critical values of a chi-squared distribution
with four degrees of freedom at any of the usual levels of significance. Thus,
there is strong statistical evidence for the presence of a mixture. That is, the
data are better explained by two cost functions than one cost function.

For the regime 1 results given in column 3, only eleven of the twenty-eight
regression coe‰cients are significant at the a ¼ :10 level, or better. Still, the
coe‰cients on the output variables are all positive, as expected, and highly sig-
nificant. The sum of the output coe‰cients is also still less than one, again
suggesting that, at the mean output vector, there are scale economies. A t-ratio
of 2.52 indicates that the null hypothesis of constant returns to scale can be
rejected in favor of the alternative of increasing returns to scale at the a ¼ :05
level of significance. The coe‰cients of the input price variables are again pos-
itive, but only the coe‰cient of the interest rate is statistically significant. The
negative and insignificant coe‰cient of time indicates that the null hypothesis
of no change in costs over the period cannot be rejected.
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Table 2. Estimation results

Stochastic
Frontier

Mixture of Normal
Regressions

Mixture of Stochastic
Frontier Regressions

VARIABLE NHN
FRONTIER

REGIME 1 REGIME 2 REGIME 1 REGIME 2

INTERCEPT �0.136
(16.17)a

0.078
(2.01)

�0.016
(2.47)

�0.332
(9.42)

�0.090
(7.98)

MORTGAGE 0.591
(118.71)

0.573
(22.76)

0.557
(128.56)

0.590
(31.95)

0.559
(126.95)

OTLOAN 0.097
(24.89)

0.119
(6.54)

0.081
(25.59)

0.184
(8.76)

0.076
(24.22)

INVEST 0.299
(71.78)

0.252
(11.45)

0.363
(95.18)

0.164
(7.10)

0.368
(94.32)

TIME �0.052
(3.79)

�0.063
(0.75)

�0.039
(3.37)

�0.039
(0.57)

�0.039
(3.42)

WAGE 0.045
(1.71)

0.241
(1.47)

0.024
(1.05)

0.182
(1.24)

0.047
(2.15)

INTRATE 0.956
(35.92)

0.714
(4.17)

0.991
(41.48)

0.834
(5.55)

0.964
(42.25)

SQTINV 0.077
(88.25)

0.052
(9.78)

0.200
(75.78)

0.047
(8.88)

0.198
(70.86)

SQTLOAN 0.016
(14.85)

0.019
(3.88)

0.019
(17.39)

0.070
(7.67)

0.013
(15.33)

SQMORT 0.159
(72.59)

0.140
(12.97)

0.204
(64.38)

0.162
(18.60)

0.200
(63.68)

LOANINV 0.012
(9.65)

0.011
(1.78)

�0.004
(2.85)

�0.004
(0.54)

0.000
(0.01)

LOANMORT �0.024
(17.21)

�0.021
(2.83)

�0.016
(10.03)

�0.045
(5.92)

�0.012
(7.62)

INVMORT �0.115
(72.21)

�0.082
(11.12)

�0.192
(86.15)

�0.080
(9.70)

�0.195
(89.61)

SQTIME �0.070
(1.52)

�0.093
(0.42)

�0.037
(0.95)

0.105
(0.62)

�0.051
(1.27)

SQWAGE �0.259
(3.14)

0.037
(0.111)

�0.444
(5.47)

0.243
(0.83)

�0.481
(6.16)

SQINT �0.198
(2.05)

0.174
(0.39)

�0.511
(5.73)

0.613
(1.82)

�0.538
(6.15)

WGETIM �0.041
(1.20)

0.004
(0.02)

�0.076
(2.46)

0.021
(0.15)

�0.074
(2.38)

WGEINT 0.218
(2.51)

�0.097
(0.26)

0.467
(5.63)

�0.427
(1.42)

0.500
(6.21)
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The regime 2 results, given in column 4 and representing eighty-four per-
cent of the observations, are somewhat better. Twenty-two of the twenty-eight
regression coe‰cients are significant at the a ¼ :10 level, or better. The coef-
ficients on the output variables are, again, all positive and highly significant.

Table 2 (continued)

Stochastic
Frontier

Mixture of Normal
Regressions

Mixture of Stochastic
Frontier Regressions

VARIABLE NHN
FRONTIER

REGIME 1 REGIME 2 REGIME 1 REGIME 2

TIMINT 0.028
(0.82)

�0.013
(0.08)

0.073
(2.33)

0.017
(0.12)

0.068
(2.14)

WGEINV �0.025
(2.38)

�0.002
(0.03)

0.017
(1.44)

0.000
(0.00)

0.019
(1.53)

WGELOAN �0.063
(6.19)

�0.029
(0.63)

�0.064
(6.73)

�0.108
(2.34)

�0.051
(5.38)

WGEMORT 0.066
(5.07)

0.048
(0.71)

0.024
(1.73)

0.047
(0.75)

0.019
(1.36)

TIMINV �0.021
(5.74)

0.003
(0.13)

�0.008
(1.66)

0.002
(0.11)

�0.007
(1.50)

TIMLOAN �0.005
(1.20)

�0.012
(0.49)

�0.005
(1.31)

�0.009
(0.37)

�0.006
(1.67)

TIMMORT 0.024
(3.96)

�0.009
(0.25)

0.015
(2.63)

0.002
(0.08)

0.015
(2.74)

INTINV 0.013
(1.13)

�0.004
(0.07)

�0.010
(0.83)

�0.005
(0.11)

�0.015
(1.20)

INTLOAN 0.062
(5.75)

0.033
(0.65)

0.061
(6.21)

0.097
(2.03)

0.051
(5.23)

INTMORT �0.047
(3.40)

�0.038
(0.55)

�0.021
(1.50)

�0.011
(0.18)

�0.018
(1.27)

s 0.233
(57.15)

0.113
(239.14)

y 0.160
(10.70)

0.840 0.180
(10.72)

0.820

sv 0.241
(46.33)

[0.332]b [0.075] 0.337
(23.28)

0.112
(7.13)

sw 0.104
(28.11)

[0.119] [0.103] 0.056
(3.52)

0.094
(9.87)

�LOGL 1104.53 1720.92 1757.96

a Numbers in parentheses are the absolute values of t-ratios.
b The numbers in brackets are obtained by using the relationship for adjusted OLS estimate.
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The sum of the output coe‰cients is very close to one, suggesting the presence
of constant returns to scale. A t-ratio of 0.38 indicates that the null hypothesis
of constant returns to scale can not be rejected at any of the usual levels of
significance. The coe‰cients of the input price variables are again positive, but
only the coe‰cient of the interest rate is statistically significant. The negative
and significant coe‰cient of time again indicates that costs have generally
declined over the period.

The converged parameter values from estimating a mixture of two stochas-
tic frontiers are contained in columns 5 and 6 of Table 2.7 The value of the
mixing parameter is .18 indicating that eighteen percent of the observations
are associated with regime 1 and eighty-two percent of the observations are
associated with regime 2. Applying the Wolfe test for the presence of a mix-
ture yields an approximate chi-square value of 1308.17, which far exceeds the
critical values for a chi-squared distribution with four degrees of freedom at
the usual levels of significance. Thus, there is strong statistical evidence for the
presence of a mixture of stochastic frontiers.

The stochastic frontier regime 1 results, given in column 5, represent only
eighteen percent of the observations. Only thirteen of the twenty-eight regres-
sion coe‰cients are significant at the a ¼ :10 level, or better. Even so, the
coe‰cients on the output variables are all positive, as expected, and signifi-
cant. The sum of the output coe‰cients is again less than one, suggesting the
presence of scale economies at the mean output vector. A t-ratio of 3.65 indi-
cates that the null hypothesis of constant returns to scale can be rejected in
favor of the alternative of increasing returns to scale at any of the usual levels
of significance. The coe‰cients of the input price variables are, again, positive,
but only the coe‰cient of the interest rate is statistically significant. The neg-
ative and insignificant coe‰cient of time indicates that the null hypothesis of
no change in costs over the period cannot be rejected.

The estimates of the variance parameters, sv and sw, are 0.337 and 0.056,
respectively. These results show that deviations from the frontier due to the
ine‰ciency error are much larger than deviations due to factors outside firm
control.

The stochastic frontier regime 2 results given in column 6 represent the
remaining eighty-two percent of the observations. Twenty-one of the twenty-
eight regression coe‰cients are significant at the a ¼ :10 level, or better. The
coe‰cients on the output variables are all positive, and, again, highly signifi-
cant. The sum of the output coe‰cients is, again, very near one, suggesting the
presence of constant returns to scale at the mean output vector. A t-ratio of
1.00 indicates that the null hypothesis of constant returns to scale can not be

7 The program used to estimate the models is written in the matrix language IML in SAS. Con-
vergence is examined in two steps. Initially, the convergence is determined by examining the value
of the loglikelihood function and the value of the mixing parameter. Then, when these values have
ceased to change, the gradient and the adjustment vector are examined. When elements of these
vectors are suitably small, convergence is declared. For example, in the estimation of the mixture
of stochastic frontier regressions, the values of the loglikelihood function and mixing weight have
stopped changing, the norm of the gradient is .23888, the norm of the adjustment vector is
.0000921, the maximum of the absolute values of the elements in the gradient vector is .12214, and
the maximum of the absolute values of the elements in the adjustment vector is .0000411. These
results are typical of the estimations in the paper.
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rejected at any of the usual levels of significance. The coe‰cients of the input
price variables are again positive, and both are statistically significant. The
negative and significant coe‰cient of time indicates once more that costs have
been declining over the period.

For regime 2, the estimates of the variance parameters, sv and sw, are
0.112 and 0.094, respectively. These results show that deviations from the
frontier due to the ine‰ciency error are very similar in size to deviations from
the frontier due to factors outside firm control.

At this point it is quite clear that the two mixture regimes and the two sto-
chastic frontier regimes correspond rather closely to one another. Directly
comparing the estimation results for these models is tedious due to the large
number of parameters estimated. However, some useful comparisons can
easily be made by either examining variance measures from each model or by
comparing the predicted costs from each.

A simple comparison can be made by examining the standard deviations of
the components of the variance. As noted earlier, the estimate of sv for regime
1 is 0.337 and the estimate of sv for regime 2 is 0.112. These figures suggest
that there is about three times as much variability in the ine‰ciency associated
with regime 1. The estimate of sw for regime 1 is 0.056 and the estimate of sw
for regime 2 is 0.094. These figures suggest that there is nearly twice as much
variability in the random error associated with regime 2.

Comparisons can also be facilitated by examining predicted costs. Pre-
dicted costs for each of the five models discussed are given in Table 3. Costs
are calculated at several di¤erent percentages of the mean output vector. The

Table 3. Predicted costs and percent of mean predicted cost

Percent of
Mean Output

NHN
FRONTIER

MIX1 MIX2 MIXF1 MIXF2

50% 13203.0
(53.5%)a

16795.7
(55.0%)

15342.9
(55.3%)

11359.6
(56.1%)

14196.7
(55.0%)

100% 24627.2
(100.0%)

30516.4
(100.0%)

27755.8
(100.0%)

20236.6
(100.0%)

25795.7
(100.0%)

150% 37520.2
(152.4%)

45619.4
(149.5%)

43119.5
(155.4%)

30346.6
(150.0%)

40052.8
(155.3%)

200% 51874.8
(210.5%)

62129.8
(203.6%)

61467.9
(221.5%)

41693.8
(206.0%)

56994.7
(220.9%)

250% 67662.6
(274.4%)

80023.8
(262.2%)

82889.8
(298.6%)

54272.0
(268.2%)

76690.6
(297.3%)

300% 84858.0
(344.6%)

98450.2
(322.6%)

107542.0
(387.5%)

68075.6
(336.4%)

99220.4
(384.6%)

400% 123395.0
(501.1%)

140320.2
(459.8%)

166741.4
(600.7%)

99350.1
(490.9%)

153127.0
(593.6%)

500% 167373.7
(679.6%)

187197.8
(613.4%)

239993.5
(864.7%)

135520.8
(669.7%)

219432.1
(850.7%)

a Figures in parentheses are percentages of mean cost.
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table also shows that the predicted costs from regimes 1 and 2 in the mixture
of normal regressions model are very similar. At fifty percent of the mean
output vector, regime 2 costs are lower than regime 1. As output increases, the
distance between these costs initially increases, but ultimately declines. At
two hundred fifty percent of the mean output vector, regime 2 costs actually
exceed regime 1 costs. The table also shows that predicted costs from the sto-
chastic frontier model are below the predicted costs from every model except
the stochastic frontier regime 1 model.

The predictions from the mixture of stochastic frontiers are very inter-
esting. The cost predictions from regime 1 are the lowest in the table, even
lower than those from the stochastic frontier. Predicted costs from stochastic
frontier regimes 1 and 2 lie below corresponding mixture regimes 1 and 2.
Even the high cost stochastic frontier regime 2 lies below both mixture re-
gimes. These cost functions are ranked, generally, from lowest cost to highest
cost, as; first, stochastic frontier regime 1, second, stochastic frontier, third,
stochastic frontier regime 2, fourth, mixture regime 1, and fifth, mixture re-
gime 2.

These cost predictions, along with the earlier ine‰ciency results, suggest
that there seem to be a small number of savings and loans characterized by
very low costs, with some firms being very ine‰cient with respect to that tech-
nology. Still, the relatively ine‰cient firms appear to be operating with lower
costs than the bulk of firms using the other technology. Most of the firms are
relatively more e‰cient while using a higher cost technology. A possible
explanation can be found in technology switching behavior. Some firms, hav-
ing made the switch to a more e‰cient technology some time in the past, are
operating very e‰ciently. Firms more recently switching to the more e‰cient
technology may have high costs for a time. Separating firms into regimes may
help provide an explanation.

The first step in comparing the two regimes from the mixture of stochastic
frontiers is to separate the observations by regime. This is possible by using
the weighting matrix calculated as part of the EM algorithm. An observation
is assigned to regime 1 if the weight for that regime exceeds one half, other-
wise the observation is assigned to regime 2. This assignment scheme results
in 244 observations assigned to regime 1 and 3095 observations assigned to
regime 2.

The transformed and untransformed means for the total sample and for
each of the two regimes are given in Table 4. The untransformed means are
provided because they are easy to interpret. The transformed means are pro-
vided because they represent the data used in the actual estimations. The
means calculated for the regimes reveal some distinct di¤erences between the
two regimes. The first large di¤erence revealed in the table is between the total
costs for regimes 1 and 2. The average total cost for savings and loans in
regime 1 is $16,883,000 but for savings and loans in regime 2 the average
is $29,106,000 or 72 percent higher. The average volume of mortgages is
almost 82 percent higher in regime 2 than in regime 1. The same is true
with investments. The average volume of investments is almost 57 percent
higher in regime 2. These facts lead to the conclusion that the institutions
associated with regime 2 are considerably larger than those associated with
regime 1.

Taken together, these results certainly imply that one cost function does
not adequately describe the savings and loan data. The empirical evidence
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suggests that smaller institutions are operating along a di¤erent cost function
than larger ones. Perhaps this di¤erence is due to di¤erences in the underlying
technology, di¤erences in the structures of the markets in which these institu-
tions operate, di¤erences in product mix, or some combination of these fac-
tors. What is clear is that a single frontier cost function does not adequately
describe the data. A solution to this problem is to estimate a mixture of sto-
chastic frontiers using the EM algorithm developed in this paper.

Conclusions

This paper extends previous work in the area of cost estimation and e‰ciency
by estimating a mixture of two stochastic frontiers in the presence of no sam-
ple separation information. An EM algorithm, based primarily on the work of
Huang (1984) and Hartley (1978), is developed for the estimation of a mixture
of stochastic frontiers.8 This method can be used when one suspects there is
more than one stochastic frontier generating the data, but one has no informa-
tion on which observations are associated with which regime. The algorithm
developed in this study makes possible the estimation of stochastic frontiers
with no sample separation information.

The EM algorithm developed is applied to the estimation of a mixture of
two stochastic cost frontiers using data on solvent savings and loans for the
period 1986–1988. The results indicate that the cost data are characterized by
a mixture of stochastic frontiers.

8 A more detailed version of the paper is available from the author upon request.

Table 4. Raw and transformed means [Transformed means
in brackets]

VARIABLE TOTAL REGIME 1 REGIME 2

TOTCOST 28212
[�0.955]

16883
[�1.334]

29106.2
[�0.925]

MORT 168160
[�1.283]

95643.5
[�1.786]

173877
[�1.243]

OTLOAN 15658
[�2.012]

16252.7
[�2.125]

15611.2
[�2.003]

INVEST 60452
[�1.659]

39581.6
[�2.569]

62098.3
[�1.587]

WAGE 24705
[0.333]

25069.2
[0.181]

24676
[0.345]

INTRATE 0.073
[0.342]

0.072
[0.148]

0.074
[0.357]
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