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Abstract. Many researchers use GARCH models to generate volatility fore-
casts. Using data on three major U.S. dollar exchange rates we show that
such forecasts are too high in volatile periods. We argue that this is due to the
high persistence of shocks in GARCH forecasts. To obtain more flexibility
regarding volatility persistence, this paper generalizes the GARCH model by
distinguishing two regimes with di¤erent volatility levels; GARCH e¤ects are
allowed within each regime. The resulting Markov regime-switching GARCH
model improves on existing variants, for instance by making multi-period-
ahead volatility forecasting a convenient recursive procedure. The empirical
analysis demonstrates that the model resolves the problem with the high
single-regime GARCH forecasts and that it yields significantly better out-of-
sample volatility forecasts.
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1. Introduction

Volatility of financial returns is an important aspect of many financial deci-
sions. For example, volatility of exchange rates is a determinant for pricing
currency options used for risk management. Hence, there is a need for good
volatility forecasts.

Such forecasts are often based on the fact that volatility is time-varying in
high-frequency data and that periods of high volatility tend to cluster. To
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capture this, many authors use autoregressive conditional heteroskedasticity
(ARCH) models, as introduced by Engle (1982) and extended to generalized
ARCH (GARCH) in Bollerslev (1986); see Bollerslev, Chou and Kroner
(1992) for an overview of the GARCH literature. Such models usually improve
the fit a lot compared with a constant variance model and, as Andersen and
Bollerslev (1998) claim, GARCH models provide good volatility forecasts.

This paper shows that GARCH forecasts are, nevertheless, too high in
volatile periods, using almost twenty years of daily data on U.S. dollar ex-
change rates versus the British pound, German mark and Japanese yen. This
suggests that better volatility forecasts can be obtained by solving that prob-
lem. The goal of this paper is to adapt the GARCH model in order to obtain
such better forecasts.

The reason for the excessive GARCH forecasts in volatile periods may be
the well-known high persistence of individual shocks in those forecasts. La-
moureux and Lastrapes (1990), among others, show that this persistence may
originate from structural changes in the variance process. For example, if the
variance is high but constant for some time and low but constant otherwise,
persistence of such high- and low-volatility homoskedastic periods already
results in volatility persistence (see also Timmermann (2000)). A GARCH
model, which cannot capture persistence of such periods, puts all volatility
persistence in the persistence of individual shocks. This idea is similar to
Perron’s (1989) work on the mean equation, as he finds that structural breaks
in the mean make it more di‰cult to reject the null of a unit-root, that is,
permanent persistence of shocks in the mean.

One possibility to allow for periods with di¤erent unconditional variances
is, of course, by introducing deterministic shifts into the variance process, but
this is rather ad hoc. A popular approach to endogenize changes in the data
generating process is the Markov regime-switching model. Hamilton (1989)
introduces this model to describe the U.S. business cycle, which is charac-
terized by periodic shifts from recessions to expansions and vice versa. In our
context of exchange rate volatility, a Markov process can be used to govern
the switches between regimes with di¤erent variances. See Kaufmann and
Scheicher (1996) for a survey on Markov-switching models.

To solve the problem of the excessive GARCH forecasts in volatile peri-
ods, we therefore generalize the GARCH model by allowing for regimes with
di¤erent volatility levels. We use two regimes and do not consider models with
more regimes, because we want to explore whether the introduction of regimes
helps solve the problem with the GARCH forecasts and it turns out that two
regimes are su‰cient for that. Within each regime we use GARCH models
to govern the variance. Hence, it is a regime-switching GARCH model. The
persistence of both regimes yields an extra source of volatility persistence com-
pared to standard, single-regime GARCH, thereby enhancing the flexibility in
describing the volatility persistence of shocks.

The regime-switching GARCH model we develop di¤ers from existing
variants. First, it allows for GARCH dynamics, thereby generalizing the
regime-switching ARCH models of Cai (1994) and Hamilton and Susmel
(1994), and also used by Fong (1998). Because for our data the conditional
heteroskedasticity within regimes cannot always be captured by a moderate
number of ARCH terms, we need a GARCH term for parsimony. In addi-
tion, the data reveal that the variance dynamics di¤er across regimes. Our
model allows for that, which is not the case for their models.
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A second di¤erence between our model and existing variants concerns
Gray’s (1996a) regime-switching GARCH specification, also used in Ang and
Bekaert (1998). For that variant we are unable to compute the multi-period-
ahead volatility forecasts needed for the detailed forecasting analysis we want
to do in the current paper. In contrast, for our version such forecasts can be
obtained through a convenient first-order recursive procedure. The idea be-
hind this di¤erence is that, when integrating out the unobserved regimes, we
use all available information, whereas Gray uses only part of it; this also ex-
plains the better fit for our model. The development of our convenient regime-
switching GARCH model is the main contribution of the paper from a theo-
retical point of view.

The main empirical results are that regime-switching GARCH resolves the
problem that standard GARCH forecasts are significantly too high in volatile
periods and that regime-switching GARCH forecasts significantly outperform
GARCH forecasts in terms of mean squared error. These results hold out-of-
sample and for both forecast horizons we examine, namely the one-day and
ten-day horizons. This provides evidence for the conjecture raised by West
and Cho (1995) that it will be productive to explore models that explicitly
account for movement in the variance generating process, for instance, by re-
gime switches.

The next section introduces the regime-switching GARCH model and dis-
cusses its properties. Section 3 describes the data used in the empirical appli-
cation and presents the empirical results. It also contains the out-of-sample
forecasting exercise that yields the most important empirical results of the
paper. Section 4 concludes.

2. Regime-switching GARCH

In this section we introduce the regime-switching GARCH model, with which
we try to improve on the standard, one-regime GARCH volatility forecasts.
We describe the model, discuss its properties and relate the model to existing
regime-switching ARCH and GARCH models.

2.1. The model

We use the following notation. Let St denote the logarithm of a spot exchange
rate at time t, that is, the domestic currency price of one unit of foreign cur-
rency. We concentrate on the exchange rate change st ¼ 100ðSt � St�1Þ, so
that st is the percentage depreciation of the domestic currency from time t� 1
to t.

The regime-switching GARCH model consists of four elements, namely
the mean, regime process, variance and distribution. Two of them, the regime
process and variance are crucial for interpreting the empirical results, as they
are directly related to the di¤erence between our model and standard, one-
regime GARCH models.

The mean of exchange rate processes is often modeled by a random walk
(with drift). For instance, Meese and Rogo¤ (1983) and MacDonald and
Taylor (1992) stress the empirical quality of the random walk over struc-
tural models of exchange rate determination, particularly in the short run.
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We follow this simple but reasonable approach, also because the focus of our
paper is on the volatility rather than the mean:

st ¼ mþ et: ð1Þ

The innovation et has zero mean conditional on the information set of the
data generating process to be defined below. Thus, m is the constant condi-
tional mean of st. (It is possible to incorporate, for example, autoregressive
terms in the conditional mean without making the formulas that follow es-
sentially di¤erent.)

As argued in the introduction, the purpose of the regimes with di¤er-
ent volatility levels is to explain part of the volatility persistence. This requires
that regimes can be persistent. To model this, let rt A f1; 2g be the (unob-
served) variance regime at time t, where the first regime is identified as the low-
variance one. Let pt�1ðrtj~rrt�1Þ ¼ pðrt j It�1; ~rrt�1Þ denote the probability of going
to regime rt at time t conditional on the information set of the data generat-
ing process, which consists of two parts. The first part, It�1, denotes the in-
formation observed by the econometrician, that is ðst�1; st�2; . . .Þ. The second
part, ~rrt�1, is the regime path ðrt�1; rt�2; . . .Þ, which is not observed by the eco-
nometrician. Note that the subscript t� 1 below an operator (probability,
expectation or variance) is short-hand notation for conditioning on It�1.

As in Hamilton (1989), we assume that rt follows a first-order Markov
process with constant staying probabilities

pt�1ðrtj~rrt�1Þ ¼ pðrtjrt�1Þ ¼
p11 if rt ¼ rt�1 ¼ 1

p22 if rt ¼ rt�1 ¼ 2:

�
ð2Þ

If p11 and p22 are high, this specification results in the regime persistence re-
quired above.

The specification of the conditional variance, the third element of the
model, represents the main di¤erence between this paper and earlier ones on
regime-switching ARCH and GARCH. Using the law of iterated expectations
and (1), the conditional variance Vt�1fstg equals Et�1½Vt�1fetj~rrtg
, so that we
concentrate on Vt�1fetj~rrtg. Four specifications of the latter variance will be
discussed, where the final one turns out to be the most convenient. For the
sake of exposition, we confine ourselves to models with only one ARCH and
one GARCH term; including more ARCH and GARCH terms is straight-
forward.

The first specification of the conditional variance is a direct application of
the GARCH(1,1) model in a regime-switching context:

Vt�1fetj~rrtg ¼ ort þ arte
2
t�1 þ brtVt�2fet�1j~rrt�1g; ð3Þ

where Vt�1fetj~rrtg denotes the variance of et conditional on observable infor-
mation It�1 and on the regime path ~rrt. The current regime only determines
the parameters, that is, the intercept ort , the ARCH parameter art and the
GARCH parameter brt .

This specification, however, appears practically infeasible when estimating
the model. This is due to the fact that Vt�1fetj~rrtg in (3) depends on the entire
regime path ~rrt, because it depends on rt and Vt�2fet�1j~rrt�1g, which depends on
rt�1 and Vt�3fet�2j~rrt�2g, which depends on rt�2 and Vt�4fet�3j~rrt�3g, and so on.
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Since the number of possible regime paths grows exponentially with t, this
leads to an enormous number of paths to t. The econometrician, who does not
observe regimes, has to integrate out all possible paths when computing the
sample likelihood. This renders estimation intractable. The remaining specifi-
cations of the conditional variance are ways to avoid this problem of path
dependence.

The second specification is based on Cai (1994) and Hamilton and Susmel
(1994). They essentially remove the GARCH term, which is the cause of the
path dependence, and thus use only an ARCH term in (3). Since Vt�1fetj~rrtg
then only depends on the current regime rt, there is no problem of path de-
pendence. (More precisely, Cai (1994) and Hamilton and Susmel (1994) use
slightly di¤erent models in which Vt�1fetj~rrtg not only depends on the current
but also on a few recent regimes. The essential point is that the conditional
variance depends only on a small number of regimes, which can be integrated
out in the likelihood quite easily.)

The third specification of the conditional variance comes from Gray
(1996a). He argues that the problem of path dependence can be solved with-
out giving up the potentially important persistence e¤ects of a GARCH term,
as has been done in the second specification. The basic idea of Gray is to in-
tegrate out the unobserved regime path ~rrt�1 directly in the source of the path
dependence, Vt�2fet�1j~rrt�1g in (3), instead of only in the likelihood. This
makes Vt�1fetj~rrtg only depend on the current regime rt, not on the path ~rrt�1,
as is clear from the explanation of the path dependency problem below (3). As
Gray shows, this is very convenient from an estimation point of view, because
the likelihood can then be computed in a first-order recursive way, which
speeds up the estimation process considerably. Since Gray uses the informa-
tion observable at time t� 2 when integrating out, he actually assumes that

Vt�1fetj~rrtg ¼ ort þ arte
2
t�1 þ brtEt�2½Vt�2fet�1j~rrt�1g
; ð4Þ

where the expectation on the right-hand-side is across the regime path ~rrt�1,
conditional on information It�2. Note that this is equivalent to integrating out
only the single regime rt�1, as the lag of (4) implies that Vt�2fet�1j~rrt�1g is in-
dependent of ~rrt�2.

The main benefit of specification (4) is that there is no path depen-
dence problem any more, although GARCH e¤ects are still allowed. There is,
however, one important inconvenience, especially regarding our focus of vol-
atility forecasting: generating multi-period-ahead variance forecasts such as
Vt�1fstþ1g turns out to be very complicated. This motivates our search for
another specification that makes multi-period-ahead forecasting more conve-
nient while preserving the attractive features of Gray’s model.

Our specification of Vt�1fetj~rrtg di¤ers from Gray’s (1996a) model in two
ways. First, as the expectation in (4) shows, Gray integrates out the regime
rt�1 at time t� 2. We postpone this till t� 1, the time at which the conditional
variance Vt�1fetj~rrtg is really needed. This allows us to use more observable
information when integrating out the previous regime. This extra data em-
bodies information about previous regimes and is thus useful.

The second di¤erence is that, when integrating out the regime rt�1, Gray
does not use the information that the regime at time t is in the conditioning
information of Vt�1fetj~rrtg. Particularly if regimes are highly persistent, rt gives
much information about rt�1. In contrast to Gray, we do use this information.
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In formula, our regime-switching GARCH(1,1) model is described by

Vt�1fetj~rrtg ¼ ort þ arte
2
t�1 þ brtEt�1½Vt�2fet�1j~rrt�1g j rt
; ð5Þ

where the expectation on the right-hand-side is across the regime path ~rrt�1,
conditional on information It�1 and rt. Note that this is equivalent to in-
tegrating out only the single regime rt�1, as the lag of (5) implies that
Vt�2fet�1j~rrt�1g is independent of ~rrt�2. By construction, Vt�1fetj~rrtg only de-
pends on the current variance regime rt, so that Vt�1fetj~rrtg ¼ Vt�1fetjrtg.
Hence, there is no problem of path dependence. To complete the specification
of the conditional variance, we impose ort > 0 and art , brt b 0 to ensure pos-
itivity of Vt�1fetj~rrtg for all t, just as for single-regime GARCH.

The final element of the regime-switching GARCH model is the condi-
tional distribution. We assume that, conditional on It�1 and ~rrt, the innovation
et has a t-distribution with n degrees of freedom, where n is assumed to be in-
dependent of the conditioning information, and with mean zero and variance
Vt�1fetjrtg:

et j It�1; ~rrt@ tðn; 0;Vt�1fetjrtgÞ: ð6Þ

The use of a t-distribution instead of a normal one is quite popular in the
standard, single-regime GARCH literature (see Bollerslev, Chou and Kroner
(1992)). For regime-switching models, a t-distribution can be extra useful.
After all, in case of normality, a large innovation in the low-volatility period
will lead to a switch to the high-volatility regime earlier, even if it is a single
outlier in an otherwise tranquil period. Allowing for a t-distribution will thus
enhance the stability of the regimes. Note that the t-distribution includes the
normal distribution as the limiting case where the degrees of freedom go to
infinity.

In summary, equations (1), (2), (5) and (6) describe our regime-switching
GARCH model. It contains the standard, one-regime GARCH(1,1) model as
a special case, since that model results when all regime-specific parameters are
equal across regimes.

2.2. Properties of the model

The model just described has several interesting properties. We first show the
increased flexibility regarding the volatility persistence of shocks. After that
we present the convenient procedure for multi-period-ahead volatility fore-
casting, which we need to examine the forecast quality of regime-switching
GARCH compared with single-regime GARCH, the focus of the paper. Then
the unconditional variance, the estimation procedure, and inference about the
unobserved regime are discussed.

2.2.1. Flexibility regarding volatility persistence

As motivated in the introduction, the reason to generalize the single-regime
GARCH model by introducing regimes is to enhance the flexibility of the
model to capture the persistence of shocks in volatility. One example is that in
regime-switching GARCH a shock can be followed by a volatile period not
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only because of GARCH e¤ects, but also because of a switch to the high-
volatility regime.

The flexibility with respect to volatility persistence is further improved by
the allowance for di¤erent ARCH and GARCH parameters across regimes.
For instance, if shocks are more persistent in periods of high than in periods
of low volatility, this can be captured by the regime specific parameters in (5).
This has consequences for capturing the ‘‘pressure relieving’’ e¤ect of some
large shocks, that is, some shocks are not persistent at all but are followed by
a tranquil period. Any regime-switching model can capture this to some extent
by a shift from the high-volatility to the low-volatility regime. However, our
regime-switching model with di¤erent parameters across regimes has a second
source of neglecting large recent shocks. After all, if the low-variance regime is
also the low-persistence regime, the large shock will be out of the market very
soon after the switch to the low-variance regime. In this respect, our model
generalizes the models in Hamilton and Susmel (1994) and Cai (1994), as their
regime variances only di¤er by a multiplicative or additive constant, respec-
tively, not by di¤erences in the ARCH parameters.

2.2.2. Recursive volatility forecasting

Suppose we need the variance of the exchange rate change over a horizon h,
conditional on information available at time t� 1. Let st;h denote the h-period
change, that is, st;1 ¼ st and st;h ¼ st þ � � � þ st�1þh for h > 1. The variance of
interest is thus Vt�1fst;hg. Because of the absence of serial correlation in the
one-period changes (see below (1)),

Vt�1fst;hg ¼
Xt�1þh

t¼t
Vt�1fstg: ð7Þ

Each variance on the right-hand-side is equal to

Vt�1fstg ¼
X
rt¼1;2

pt�1ðrtÞ � Vt�1fetjrtg; ð8Þ

where pt�1ðrtÞ is the probability that the regime at time t is rt conditional on
It�1. Note that we use the same symbol pt�1 for several probabilities (for in-
stance, see (2) and (8)). The specific meaning of pt�1 is uniquely determined by
the symbols in its argument. This results in a concise notation.

An important implication of our way of modeling the conditional variance
in (5) is that Vt�1fetjrtg in (8) can be computed in a first-order recursive
manner using a formula analogous to the one Engle and Bollerslev (1986)
have derived for the standard, one-regime GARCH model. Starting from
Vt�1fetjrtg, appendix A shows that one can compute Vt�1fetjrtg for t > t by
iterating forward on

Vt�1fetþijrtþig ¼ ortþi þ ðartþi þ brtþiÞ � Et�1½Vt�1fetþi�1jrtþi�1g j rtþi
 ð9Þ

for i ¼ 1; . . . ; t� t. This simplifies the computation of Vt�1fst;hg in (7) sub-
stantially and represents one of the main advantages of our regime-switching
GARCH model over Gray’s (1996a) model.
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2.2.3. Unconditional variance

In Appendix B we derive the following results for the ‘‘unconditional’’ error
variance Vfetjrtg. First, if Vfetjrt ¼ ig exists for both i ¼ 1; 2 and both o1;o2

and is independent of t, denoted by s2
i , then

s2
1

s2
2

" #
¼ ðI2 � AÞ�1 � o1

o2

� �
; ð10Þ

where I2 is the identity matrix of order two and the ði; jÞ-th element of A is
Aij ¼ Pfrt�1 ¼ j j rt ¼ igðai þ biÞ (appendix B gives expressions for the proba-
bilities in Aij).

Second, necessary conditions for the existence of both variances are A11,
A22 < 1 and detðI2 � AÞ > 0. So, given the definition of Aii, a probability
times the sum of the regime-specific ARCH and GARCH coe‰cients must be
less than one for both regimes. Moreover, there is some restriction on a com-
bination of the ARCH and GARCH coe‰cients across regimes.

To get a better understanding of these results, let us look at standard
GARCH(1,1). There the unconditional variance is s2 ¼ ð1 � a� bÞ�1o and
the necessary (and su‰cient) condition for its existence is aþ b < 1. Hence,
we again see a correspondence between single-regime GARCH and regime-
switching GARCH.

2.2.4. Recursive estimation

The regime-switching GARCH model can be estimated by maximum likeli-
hood (ML). The likelihood function is derived in appendix C, using similar
techniques as Gray (1996a). As for Gray’s model, this likelihood has a first-
order recursive structure, similar to that of single-regime GARCH. This
speeds up the estimation process.

2.2.5. Recursive regime inference

Although regimes are not observed, one can estimate the probability that the
process is in a particular regime at a specific time. This is, for instance, useful
if one wants to classify a series into periods of low and high volatility.

Following Gray (1996a), we use two types of regime probabilities, namely
ex ante and smoothed probabilities. The ex ante probability of regime rt at
time t, pt�1ðrtÞ, is the conditional probability that the process is in that regime
at time t using only information available to the econometrician at time t� 1,
that is, It�1. The smoothed regime probability pTðrtÞ, on the other hand, uses
the complete data set IT , thereby smoothing the ex ante probabilities. Hence,
it gives the most informative answer to the question which regime the process
was likely in at time t. The ex ante probabilities are computed during estima-
tion (see appendix C). The smoothed probabilities can be calculated in a re-
cursive manner starting from the ex ante probabilities, as appendix D shows
using an algorithm based on Gray (1996b).
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3. Empirical results

So far, we have generalized single-regime GARCH to regime-switching
GARCH to obtain more flexibility regarding the volatility persistence of
shocks. In this section we estimate both models and examine whether that
generalization pays o¤ empirically in terms of improved volatility forecasts,
the central issue of the paper.

3.1. Data

We consider three major U.S. dollar exchange rates, namely, the dollar price
of the British pound, the German mark and the Japanese yen. We have 4,982
daily observations for the exchange rate change st from January 3, 1978 to
July 23, 1997. All rates have been obtained from Datastream.

Panel A of figures 1, 2 and 3 gives an indication of the volatility clustering
of the three exchange rates under consideration over the sample period. As
usual, all three plots show substantial volatility clustering. This is confirmed
by (not reported) Box-Pierce tests for serial correlation in the squared ex-
change rate changes, as these are significant at any reasonable significance
level.

The plots also demonstrate that shocks sometimes have a long e¤ect on
subsequent volatility, but that shocks can also be followed by a period of low
volatility. For instance, in figure 1A the large peak in the squared change plot
for the British pound on March 27, 1985 was followed by about half a year of
substantial volatility. On the other hand, the G-5 Plaza announcement on
September 22, 1985 to bring about a dollar depreciation had a sharp e¤ect on
the dollar the next day, as the second largest peak in the figure makes clear,
but was followed by a period of low instead of high volatility. Therefore, at
first sight the extra flexibility regarding volatility persistence that is present in
regime-switching GARCH seems worthwhile.

3.2. Estimation results

This subsection presents the estimation results for the regime-switching
GARCH model. Let GARCH(P1;Q1;P2;Q2) denote a regime-switching
model with Q1 (Q2) ARCH and P1 (P2) GARCH terms in the first (second)
regime. These are obvious variants of the GARCH(1,1;1,1) model developed
in subsection 2.1. The models for the pound contain an AR(1) term in mean
equation (1) to correct for the small first-order autocorrelation found in the
data.

For comparison, we also estimate five other models. Two of them are
single-regime models, namely the constant variance model and the popular
GARCH(1,1) model. Two other models belong to the regime-switching
ARCH class. The ARCH(0;0) model has zero ARCH terms, so constant
variance, in both regimes, as in Dewachter (1997) and Scheicher (1999); this
model is used to analyze the e¤ect of introducing only regimes. The other
ARCH-type model, ARCH(Q1;4) with Q1 determined below, is in the spirit of
Cai (1994) and Hamilton and Susmel (1994). It is, however, somewhat more
general in the sense that the regime-specific ARCH models are allowed to
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vary across regimes in an unrestricted way, whereas in Cai (1994) and Hamil-
ton and Susmel (1994) the di¤erence between the low- and high-variance re-
gime ARCH models is just an additive or multiplicative constant, respectively.
The final model for comparison is Gray’s (1996a) variant of regime-switching
GARCH.

Table 1 presents the maximum likelihood estimation results. The inverse of

Fig. 1. British pound
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the degrees of freedom n of the t-distribution (see (6)) is presented; testing for
conditional normality then boils down to testing whether n�1 di¤ers sig-
nificantly from zero. Moreover, for easier comparison of the models, we re-
port the regime-specific unconditional variances s2

r ðr ¼ 1; 2Þ instead of the
intercepts or in the conditional variance formula (5); see (10) for the compu-
tation of s2

r . Finally, the last column of table 1 reports the log-likelihood using
GARCH(1,1) as a reference, so that the values for the other models are dif-

Fig. 2. German mark

Fig. 3. Japanese yen
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ferences with respect to GARCH(1,1). Note that one should be careful when
interpreting di¤erences in log-likelihoods in terms of likelihood ratio tests.
First, not all models are nested. Second, testing the null of a single-regime
against a regime-switching model involves unidentified parameters (the regime-
staying probabilities) under the null, so that the asymptotic distribution of
the likelihood ratio is not the usual w2-distribution (see Hansen (1992)). In this
paper we do not formally test for the significance of the second regime, because
the focus of the paper concerns forecasting quality, so that we concentrate on
the e¤ects of regimes on that.

3.2.1. Single-regime GARCH

As is typically found, the standard, one-regime GARCH(1,1) model provides
a much better fit than the constant variance model. For instance, the increase
in log-likelihood of the GARCH model over the constant variance model is
244.34 for the British pound, so that ARCH and GARCH e¤ects are statisti-
cally very important. GARCH(1,1) is also the preferred model within the class
of GARCH(P;Q) models, as the likelihood ratios of GARCH(1,1) versus
GARCH(2,1) and GARCH(1,2) are 1.12 and 0.00, respectively, for the
pound, 0.92 and 0.00 for the mark, and 1.90 and 0.00 for the yen, which are
all insignificant. This is in accordance with Bollerslev et al. (1992), who state
that in most applications P ¼ Q ¼ 1 is su‰cient.

As usual, the estimated sum of the ARCH and GARCH parameters
(aþ b) is large for all three series, pointing at high volatility persistence of
individual shocks. This may indicate parameter instability, as argued in the
introduction. We estimate regime-switching models to analyze whether the
high volatility persistence is indeed spurious.

3.2.2. Regime-switching ARCH(0;0)

Let us first consider the regime-switching ARCH(0;0) model, in which per-
sistence of regimes is the only source of volatility clustering. Table 1 shows
that for the three rates there is a distinction between a low- and a high-vola-
tility regime, where the unconditional variance in the latter is three to four
times as large.

The variance regimes are also persistent, since the staying probabilities p11

and p22 are all above 0.975. To get a better idea about the amount of persis-
tence that such staying probabilities imply, we compute the expected duration
of the high-variance regime. Conditional on being in this regime (rt ¼ 2), this
is (see Hamilton (1989))

Xy
h¼1

h � Pfrt ¼ 2; . . . ; rtþh�1 ¼ 2; rtþh ¼ 1 j rt¼2g

¼
Xy
h¼1

h � ðp22Þh�1ð1 � p22Þ ¼ ð1 � p22Þ�1: ð11Þ
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For a typical ARCH(0;0) staying probability of 0.98, this implies an expected
duration of 50 (working) days, which is about 2.5 months.

The log-likelihood gives a first idea of whether the regime persistence is
an important source of volatility clustering. For the pound and mark the log-
likelihood is lower than for GARCH(1,1), but for the yen it is higher. Hence,
regimes can be an important mechanism to capture volatility clustering.

This is confirmed by table 2, which gives tests for autocorrelation in the
squared normalized residuals (see the notes below the table for the computa-
tion of the normalized residuals). The first-order autocorrelations r1 and the
Box-Pierce tests Q10 show that the conditional heteroskedasticity in the nor-
malized residuals is greatly reduced when going from the constant variance
model to the regime-switching model with constant regime-specific variances.
However, the conditional heteroskedasticity tests also make clear that there is
still heteroskedasticity left (we use a significance level of 5% throughout the
paper). Apparently, there is also volatility clustering within a regime.

3.2.3. Regime-switching ARCH(Q1;4)

To capture the remaining conditional heteroskedasticity, we first add only
ARCH terms to the model, so no GARCH terms yet. To get some insight into
the magnitude of volatility clustering across the regimes, we start with a model
with several ARCH terms in both regimes. For parsimony, we restrict the
number of ARCH terms to four in both regimes, that is, ARCH(4;4). We find
that four ARCH terms is too much for the low-variance regime: for the pound
two ARCH terms su‰ce (likelihood ratio of ARCH(2;4) versus ARCH(4;4) is
0.74, which is insignificant because the p-value is [0.69]), for the mark zero
terms su‰ce (1.87 [0.76]) and for the yen one term (3.79 [0.29]). In contrast,
the high-volatility regime keeps its four ARCH terms, as reducing that num-

Table 2. Diagnostics for residual conditional heteroskedasticity

BRITISH POUND GERMAN MARK JAPANESE YEN
r1 Q10 r1 Q10 r1 Q10

Const. variance 0.11

(0.01)

533.26

[0.00]

0.12

(0.01)

371.09

[0.00]

0.09

(0.01)

164.25

[0.00]

GARCH(1,1) 0.01
(0.01)

5.29
[0.87]

0.00
(0.01)

8.02
[0.63]

0.02
(0.01)

13.00
[0.22]

ARCH(0;0) 0.03

(0.01)

44.69

[0.00]

0.03

(0.01)

25.29

[0.00]

0.03

(0.01)

16.15
[0.10]

ARCH(Q1;4) �0.01
(0.01)

26.15

[0.00]

0.00
(0.01)

25.59*
[0.00]

0.01
(0.01)

8.29
[0.60]

GrayG(0,Q1;1,1) �0.00
(0.01)

6.30
[0.79]

0.01
(0.01)

27.08

[0.00]

0.00
(0.01)

16.67
[0.08]

GARCH(0,Q1;1,1) �0.00
(0.01)

6.47
[0.77]

0.00
(0.01)

9.33
[0.50]

0.01
(0.01)

8.87
[0.54]

Standard errors in parentheses and p-values in square brackets; * is significant at the 5% level.
The first-order autocorrelation, r1, and the Box-Pierce statistic of order ten, Q10, are computed
from the squared normalized residuals. Note that the normalization of residuals under a regime-
switching model entails integrating out the unobserved regime in the variance, as in (8).
The specifications of the models are given in the notes below table 1.

Improving GARCH volatility forecasts 377



ber to the number of ARCH terms in the first regime yields likelihood ratios
of 23.71 [0.00] for the pound, 19.76 [0.00] for the mark, and 7.06 [0.07] for the
yen. We thus obtain ARCH(2;4) for the pound, ARCH(0;4) for the mark, and
ARCH(1;4) for the yen, thereby highlighting that there is more volatility
clustering in the high- than in the low-variance regime for our data.

The latter result is supported by Chaudhuri and Klaassen (2000), who find
for weekly data on East Asian stock index returns that there is more condi-
tional heteroskedasticity in the high- than in the low-volatility regime. Our
evidence, however, is in contrast with the models in Cai (1994) and Hamilton
and Susmel (1994). Their regime-specific ARCH models only di¤er by an ad-
ditive or multiplicative parameter, respectively, so that, for instance, the num-
ber of ARCH terms is the same across regimes. Since we find evidence of
longer volatility persistence in the high-volatility regime, we prefer our asym-
metric approach for the data in this paper.

The usefulness of the regime-switching ARCH approach appears from
the tests in table 2. For the yen there is no remaining conditional hetero-
skedasticity after estimation of ARCH(1;4). For the other two exchange rates,
however, the regime-switching ARCH models are insu‰cient. The remaining
conditional heteroskedasticity can be attributed to the high-variance regime,
as the likelihood ratios given above show that higher-order ARCH estimates
are insignificant for the low-volatility regime.

3.2.4. Regime-switching GARCH

The residual conditional heteroskedasticity can be modeled by adding ARCH
terms to the high-volatility part of ARCH(Q1;4). However, that increases
the number of parameters substantially. For reasons of parsimony it is better
to use a GARCH term in the high-variance regime. This leads to regime-
switching GARCH(0,Q1;1,1).

Table 2 shows that the evidence of residual conditional heteroskedas-
ticity that was present for regime-switching ARCH on the pound and mark
has disappeared when using regime-switching GARCH. Moreover, table 1
demonstrates that the log-likelihood increases a lot after the introduction of
GARCH terms, namely 38.90 for the pound and 23.41 for the mark. Re-
markably, this increase is achieved by using fewer instead of more parameters.
After all, the regime-switching GARCH models have two parameters less
than regime-switching ARCH, and the di¤erence becomes even larger when
the regime-switching ARCH models are extended to capture the residual vol-
atility clustering. For Japan, with no residual conditional heteroskedasticity
after ARCH(1;4), it is not surprising the increase in the log-likelihood is neg-
ligible (0.24). However, also there GARCH(0,1;1,1) has fewer parameters
than ARCH(1;4). We thus find that GARCH terms can be important to cap-
ture volatility persistence. Subsection 3.2.2 has shown that regimes are also
important. The advantage of regime-switching GARCH models is that they
allow for both.

The outperformance of regime-switching GARCH over regime-switching
ARCH also holds for the fourth-order regime-switching ARCH variants in
Cai (1994) and Hamilton and Susmel (1994). First, regime-switching GARCH
removes the residual volatility clustering that is present for their models
for the pound and mark. Second, the increments in the log-likelihood are
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40.46 (pound), 24.93 (mark) and �0.34 (yen) for the Cai version, and 43.12
(pound), 23.14 (mark) and 1.10 (yen) for the Hamilton-Susmel model. Third,
regime-switching GARCH is more parsimonious: for the pound, mark, and
yen the number of parameters is 0, 2, and 1 lower, respectively, than for their
models and the di¤erence becomes larger when the Cai and Hamilton-Susmel
models are extended to account for the residual volatility clustering.

Next, we relate our version (5) of regime-switching GARCH to Gray’s
(1996a) variant (4). As table 1 shows, the parameter estimates for Gray’s spec-
ification are roughly the same as for our specification. However, the log-
likelihood for Gray’s specification is lower, namely 10.10, 11.73 and 3.93 for
the three rates. This is because Gray’s model makes less e‰cient use of the
conditioning information when integrating out regimes (see below (4)). This is
perhaps also the reason why there is some conditional heteroskedasticity left
in the normalized residuals for Gray’s model. Besides the theoretical advan-
tages, as given in section 2, we thus also find empirical support for our model
over Gray’s variant.

Figures 1B, 2B, and 3B provide some additional insight into our regime-
switching GARCH model. They plot the estimated smoothed probabilities of
being in the high-volatility regime, as defined in subsection 2.2.5. The two
European currencies have experienced fewer regime shifts than the Japanese
yen. Apparently, sudden shifts in the variance are more important for the de-
scription of the yen than for the European currencies, where the conditional
variance is governed more by smooth transitions (GARCH e¤ects) from high-
volatility periods to low ones. This supports the conclusion given above that
both regimes and GARCH terms can be important.

An issue closely related to the persistence of regimes is the allowance for
extra leptokurtosis by a t-distribution, as in (6). Without this, the persistence
of the, for example, low-volatility regime would have been lower, since then a
large sudden change in the exchange rate would have been considered earlier
as a shift to the high-volatility regime. This is illustrated by figure 1C, which
gives the smoothed regime probabilities of the regime-switching GARCH
model for the British pound under the restriction of normality: more regime
switches occur.

3.2.5. Comparison of regime-switching with single-regime GARCH

Though our regime-switching GARCH model outperforms regime-switching
ARCH and Gray’s regime-switching GARCH, the main reason to intro-
duce the model was to improve on single-regime GARCH. Using the log-
likelihoods in table 1, we indeed document an increased fit of 19.34 (UK), 8.44
(Germany) and 16.52 (Japan). Because the regime-switching GARCH meth-
odology generalizes single-regime GARCH, this improvement is presumably
not surprising, even though the GARCH(0,Q1;1,1) variants used here do not
strictly encompass GARCH(1,1).

It is, however, interesting to find out where the improved fit originates
from, so as to derive the key di¤erences between the two models. We do this
in two stages. First, we examine for which kinds of observations regime-
switching GARCH outperforms GARCH. Then we show which model dif-
ferences are responsible for that.

Since both models focus on volatility, any di¤erence in fit is presum-
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ably related to the volatility. Therefore, to find out when regime-switching
GARCH is better, we regress the log-likelihood contribution of an observa-
tion for regime-switching GARCH minus that for GARCH, dlt, on a simple
measure of past volatility, s2t�1, and its square. We correct the standard errors
for autocorrelation and heteroskedasticity using the Newey and West (1987)
asymptotic covariance matrix. (Following West and Cho (1995), we take
Bartlett weights and use the same data-dependent automatic lag selection rule.
This rule has certain asymptotic optimality properties and was introduced
by Newey and West (1994).) The regression results (not reported) show that,
although both slope estimates are positive for all three countries, they are all
insignificant.

A potential reason for this insignificance is that both dlt and s2t�1 are very
volatile and may contain much noise. For instance, s2t�1 is sometimes low even
in an otherwise volatile period. To reduce the e¤ect of both sources of noise,
we transform dlt into the binary variable 1½dlt > 0�, which is one if regime-
switching GARCH is better, and proxy past volatility by the logarithm of the
average of, say, ten past squared changes s2t�1; . . . ; s

2
t�10. The regression model

thus now tries to explain the probability of outperformance from past vola-
tility. The estimates for past volatility and its square are again positive for all
three countries, but now they are clearly significant (t-values between 6 and 9).
A plot of the parabolic dependence of the estimated probability of outperfor-
mance on past volatility shows that regime-switching GARCH outperforms
single-regime GARCH particularly in tranquil and volatile periods.

Next, we analyze the reasons for this. Because the main di¤erence between
the two models concerns the variance specification, a di¤erence in the log-
likelihood contributions is very likely caused by a di¤erence in the variance
estimates, dV̂Vt�1fstg. Indeed, a graph of dV̂Vt�1fstg against past volatility
demonstrates that regime-switching GARCH has lower variance estimates
in tranquil as well as volatile periods. We thus conclude that the improved fit
originates from lower variance estimates in both tranquil and volatile periods.

To explain this in terms of the model di¤erences, we first consider the vola-
tile periods. The regime-switching model is then mainly in the high-volatility
regime 2, so that the di¤erence with GARCH likely originates from the dif-
ferences between the estimated second regime parameters and the estimated
standard GARCH parameters. Indeed, if we reestimate the regime-switching
GARCH model under the restriction ða12; b2Þ ¼ ðâa; b̂bÞ and then again regress
1½dlt > 0� on past volatility and its square, the outperformance of regime-
switching GARCH in volatile periods disappears. (This may be surprising, as
the di¤erences between ðâa12; b̂b2Þ and ðâa; b̂bÞ in table 1 are small at first sight.
Nevertheless, a likelihood ratio test rejects the restriction ðâa12; b̂b2Þ ¼ ðâa; b̂bÞ for
Germany and Japan (not for the UK). Hence, the small di¤erences are rele-
vant.) Since restricting both a12 and b2 is also necessary to remove the out-
performance, the di¤erence between the estimates of ða12; b2Þ and ða; bÞ is the
reason for the outperformance in volatile periods. From table 1 we see that
according to the regime-switching model shocks have a smaller direct e¤ect on
the volatility estimates (âa12 < âa) and their subsequent impact is also lower
(âa12 þ b̂b2 < âaþ b̂b); see Lamoureux and Lastrapes (1990) for this interpretation
of a and b. We thus conclude that the outperformance in volatile periods is
due to the smaller e¤ect of shocks on variance estimates.

Next, we explain the outperformance in tranquil periods, which is caused
by the lower regime-switching variance estimates. To abstract from the out-
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performance in volatile periods, this paragraph uses the restricted regime-
switching GARCH model introduced above, so ða12; b2Þ ¼ ðâa; b̂bÞ. This model
also outperforms standard GARCH in tranquil periods and yields lower
variance estimates there. The main di¤erence between regime-switching and
single-regime GARCH in tranquil periods is that the former has a separate
regime for such periods. This regime is relevant for the outperformance if the
latter depends on the probability of being in that regime, Pt�1frt ¼ 1g. There-
fore, we add the estimated probability as a regressor to the model that ex-
plains 1½dlt > 0� from past volatility and its square. The estimated e¤ect of the
probability is significantly positive for all three countries (t-values between 7
and 11). Moreover, the e¤ect of past volatility has disappeared. Hence we
conclude that the outperformance in tranquil periods is obtained by the use of
the low-variance regime.

The low-variance regime is used in two ways. First, it can explain why
volatility is low for a long time. Second, as explained in subsection 2.2.1, it
helps describe that several shocks are ‘‘pressure relieving,’’ that is, are fol-
lowed by a tranquil instead of volatile period. Figure 1D clarifies this by vis-
ualizing the impact of two particular shocks. It contains the conditional vari-
ance estimates of both GARCH(1;1) and GARCH(0,2;1,1) for the British
pound over 1985 only. The persistent e¤ect of the first shock on subsequent
volatility is captured by both models (though the regime-switching GARCH
variances are less a¤ected by the shock, in line with our argument above). On
the other hand, the pressure relieving e¤ect of the second shock, which is the
sharp fall in the dollar one day after the G-5 Plaza announcement on Sep-
tember 22, 1985, is better described by the regime-switching model. The rea-
son is a temporary switch to the low-volatility regime, which helps reduce the
variance estimates rather quickly.

3.3. Forecasting performance

So far, we have developed a regime-switching GARCH model to obtain more
flexibility in capturing the persistence of shocks in volatility. We have shown
that this is worthwhile from an in-sample point of view. In this subsection we
analyze whether regime-switching models can also improve on the out-of-
sample performance of single-regime GARCH.

The volatility forecasts of interest are the forecasts at time t� 1 of the
variance of the exchange rate change over a h-day horizon, that is, V̂Vt�1fst;hg.
They follow from subsection 2.2.2 after substitution of the estimation results
of table 1. We analyze two forecast horizons, namely one day ðh ¼ 1Þ and ten
days ðh ¼ 10Þ.

To get some insight into the generality of the results, we need an extensive
out-of-sample period. Therefore, we split the sample into two parts of both
2,491 days; the second half starts at October 20, 1987. As usual, we reestimate
the models using the first half and, keeping the parameters fixed to save on
estimation time, use the observations of the second half to generate the fore-
casts V̂Vt�1fst;hg. We also do the reverse, that is, estimate the parameters on the
second half and use the first half for forecasting.

To investigate the quality of the volatility forecasts, we need some measure
of ‘‘observed volatility.’’ Since Vt�1fst;hg ¼ Et�1fðst;h � h � mÞ2g, an obvious

candidate is the (mean adjusted) squared change ðst;h � h � mÞ2. However, one

Improving GARCH volatility forecasts 381



can obtain a more accurate measure following an idea advocated by Merton
(1980) and Schwert (1989) and formalized by Andersen and Bollerslev (1998).
They argue that the single squared change, though unbiased, is a noisy indi-
cator for the latent volatility in the period, because the idiosyncratic compo-
nent of a single change is large. The noise is reduced by taking the sum of all
squared intra-period changes, and the smaller the subperiods, the larger the
noise reduction. Since the highest frequency available to us is daily data, this
idea results in the sum of squared daily changes over the h days in the forecast
period:

P t�1þh
t¼t ðst � mÞ2. This measure is unbiased, just as the single squared

change, but it is more accurate (for h > 1; for h ¼ 1 both measures are
equivalent). Therefore, we prefer this measure. Substituting the estimate m̂m for
m, we thus define observed volatility vt;h over the h days t; . . . ; t� 1 þ h as

vt;h ¼
Xt�1þh

t¼t

ðst � m̂mÞ2: ð12Þ

As stated in the introduction, the paper is motivated by the claim that
single-regime GARCH forecasts are too high in volatile periods. This claim is
based on the standard forecast e‰ciency regression

vt;h ¼ g0 þ g1V̂Vt�1fst;hg þ ht ð13Þ

(see also Pagan and Schwert (1990)). If the mean and variance forecasts are
(conditionally) unbiased, that is, m̂m¼ Et�1fstg and V̂Vt�1fst;hg ¼Vt�1fst;hg, then
regression (13) implies g0 ¼ 0 and g1 ¼ 1. To test both implications we esti-
mate (13) by OLS and correct the standard errors for autocorrelation and
heteroskedasticity following Newey and West (1987), as explained in subsec-
tion 3.2.5. We also correct the standard errors for the uncertainty originating
from the fact that the parameters used to compute the forecasts are not known
but are estimated. This correction is based on West and McCracken (1998).
As we keep the parameters fixed over the forecasting period, we have what
they call the ‘‘fixed sampling scheme’’. Because in our study the in-sample
and out-of-sample periods have the same number of observations, West and
McCracken show that we have to multiply the Newey-West standard errors
by

ffiffiffi
2

p
.

The results are in table 3. For each model and horizon we have two esti-
mates for both g0 and g1; the left one is based on the usual procedure of esti-
mating the parameters from the first half of the sample and obtaining fore-
casts from the second half, while the right one is computed from the reverse
procedure. We see for the GARCH(1,1) model that in eight out of twelve
cases both implications g0 ¼ 0 and g1 ¼ 1 are significantly rejected (an asterisk
for the estimate of g1 means that it is significantly di¤erent from one, not
zero). For all twelve cases the estimate of g0 is larger than zero and the esti-
mate of g1 is smaller than one. This is in line with the results of West and Cho
(1995), among others.

The finding of g0 > 0 and g1 < 1 suggests that low GARCH(1,1) forecasts
underestimate the true volatility or that high forecasts overestimate volatility,
or both. To distinguish between the two cases we reestimate (13), but now
allowing for a break in the regression line at, say, the median forecast (allow-
ing for more breaks does not alter the conclusion). That is, one pair ðg�0 ; g�1 Þ is
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relevant for forecasts below the median and another pair ðgþ0 ; gþ1 Þ for forecasts
above the median. The results (not tabulated) show that the estimates of
ðg�0 ; g�1 Þ are close to (0, 1) (average estimate is (�0.00, 1.02) for the one-day
and (�0.38, 1.09) for the ten-day horizon) and that they are nowhere sig-
nificantly di¤erent from (0, 1). The estimates of ðgþ0 ; gþ1 Þ, however, di¤er sub-
stantially from (0, 1) (averages are (0.23, 0.55) and (2.96, 0.43)) and in nine
out of twelve cases the di¤erence is significant. Therefore, high GARCH fore-
casts generally overestimate the true variance, while low GARCH forecasts
do not underestimate volatility. This is in line with the in-sample result that
regime-switching GARCH improves on GARCH by reducing the high
GARCH forecasts in volatile periods and by reducing instead of increasing
the low GARCH forecasts in tranquil periods (see subsection 3.2.4). We thus
conclude that single-regime GARCH volatility forecasts are too high in vola-
tile periods.

To compare the regime-switching models to GARCH in this respect, we
return to the standard forecast e‰ciency regression (13), so without the break.
Table 3 shows that the regime-switching models do better than GARCH(1,1),
as g0 ¼ 0 and g1 ¼ 1 are generally not rejected. Apparently, the excessive
GARCH forecasts are su‰ciently reduced by the regime-switching models. In
subsection 3.2.5 we have shown that this is caused by the smaller persistence
of shocks in volatility. Hence, allowing for more flexibility in volatility per-
sistence by using regimes is worthwhile to improve the standard GARCH
forecasts in the sense of regression (13).

Another way to compare the forecasts is by using the mean squared error
(MSE) defined as the mean of ðvt;h � V̂Vt�1fst;hgÞ2 over the out-of-sample pe-
riod. Table 3 gives the MSE for GARCH(1,1) and the di¤erence in MSE with
respect to GARCH(1,1) for the other models. The standard errors are the
heteroskedasticity and autocorrelation consistent standard errors from a re-
gression of ðvt;h � V̂Vt�1fst;hgÞ2 obtained from GARCH(1,1) (or the di¤erence
with respect to GARCH(1,1) for other models) on a constant; these standard
errors need no further correction for estimation uncertainty (West (1996)).

Table 3 shows that in 11 out of 12 cases our regime-switching GARCH
forecasts are better (lower MSE) than those from single-regime GARCH.
Moreover, in 6 cases the outperformance is significant. Hence, also for the
MSE criterion regime-switching GARCH improves on single-regime GARCH
in terms of volatility forecasting. This does, of course, not mean that single-
regime GARCH forecasts are bad. After all, Andersen and Bollerslev (1998)
show that GARCH(1,1) yields good volatility forecast. We only conclude that
regime-switching GARCH forecasts are better.

For the two variants of regime-switching ARCH we find an improvement
over single-regime GARCH in 15 out of 24 cases (4 significant). These im-
provements are all for the mark and yen, as for the pound GARCH is the best
in all 8 cases (1 significant). This is partly in line with our conclusion from the
in-sample fit in subsection 3.2 that GARCH gives a better fit for the pound
and regime-switching ARCH yields a better fit for the yen; for the mark the
GARCH fit is better but the forecasts are worse. Hence, as in subsection 3.2.4,
both regimes and GARCH e¤ects can be important to model volatility, which
is another argument for using regime-switching GARCH.

Table 3 also shows that there is some preference of our model over Gray’s
(1996a) variant of regime-switching GARCH for the one-day horizon, as the
MSE for our model is lower in 5 out of 6 cases. For the ten-day horizon we
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cannot make such a comparison, since we are unable to forecast more than
one day ahead with Gray’s model.

A final means to compare the volatility forecasts is to analyze the coe‰-
cient of determination, R2, of the forecast e‰ciency regression (13). The stan-
dard R2 measures the explanatory quality of a linear combination, g0 þ g1V̂Vt�1 �
fst;hg, of the forecast. However, one is interested in the quality of the forecast
itself, not a linear combination of it. Therefore, we prefer the R2 under the re-
striction g0 ¼ 0 and g1 ¼ 1,

~RR2 ¼ 1 � Vfvt;h � V̂Vt�1fst;hgg
Vfvt;hg

: ð14Þ

This forecasting statistic is similar to the R2-type measure used by Gray
(1996a). It is generally smaller than the standard (unrestricted) R2 and it can
be negative.

The values of ~RR2 in table 3 confirm the conclusions obtained from the
MSE above. In particular, our regime-switching GARCH forecasts are better
(higher ~RR2) than those from single-regime GARCH in 11 out of 12 cases. The
average improvements are 0.007 for the 1-day horizon and 0.057 for the 10-
day horizon.

These improvements may seem low. However, the average ~RR2 are also low
(0.034 for h ¼ 1 and 0.099 for h ¼ 10 for single-regime GARCH). This does
not mean that the forecasts are bad, as Andersen and Bollerslev (1998) show.
The primary reason for the low R2 (and thus low ~RR2 and low improvements
in ~RR2) is the noise in the observed volatility measure vt;h. As discussed above
(12), this noise can be reduced by taking the sum of squared changes over
smaller subperiods. To give an indication of the magnitude of the e¤ect of
this noise reduction on R2, Andersen and Bollerslev compute the R2 for a
GARCH(1,1) model on daily mark/dollar and yen/dollar exchange rates both
using a single squared daily change and using the sum of 288 squared five-
minute changes in a day. The R2 increases from on average 0.036 to 0.436.
They conclude that GARCH does provide good volatility forecasts despite the
low R2 that one typically obtains using a single squared change. (Note that
their argument also explains why for our series ~RR2 is higher for the ten-day
than for the one-day horizon, as we have reduced the noise in the ten-day
observed volatility by using ten instead of one squared changes.)

To put the ~RR2 improvements given above into perspective, we divide them
by the average ~RR2. We conclude that the relative outperformance of regime-
switching GARCH over single-regime GARCH is 22% (h ¼ 1) and 58%
(h ¼ 10), which is quite substantial.

4. Conclusion

This paper is based on the observation that forecasts from the widely-used
GARCH model are significantly too high in volatile periods. We argue that
this is due to the well-known high degree of persistence of individual shocks in
volatility according to GARCH estimates. Therefore, we develop a model
with more flexibility regarding volatility persistence, that is, not all shocks
have to be highly persistent. The model generalizes GARCH by using two

386 F. Klaassen



regimes with di¤erent levels of volatility and regime-specific GARCH for-
mulas to describe the variance within the regimes. It is thus a regime-switching
GARCH model.

Its specification shares the attractive features of Gray’s (1996a) version of
regime-switching GARCH, such as the recursiveness of the likelihood func-
tion. Our model, however, is preferable in other respects. For instance, multi-
period-ahead volatility forecasting is a recursive procedure similar to standard
GARCH and is much more convenient than with Gray’s variant. Moreover,
our model makes better use of the conditioning information to integrate out
the unobserved regimes, which translates into a better fit.

In the empirical part of the paper we estimate the model using about
twenty years of daily data on three U.S. dollar exchange rates (British pound,
German mark and Japanese yen). The out-of-sample study shows that the
problem of excessive single-regime GARCH forecasts in volatile periods dis-
appears when using regime-switching GARCH. Moreover, regime-switching
GARCH yields significantly better volatility forecasts than single-regime
GARCH. We quantify the relative outperformance by 22% for the one-day
and 58% for the ten-day horizon.

The other empirical results can be summarized as follows. First, includ-
ing regimes is important, since even a regime-switching model with constant
regime-specific variances sometimes outperforms standard GARCH. Second,
there is conditional heteroskedasticity within regimes. Thus there is a need for
ARCH or GARCH terms. Third, the heteroskedasticity di¤ers across regimes,
as more ARCH terms are needed in high-volatility regimes. This is in contrast
with the regime-switching ARCH models of Cai (1994) and Hamilton and
Susmel (1994). Fourth, GARCH terms, which are not allowed in regime-
switching ARCH models, are important, because even single-regime GARCH
is sometimes better than regime-switching models with several ARCH terms.
Finally, a t-distribution instead of a normal one for the error term helps make
the regimes more stable.

There are a number of other possible applications of the model. For ex-
ample, the proposed technique of averaging out unobserved regimes to avoid
path-dependence of the likelihood function may also be useful in models that
combine switches in the mean with a GARCH variance specification (see
Klaassen (1999)). Moreover, regime-switching GARCH volatility forecasts
can be used to analyze the e¤ect of volatility on stock returns and to price
options, for which volatility assessments are crucial.

Our results also yield several methodological suggestions for future re-
search. Regime-switching GARCH generalizes standard GARCH by making
the volatility persistence of shocks more flexible. Of course, it does so in a
specific way, which is presumably not the optimal one. Moreover, we have not
tried to rationalize the timing of the estimated regime switches in our data
from an economic point of view, for instance, in terms of financial market
liberalization, changes in exchange rate policies, or oil shocks. The regimes are
only used as a technical means to obtain more flexibility regarding volatility
persistence, just as the standard GARCH model is only a technical means to
model volatility persistence. This appears, nevertheless, worthwhile, as we do
find that the regime-switching GARCH forecasts are better than the GARCH
ones. Hence, the paper suggests that it is promising to study volatility persis-
tence in more detail, including the economic mechanisms behind it, to im-
prove volatility forecasts even further.
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Appendices

A. Volatility forecasting

In this appendix we give an expression for pt�1ðrtÞ in the volatility forecasting
formula (8) and prove the recursive formula (9).

For the future regime probability in (8) we have

pt�1ðrtÞ ¼
X

rt�1¼1;2

pt�1ðrt�1Þ � pt�1ðrtjrt�1Þ; ð15Þ

where pt�1ðrt�1Þ is discussed in (31). For the multi-period-ahead probability
on the right-hand-side of (15), we form the time-constant Markov transition
matrix M:

M ¼ p11 1 � p22

1 � p11 p22

� �
: ð16Þ

Using the ðt� ðt� 1ÞÞ-th power of M, the theory of Markov processes states
that

pt�1ðrtjrt�1Þ ¼ ðM t�ðt�1ÞÞrtrt�1
; ð17Þ

so that (15) can be computed.
In the remaining part of this appendix we prove (9). More precisely, we

derive the special case i ¼ t� t of (9),

Vt�1fetjrtg ¼ ort þ ðart þ brtÞEt�1fVt�1fet�1jrt�1g j rtg; ð18Þ

as for the other i the derivation is analogous. The formula can be proved by
repeatedly using the law of iterated expectations. Using definition (5), we get

Vt�1fetjrtg ¼ Et�1½Vt�1fetjrtg j rt�

¼ Et�1½ort þ art e
2
t�1 þ brtEt�1fVt�2fet�1jrt�1g j rtg j rt�: ð19Þ

For the ARCH part

Et�1½e2t�1jrt� ¼ Efe2t�1jrt; It�1g

¼ E½Efe2t�1jrt�1; rt; It�1g j rt; It�1�

¼ Et�1½Et�1fe2t�1jrt�1g j rt�; ð20Þ

where the last equality uses that the error distribution given the contempora-
neous variance regime does not depend on the future variance regime.

For the GARCH part in (19) we use similar techniques to obtain
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Et�1½Et�1ðVt�2fet�1jrt�1g j rtÞ j rt�

¼ E½EðVfet�1jrt�1; It�2g j rt; It�1Þ j rt; It�1�

¼ EðVfet�1jrt�1; It�2g j rt; It�1Þ

¼ E½EðVfet�1jrt�1; It�2g j rt; rt�1; It�1Þ j rt; It�1�

¼ E½Vfet�1jrt�1; It�1g j rt; It�1�

¼ Et�1½Vt�1fet�1jrt�1g j rt�: ð21Þ

The penultimate equality uses that It�2 given rt; rt�1; It�1 is independent of rt,
since the Markov structure implies that the distribution of variance regimes
ðrt�2; rt�3; . . .Þ conditional on rt�1 and rt is independent of rt; this makes the
changes ðst�2; st�3; . . .Þ also independent of rt once rt�1 is given.

Substituting the results for the ARCH and GARCH parts in (19) gives
formula (18). The required probability in (18) is

pt�1ðrt�1jrtÞ ¼
pt�1ðrtjrt�1Þ � pt�1ðrt�1Þ

pt�1ðrtÞ
; ð22Þ

where the switching probability follows from (2) and the regime probability
pt�1ðrt�1Þ follows in a similar way as pt�1ðrtÞ in (15); the denominator is given
by (15).

B. Unconditional error variance

Here we derive expression (10) for the ‘‘unconditional’’ error variance Vfetjrtg
and the three necessary conditions for its existence.

Suppose Vfetjrtg exists for both rt ¼ 1; 2 and for all o1;o2. Using the
variance definition (5), repeated use of the law of iterated expectations yields

Vfetjrtg ¼ ort þ artEfe2t�1jrtg þ brtEfVt�2fet�1jrt�1g j rtg

¼ ort þ artEfEfe2t�1jrt�1; rtg j rtg

þ brtEfEfVt�2fet�1jrt�1g j rt�1; rtg j rtg

¼ ort þ artEfVfet�1jrt�1g j rtg þ brtEfVfet�1jrt�1g j rtg

¼ ort þ ðart þ brtÞ � EfVfet�1jrt�1g j rtg; ð23Þ

where the penultimate equality uses that the distribution of the error given the
contemporaneous variance regime does not depend on the future variance re-
gime.

Next, assume that Vfetjrt ¼ 1g and Vfetjrt ¼ 2g do not depend on t and
denote them by s2

1 and s2
2 , respectively. Then
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s2
1

s2
2

" #
¼ o1

o2

� �
þ A11 A12

A21 A22

� �
�

s2
1

s2
2

" #
; ð24Þ

where Aij ¼ Pfrt�1 ¼ j j rt ¼ igðai þ biÞ; expressions for the probabilities in-
volved are at the end of this appendix.

Let A be the matrix with elements Aij . Since we have assumed that both
unconditional variances exist for all o1;o2, the matrix I2 � A is invertible, so
that the unconditional variances are indeed given by (10).

Necessary conditions for the existence of both variances can be derived as
follows. Because art ; brt b 0 implies that the variances are strictly positive for
all o1;o2 ð> 0Þ the four elements of ðI2 � AÞ�1 in (10) must be nonnegative

and ðI2 � AÞ�1 may not have a zero row. The four elements follow from

ðI2 � AÞ�1 ¼ 1

detðI2 � AÞ
1 � A22 a1 þ b1 � A11

a2 þ b2 � A22 1 � A11

� �
; ð25Þ

where we have used A12 ¼ a1 þ b1 � A11 and A21 ¼ a2 þ b2 � A22. Since
ai þ bi � Aii b 0 for both regimes i ¼ 1; 2, the nonnegativity of ðI2 � AÞ�1

implies through (25) that detðI2 �AÞ> 0, so that 1�A11b0 and 1�A22b0.
However, neither A11 nor A22 may be unity; otherwise detðI2 � AÞ ¼
�ða1 þ b1 � A11Þða2 þ b2 � A22Þ, so that ai þ bi � Aii b 0 for both regimes
would imply that detðI2 � AÞa 0, which is not the case. Hence, the three
necessary conditions are A11;A22 < 1 and detðI2 � AÞ > 0.

To compute the unconditional error variance in (24), we need the proba-
bility pðrt�1jrtÞ that the previous regime was rt�1 given that the current regime
is rt. Using Bayes’ rule, we have

pðrt�1jrtÞ ¼
pðrtjrt�1Þ � pðrt�1ÞP

rt�1¼1;2 pðrtjrt�1Þ � pðrt�1Þ
; ð26Þ

where pðrtjrt�1Þ is constant (see (2)) and the theory of Markov processes gives
the unconditional probabilities (see Hamilton (1989)):

pðrt�1 ¼ 1Þ ¼ 1 � p22

2 � p11 � p22

pðrt�1 ¼ 2Þ ¼ 1 � p11

2 � p11 � p22
:

ð27Þ

C. Estimation

In this appendix we derive the likelihood function of the regime-switching
GARCH model and show that it has a first-order recursive structure, as
claimed in subsection 2.2.4.

To obtain the likelihood function, we first need the density of the exchange
rate change at time t conditional on only observable information. Let pt�1ðstÞ
denote this density evaluated at an exchange rate change equal to st. It can be
split up as
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pt�1ðstÞ ¼
X
rt¼1;2

pt�1ðstjrtÞ � pt�1ðrtÞ: ð28Þ

The first term on the right-hand-side, pt�1ðstjrtÞ, denotes the density of the
exchange rate change at time t evaluated at the value st conditional on It�1

and on the regime having value rt. This t-density follows from formulas (1),
(5) and (6). It is, however, not straightforward how to compute the condi-
tional variance in (5), as this requires integrating out the regime path ~rrt�1 in
Et�1½Vt�2fet�1j~rrt�1g j rt�. Because Vt�2fet�1j~rrt�1g depends only on rt�1, we just
need pt�1ðrt�1jrtÞ, the probability that the previous regime was rt�1 given that
the current regime is rt and given the information It�1:

pt�1ðrt�1jrtÞ ¼
pt�1ðrt�1Þ � pt�1ðrtjrt�1Þ

pt�1ðrtÞ
; ð29Þ

where

pt�1ðrtÞ ¼
X

rt�1¼1;2

pt�1ðrt�1Þ � pt�1ðrtjrt�1Þ: ð30Þ

The constant switching probability pt�1ðrtjrt�1Þ follows from (2).
The remaining term in (29) and (30) is pt�1ðrt�1Þ. This probability is cru-

cial, since all regime probabilities in the paper can be derived from it. Using
similar techniques as in Gray (1996a), the following formula shows that this
probability has a first-order recursive structure, which simplifies its computa-
tion substantially:

pt�1ðrt�1Þ ¼ pt�2ðrt�1jst�1Þ

¼ pt�2ðst�1jrt�1Þ � pt�2ðrt�1Þ
pt�2ðst�1Þ

¼
pt�2ðst�1jrt�1Þ �

P
rt�2¼1;2 pt�2ðrt�2Þ � pt�2ðrt�1jrt�2Þ
pt�2ðst�1Þ

: ð31Þ

Hence, the variables to compute pt�1ðrt�1Þ are its previous values pt�2ðrt�2Þ
and the constant pt�2ðrt�1jrt�2Þ for rt�2 ¼ 1; 2 and the previous densities
pt�2ðst�1jrt�1Þ and pt�2ðst�1Þ. This makes the computation of pt�1ðrt�1Þ a first-
order recursive process.

The second term on the right-hand-side of (28), pt�1ðrtÞ, is the conditional
probability that the current regime is rt. It is given by (30).

Having discussed both terms on the right-hand-side of (28), we can now
compute the density of interest, pt�1ðstÞ, being a mixture of two t-densities. This
density can then be used to build the sample log-likelihood

PT
t¼1 logðpt�1ðstÞÞ

with which all parameters in the regime-switching GARCH model can be es-
timated.

From a practical point of view, it is important to realize that the log-
likelihood has a first-order recursive structure, similar to that of a standard,
one-regime GARCH(1,1) model. After all, for (29) and (30) one needs the
constant pt�1ðrtjrt�1Þ and the first-order recursive probability pt�1ðrt�1Þ in (31)
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for all four combinations of (rt; rt�1); density (28) can then be computed from
(30), the previous change st�1, (29) and the previous variances Vt�2fet�1jrt�1g
for rt�1 ¼ 1; 2. This first-order recursiveness of pt�1ðstÞ speeds up the calcula-
tion of the sample log-likelihood substantially. To start up the recursive pro-
cess, we set the required variables equal to their expectation without con-
ditioning on the information set, that is, the ‘‘unconditional’’ variance s2

rt
in

(10).

D. Regime inference

As stated in subsection 2.2.5, the smoothed probability that the regime was rt
at time t, pT ðrtÞ, can be computed recursively. More generally, any ex post
regime probability ptðrtÞ, for a given future time t A ft; tþ 1; . . . ;Tg, can be
computed in a recursive manner, starting from the ex ante probability pt�1ðrtÞ.
In this appendix, we verify that claim.

One can write ptðrtÞ for both regimes rt ¼ 1; 2 as

ptðrtÞ ¼ pt�1ðrtjstÞ

¼ pt�1ðstjrtÞ � pt�1ðrtÞP
rt¼1;2 pt�1ðstjrtÞ � pt�1ðrtÞ

: ð32Þ

Suppose first that t ¼ t. Then ptðrtÞ follows directly, as pt�1ðrtÞ and
pt�1ðstjrtÞ in (32) are known from the estimation process (see appendix C).

Hence, let us suppose from now on that t > t. The computation of (32)
requires two inputs. The first is the previous ex post probability pt�1ðrtÞ,
which is known from the previous recursion for both rt. The second ingredient
of (32) is the density pt�1ðstjrtÞ for both regime outcomes. Its computation
requires a number of steps. We first write it as

pt�1ðstjrtÞ ¼
X
rt¼1;2

pt�1ðstjrtÞ � pt�1ðrtjrtÞ; ð33Þ

where we use that the conditional distribution of st given rt does not depend
on the earlier regime rt. This formula itself has two ingredients. The first one is
the density pt�1ðstjrtÞ for both regime combinations, which is known from the
estimation process.

The second term needed in (33) is the ðt� tÞ-period-ahead regime-switching
probability pt�1ðrtjrtÞ for all regime outcomes. Once it has been computed, it
should be saved, since it will be needed in the next recursive step. Making use
of the Markov structure of the regime process, it can be written in terms of
ðt� 1 � tÞ-period-ahead switching probabilities

pt�1ðrtjrtÞ ¼
X

rt�1¼1;2

pt�1ðrtjrt�1Þ � pt�1ðrt�1jrtÞ: ð34Þ

Again there are two ingredients. First, we need pt�1ðrtjrt�1Þ for all regime
combinations. These are constant and follow from (2).
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The second ingredient of (34) is pt�1ðrt�1jrtÞ for all regime combinations.
We have

pt�1ðrt�1jrtÞ ¼ pt�2ðrt�1jrt; st�1Þ

¼ pt�2ðst�1jrt�1Þ � pt�2ðrt�1jrtÞP
rt�1¼1;2 pt�2ðst�1jrt�1Þ � pt�2ðrt�1jrtÞ

; ð35Þ

where we use that the conditional density of st�1 is independent of the earlier
regime rt once rt�1 is given. We have two ingredients. First, the conditional
density pt�2ðst�1jrt�1Þ for both regime outcomes. It is known from the esti-
mation process. Secondly, we need the ðt� 1 � tÞ-period-ahead switching
probability pt�2ðrt�1jrtÞ for all regime combinations. This one was saved
during the previous recursion, if t > tþ 1. If t ¼ tþ 1, it equals one.

This completes the algorithm to compute (33), which is the second ingre-
dient of (32). For each recursion one has to compute (35), use the result to
compute (34) and use this to compute (33). Using this in (32) yields the ex post
probability ptðrtÞ from pt�1ðrtÞ. Therefore, starting from the ex ante proba-
bility pt�1ðrtÞ one can recursively compute the ex post probability ptðrtÞ.
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