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Abstract. This paper deals with the estimation of the impact of technology
spillovers on productivity at the ®rm level. Panel data for American manu-
facturing ®rms on sales, physical capital inputs, employment and R&D in-
vestments are linked to R&D data by industry. The latter data are used to
construct four di¨erent sets of `indirect' R&D stocks, representing technology
obtained through spillovers. The di¨erences between two distinct kinds of
spillovers are stressed. Cointegration analysis is introduced into production
function estimation. Spillovers are found to have signi®cant positive e¨ects on
productivity, although their magnitudes di¨er between high-tech, medium-
tech and low-tech ®rms.
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1. Introduction

In many of the recent so-called `endogenous growth models' (e.g. Romer,
1986, 1990 and Grossman and Helpman, 1991a), as well as the `non-
mainstream' literature on growth and technology (e.g., Nelson and Winter,
1982), the generation of technology is the main driving force of economic
growth. The (steady state) growth rates of countries devoting relatively much

* An earlier version of this paper was presented at the 6th Conference of the International Joseph
A. Schumpeter Society, June 2±5, 1996, Stockholm, Sweden. We thank conference participants
and participants at seminars at MERIT and the University of Louvain, and a workshop at
OECD, as well as Zvi Griliches and Ed Steinmueller, and two anonymous referees for useful
comments. Much of the research was done while Los was at the University of Twente.



of their resources to Research and Development (R&D) are assumed to reach
higher values, other things equal. In this literature, the non-rival character of
knowledge is often stressed: its use by one ®rm does not preclude other ®rms
from using it simultaneously. As an immediate consequence, the technology
producer is not the only one that bene®ts from its R&D-e¨orts: technology
spillovers occur.

The empirical literature on the productivity e¨ects of R&D also stresses
these technology spillovers. Recently, following the seminal contributions by
Griliches (1979) and Scherer (1982), many authors have investigated the pro-
ductivity e¨ects of technology spillovers, either at the industry or at the
country level.1 Although the estimated magnitudes of the e¨ects appear to
vary largely with the industries and countries under consideration (and with
estimation methods), the importance of technology spillovers is beyond dis-
pute.2 However, measuring technology spillovers and their impacts at the
micro level remains a less explored area.3 The principal aim of this paper is to
estimate the impacts of technology spillovers at the ®rm level, thereby trying
to shed light on the empirical plausibility of some assumptions and results of
(important parts of ) the endogenous growth theory, like increasing returns to
scale and signi®cant technology spillovers. We estimate Cobb-Douglas pro-
duction functions, with two factors representing technology: R&D undertaken
by the ®rm itself, as well as R&D undertaken by other ®rms.

As is well known (see e.g. Griliches, 1990), technology is hard to measure.
Faced with the basic choice between input- and output-indicators of technol-
ogy, we decided to use inputs rather than outputs, for reasons of data avail-
ability. This is an approach chosen by most authors who have investigated the
relationships between (own) technology and productivity (see e.g. Griliches
and Mairesse, 1984, Cuneo and Mairesse, 1984, Lichtenberg and Siegel, 1991,
and Hall and Mairesse, 1995). It has the disadvantage that we cannot measure
the `e½ciency' of research and development, but it also has the advantage that
we do not have to worry about how to evaluate rather simple indicators such
as patent counts.

Our empirical study focuses on U.S. manufacturing ®rms between 1977
and 1991. The estimations are based on three data sources. First, we use an
extensive panel data set constructed by Bronwyn Hall and available from the
NBER ftp-server, containing data on sales, plant and equipment, employment
and R&D expenditures for thousands of U.S. ®rms. Second, R&D expen-
ditures by industry are taken from the OECD STAN/ANBERD database.
Finally, the spillover measures we utilize (introduced in Verspagen, 1997) are
based on patent documents of the European Patent O½ce.

The plan of the paper is as follows: Section 2 is devoted to a brief review
of the theory on technology spillovers. The two basic questions that will be
answered are which di¨erent types of technology spillovers can be distin-
guished, and what their impact on economic growth and productivity is. In

1 For studies on the industry level, see e.g. Terleckyj (1974), Griliches and Lichtenberg (1984),
Goto and Suzuki (1989), Mohnen and LeÂpine (1991), Wol¨ and Nadiri (1993) and Verspagen
(1997). Very recent examples of studies considering international technology spillovers are Coe
and Helpman (1995), Park (1995) and Bernstein and Mohnen (1998).
2 Nadiri (1993) o¨ers an extensive survey of estimation results.
3 Ja¨e (1986), Bernstein (1988), Sassenou (1988), Bernstein and Nadiri (1989) and Fecher (1990)
are notable exceptions.
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Section 3 we elucidate the construction of most of our variables. We devote
an entire section to the discussion of the construction of our `indirect' R&D
stocks, because we think this variable is the most important element in our
study and because in our opinion even after Griliches' (1979) seminal contri-
bution two basically di¨erent kinds of spillovers (so-called rent spillovers and
knowledge spillovers) are often confused. Section 5 presents the models we
estimate, trying to explore various aspects of the panel-nature of our database.
Section 5 also presents the ®rst estimation results. In Section 6, using co-inte-
gration tests and error-correction models, we will investigate whether the re-
sults in Section 5 can be considered as long-term relationships. Finally, Sec-
tion 7 provides a summary of the results and a discussion of the empirical
relevance of the assumptions on technology made in the endogenous growth
models.

2. Technology, spillovers and endogenous growth theories

During the late 1980s, with the contribution of Romer (1986), the idea of
`endogenous technological change' entered the mainstream of economic
theory. Romer (1986) and Lucas (1988) provided models (partly similar to
Arrow, 1962) that endogenize technological change.4 An important innova-
tion over the traditional neoclassical growth model was the introduction of
knowledge spillovers. The use of a `unit of knowledge' (R&D) by one ®rm
(say the ®rm that generated the knowledge) does not prevent other ®rms from
using the same unit (knowledge is non-rival), and no ®rm can be excluded
from such use (knowledge is non-excludable). Consequently, a positive di¨er-
ence between the social returns and private returns to R&D occurs and the
economy as a whole faces increasing returns to scale.

In the models by Romer (1990), Grossman and Helpman (1990, 1991b)
and Aghion and Howitt (1992) the R&D sector is assumed to have two kinds
of output. First, general knowledge, which is non-appropriable and is spilled
over to other ®rms (like in Romer, 1986) and second, blueprints for new
products or new varieties of an existing product. The rents of these blueprints
can be appropriated (by patenting or secrecy), so ®rms have an incentive to
engage in R&D. But this introduces di¨erentiated products into the analysis,
and hence the market structure must be characterized as monopolistic com-
petition rather than perfect competition. This leaves open the possibility of in-
creasing returns to scale at the ®rm level, rather than only at the aggregate level.

In the empirical literature, technology spillovers had attracted attention
long before the developments in growth theory described above took place.
The most common approach found in the literature (suggested by Griliches,
1979) is to estimate an extended Cobb-Douglas production function (assum-
ing homogeneous output and inputs), similar to the one assumed by Romer
(1986):
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4 Surveys are o¨ered by Helpman (1992) and Verspagen (1992).
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in which Q, K, L and R denote output, physical capital input, labour input
and technological capital, respectively. Subindices i, j and t indicate the ®rm
and time period under consideration. A is a constant and F ��� a function that
is necessarily monotonically increasing in the `economy wide technology-
capital', according to Romer (1986, 1990).

Generally, although a setting of homogeneous output and inputs is not
compatible with an assumption of increasing returns to scale at the ®rm level,
one does not wish to impose a restriction of constant returns to scale a priori
(e.g., Griliches and Mairesse, 1984). Thus, unlike Romer (1986), the typical
approach is to let the estimation results indicate whether constant returns with
respect to either all factors �a� b � g � 1� or only the traditional, non-rival
factors �a� b � 1� applies or not.

It is clear that such an approach is highly pragmatic as compared to the
theoretical models in the new growth literature. However, given the rather
crude nature of available empirical data, more sophisticated theoretical de-
vices such as product di¨erentiation, are hard to implement in empirical
analyses. Thus, we will not set ourselves the aim of testing new growth theory.
But we do feel that the above discussed empirical models can provide some
insight into one crucial assumption underlying new growth theory, namely the
existence of knowledge spillovers. The importance of knowledge spillovers for
productivity at the ®rm level is therefore what we want to test in this paper.

With regard to the measurement of technology spillovers, we will proceed
from the distinction made by Griliches (1979) between rent spillovers and pure
knowledge spillovers. Rent spillovers are solely caused by product inno-
vations. Due to competitive pressures, the producer of the innovation is often
unable to capture the `full price increase' that results from e½ciency gains for
customers, due to the higher quality of the innovation relative to the `old'
product. For example, a new personal computer that can perform certain
calculations twice as fast as the existing ones, will often be sold at a price be-
tween once and twice the price of the existing machines. As an immediate
consequence, the price per e½ciency unit has fallen, and the productivity of
the ®rms using the new computer will rise.

Part of the e¨ect of rent spillovers is in fact due to `mis-measurement'.
Even if all innovation producers would have su½cient market power to set
prices according to e½ciency for buyers, conventional price index systems (not
taking into account quality changes) would interpret the price increases as
in¯ation. In this case, the rent spillover would again spill from producer
to user. As pointed out by Griliches (1992), rent spillovers are not true spill-
overs, because they are often caused by measurement errors connected to
crude assumptions like homogeneous products.5 Moreover, one can not
speak of a true externality even in the case of rent spillovers not caused by
mis-measurement, because of the transaction-nature of the phenomenon.

Although the `later' new growth models, as well as some of the empirical
implementations of these (such as Coe and Helpman, 1995), seem to be im-
plicitly taking into account rent spillovers by the imperfect competition as-

5 In reality, a ®rm's output in current prices will be determined not only by its quality itself, but
also by the number and quality of close substitutes available to buyers. The same applies to a
®rm's (capital) inputs. Even the use of hedonic price de¯ators can not always guarantee perfect
de¯ation (see Trajtenberg, 1990), so our aggregate measures of output and inputs (see the next
section) and crude de¯ators are bound to cause rent spillovers.
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sumption, Griliches' concept of pure knowledge spillovers is more central to
the debate on endogenous growth, technology and increasing returns. In con-
trast to rent spillovers, knowledge spillovers are not embodied in traded
goods, and thus do not occur in relation to market transactions. Pure knowl-
edge spillovers are related to the partly public character of knowledge, and
may occur when information is exchanged at conferences, when an R&D
engineer moves from one ®rm to another, when a patent is disclosed, etc.
Many more examples of sources for knowledge spillovers could be men-
tioned, but the most important common property is that relevant knowl-
edge is transferred from one ®rm to another, without the receiver having to
pay for it directly to the producer of the knowledge, as in the case of the
`general knowledge' connected to the production of blueprints in the new
growth models.6

Due to the variety of ways in which knowledge spillovers and rent spill-
overs may occur, and given the generally poor quality of technology indi-
cators, measuring spillover ¯ows is not an easy task. Our aim in this paper is
to test a number of ways of measuring spillovers that have been proposed in
the literature, by estimating elasticities of output with respect to di¨erent types
of knowledge (spillovers). Before we discuss the various ways in which we
attempt to measure knowledge spillovers, we will discuss the construction of
the other variables that are more commonly found in ®rm-level productivity
studies.

3. Data and construction of variables

In the preceding section, we already presented the extended Cobb-Douglas
production function (Eq. 1), on which we base most of our analysis. This
section explains the construction of the variables Q, K, L and R. We took our
observations for these variables from a data set constructed by Bronwyn Hall
(made available through the NBER ftp server, under the name BLONG.ZIP).
This database contains data on production related quantities for approxi-
mately 7000 U.S. ®rms, for the period 1974±1993. For many ®rms in the da-
tabase, however, data are not available for the full twenty years. In order to
avoid disturbing short-run e¨ects we decided to include into our study only
those ®rms for which data for at least ten consecutive years are available. We
also decided to concentrate our analysis on manufacturing ®rms only, mainly
because we feel that the concepts of technology and technology spillovers as
we use them are most relevant to manufacturing. In addition, conceptual
problems associated with the measurement of output (sales) in many services
industries also provide an argument to focus on the manufacturing sector
only. Finally, it must be noted that the data are for ®rms rather than estab-
lishments, which may often imply that we are dealing with heterogeneous
units. The database provides a sector variable, which classi®es the ®rms ac-
cording to their main output.

6 Although the spillover-receiving ®rm does not pay directly to the knowledge-producing ®rm, the
debate on knowledge spillovers has pointed out that spillovers cannot be assimilated without
costs. E.g., Cohen and Levinthal (1989) argue that a ®rm has to do some R&D itself to bene®t
from spillovers, thus arguing that knowledge spillovers and the development of `own' knowledge
are complements rather than substitutes. In our simple Cobb-Douglas framework, knowledge
spillovers and knowledge developed by the ®rm itself appear as substitutes.
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An immediate implication of these decisions is that our database cannot be
seen as a random sample. We think, however, that our remaining sample
(even after eliminating all non-manufacturing ®rms) is large enough to gener-
ate results that o¨er some insight into the relations we want to investigate. A
®nal note on the Hall database concerns the dating of the variables. Like in
the case of Griliches and Mairesse (1984), the data for some of the ®rms con-
cern ®scal rather than calendar years. Following Hall, we chose to include
these data, taking the year that overlaps most with the ®scal year as the cal-
endar year.

Concerning ®rm output Q, our preference was either to use value added
instead of sales as our measure of output, or to include intermediate inputs as
an additional input (see e.g. Cuneo and Mairesse, 1984 for a comparison), but
the database forced us to use sales. We de¯ated sales by US industrial output
price indices taken from OECD's STAN database, which are given for 3-digit
ISIC (rev. 2) industries (OECD takes its data from national U.S. sources). As
a measure for physical capital K, we chose `net plant, property and equipment'
(nppe) from Hall's database. Alternative measures for the physical capital
stock were `total assets', or `gross plant, property and equipment' (gppe). Al-
though a measure of the gross capital stock would be more appropriate if one
would be interested in estimating rates of return to invested capital, we con-
sidered a net measure more useful for the present purposes because it is closer
to the concept of `productive' capital.7 As a de¯ator for the capital stock
variable, we used the price index for the total U.S. manufacturing capital
stock, which is available from OECD's database on Stocks and Flows of
Fixed Capital. For labour input L, the database provided us only with annual
numbers of persons employed. This does not correct for a decrease in the
average number of hours worked between 1974 and 1993, or the increased edu-
cation and training of employees during the same time interval. Both e¨ects
are likely to cause biases in our estimations, but the biases might partly o¨set
each other.

In the literature on this subject, two di¨erent approaches with respect to
the modelling of R&D can be distinguished. In the ®rst approach, R&D
expenditures are accumulated into a knowledge stock, with gross investment
in the form of R&D expenditures and depreciation because knowledge gets
obsolete. Assuming a ®xed rate of depreciation, the perpetual inventory
method can be applied and ®rm i's R&D stock at time t may be expressed as
Ri�t� � StwtREi�tÿ t�, where the weights wt are exogenously ®xed according
to a geometrical lag: wt � �1ÿ d�t, in which d is the assumed rate of obsoles-
cence. REi�t� denotes the R&D expenditures of ®rm i in year t. This approach
can be found in, among others, Griliches and Mairesse (1984), Cuneo and
Mairesse (1984) and Coe and Helpman (1995).

In the alternative approach (originating with Terleckyj, 1974) technology
is treated as a ¯ow, measured by R&D expenditures over output or value
added. This is equivalent to setting the depreciation rate of R&D equal to
zero.8 This approach yields a direct estimate of the rate of return to R&D in-
stead of the output elasticities (these must be calculated from the estimated

7 Griliches and Mairesse (1984, p. 342) report that the use of various measures of physical capital
stocks and de¯ators did not yield important di¨erences on their estimation results. We have no
reason to believe this is di¨erent in our case.
8 For a short mathematical proof, see e.g. Griliches and Mairesse (1984, p. 342±344).
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rates of return and the data on stocks). Since Eq. 1, our point of departure,
includes output elasticities as the parameters to be estimated, the use of R&D
stocks seems more natural.

Our data contain annual company R&D expenditures, which we use to
implement the perpetual inventory model. Before constructing the R&D
stock, we de¯ated all R&D expenditures by the U.S. GDP de¯ator (taken
from OECD's Main Science and Technology Indicators database). We used a
depreciation rate of 15% for the construction of the R&D stocks. This per-
centage is quite common in ®rm level studies (see Griliches, 1990).9 The
initial R&D stocks (for the year prior to the ®rst observation for R&D
expenditures) were approximated by multiplying the ®rst observation on the
R&D expenditure variable by ®ve. This implies a 15% depreciation rate and
an initial 5% growth rate of the R&D stock. Although these seem reasonable
approximations, we decided to exclude the ®rst two values for each ®rm's
R&D capital stock from our analysis. Moreover, we included R with a one-
year lag (for econometric reasons that will be discussed in Section 5), which
caused a further loss of one observation per ®rm. Constructing our variables
in this way, we obtained 11238 observations from 859 ®rms.

As Griliches and Mairesse (1984) point out, estimations based on samples
like the one described might be disturbed by the presence of ®rms that have
merged. We partly copied their approach, creating a `restricted' sample of
9223 observations from 680 ®rms by deleting those ®rms from the unrestricted
sample that have at least once shown a year-to-year increase of sales of more
than 80%. Probably, this has led to the deletion of some non-merged rapidly
growing ®rms, but Griliches and Mairesse found most of these jumps in out-
put to be the result of mergers indeed. We will only report estimation results
for this restricted sample, which is unbalanced.10 For some of our purposes,
we preferred a balanced sample with the longest possible series length (15
years). Hence, we selected those ®rms in the restricted sample for which data
for the complete time span were available. This balanced sample contains
7275 observations from 485 ®rms.

Table 1 presents some summary statistics for the two samples. Further-
more, statistics for three subsamples are included, because we also present
regression results for these subsamples in sections below. The labels `high-
tech', `medium-tech' and `low-tech' are assigned to industries in line with the
OECD classi®cation.11 Two points with regard to this classi®cation need to be
kept in mind. First, as explained above, ®rms are classi®ed according to their
main output, which means that minor activities may be misclassi®ed. Second,
the division into the three types of industries is done solely on the basis of the

9 In a recent paper, Nadiri and Prucha (1996) apply a dynamic factor demand model to estimate
R&D's depreciation rate. Their result is rather close to the 15%-rule of thumb: 12%.
10 Estimation results using the unrestricted sample are available upon request.
11 High-tech industries (ISIC rev 2 codes in brackets): pharmaceuticals (3522), computers and
o½ce machines (3825), electronics (3832), aerospace (3845), instruments (385). Medium-tech:
electricals (383-3832), chemicals (351�352-3522), automotive (3843), other transport equipment
(384-3845-3843), machinery (382-3825), rubber and plastic products (355�356). All other manu-
facturing industries assigned to low-tech. The sector `other transport equipment', which is a very
heterogeneous sector, is often assigned to low-tech. It includes high-speed trains and the like, as
well as bicycles. Thus, the R&D intensity of this sector depends quite a lot on the product mix
found in a particular country. We assigned it to medium tech industries, given the nature of the
industry in the U.S.
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mean R&D-value added ratio, and is known to be problematic because of the
simplicity of the method (see, e.g., Grupp and MuÈnt, 1998, for a critique).
Thus, the split into the three types of industries should only be taken as in-
dicative.

The table shows that the di¨erences between the unbalanced and balanced
(sub)samples are rather small. In general, the average turnovers are higher in
the balanced sample, indicating that the relatively large ®rms were the `stable'
ones (on average), being present in the database for the full time span.

As might be expected, the average value for log�R=L� is highest in high-
tech ®rms, followed by medium-tech and low-tech, respectively. More sur-
prising is the quite large dispersion of R&D intensities, especially within the
low-tech subsamples. We studied this phenomenon at a lower degree of
aggregation and found that even within many of 22 STAN industries the
dispersion is of the same order of magnitude. The apparent heterogeneity is
roughly equal for the two samples, so we do not think that the summary sta-
tistics presented in Table 1 give rise to a clear preference for either sample.

In order to shed some more light on the development over time of key
variables in our sample, Table 2 gives a limited number of summary statistics
for four years. The means and standard deviations are calculated from the
®rm data in the unbalanced samples. Turnover does not appear to have
changed very rapidly and labour productivities have been rising rather stead-
ily, in all three sectors. The same applies to capital intensities. R&D intensities
have increased drastically in the period under consideration, because of both a
changing mix of high-tech, medium-tech and low-tech ®rms in the sample and
increased R&D e¨orts within these three sectors.

Although we do not want to consider our samples as random samples, we
think our data broadly re¯ect developments often noted by other authors and
may serve as a starting point for a study aiming at an assessment of the im-
portance of R&D for ®rms in American manufacturing.

Before concluding this section, a ®nal word on the double-counting issue
originally raised by Schankerman (1981) is in place. He argued that the dou-
ble-counting of labour and physical capital employed in R&D (these are
counted in R&D as well as in the `traditional' production factors) would yield
negatively biased estimated elasticities with respect to R&D. Cuneo and
Mairesse (1984) and Hall and Mairesse (1995) found evidence supporting this
while Verspagen (1995) concluded that in his sample of industries, although
the bias has the predicted sign, it does not a¨ect the results signi®cantly.
Unfortunately, our database does not provide us with the information needed
to correct for double-counting, i.e., the composition of R&D expenditures
at the ®rm level is unknown. Neither did we ®nd this type of data for total
U.S. business R&D expenditures in the OECD databases. Hence the only
thing we can do is to refer to the ®ndings of the above-mentioned studies to
indicate the likely e¨ects of our double-counting, when interpreting our esti-
mation results.

4. Indirect technology stocks

The main di¨erence between our study and most other studies on R&D and
productivity at the ®rm level is in our focus on technology spillovers. In this
section we explain the ways in which we constructed the indirect R&D stocks.
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The ®rst step is to identify the amount of indirect R&D available to a ®rm.12
This implies that we need to decide which fraction of U.S. manufacturing in-
dustry R&D is relevant as `indirect R&D' for each individual ®rm. A simple
but crude measure is to take the unweighted sum of the R&D stocks of all
other ®rms (see Bernstein, 1988), which comes close to Romer's (1986) theo-
retical notion of Eq. 1.13 We will denote this magnitude by IRT. However,
many re®nements to this have been proposed in the literature, because of a
widespread feeling that technology produced by some ®rms is more relevant
than technology produced by other ®rms. Thus, in general, one may assume
the following:

IREkj�t� �
X

i

oijREi�t�; �2�

where IREkj is the indirect R&D ¯ow relevant for ®rm k operating in industry
j, REi denotes R&D expenditures in industry i (when i � j, this excludes ®rm
k's R&D expenditures), and oij denotes the weight assigned to industry i 's
R&D expenditures in industry j. We construct our di¨erent measures of indi-
rect R&D by calculating IREkj for various weighting schemes o, and then
applying the perpetual inventory method in the same way as we have applied
it to the ®rm's own R&D. Thus, IRT can be seen as the result of this with all
oijs equal to 1.

Focusing on technology obtained through inter-industry rent spillovers,
Terleckyj (1974), Sveikauskas (1981), Wol¨ and Nadiri (1993) and others uti-
lized input-output and/or capital ¯ows matrices to construct weights, (im-
plicitly) assuming that an industry that buys relatively much from a certain
industry will bene®t relatively much from (product oriented) R&D in that
industry. A related approach is chosen by Scherer (1982), Griliches and
Lichtenberg (1984), Sterlacchini (1989) and Mohnen and LeÂpine (1991),
who use matrices in which either patents or innovations are classi®ed accord-
ing to their industry of manufacture (rows) and origin of use (columns). We
feel that output coe½cients of such a patent matrix can serve as a relatively
reliable measure of rent spillovers.14 We use the so-called Yale patent matrix
from Putnam and Evenson (1994), from which we delete all primary and ter-
tiary industries before the weights are computed. The resulting stock-variable
is denoted IRY.

We now turn to `pure knowledge spillovers'. Ja¨e's (1986) and Goto
and Suzuki's (1989) approach to this was to position ®rms in `technological
space' using a vector containing the number of patents per technology ®eld.
According to Ja¨e, the weights oij should be proportional to the similarity
between two ®rm's `technological space vectors'. Given the lack of detailed
patenting data for the ®rms in our samples, we use two distinct measures
de®ned at the industry level that, in a broad sense, may be considered as

12 We decided to abstract from R&D performed by foreign, i.e., non-U.S. ®rms.
13 However, unlike Romer (1986), we exclude the ®rm's own R&D from aggregate R&D in its
own industry.
14 Other authors, however, use this kind of matrices to measure knowledge spillovers (see e.g.
Van Meijl, 1995). Although we agree that knowledge may be spilled over during trade negotia-
tions and after sale services with respect to patented product innovations, we maintain that anal-
yses based on these measures primarily pick up with rent spillovers.
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alternatives to Ja¨e's method, and which were introduced by Verspagen
(1997).15

Both measures are derived from European Patent O½ce (EPO) docu-
ments. We assume that the EPO data capture general technological linkages
between di¨erent technology ®elds or industrial sectors, and that we can
therefore safely apply the results to U.S. manufacturing data. In the EPO
documents, the knowledge described in a patent is assigned to a single `main
patent class', and multiple `supplementary patent classes'. For the knowledge
classi®ed into the supplementary patent classes, a systematic distinction is
made between `invention information' and `additional information'. Invention
information (present in all documents) comprises knowledge that is claimed
by the patentee. The main application area of this part of the knowledge is
assigned to the single main patent class, while other, secondary application
areas are assigned to the supplementary patent classes.

We use a concordance table (Verspagen et al., 1994) which maps 4-digit
International Patent Classi®cation (IPC) codes onto one or more of the 22
ISIC (rev. 2) manufacturing industries. The ®rst of our two measures uses
about 60% of all approximately 650,000 EPO patent application documents in
the period 1979±1994 to construct an invention information matrix, assuming
that the main IPC code into which a patent is classi®ed provides a good proxy
for the industry that produces the knowledge and that the invention infor-
mation classi®ed into supplementary IPC codes (taken as partially unintended
`by-products' of the invention) gives an indication for knowledge spillovers to
other manufacturing industries.16,17 We thus obtain a matrix with patent
counts, and by dividing through by the row totals (rows indicate knowledge
generators, columns knowledge receivers), we construct the weights oij. The
resulting indirect knowledge stock is denoted IR1.

Our second measure exploits the distinction between claimed `invention
information' and non-claimable `additional information', which is de®ned as
``non-trivial technical information given in the description, which is not
claimed and does not form part of the invention as such but might constitute
useful information to the searcher.'' (WIPO, 1989, p. 26). This information is
almost by de®nition spilled over to other ®rms, because it is not appropriable.
In Verspagen (1997), a non-claimable information matrix is constructed simi-
larly to the invention information matrix: the main IPC code is used to assign
the inventing industry, but now only supplementary classes with `additional
information' are taken into consideration. This matrix is based on only 2.5%
of the 650,000 patent documents, however, because the number of records

15 The use of interindustry spillover measures in our ®rm level analysis amounts to the assumption
that ®rms within an industry are homogeneous with regard to their technological activity (in the
case of knowledge spillover measures) or their use of patented inputs (in the case of IRY, empha-
sizing rent spillovers).
16 If patent protection against imitation were perfect, this kind of spillovers would not occur. The
surveys by Levin et al. (1987) and Arundel et al. (1995), however, show that in many industries
this protection is considered to be far from perfect. Our method, like Ja¨e (1986), assumes that
`rates of appropriability' are constant across industries and ®rms.
17 In case of n multiple supplementary classes, all these classes were assigned 1=n of the patent
considered. This `fractional counting' implicitly assumes that no part of the invention information
is relevant to more classes. Therefore, the rows of the corresponding patent matrix sum to the
number of patents assigned to the industry of main application.
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with additional information is relatively small. Calculating the weights oij

similarly, the resulting indirect R&D stock is called IR2.
Table 3 presents some descriptive statistics on our IR variables, based on

the restricted, unbalanced samples. The means for IRT appear to be much
higher than for the other IR variables, due to the oij < 1 for IRY, IR1 and
IR2. The very small standard deviations for IRT are due to the fact that for
each ®rm the own R&D stock is subtracted from the (much larger) social
R&D stock, which is identical for all ®rms. Standard deviations for the three
alternative measures are higher (even for subsamples), because ®rms operate
in di¨erent industries, each of which has its `own' social R&D stock.

Whether we should regard the various alternative measures of indirect
R&D or knowledge spillovers as substitutes or complements remains an open
question. IR1 and IR2 are obviously close to each other, because they are both
constructed with the idea of `pure knowledge spillovers' in mind. Still, the
concepts underlying these two variables are quite di¨erent, and thus one might
expect that they measure di¨erent aspects of knowledge spillovers. Both IR1
and IR2 might be regarded as complements to IRY, the latter one representing
rent spillovers. Finally, a (somehow weighted) sum of IR1/IR2 and IRY might
be seen as a theoretically more sophisticated alternative to IRT.

5. The model and ®rst estimation results

As mentioned in the introduction, this paper has two purposes. First, we
would like to see whether or not the results of earlier studies into the relations
between R&D and productivity (at the ®rm level) are con®rmed when apply-
ing similar techniques to a large panel data set. Second, we would like to test
some of the ideas in endogenous growth theory for their empirical relevance,
by relating it to the empirical literature on technology spillovers. These pur-
poses together led us to the basic model we rely on throughout the remainder
of the paper.

In their panel data analysis of the impacts of own R&D, Griliches and
Mairesse (1984), Cuneo and Mairesse (1984) and Hall and Mairesse (1995)
base their estimations on

Qit � AeltK a
it L

b
itR

g
ite

eit ; �3�

Table 3. Summary statistics for the indirect R&D varia-
bles.* Means, standard deviations between brackets (un-
balanced samples)

log IR1 log IR2 log IRY log IRT

Total 9.68
(1.14)

9.49
(1.43)

9.48
(0.95)

12.76
(0.20)

High-tech 10.45
(0.34)

9.89
(0.95)

10.20
(0.64)

12.77
(0.20)

Med-tech 10.13
(0.75)

10.39
(1.23)

9.72
(0.52)

12.76
(0.20)

Low-tech 8.35
(0.88)

8.10
(0.95)

8.41
(0.59)

12.75
(0.20)

* All variables in millions of 1985 US$.
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which is a stochastic (eit is a random disturbance) speci®cation of the standard
dynamic Cobb-Douglas production function, extended with own R&D as a
factor of production. Although the Cobb-Douglas form is very restrictive, the
use of more complex functional forms (e.g. CES or translog) did not alter the
estimated output elasticities a and g to a large extent (see Griliches and
Mairesse, 1984, p. 342). Therefore, our point of departure will also be an
extended Cobb-Douglas form. The most important di¨erence of our specif-
ication compared to Eq. 3 is suggested by the endogenous growth theories
discussed in Section 2. We will estimate

Qit � A�IR�hitK a
it L

b
itR

g
ite

eit ; �4�

or, in logarithms:

qit � a� h�ir�it � akit � blit � grit � eit: �5�

This speci®cation explicitly models R&D e¨orts as the factor determining the
level of technology, instead of the simple lapse of time as in Eq. 3. We have
chosen a very simple speci®cation of the function F ���, discussed in Section 2,
which we think, however, is ¯exible enough to capture at least the basic e¨ects
of technology spillovers. A positive elasticity h would indicate a dominance of
positive `own R&D augmenting' e¨ects over Schumpeterian `creative de-
struction' (e.g., strongly R&D intensive ®rms pushing other ®rms out of the
market, a process which Aghion and Howitt, 1992, term creative destruction),
a negative h a dominance the other way round. In the previous section, we
already discussed the various alternatives we developed with respect to the IR
variable. To reduce problems of heteroscedasticity and multicollinearity we
estimate Eq. 5 in labour intensive form,

�qit ÿ lit� � a� h�ir�it � a�kit ÿ lit� � g�rit ÿ lit� � �mÿ 1�lit � eit; �6�

in which m is de®ned as a� b � g, the coe½cient of returns to scale with re-
spect to all the (rival as well as non-rival) ®rm-speci®c inputs.18,19

As our sample consists of panel data, the stochastic disturbance might be
decomposed into a permanent ®rm-speci®c e¨ect and a random transitory
e¨ect: eit � vi � wit. In a plain OLS-regression on all observations (`total' re-
gression) both e¨ects are taken into account. OLS using ®rm means over time
of all variables (`between') eliminates the transitory e¨ects, thus stressing the
cross sectional dimension. Using deviations from the ®rm means over time as

18 In line with our earlier discussion on the possible expectations on CRS with respect to various
factors, we could have chosen to de®ne m as a� b or a� b � g� h. This does not a¨ect the esti-
mated values (or t-statistics) for any of the elasticities a, b, g, or h. The only di¨erence is in the
interpretation of m.
19 Note that an alternative approach would be to use total factor productivity as the dependent
variable. This amounts to inferring a (as the share of property in value added) from the data, and
subtracting the term involving a from the equation. This involves the implicit assumption of per-
fect competition (otherwise the property share may not be used to measure a), which we prefer to
avoid. Moreover, as will be discussed at length below, there are certain problems associated with
estimating a, for which we will suggest a solution.
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the variables (`within') leaves only the transitory random e¨ects, and stresses
the time series dimension.20

Griliches and Mairesse (1984) pointed out that the estimation results for all
the models discussed are likely to be biased due to simultaneity. Investment in
physical capital, R&D expenditures and employment might well be in¯uenced
by productivity. Lacking su½cient factor price data necessary to estimate a
complete system of simultaneous equations, they decided to estimate a two-
equation semi-reduced form model, in which functions of R and K simul-
taneously determine output and employment. One disadvantage of this
approach is the implicit assumption of perfect competition in all markets and
short-run pro®t maximization, which is problematic from the point of view of
new growth theory. To keep simultaneity problems to a minimum, and to take
into account the lag between R&D investment and productivity gains, we
included the R&D stocks (both `own' and indirect) with a lag of one year into
the estimated equations. However, this might not completely solve our simul-
taneity biases.

In Table 4, estimation results using within and between models for the re-
stricted, unbalanced sample are presented. We do not document the estima-
tion results for total, because this does not add much to the understanding. In
the estimations, we split the total sample into the high-, medium- and low-tech
subsamples described in Section 3. The most important phenomenon emerg-
ing from the estimation results is the di¨erence between the between and
within estimates. One di¨erence between these two models is the much lower
elasticity of capital found in the case of the within model, apparent in all three
groups of sectors. Griliches and Mairesse (1984) and Cuneo and Mairesse
(1984) found comparable results, at least regarding the elasticity with respect
to physical capital a. This di¨erence (also apparent in the adjusted R2s) must
be caused by speci®cation errors, to which we will come back later.

Concerning the `own R&D' elasticities, these are positive and signi®cant
for the total and high-tech sample for both the between and within model. The
estimated elasticities for this variable are highest in high-tech industries for
both models, as expected. The low insigni®cant estimates for the other sub
samples may (partly) be caused by the double-counting problem discussed in
Section 3. According to the between model, deviations from constant returns
to scale are small, and most often not signi®cant (in high-tech it is close to
signi®cant at the 10% level). The within model yields very large and signi®cant
decreasing returns to scale in the low- and medium-tech, as well as in the total
sample, mainly through the low estimates of a. In high-tech, we ®nd a mod-
erately negative coe½cient.

The estimated values of the output elasticities with respect to indirect R&D
are rather mixed. In the cross section (between) dimension the estimates are
often insigni®cant or have a negative sign. The only cases with signi®cantly
positive elasticities are IRT in the total sample, and IRY and IRT in low- and
high-tech. Negative (and signi®cant) estimates are found for IR1 and IR2 in
the total sample, and IR2 for high-tech. These results, which are contrary to
our prior expectations, might well be due to a high degree of multi-collinearity
between own R&D and indirect R&D. In a between setting, the variability

20 We do not discuss the `random e¨ects' version of the within variant, because this did not prove
to be preferable over the `®xed e¨ects' case according to the Hausman test.
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between ®rms with regard to indirect R&D is very small, following from our
de®nition of indirect R&D.

In the time series (within) dimension, the e¨ects of indirect R&D are all
positive and (very) signi®cant. According to these estimates, the productivity
enhancing e¨ects of spillovers clearly dominate negative e¨ects of spillovers
(so-called creative destruction). Comparing the magnitude of the elasticity, in
each of the four within equations, the e¨ects of indirect R&D according to the
Yale measure (emphasizing rent spillovers) seem to be somewhat lower than
for the three alternative measures, except in low-tech sectors.

Before we draw strong conclusions on the relevance of spillovers, however,
we will adopt a dynamic speci®cation in the next section, in order to test the
robustness of the results.

6. Co-integration, the long run and error correction mechanisms

We do not wish to exclude the possibility that our variables are non-
stationary. As is well-known (e.g. Hendry, 1986 and Banerjee et al., 1993)
regressing variables that are integrated of order one or higher on each
other might lead to spurious correlations, and an upward bias of the estimated
t-values and R2. Given the relatively high R2-values found in Table 4, we
cannot rule this possibility out a priori. In order to investigate whether or not
the regression results presented in the previous section su¨er from such prob-
lems, this section takes up the issues of stationarity, co-integration and error-
correction models.

The ®rst step in our analysis is to investigate whether or not our variables
do indeed contain a unit root. In order to test for this, we apply the procedure
proposed by Im et al. (1996). The null hypothesis in this test is that a unit root
is present in the data. A standard normally distributed test statistic is gen-
erated. Table 5 documents the results of this test for the variables in our
model.

The statistics lead to acceptance of the null hypothesis of a unit root for the
labor productivity, capital intensity, research intensity and labor (returns to
scale) variables at all usual levels of signi®cance. The results for the indirect
R&D variables are mixed: for IRY and IRT a unit root seems to be present,
while this hypothesis must be rejected for the alternative spillover variables.
For these two variables (IR1 and IR2), however, the root is estimated to be
in the range between 0.97 and 1.21 Banerjee et al. (1993) call this `near-

Table 5. Unit root tests for the variables in the regressions (balanced sample), based on Im et al.
(1996), p � 4, time trend included

Variable qÿ l k ÿ l rÿ l l

Statistic ÿ1.028 ÿ1.085 ÿ0.703 1.624

Variable ir1ÿ l ir2ÿ l iryÿ l irtÿ l

Statistic ÿ21.637 ÿ13.054 ÿ0.738 3.503

21 To obtain such estimates, a `within' ADF regression (allowing for ®rm speci®c constants but
assuming common `slopes') was run.
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integratedness' and argue that this kind of variables are best treated as if
they were integrated of order one. Hence, although the test results are not
clear-cut and the low power of unit root tests with small T should be borne in
mind, the results of the tests presented in Table 5 support the view that stan-
dard `within' productivity regressions might well su¨er from spurious corre-
lation.

In order to obtain unbiased normally distributed estimators for the long
run parameters, a three-step procedure proposed by Engle and Yoo (1991) is
applied. Since this procedure is an extension of an original idea by Engle and
Granger (1987), the method will be referred to as the `Engle-Granger-Yoo'
procedure. The ®rst step is to estimate a cointegration equation using the ®xed
e¨ects `within' estimator, i.e., the within estimates for Equation 6 from Table
4. We performed the Im et al. (1996) test on the residuals of these equations,
and indeed conclude that we have cointegration (results not documented, but
available from the authors on request).

In the second step, Equation 6 is rewritten in ®rst di¨erences, and the re-
siduals of the ®rst step (lagged one period) are added to the set of independent
variables. This is often called an `error correction model' (ECM).22 A sig-
ni®cantly negative sign of the estimated coe½cient for the lagged residual is
another indication for cointegration in the original level speci®cation. Again,
we do not document these results explicitly, but estimates showing signi®cant
negative signs on the residual are available from the authors.

The third step of the Engle-Granger-Yoo procedure uses results from the
second step for an additional within-regression:

êit � h1�ÿẑ�ir�itÿ1� � a1�ÿẑ�k ÿ l�itÿ1�

� g1�ÿẑ�rÿ l�itÿ1� � �mÿ 1�1�ÿẑ�l�itÿ1� � vit; �7�

where the left hand side variable is the residual from the second step, and ẑ is
the estimated coe½cient on the lagged residual in the second step. Under the
assumptions of a unique cointegration vector and weak exogeneity of the right
hand side variables in the short run ECM, the sums of the estimators in the
®rst step (Table 4) and the corresponding estimators of Eq. 7 are normally
distributed unbiased estimators of the long-run relationship. The standard
deviations are estimated without bias by the standard error of the estimators
in Eq. 7.

Table 6 reports the results of the procedure. An important di¨erence be-
tween the corrected results and the standard `within' results presented in Table
4 lies in the estimates for the returns to scale parameter. The standard results
showed three out of four (sub)sample results with strongly negative estimates
for �mÿ 1�, indicating strong decreasing returns to scale. In Table 6, the esti-
mates for �mÿ 1� are much higher. In case of the high-tech sectors, we ®nd
signi®cant increasing returns to scale. In general, the corrections do not have
much in¯uence on the estimated physical capital elasticities. The high-tech

22 Note that the ECM could have included each of the di¨erenced variables with many more lags
allowing for richer dynamics. For now, the least complex form is chosen. Further, the ECM does
not include an intercept since this would imply the inclusion of a deterministic trend. Hence, the
ECM is estimated by a `total', normal OLS procedure.
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sectors are an exception to this, where we ®nd a lower elasticity as compared
to Table 4. Own R&D is no longer signi®cant in the total sample, and shows a
smaller, but signi®cant positive value for the high-tech sectors.

The indirect R&D variables generally show higher elasticities in Table 6
than in Table 4. IR2 in high-tech sectors (lower) is the one exception to this.
With regard to the comparison between the di¨erent spillover measures, for
the sample as a whole, and medium-tech sectors, the earlier pattern is con-
®rmed: the rent spillover measure IRY yields lower estimates than the others.
For high-tech and low-tech the di¨erences are small, as before.

Concluding, it can be said that the production functions that we estimated
in Section 5 tend to underestimate the long-run elasticities of indirect R&D. In
other words, R&D spillovers seem to be even more important for productivity
than would be argued on the basis of the conventional estimates (although the
impact di¨ers between manufacturing industries). This result bears impor-
tance as empirical evidence with regard to many of the recent theories on
`endogenous' economic growth, which we will discuss in the ®nal section.

7. Summary and conclusions

In this paper, we tried to ®nd evidence in favour of the important role many
endogenous growth theorists (both mainstream and non-mainstream) assign
to technology spillovers. We set up our framework in a way comparable to the
studies in productivity growth at the ®rm level already available. This implies
(among others) the use of an extended Cobb-Douglas production function
and the use of R&D as a proxy for technological output. The most important
`innovation' over the existing studies is the inclusion of indirect R&D stocks,
estimated using patent data. We used a large panel database of U.S. ®rms
between 1974 and 1993, which provided us with the possibility to analyze the
e¨ects of direct and indirect R&D at a level more detailed than studies so far.

The results of our level estimates, presented in Section 5, are roughly in
line with previous studies. The striking result (®rst obtained by Griliches and
Mairesse, 1984) of strong decreasing returns to scale in the time series
dimension was obtained again. With regard to knowledge spillovers, which is

Table 6. Estimation results for Engle-Granger-Yoo three step procedure* (unbalanced samples)

a g �mÿ 1� h(ir1) h(ir2) h�iry� h�irt� NI NOB

Total sample 0.131
7.51

0.007
0.71

ÿ0.029
1.65

0.624
19.0

0.680
20.0

0.483
14.1

0.623
20.5

680 9223

High-tech sectors 0.065
2.60

0.073
2.68

0.048
1.45

0.434
7.09

0.356
4.76

0.393
7.51

0.439
6.39

245 3203

Medium-tech sectors 0.156
4.04

ÿ0.008
0.57

ÿ0.039
1.22

0.951
15.0

0.949
18.6

0.711
8.02

0.955
18.2

224 3110

Low-tech sectors 0.218
8.06

ÿ0.001
0.11

ÿ0.066
2.69

0.373
7.98

0.328
6.16

0.346
6.96

0.336
8.95

211 2910

* The indicated values for a, g, �mÿ 1�, h(ir1) are those estimated in the regression equation
containing ir1 as the measure for indirect R&D. The indicated values for, h(ir2), h�iry�, and h�irt�
are those obtained including ir2, iry, and irt respectively, instead of ir1. Of course, the estimated
output elasticities with respect to K, R and L are di¨erent, but only to a small extent. Due to space
limitations we do not present them here.
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the main novelty introduced in our model relative to the earlier literature, the
initial estimates we undertook on level data pointed out that the measures
aimed at pure knowledge spillovers have somewhat higher estimates than the
measure aimed at capturing so-called rent spillovers. However, because the
various alternative measures for spillovers are highly collinear, we were not
able to produce useful results for equations in which both types of spillovers
are present.

In Section 6, we found evidence that many of the variables under consid-
eration are integrated of order one, which renders the estimated standard de-
viations and the linked R2s, as well as the estimated elasticities, biased and
therefore unreliable. We used recently developed panel data tests on unit
roots, indicating that the residuals of the level estimations are stationary,
which points to cointegration. Cointegration also appeared from the Engle-
Granger-Yoo three-step procedure we implemented. This procedure yields
long-run estimates of the elasticities of R&D spillovers, and shows that
they tend to be larger than the ones obtained using the `usual' (within-level)
estimates.

The estimates of elasticities with respect to indirect R&D showed that the
choice for a particular spillover measure a¨ects the results. In general, rent
spillovers (obtained through the purchase of innovated products) seem to yield
lower estimates of the elasticities, compared to pure knowledge spillovers (the
latter are mainly stressed in endogenous growth theories).

With regard to the strong decreasing returns to scale, which are often
found in the literature on R&D and productivity, and which were also found
in our within level estimates, we ®nd that these largely disappear in the
Granger-Engle-Yoo long-run estimates. Griliches and Mairesse (1984) were
the ®rst to ®nd the strong decreasing returns to scale feature. They devote a
section to possible causes of these ®ndings, one of which is their inability to
deal with underutilization of physical capital. We tried to catch this e¨ect
using an unemployment proxy in the dynamic speci®cation, but the returns to
scale estimates did not change signi®cantly, perhaps due to the macro nature
of the proxy. The other ®ve possible causes of bias mentioned by Griliches
and Mairesse (1984, p. 358) are: the use of sales rather than value added as the
measure for output, simultaneity in the determination of employment and
output, ignorance of random errors in the measures for labour and capital, the
wrong assumption of ®rms operating in competitive markets and the peculiar
selectivity in their sample. We think we have provided some evidence that the
latter two possible causes might be relatively unimportant, as we did not as-
sume perfect competition, and made avail of a large data set with many ®rms
across almost all manufacturing industries in the United States. The former
three causes we can not address, because of data limitations. In addition to the
discussion by Griliches and Mairesse, however, we ®nd that the ®nding of
strong decreasing returns to scale may simply be due to an estimation bias
associated with non-stationarity of the data.

In this paper, we tried to ®nd out whether ®rm level data support the most
prominent features of endogenous growth theories. Modern endogenous
growth theories deviate from the Solow-Swan growth model in two important
aspects. First, the introduction of monopolistic competition relaxes the con-
stant returns to scale assumption. We ®nd some limited evidence that in-
creasing returns to scale may hold in high-tech industries. Also, the crucial
role of knowledge spillovers is strongly con®rmed by our study. However, it
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should be stressed that our analyses can not be seen as `tests' of any speci®c
model, but should be regarded as an investigation into the implications of
technology-driven growth models in a broad sense.
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