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Abstract
The economics of obesity literature implicitly assumes that measured anthropometrics
are error-free and they are often treated as a gold standard when compared to self-
reported data. We use factor mixture models to analyse measurement error in both
self-reported and measured anthropometrics with nationally representative data from
the 2013 National Health Survey in Brazil. A small but statistically significant frac-
tion of measured anthropometrics are attributed to recording errors, while, as they are
imprecisely recorded and due to reporting behaviour, only between 10 and 23% of our
self-reported anthropometrics are free from any measurement error. Post-estimation
analysis allows us to calculate hybrid anthropometric predictions that best approximate
the true body weight and height distribution. BMI distributions based on the hybrid
measures do not differ between our factor mixture models, with and without covari-
ates, and are generally close to those based on measured data, while BMI based on
self-reported data under-estimates the true BMI distribution. “Corrected self-reported
BMI” measures, based on common methods to mitigate reporting error in self-reports
using predictions from corrective equations, do not seem to be a good alternative to our
“hybrid” BMI measures. Analysis of regression models for the association between
BMI and health care utilization shows only small differences, concentrated at the
far-right tails of the BMI distribution, when they are based on our hybrid measure
as opposed to measured BMI. However, more pronounced differences are observed,
at the lower and higher tails of BMI, when these are compared to self-reported or
“corrected self-reported” BMI.
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1 Introduction

Obesity is a strong predictor of overall mortality (Li et al. 2021; Prospective Studies
Collaboration et al. 2009) and an important risk factor for several noncommunicable
diseases such as cardiovascular diseases, diabetes, musculoskeletal disorder and some
cancers (Lin et al. 2020). A large literature has explored the economic and social
ramifications of obesity, such as poorer labour market outcomes, increased health
care utilization and associated public health costs (e.g. Cawley 2004, 2015; Rooth
2009). Moreover, studies have investigated and measured socioeconomic inequalities
in obesity (e.g. Bilger et al. 2017; Davillas andBenzeval 2016; Zhang andWang 2004).

Despite an influential report on the importance of physically measured health indi-
cators for understanding how the social and economic environment may get under
the skin, several multi-purpose social science datasets continue to collect only self-
reported weight and height data (Cawley 2015). Some existing studies do use datasets
that collect measured anthropometrics, often in addition to self-reported anthropomet-
ric data (e.g. Cawley 2015; Cawley et al. 2015; Davillas and Jones 2021; Gil andMora
2011). Studies that analyse measurement error in anthropometric data typically com-
pare self-reports and measured anthropometric data; this research explicitly assumes
that measured anthropometric data are error-free “gold-standard” measures. Specifi-
cally, Cawley et al. (2015), using the US National Health and Nutrition Examination
Survey (NHANES) for the period between 2003 and 2010, compare self-reports with
measured weight and height data. They find that reporting error in self-reported data is
non-classical, with those who are underweight, based on measured anthropometrics,
tending to over-report and overweight and obese respondents tending to under-report
their weight. Gil and Mora (2011) use data from the 2006 Catalan Health and Health
ExaminationSurveys and compare self-reportedwithmeasured anthropometrics. They
find that social norms regarding ideal weight may affect reporting bias in self-reported
anthropometrics. Those respondents who aremore satisfiedwith their own body image
are less prone to under-report their weight, although these results are subject to the
definition of social norms on body image.

Using UK data, Davillas and Jones (2021) conducted an experiment to explore
the extent of measurement error in body mass index (BMI), when self-reported body
weight and height data are compared to measured anthropometrics. This study shows
non-classical reporting error in height and weight; taller people seem to report their
height more accurately and a sharp increase in reporting errors in self-reported body
weight for those of greatermeasuredweight. Further analysis shows that heterogeneity
in self-reported anthropometrics is associated with within-household measured BMI
data. A study employing Swedish data (Ljungvall et al. 2015) finds the presence of
reporting error in self-reports of BMI (called misreporting in the study), when com-
pared to measured anthropometric data, and that there is systematic social patterning
in misreporting which matters for estimation of the education and income gradients
in BMI when based on self-reports. O’Neill and Sweetman (2013), using a selective
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sample of mothers from the Irish Cohort Study, find that self-reported BMI, as com-
pared tomeasured anthropometrics, is subject to substantial measurement error, which
also causes an overestimation of the relationship between BMI and income. Finally,
the role of interviewers is examined by Olbrich et al. (2022). Using various datasets
from the USA, UK and Germany, this study shows that interviewers play an important
role in differences between reported and measured body height data as well as on the
changes in reported height over survey waves.

Over and above the fact that these existing studies assume that measured anthropo-
metrics are error-free, they mostly compare self-reports and measured anthropometric
data that were collected with a considerable time difference or where respondents
were informed about the subsequent physical measurements (Cawley et al. 2015; Gil
and Mora 2011). The related medical literature is often based on selected age groups,
non-representative samples and neither aims to characterize the measurement error
nor to quantify the implications of the measurement error for economic modelling
(e.g. Engstrom et al. 2003; Gorber et al. 2007; Keith et al. 2011).

Despite the fact thatmeasured anthropometrics are assumed to be error-free inmuch
of the existing literature, the accuracy of measured anthropometrics may indeed be
affected by several factors. For instance, recent evidence has documented the influence
of interviewers on reliability of measured and self-reported body height data in differ-
ent surveys (e.g. Finn and Ranchhod 2017; Olbrich et al. 2022). Potential sources of
measurement error includeboth unintentional (such as accidental recording errors from
measurement equipment to survey materials) and intentional (i.e. fabricating parts of
themeasurement or even conducting physicalmeasurements on thewrong respondent)
recording errors (e.g. Finn and Ranchhod 2017; Groves 2005; Olbrich et al. 2022).
These may not be easy to detect if the interviewers visited the household to conduct
the interview (Olbrich et al. 2022). Moreover, in some datasets, interviewers may visit
the household more than once to complete a socioeconomic questionnaire and collect
physical measurements, including anthropometrics; this increases the likelihood that
mis-identification takes place. More broadly, the literature has discussed the presence
of measurement error in more objectively measured nurse-collected and blood-based
health data (Davillas and Pudney 2020a,b). These studies use latent variable models to
account for measurement error, but they do not aim to explicitly model measurement
error or to explore its potential implications for economic models. Overall, there is
limited research that has access to both self-reported and measured anthropometric
data collected within the same survey wave.

Our paper contributes to the literature in variousways.Wemodel potentialmeasure-
ment error in both self-reported and measured anthropometrics (i.e. body weight and
body height). We use data from the 2013 National Health Survey (Pesquisa Nacional
de Saúde; PNS 2013) of Brazil, which is a nationally representative dataset that allows
for measured and self-reported data on body weight and height to be collected from
the same individuals within the span of a household interview. In Brazil, obesity has
systematically increased since the 2010s, with one in every five adults experiencing
obesity (Triaca et al. 2020). Projections of the obesity-related costs in Brazil show
that the annual health care costs may double from 2010 ($5.8 billion) to 2050 ($10.1
billion) a total health care cost of $330 billion over 40 years (Rtveladze et al. 2013).
As such, obesity is an important public health concern for Brazil.
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To analyse measurement error in the Brazilian data, we use a factor mixture model,
initially proposed by Kapteyn and Ypma (2007). This Kapteyn and Ypma (KY) factor
mixture model is applied and extended by Jenkins and Rios-Avila (2020) and Jenk-
ins and Rios-Avila (2021, 2023a) to analyse measurement error in self-reported and
administrative income data. To the best of our knowledge, the KY factor mixture
model has not been used to analyse measurement error in self-reported and measured
anthropometric data. Unlike the existing literature that assumes no measurement error
in measured body weight and height data, our analysis allows us to model different
types of errors in both self-reported and measured anthropometrics. Specifically, we
test the hypothesis that measured anthropometrics encompass data recording errors.
Moreover, the self-reported anthropometric data are assumed to be subject to a wider
set ofmeasurement errors. These include the precision of the scale for the self-reported
data, which are only recorded as whole numbers (in cm or Kg), non-classical mean-
reverting errors and other types of remaining errors. As permitted by our data, we also
estimate factor mixture models that account for individual-level covariates to explore
the extent to which true latent anthropometrics as well as reporting error in self-
reported anthropometrics, and their dispersion, may vary across population groups.
Absence of interviewer-level data, however, prevents us from exploring heterogeneity
in measured anthropometrics due to interviewer characteristics.

Our analysis also allows us to estimate the probability of each type of measure-
ment error in both self-reported and measured data. Of particular interest, given that
measured anthropometric data are often considered error-free (e.g. Cawley 2015;
Davillas and Jones 2021; Gil and Mora 2011), our results suggest that a small but
systematic fraction of measured anthropometrics contain data recording errors. Turn-
ing to self-reportedweight and height, the estimated probabilities that the self-reported
anthropometrics equal the true body weight and height are relatively low, at 10% and
23%, respectively.

Post-estimation analysis allows us to generate a set of predictions of the distri-
bution of the true latent weight and height data that combine information from both
self-reported and measured anthropometrics. Based on reliability measures and mean
squared errors, estimated using simulated out-of-the-sample predictions, we select the
best performing predictions of latent weight and height distributions. After choosing
our preferred prediction, for our factor mixture models with and without covariates,
our sample data are used to compute body weight and height measures that approx-
imate the true values; these are then used to calculate our proxies of the true BMI
distribution.

Finally, we compare the distributions of BMI using self-reported, measured and
our proxies of true BMI; the latter are very close to the distribution of BMI based on
measured anthropometrics, while the BMI based on self-reported data under-estimates
the true BMI distribution. We also employ the “corrected self-reported BMI” as an
additional measure—a conventional measure used in the existing economics of obe-
sity literature to correct self-reported data for reporting error (Cawley 2015). Our
results show that these “corrected self-reported BMI” measures are not a good alter-
native to our “hybrid” BMI measures. In addition, we provide evidence to explore the
potential implications of the measurement error in both self-reported and measured
anthropometrics. As an illustration, we compare results when each of the self-reported,
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“corrected self-reported”, measured and hybrid BMI measures is used as explanatory
variables in linear regression models for the frequency of hospital admissions in the
past 12 months. We find only moderate differences in the results between the hybrid
BMI measure and the one based on measured anthropometrics, and these are concen-
trated in the far-right tails of the BMI distribution. More pronounced disparities are
observed, at the lower and higher BMI tails, when our hybrid measures are compared
with BMI measures based on self-reported or “corrected self-reported” data.

Understanding and characterizingmeasurement error in both self-reported andmea-
sured anthropometrics has important public health implications. Self-reported and/or
physical measurements of anthropometrics are collected in several nationally rep-
resentative surveys. For example, the Survey of Health, Ageing and Retirement in
Europe (SHARE), the European Community Household Panel (ECHP), the German
Socio-Economic Panel (GSOEP) as well as the National Longitudinal Survey of Youth
(NLSY), the Medical Expenditure Panel Survey (MEPS) and the Behavioural Risk
Factor Surveillance System (BRFSS) are datasets that are frequently used for obesity
research but are limited to self-reports of bodyweight and height data. Recent advances
to survey measurement allow for measured anthropometrics to be collected as part of
multi-purpose social science surveys to improve data reliability on anthropometric
measurement (Cawley et al. 2015). Data from nationally representative surveys are
used to estimate obesity prevalence at the national level as well as for international
comparisons (Ng et al. 2014). Measurement errors that may contaminate both self-
reported and measured anthropometrics may affect within and between country and
region comparisons of obesity prevalence and estimates of the population at increased
health risks. Depending on the size of the measurement error, this may mislead poten-
tial public policies to mitigate regional or cross-country differences in excess body
weight. Moreover, studies that quantify the (public) health care costs associated with
obesity and related diseases often rely on survey data (Cawley andMeyerhoefer 2012);
this research is influential and is used to justify government programmes to prevent
obesity on the grounds of external costs (USDHHS 2010). The extent to which these
estimates may be biased due to measurement error in measured and/or self-reported
anthropometrics collected in surveys is of relevance from a public health point of view
given the cost savings from reducing obesity prevalence.

The rest of the paper is organized as follows. Section 2 presents the methods used to
analyse measurement error in both self-reported and measured anthropometric data.
Our data source and descriptive statistics are presented in Sect. 3. The results of our
analysis, post-estimation predictions and a preliminary analysis of the potential impli-
cations on measurement error in both self-reported and measured anthropometrics
for economic research are presented in Sect. 4. Section 5 concludes and provides a
summary of our findings.

2 Methods

We adapt the factor mixture model, proposed by Kapteyn and Ypma (2007), to model
the relationship between measured and self-reported anthropometrics. This model
has been applied and extended by Jenkins and Rios-Avila (2020) and Jenkins and
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Rios-Avila (2021, 2023a) to analyse measurement error in income data. In this study,
we apply the KY model to measurement error in both self-reported and measured
anthropometric data, on weight and height, using the 2013 National Health Survey of
Brazil.

We assume that the true values of each anthropometric measure (weight or height)
for an individual i (ξi ) are unobserved, but we can observe both measured (ri ) and
self-reported (si ) anthropometrics. Table 1 provides a description of the types of errors
in measured and self-reported anthropometric data that can be captured by our factor
mixture model.

Table 1 Types of measurement error and their sources used in the factor mixture models

Type of error Sources

Self-reported anthropometrics

Imprecision error The survey questionnaire on self-reported
anthropometric data requests the participants to
respond to body weight and height questions with a
precision of integer values (cm for height and Kg for
weight). The precision error reflects different ways in
which respondents may round their responses to
whole numbers (integers) along with random noise
in the self-reports. Moreover, in those cases where
the respondent provided a non-integer value of their
self-reported body weight and/or height (for example
61.5 kg), the interviewer recorded an integer value
(such as 61 kg or 62 kg)

Mean-reverting (or mean-diverging) error Mean reversion means that respondents with high (low)
values of true anthropometric measures, relative to
the true mean, tend to under-report (over-report)
their anthropometrics in self-reports; the opposite is
the case for mean divergence. Existing studies have
shown evidence of mean reversion in reporting errors
in weight and height data (e.g. Cawley et al. 2015)

Additional random error Captures any potential additional random noise (over
and above imprecision and mean-reverting errors)
that may occur for those who make additional errors
in their self-assessments of height/weight. These
errors may capture respondent’s lack of awareness of
their true anthropometrics

Measured anthropometrics

Unintentional or intentional recording errors Recording errors in measured anthropometrics may
capture errors related to entering values from the
measurement equipment to the survey materials,
fabrication of the measurement of anthropometrics
by the interviewer or even physical measurements
taken from the wrong household members
(especially if the main interview and physical
measurements are not collected the same day)
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Measured anthropometrics are collected at the end of the individual questionnaire in
our dataset. According to the survey protocol, it is possible for the individual interview
to be completed in more than one visit, so it may be the case that physical measure-
ments (which are time consuming as they include anthropometrics and blood pressure
measurements) may not take place on the same day. Also, the measured anthropomet-
rics are recorded by the interviewer by hand in the survey materials. Thus, measured
anthropometrics may suffer from (unintentional or intentional) recording error related
to entering values from themeasurement equipment to the surveymaterials, fabrication
of the measurement of anthropometrics by the interviewer1 or even physical measure-
ments taken from the wrong household member (especially if the main interview and
physical measurements are not collected on the same day). These measurement errors,
although they may occur with low frequency, could have a non-negligible impact on
data reliability.

Thus, in the case of measured anthropometrics, we assume that the distribution of
each anthropometric measure is a mixture of two types of observation:

ri �
{

ξi with probability πr

ζi with probability (1 − πr )
(1)

where measured anthropometrics (ri ) equals the true value with probability πr (case
R1). However, measured anthropometrics may be not equal to the true value for cer-
tain respondents with probability 1− πr (case R2); thus, an error-ridden measure (ζi )

is observed in this case. In the spirit of the KY factor mixture model, this erroneous
anthropometric measure, which is incorrectly attributed to individual i , is denoted by
ζi .2 The true values and those with recording errors are both assumed to be indepen-

dently and identically normally distributed: ξi ∼ N
(
μξ , σ 2

ξ

)
, ζi ∼ N

(
μζ , σ 2

ζ

)
; this

implies that the marginal distribution of ri is a mixture of two normals. Given the
type of errors that are captured by ζi , as described above, we assume that there is no
correlation between ξi and ζi .3 The assumption that the erroneous measurements are
uncorrelated with the true values contributes to the identification of the full model

1 These fabrication errors (if they exist) are unlikely to result in mean reversion/mean divergence but may
be fairly random errors. Existing studies have shown evidence of misperception of body size (Zelenytė et al.
2021), suggesting that interviewers may not be able to accurately predict participants’ body weight/height
(if not measured) and, thus, not be able to make guesses that may lead to mean reversion/mean divergence
(i.e. guesswork that is strongly correlated with true body weight and height).
2 The factor mixture measurement error model proposed by Kapteyn and Ypma (2007) assumes that
observed administrative income data are a mixture of correct matches and mismatches (with survey data).
However, they argue that, over and above potential mismatches in the linkage between administrative and
survey data, it is also likely that administrative and survey datamay capture conceptually different things. As
such, they argue that there is no loss of generality to assume that measurement error in administrative data
may reflect different sources. Analogously, in our analysis measurement error in measured anthropometrics
may reflect different sources (as described above), in particular interviewers’ errors related to entering values
from themeasurement equipment to the surveymaterials, fabrication of themeasurement of anthropometrics
by the interviewer or even physical measurements for the wrong household member.
3 Even in the case of fabricated interviews or when anthropometric measurement is not conducted for the
intended respondent, this may be a strong assumption if quality control takes place. However, there is no
such quality control undertaken in the dataset used in our analysis (as well as in many other multi-purpose
social science datasets that collect anthropometrics).
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as it implies that these measurements are also uncorrelated with the self-reported
anthropometrics.

Each of our self-reported anthropometrics (i.e. weight or height) is assumed to be
a mixture of three types of observation:

si �
⎧⎨
⎩

ξi with probability πs

ξi + ηi + ρ
(
ξi − μξ

)
with probability (1 − πs)(1 − πω)

ξi + ηi + ρ
(
ξi − μξ

)
+ ωi with probability (1 − πs)πω

(2)

Table 1describes all sources ofmeasurement errors in self-reported anthropometrics
that are captured in Eq. 2. Specifically, we assume that the self-reported anthropomet-
rics (si ) equals the true latent value (ξi )with probabilityπs (case S1). The self-reported
values are recorded as integers so this case only applies when the true value is a whole
number.4 Otherwise (cases S2 and S3), there must be some imprecision in si due the
scale of measurement. This imprecision, reflecting different ways in which respon-
dents may round their responses to whole numbers along with random noise in the
self-reports, is captured by the error term ηi . This error is independent of the true value
(ξi ). In addition, we allow for the possibility of non-classical mean-reverting (ormean-
diverging) error (survey measurement error, which is captured by term ρ

(
ξi − μξ

)
.5

Existing studies comparing measured with self-reported data have shown the presence
ofmean-reverting errors in self-reported bodyweight (Cawley et al. 2015). The second
case (S2), which allows for both sources of error, occurs with probability (1 − πs)

(1− πω). The third case (S3), which occurs with probability (1− πs)πw, adds a third
source of measurement error (ωi ) to allow for additional random noise that may occur
in some observations who make additional errors in their self-assessments of height or
weight (see Table 1). The measurement errors are both assumed to be independently

and identically normally distributed: ηi ∼ N
(
μη, σ 2

η

)
, and ωi ∼ N

(
μω, σ 2

ω

)
.

Note that the survey team undertook significant effort to minimize the risk of
equipment failure for physical anthropometric measurements; our dataset employs
international measurement protocols and validated equipment, which is calibrated
daily to ensure reliability of the measurements. The procedures for taking anthropo-
metricmeasures are defined to prevent biologically inaccuratemeasures andwere done
in partnership with the Laboratory for Nutritional Evaluation of Populations (LAN-
POP), part of the Public Health School in the University of São Paulo (Damacena
et al. 2015; Szwarcwald et al. 2014). Also, the availability of two repeated physical
measurements of body weight and height (we took the second measure for our main
estimation and, for sensitivity analysis, the average of these measures) further reduces

4 Self-reported anthropometrics are collected as integer values (cm for height and Kg for weight), while
the corresponding measured values are measured to one decimal point. In those cases where the respondent
provided a non-integer value of their self-reported body weight and/or height (for example 61.5 kg), the
interviewer recorded an integer value (such as 61 kg or 62 kg).
5 Mean reversion (ρ < 0) means that respondents with high (low) values of true anthropometric measures,
relative to the true mean, tend to under-report (over-report) their body weight and height in self-reports; the
opposite is the case for mean divergence (ρ > 0).
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Table 2 Groups (latent classes)
in mixture model of
self-reported and measured
anthropometrics

Groups (i) Types Probability
(
π j

)

1 R1,S1 πrπs

2 R1,S2 πr (1 − πs )(1 − πw)

3 R1,S3 πr (1 − πs )πw

4 R2,S1 (1 − πr )πs

5 R2,S2 (1 − πr )(1 − πs )(1 − πω)

6 R2,S3 (1 − πr )(1 − πs )πω

the likelihood of errors related to equipment failure. Thus, we do not capture this
potential source of error in our factor mixture models.6

The full KY model defines a mixture of six latent classes that correspond to the
combination of cases R1 or R2 with S1, S2 or S3. Table 2 describes all the potential
latent classes. For instance, the class 1 (R1, S1) consists of error-free self-reported
(S1) and measured (R1) data and occurs with probability πrπs . The full model is a
mixture of the six bivariate normal distributions for the observed outcome pairs (ri ,
si ), each with different means and covariance matrices (see Jenkins and Rios-Avila
(2020, 2021) and Kapteyn and Ypma (2007) for full details).

The parameter estimates are obtained by maximizing the model log-likelihood
(see Kapteyn and Ypma 2007, Appendix B), with identification relying on the exis-
tence of the “completely labelled” group that contains observations with error-free
anthropometrics (class 1: R1-S1). Parameters μξ and σ 2

ξ are identified from these

“completely labelled” observations and this contributes to identification of the other
unknown parameters from the mixture of normals implied by the model specifica-
tion (see Kapteyn and Ypma (2007) for further details on identification). Kapteyn
and Ypma (2007) provide the expressions for the probability density functions and
the associated log-likelihood function. Employing Jenkins and Rios-Avila’s (2023b)
user-written Stata command, we fit the full Kapteyn and Ypma (2007) model by max-
imum likelihood, assuming that the sample likelihood function is a finite mixture of
latent class distributions. Our analysis is done separately for each of our anthropomet-
ric measures, i.e. for weight and height.

6 Moreover, one may argue that survey mode may influence measurement error in self-reported anthropo-
metrics. For example, social desirability bias is much lower in the case of self-completion as opposed to the
open interview (Bowling 2005); thus, assuming that being taller and not of excess weight is more socially
desirable, shorter people and those with excess weight may have distinct reporting patterns across collection
modes. However, existing studies do not confirm the presence of such influences in reporting errors. Davillas
and Jones (2021) find that measurement errors in anthropometrics do not differ according to the mode of
interview, with similar patterns observed when self-reported anthropometrics are collected using randomly
assigned open interview and self-completion modes. Along similar lines, Cawley et al. (2015) who also
discuss mean reversion in reporting error in weight highlight that interviewers do not amend/correct the
self-reported anthropometrics based on measured data in their datasets and, thus, no additional interviewer
effects are expected.
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2.1 Accounting for covariates

Following Jenkins and Rios-Avila (2020; 2021), the factor mixture model is based on
unconditional distributions. However, allowing the measurement error distributions
to vary across observed characteristics has the advantage of increased flexibility and
can be used to assess whether the distributions of measurement errors differ across
population sub-groups (Jenkins and Rios-Avila 2023b). Goodness of fit tests based on
the Akaike information criterion (AIC) and Bayesian information criterion (BIC) are
used to compare our factor mixture models with and without covariates.

Jenkins and Rios-Avila (2023a) extend the Kapteyn and Ypma (2007) model, to
allow transformations of relevant parameters to be specified as linear indices of char-
acteristics (Xi ):

G(γ ) � αγ + β ′
γ Xi . (3)

where for each factor mixture model parameter of interest (γ ), αγ is a constant and
βγ are the slopes associated with individual-level characteristics (Xi ). The function G
( · ) is the specific transformation function of the parameter of interest. These are the
identity function for means (μ), the logarithmic function for SDs (σ ) and Fisher’s z
transformation for correlations (ρ).

In practice, and for parsimony in the estimation of our factor mixture models with
covariates, we parameterize errors in self-reported data using age, gender and region of
residence. Existing studies argue that measurement error in self-reported body weight
and height data depends on respondents’ characteristics (e.g. Cawley et al. 2015;
Davillas and Jones 2021). Specifically, for the self-reported anthropometrics,wemodel
theμ and the σ of the imprecision error (ηi ) and of the additional random error (ωi ) as
a function of individual characteristics (age groups, gender and region of residence);
we also condition the non-classical mean-reverting error on these respondent-level
characteristics.

Moreover, for the latent true body weight and height, we assume that the mean (μξ )
varies by respondents’ age, gender and region of residence; the same covariates are
also used for the SD equation (σ ξ). Earlier research has considered these demographics
as basic correlates of obesity (e.g. Baum and Ruhm 2009; Davillas and Jones 2020).
Finally, we model the distribution of measured anthropometrics without covariates,
given that the protocols on physical measurements of anthropometrics collected in
surveys are the same for all respondents (irrespective of gender, age and region of
residence). Interviewer characteristics, for those who are responsible for the physical
measurements, might be more relevant sources of measurement error in measured
anthropometrics (Olbrich et al. 2022).7 However, these are not available in our dataset.

For the factormixturemodelswith covariates,we calculate the estimated parameters
in their natural metrics, computing the Average Predicted Margins (APMs); for each
measurement model parameter of interest (γ ), we predict γ for every individual in our
sample using the fitted model and assuming all other covariates are at their observed

7 Typically, failures of measurement equipment may be also relevant for measurement error in physical
measurements of anthropometrics. However, we believe that the risk of equipment failure is less relevant
in our dataset given the prevention mechanisms/protocols we describe above.
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values and, then, calculate the sample average of γ (and its associated standard error).
For presentation purposes,we report howeachmeasurement error parameter (γ ) varies
across covariates using the APMs (Jenkins and Rios-Avila 2023a,b). For example, for
a gender dummy, we calculate the APMs, for males by setting all sample values of
gender to male and then taking the average over the whole sample; APMs for females
are calculated analogously. This allows us to test whether there are systematic gender
differences in APM for each particular parameter of interest (γ ). For comparison
purposes, in addition to APMs across population groups (by gender, age groups and
region of residence) we also report the corresponding APMs for all observations in
the sample.

2.2 Post-estimation predictions

As a post-estimation exercise, we generate predictions of the distribution of the true
latent weight and height (e.g. Meijer et al. 2012). In line with Jenkins and Rios-Avila
(2023a), we employ the most reliable prediction among all the potential hybrid mea-
sures of weight and height and then calculate BMI as weight (in Kg) over the square of
height (in metres).We compare the distributions of hybrid, self-reported andmeasured
BMI. We take the estimated parameters of our mixture models, separately for the case
of models with and without covariates, to create “hybrid” anthropometric predictions
that combine information from both self-reported and measured anthropometrics.8

Specifically, in line with Meijer et al. (2012), both with and without covariates,
we compare a number of approaches that combine measured and self-reported data to
obtain the best prediction of the “true” anthropometrics of interest. Meijer et al. (2012)
begin by deriving two predictors for the case of a single latent class (as described in
Table 2 for our analysis): one that minimizes the mean squared error (MSE) and one
that minimizes the MSE conditional on unbiasedness. Because class membership is
unobserved, Meijer et al. (2012) proposed three ways to proceed: (1) compute the
within-class predictors for each class and combine them in a weighted average using
the (un)conditional class probabilities for weighting; (2) predict class membership and
then use the within-class predictor for the predicted class; and (3) derive predictors
that minimize the total mean squared prediction error. Because either the predictor
based on MSE or on MSE conditional on unbiasedness could be the within-predictor
for each of the three approaches listed above, there are six potential predictors in total.
Finally, a system-wide predictor minimizes MSE under the assumption of linearity
and imposing the condition of unbiasedness.

As described above, following Meijer et al. (2012), seven “hybrid” measures to
approximate the true body weight and height are generated in our study: (1) Weighted
(unconditional), (2) Weighted (unconditional) unbiased, (3) Weighted (conditional),
(4) Weighted (conditional) unbiased, (5) Two-stage, (6) Two-stage, unbiased and (7)
System-wide linear. Predictions 1 to 6 use two within-class predictors for ξ . The
first set ξ̂

j
i , used for predictors 1, 3 and 5, minimize the mean square error (MSE),

8 The user-written Stata command “ky_fit” predicts the seven “hybrid” measures proposed by Meijer et al.
(2012). Table 6 in Jenkins and Rios-Avila (2023b) provides the descriptions of the predictors (“hybrid”
outcomes), with the corresponding derivation of the formulae presented in their appendix.
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E

[(
ξi − ξ

j
i

)2|ξi , i ∈ J

]
. The second of set predictors,ξ̂U j

i , used for predictors 2, 4

and 6, minimize the MSE conditional on E
(
ξi − ξ

U j
i |i ∈ J

)
� 0. Predictors 1 and

2 provide weighted predictions using the unconditional within-class probabilities π j .
Predictors 3 and 4 provide weighted predictions using conditional or posterior within-
class probabilities π j (ri , si ). Predictors 5 and 6 use a two-step Bayesian classification;
i.e. the predicted classmembership is obtained first and, then, the class-specific predic-
tor of the predicted class is used. Finally, the seventh predictor (ξ7i ) is the system-wide
predictor that minimizesMSE under the assumption of linearity and imposing the con-
dition of unbiasedness.

To assess the precision of those predictions, we estimate reliability statistics and the
MSE.9 These are computedwith respect to the seven “hybrid”measures that come from
the sample simulations for bodyweight and body height based on estimated parameters
for the factor mixture models both with and without covariates. Simulation analysis is
done using the user-written Stata command “ky_sim” (Jenkins and Rios-Avila 2023b).

We provide some further analysis to explore the implications of the measurement
error in both self-reported and measured anthropometrics for empirical research on
the association between obesity and health care utilization. Specifically, we compare
results when each of the self-reported, measured and hybrid BMI measures is used
as explanatory variables. If measurement error is non-classical, i.e. systematically
associated with the measured values, it may cause bias in regression models that use
anthropometrics as a regressor, even in the case where instrumental variable analysis is
employed to deal with endogeneity or errors in variables (Cawley et al. 2015; O’Neill
and Sweetman 2013).

3 Data

Data on self-reported and measured anthropometrics are extracted from the 2013
National Health Survey of Brazil (Pesquisa Nacional de Saúde –PNS 2013).10 This
is a cross-sectional, nationally representative dataset for all Brazilian states and geo-
graphic regions. The survey focuses on use of health care services, population health
conditions and surveillance of chronic noncommunicable diseases and their associated
risk factors. The PNS-2013 collects demographics and socioeconomic characteristics
of all household members. For each household, a randomly selected household mem-
ber aged 18 or older is chosen for their body weight and height to be measured along
with self-reports of the same anthropometrics.11 This results in a working sample

9 The mean square error is computed as E(predictor − ξ)2 � Bias2 + Variance. Reliability mea-

sures are computed as follows: Rel1(r) � cov(ξ , r)/var(r), Rel1(s) � cov(ξ , s)/var(s),
Rel2(r) � cov(ξ , r)2/[var(ξ) · var(r)] and Rel2(s) � cov(ξ , s)2/[var(ξ) · var(s)]. Further details can be
found in Jenkins and Rios-Avila (2023a).
10 The 2013 National Health Survey of Brazil is publicly available online: https://www.ibge.gov.br/estati
sticas/sociais/saude/9160-pesquisa-nacional-de-saude.html?=&t=microdados.
11 In PNS-2019, that collected data in 2019, body weight and height were measured for a much smaller
sub-sample of respondents, due to the difficulties in physical anthropometric measurements for the full
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of 37,335 respondents, men and non-pregnant women aged 20 or older, with valid
self-reported and measured weight and height data. We focus on adults (aged 20 +) to
avoid any puberty-related changes in body size.

3.1 Self-reported andmeasured body weight and height data

Self-reported body weight and height data are collected as part of the survey ques-
tionnaire. Measured weight and height are collected twice by a trained survey team
member at the end of the questionnaire.Weight is measured by a portable digital scale,
following standard measurement protocols which require that the respondents remove
their shoes, heavy clothes, accessories and objects from their pockets (PNS 2013).
Following common practice in the literature, when measured health data are used,
we take the second measurement for weight and height for our base case analysis to
reduce any potential errors in measured anthropometrics (e.g. Johnston et al. 2009;
Davillas and Pudney 2017). A sensitivity analysis is done using the average of the two
measures.12

For height, a portable stadiometer is used to measure stature (PNS 2013). Mea-
surement protocols for body height require that the respondent must remove their
shoes and other accessories, if possible, and keep at least three points of the body
on the posterior surface of the stadiometer (PNS 2013). International measurement
protocols together with validated and daily calibrated equipment are employed for
anthropometric physical measurements. These procedures are settled in partnership
with the Laboratory for Nutritional Evaluation of Populations (LANPOP), part of the
Public Health School in the University of São Paulo, to prevent biologically inaccurate
anthropometric measurements (Szwarcwald et al. 2014).

Our analysis allows for modelling all hypothesized errors in the measured and self-
reported anthropometrics as relevant to our dataset and described in detail in Table 1.
Along with the unconditional factor mixture measurement error models, we also esti-
mate models that account for a parsimonious set of covariates to explore potential
differential patterns in measurement errors across population groups. Specifically, in
these models, we account for the respondent’s gender, while respondents age is cap-
tured by a 6-category age group variable (20–29, 30–39, 40–49, 50–59, 60–69, and
70 or more). Region of residence is captured by a categorial variable for the five geo-
graphical regions (often called macro regions) of Brazil as defined by the Brazilian
Institute of Geography and Statistics: North, Northeast, Central-West, Southeast and
South.

Footnote 11 continued
survey sample selected for individual interviews (Reis et al. 2022). On the other hand, in PNS-2013, the
anthropometric measurements were carried out on all residents selected for the individual interview, except
pregnant women (Damacena et al. 2015). Collection of both self-reported and measured anthropometrics at
the same wave is necessary for our research question and the estimation requirements of our factor mixture
models. Given that measured anthropometrics are only available for a small fraction of the total survey
sample in PNS-2019 and because time sensitivity is not a constraint for the scope and the nature of our
research question for this study, we have used the PNS-2013 data for our analysis.
12 Figure 4 (Appendix) plots the absolute differences between the 1st and 2nd body weight and height
physical measurement. The graph shows that the mass of the absolute difference is concentrated at zero,
and there are a few observations with absolute differences between the 1st and 2nd measurement that
exceeds 1.5 kg (for body weight) or 1.5 cm (for body height).

123



A. Davillas et al.

3.2 Descriptive statistics

Figure 1 shows the histograms of the raw difference between measured and self-
reported body weight and height data, as well as for BMI created from the measured
and self-reported anthropometrics; a normal distribution is overlayed on each his-
togram. The horizontal axis is the number of units of raw reporting error; negative
numbers indicate that self-reports are higher than measured values, and vice versa.
The histogramswould have been a single bar, with all the sample having zero reporting
error, if every respondent reported the same measured and self-reported anthropomet-
rics.

Overall, across the graphs for body weight, height and BMI, the distribution of
the raw difference between reported and measured values deviates from the normal
distribution. Specifically, there is more mass around zero for the raw difference, as
shown by the histograms, as opposed to the normal distribution. Compared to the
normal distribution, less mass is observed with moderate and larger raw differences
for all anthropometrics, while there is more mass at very high raw differences. Finally,
it seems that the distribution for the raw body height difference is more skewed.

Descriptive statistics for the self-reported and measured weight and height data as
well as for BMI measures are presented in Table 3.13 The mean self-reported weight
(71.5 kg) is slightly smaller than the mean measured weight (72 kg). Mean self-
reported height is 0.8 cm higher than measured height. Table 3 also shows that the
mean absolute difference between the self-reported and measured data (expressed in
terms of percentage of the measured values) is about 3% for body weight, 1% for
height and 4.5% for the derived BMI measure.

Existing literature argues that reporting error in body weight self-reports may be
mean reverting, when compared with measured anthropometric data (Cawley et al.
2015); respondents with high (low) values of measured body weight data tend to
under-report (over-report) their body weight in self-reports. To provide some prelim-
inary evidence of this, under the assumption that measured data are not subject to
measurement error (an assumption we will relax later), Fig. 2 shows the mean raw
difference (measured self-reported) in body weight and height data across deciles of
the measured anthropometrics. Our results for body weight show that the mean raw
reporting error becomes less negative moving across the first three groups. This indi-
cates that, on average, the self-reported weight is higher than measured weight for
those with the lowest measured weight data. For the higher deciles of measured body
weight, there is a progressively increasing positive raw error indicating that measured
weight is higher than the self-reports, with the under-reporting becomingmore evident
for those with higher measured weight.

Figure 2 also displays the mean raw differences for height. There is a progressively
less negative mean raw difference moving to those of higher measured height up

13 The corresponding kernel density distributions for self-reported and measured body weight, height and
BMI are presented in Figure 5 (Appendix). It seems that both self-reported and measured body height data
have approximately normally shaped distributions, although right-skewed distributions are observed for the
case of body weight and BMI. This is important as our model assumes normality for the factor distributions
and identification of the components of the mixture of normals stems from non-normality in the (joint)
distribution of observed outcomes.
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Fig. 1 Histograms of the raw difference between measured and self-reported (measured—self-reported)
anthropometrics. Note: The normal density curve is overlayed to each histogram
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Table 3 Descriptive statistics and (raw and absolute) difference between measured and self-reported data

Measure Weight (kg) Height (cm) BMI (kg/m2)

Mean SD Mean SD Mean SD

Self-reported 71.5 14.6 165.2 9.5 26.2 4.7

Measured 72.0 15.0 164.4 9.5 26.6 4.9

Raw difference†

(measured–self-reported)
0.4 3.8 − 0.8 3.7 0.4 1.8

Absolute difference†† 2.2 3.1 2.2 3.1 1.2 1.5

Absolute difference (% measured)†† 3.1 4.4 1.4 1.9 4.5 5.3

†The raw difference is calculated as the difference of measured from self-reported data
††The absolute difference takes the absolute value of the difference between measured and self-reported
data; in other words, the absolute difference is only positive numbers as it removes any negative signs

to the 80th percentile of measured height, i.e. self-reports of height are higher than
measured data on average, with the over-reporting (almost) monotonically reducing
in magnitude for those with higher measured height. For the two tallest deciles, the
mean raw reporting error is positive, suggesting that those of very high measured
height tend to under-report their height. Overall, and despite the observed differences
between weight and height, these results show that respondents with high (very high)
measured body weight (height) tend to under-report, while over-reporting is evident
for those of lower measured values. These summary statistics provide initial evidence
on the presence of mean-reverting error in self-reported anthropometrics under the
assumption that measured data are not subject to measurement error. Although this is
an assumption that we relax in our factor mixture models, this motivates accounting
for mean reversion (or mean divergence) in the measurement error models.

4 Results

4.1 Estimates of structural parameters: mixturemodel without covariates

Table 4 presents the estimates for the KY model (expressed in their natural metrics).
Following Jenkins and Rios-Avila (2020), the completely labelled observations are
defined as those observations with |ri − si | ≤ δ. Our model presented in Table 4
assumes δ � 0, i.e. the completely labelled observations are only those with no differ-
ences between self-reported andmeasured values. Under this demanding requirement,
given the differences in precision of the scales used for measured and the self-reported
outcomes, the completely labelled cases represent just 10% and 23% of our observa-
tions for weight and height, respectively. Sensitivity analysis is also conducted to test
the robustness of our results when this requirement is relaxed.

Table 4 shows that the mean of latent true body weight
(
μξ

)
is 71.9 kg(

with a standard deviation, σξ � 14.9
)
. The distribution of the latent true weight has

123



Amodel of errors in BMI based on self-reported and measured…

Fig. 2 Differences between measured and self-reported weight/height data by decile groups of measured
anthropometrics

a higher mean (by about 0.4 kg) than the mean of self-reported body weight (Table 3);
the p-value for the difference in means is less than 0.01. The estimated mean of true
body height is 164.5 cm

(
with a standard deviationσξ � 9.4

)
. This value is lower (by

− 0.7 cm) than the mean of the self-reported height (Table 3).
The probability (πr ) that measured weight and height reflect the corresponding

true values is high: 98.6% for weight and 96.7% for height. This indicates that the
probability of error-prone measured body weight and height data occurs with a low,
but systematically different from zero, probability (1 − πr ) of about 1.4% (p-value
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Table 4 Estimates of factor
mixture model for body weight
and height

Weight (kg) Height (cm)

Panel A: Parameters

μξ 71.911*** 164.518***

(0.077) (0.050)

σξ 14.853*** 9.448***

(0.055) (0.035)

μζ 78.892*** 159.767***

(1.099) (0.395)

σζ 19.395*** 8.895***

(0.728) (0.261)

μη − 0.328*** 0.400***

(0.014) (0.024)

ση 1.636*** 1.837***

(0.018) (0.027)

μω − 0.333*** 1.185***

(0.067) (0.070)

σω 5.127*** 4.469***

(0.085) (0.074)

πr 0.986*** 0.967***

(0.001) (0.002)

πs 0.101*** 0.241***

(0.002) (0.002)

πω 0.306*** 0.414***

(0.007) (0.011)

ρ − 0.024*** − 0.037***

(0.001) (0.002)

Panel B: Class probabilities

Pr(R � 1, S � 1) 0.100*** 0.233***

(0.002) (0.002)

Pr(R � 1, S � 2) 0.615*** 0.430***

(0.007) (0.009)

Pr(R � 1, S � 3) 0.271*** 0.304***

(0.007) (0.008)

Pr(R � 2, S � 1) 0.001*** 0.008***

(0.000) (0.001)

Pr(R � 2, S � 2) 0.009*** 0.015***

(0.001) (0.001)

Pr(R � 2, S � 3) 0.004*** 0.011***

(0.000) (0.001)
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Table 4 (continued)
Weight (kg) Height (cm)

Log-likelihood - 251,431 - 234,482

Observations 37,335 37,335

The fraction of completely labelled observations (i.e. |ri − si | � 0) is
10.0% for body weight and 23.3% for body height.
***p < 0.01

< 0.01) and 3.3% (p-value < 0.01), respectively. Error-prone measurement of body
weight (reflecting the recording errors) leads to an estimated mean

(
μζ

)
of 78.9 kg for

these erroneous observations, which is 7 kg (or almost 10%) higher than the estimated
mean of true weight; data recording error in measured weight is also associated with
a higher standard deviation

(
σζ � 19.4

)
compared to the estimated true weight dis-

tribution
(
σξ � 14.9

)
. Similarly, error-prone measured body height (that is subject to

potential recording error) has an estimated mean
(
μζ

)
for the erroneous observations

of 159.8 cm, which is lower than the estimated mean of the true height (by about
4.7 cm, i.e. 2.9% of the mean of the true height), as well as having a lower estimated
standard deviation compared to the true height distribution (σζ � 8.9 compared to
σξ � 9.4).

Turning to self-reported weight and height, the estimated probability (πs) that the
self-reported anthropometrics equal the true body weight and height (i.e. they are
free from any measurement error) is, as expected given the difference in precision of
the two measures, relatively low at about 10% and 24%, respectively. Table 4 shows
that mean reversion (ρ) in case of both self-reported body weight and height data is
small in magnitude (close to zero) although statistically significant at the 1% level.
This indicates that after accounting for all other sources of measurement error in self-
reported data, mean reversion seems to play a limited role. Error due to the reporting
precision (precision error) in self-reported body weight and height data has mean
values

(
μη

)
of − 0.33 kg for weight and 0.4 cm for height. The estimated probability

of the Case S2 type of observations, (1−πs)(1−πω), is about 62% forweight and 44%
for height. Moreover, Table 4 shows that the probability (1−πs)πω that self-reported
anthropometric data contains additional measurement error, Case S3, is about 28%
for self-reported weight and 31% for self-reported height.

Table 4 (Panel B) presents estimates of the membership probabilities for the six
latent classes (as described in Table 2). The first latent class consists of error-free
self-reported (S1) and measured (R1) anthropometric data with a probability of 10%
for body weight and 23% for height. The probability that there are error-free measured
anthropometrics and survey reporting error in self-reported anthropometrics is about
61% for weight and 43% for height (Pr(R � 1, S � 2)). The probability of error-free
measured anthropometrics and additional reporting error in self-reported data, corre-
sponding to the third latent class, is 27% for weight and 30% for height. Regarding the
remaining latent classes, where there are recording errors in measured anthropomet-
rics, we find small probabilities. For instance, the probability that weight and height
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observations contain error in the self-reported data and recording errors in the mea-
sured anthropometrics, corresponding to the fifth latent class (Pr(R � 2, S � 2)),
is 0.9% and 1.5% for weight and height, respectively. Overall, these results indicate
that although there are non-negligible recording errors in measured body weight and
height data (about 7 kg and 4.7 cm difference on average as compared to true body
weight and height, respectively), their probability of occurrence is small.

We conducted a sensitivity analysis, where measured body weight and height data
are rounded to the nearest integer (Table 12, Appendix); this allows us to have the
same scale in measured and reported data, but it masks the part of measurement error
that is attributable to lack of precision in the recording of the self-reported data. There
are differences in the six latent classes probabilities, reflecting the difference in the
proportion of completely labelled cases ( Pr(R � 1, S � 1)). For instance, the increase
in the probability of completely labelled cases as opposed to the case of our base case
results (from 10% in the base case to 26.3% for the sensitivity analysis for weight;
and, from 23.3% to 32.4% for height) is reflected in the reduction in the latent class
probabilities for classes two and three (Table 4 vs. Table 12).

Finally, we conducted a sensitivity analysis to explore whether our results pre-
sented in Table 4 are sensitive to using the average of the two weight and height
measurements to define measured anthropometrics (for the mixture models). The cor-
responding parameter estimates and latent class probabilities (Table 13, Appendix)
are practically identical to those presented in Table 4.

4.2 Mixturemodel with covariates

Table 5 reports the AIC and BIC for the KY models, separately for body weight
and height, with no covariates (i.e. our baseline model), and for the KY models that
account for our set of covariates. Across all factor mixture models for body weight and
height, those that account for covariates have lower AIC and BIC as opposed to the
counterparts without covariates (baseline models). Overall, it seems that models with
covariates perform better than our baseline models, suggesting that the former can be
used to explore potential differential patterns in measurement error across individual
characteristics.

Tables 6 and 7 report the estimates of our factor mixture model with covariates for
body weight and height, respectively. We report the APMs for the full sample ("all"),

Table 5 AIC and BIC for the factor mixture models for body weight and height: models with and without
covariates

No covariates With covariates

Weight Height Weight Height

AIC 502,885.4 468,987.5 495,340.2 444,261.2

BIC 502,987.7 469,089.9 496,039.5 444,960.5

Observations 37,335 37,335 37,335 37,335
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Table 6 Estimates of factor mixture model for body weight with covariates

APM (SE) APM (SE)

Panel A: Parameters

All μξ 71.905*** (0.072) σξ 13.811*** (0.051)

Female 67.336*** (0.097) 13.488*** (0.069)

Male 77.009*** (0.107)+++ 14.173*** (0.076)+++

Age ≤ 29 69.488*** (0.156) 13.733*** (0.111)

Age 30–39 73.093*** (0.143) 14.107*** (0.102)

Age 40–49 73.723*** (0.158) 13.924*** (0.112)

Age 50–59 72.821*** (0.181) 13.824*** (0.128)

Age 60–69 71.197*** (0.226) 13.686*** (0.160)

Age ≥ 70 67.625*** (0.267)+++ 12.616*** (0.189)+++

North 69.854*** (0.162) 13.471*** (0.115)

Northeast 70.413*** (0.135) 13.387*** (0.096)

Southeast 73.128*** (0.145) 14.132*** (0.104)

South 74.190*** (0.191) 14.209*** (0.136)

Centre-west 72.832*** (0.194)+++ 14.073*** (0.138)+++

All μζ 78.792*** (1.041) σζ 18.952*** (0.686)

All μη − 0.289*** (0.014) ση 1.600*** (0.017)

Female − 0.598*** (0.017) 1.429** (0.018)

Male 0.057** (0.023)+++ 1.790** (0.023)+++

Age ≤ 29 − 0.159*** (0.030) 1.541*** (0.027)

Age 30–39 − 0.287*** (0.027) 1.593*** (0.025)

Age 40–49 − 0.430*** (0.030) 1.636*** (0.027)

Age 50–59 − 0.267*** (0.035) 1.605*** (0.032)

Age 60–69 − 0.355*** (0.044) 1.610*** (0.039)

Age ≥ 70 − 0.199*** (0.058)+++ 1.672*** (0.049)+++

North − 0.251*** (0.031) 1.579*** (0.029)

Northeast − 0.292*** (0.026) 1.584*** (0.025)

Southeast − 0.347*** (0.029) 1.652*** (0.027)

South − 0.180*** (0.036) 1.576*** (0.032)

Centre-west − 0.342*** (0.036)+++ 1.584*** (0.032)+++

All μω − 0.460*** (0.066) σω 4.966*** (0.082)

Female − 0.713*** (0.086) 4.786* (0.093)

Male − 0.178* (0.100)+++ 5.167* (0.100)+++

Age ≤ 29 − 0.307** (0.134) 4.672*** (0.118)

Age 30–39 − 0.794*** (0.126) 4.828*** (0.122)

Age 40–49 − 0.782*** (0.146) 5.170*** (0.132)

Age 50–59 − 0.672*** (0.164) 5.121*** (0.145)

Age 60–69 0.081 (0.201) 4.829*** (0.171)

Age ≥ 70 1.211*** (0.291)+++ 5.676*** (0.252)+++
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Table 6 (continued)

APM (SE) APM (SE)

North − 0.277* (0.146) 5.017*** (0.131)

Northeast − 0.452*** (0.122) 4.963*** (0.110)

Southeast − 0.532*** (0.137) 5.168*** (0.130)

South − 0.623*** (0.165) 4.690*** (0.146)

Centre-west − 0.420** (0.169)+++ 4.827*** (0.156)+++

All ρ − 0.038*** (0.001)

Female − 0.030*** (0.001)

Male − 0.046*** (0.002)+++

Age ≤ 29 − 0.042*** (0.002)

Age 30–39 − 0.036*** (0.002)

Age 40–49 − 0.033*** (0.002)

Age 50–59 − 0.036*** (0.002)

Age 60–69 − 0.039*** (0.003)

Age ≥ 70 − 0.050*** (0.004)+++

North − 0.037*** (0.002)

Northeast − 0.037*** (0.002)

Southeast − 0.038*** (0.002)

South − 0.037*** (0.002)

Centre-west − 0.039*** (0.003)+++

Panel B: Probabilities

πr 0.985*** (0.001) Pr(R � 1, S � 1) 0.100*** (0.002)

πs 0.101*** (0.002) Pr(R � 1, S � 2) 0.619*** (0.007)

πω 0.300*** (0.007) Pr(R � 1, S � 3) 0.266*** (0.006)

Pr(R � 2, S � 1) 0.002*** (0.000)

Pr(R � 2, S � 2) 0.010*** (0.001)

Pr(R � 2, S � 3) 0.004*** (0.000)

The fraction of completely labelled observations (i.e. |ri − si | � 0) is 10.0% for body weight.
***p<0.01, **p<0.05, and *p<0.10; significance levels for tests of APM=0.
+++p<0.01, ++p<0.05, and +p<0.10; significance level for tests for pairwise comparisons ofAPMs by gender
and for the joint significance of between-age groups and regional differences in APMs.

and for the specific groups of individuals based on the set of covariates we account for
in the case of true latent bodyweight and height, precision error (ηi ), additional random
noise (ωi ) and the mean-reverting error in self-reported anthropometrics (Panel A).
Tables 6 and 7 also report the estimates of error probabilities and class probabilities
(Panel B). Regarding the estimates of the membership probabilities for the six latent
classes (Tables 6 and 7, Panel B), these are very similar to the corresponding results
without covariates (Table 4).

True anthropometrics: The estimated mean of true body weight is 71.9 and SD
13.8 ("all" estimates); as in the case of our model without covariates (Table 4), these
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Table 7 Estimates of factor mixture model for body height with covariates

APM SE APM SE

Panel A: Parameters

All μξ 164.427*** (0.036) σξ 6.848*** (0.026)

Female 158.649*** (0.048) 6.641*** (0.034)

Male 170.881*** (0.054)+++ 7.081*** (0.039)+++

Age ≤ 29 166.843*** (0.079) 6.874*** (0.056)

Age 30–39 165.781*** (0.070) 6.870*** (0.050)

Age 40–49 164.467*** (0.077) 6.787*** (0.055)

Age 50–59 162.817*** (0.091) 6.887*** (0.065)

Age 60–69 161.216*** (0.112) 6.762*** (0.080)

Age ≥ 70 159.667*** (0.147)+++ 6.922*** (0.105)+++

North 162.041*** (0.082) 6.776*** (0.059)

Northeast 163.077*** (0.070) 6.886*** (0.050)

Southeast 166.060*** (0.072) 6.935*** (0.051)

South 166.360*** (0.093) 6.852*** (0.066)

Centre-west 165.158*** (0.093)+++ 6.713*** (0.067)+++

All μζ 162.984*** (0.585) σζ 9.172*** (0.385)

All μη 0.503*** (0.022) ση 1.917*** (0.026)

Female 0.486*** (0.031) 1.943*** (0.032)

Male 0.521*** (0.029) 1.889*** (0.030)+

Age ≤ 29 0.195*** (0.040) 1.730*** (0.036)

Age 30–39 0.236*** (0.037) 1.800*** (0.034)

Age 40–49 0.405*** (0.044) 1.883*** (0.041)

Age 50–59 0.654*** (0.056) 2.024*** (0.049)

Age 60–69 1.078*** (0.076) 2.166*** (0.070)

Age ≥ 70 1.697*** (0.108)+++ 2.525*** (0.090)+++

North 0.427*** (0.051) 2.111*** (0.048)

Northeast 0.393*** (0.040) 1.958*** (0.040)

Southeast 0.488*** (0.040) 1.779*** (0.035)

South 0.697*** (0.050) 1.788*** (0.044)

Centre-west 0.633*** (0.056)+++ 1.983*** (0.048)+++

All μω 1.276*** (0.072) σω 4.958*** (0.078)

Female 2.342*** (0.104) 5.081*** (0.091)

Male 0.086*** (0.101)+++ 4.820*** (0.098)++

Age ≤ 29 0.250*** (0.146) 4.704*** (0.129)

Age 30–39 1.063*** (0.132) 4.771*** (0.115)

Age 40–49 1.459*** (0.150) 4.919*** (0.115)

Age 50–59 1.571*** (0.183) 5.087*** (0.160)
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Table 7 (continued)

APM SE APM SE

Age 60–69 2.471*** (0.239) 5.158*** (0.172)

Age ≥ 70 2.352*** (0.344)+++ 6.128*** (0.238)+++

North 1.664*** (0.170) 5.220*** (0.139)

Northeast 1.826*** (0.136) 5.410*** (0.112)

Southeast 1.083*** (0.137) 4.615*** (0.124)

South 0.627*** (0.173) 4.692*** (0.138)

Centre-west 0.756*** (0.182)+++ 4.672*** (0.139)+++

All ρ − 0.043*** (0.003)

Female − 0.034*** (0.004)

Male − 0.053*** (0.004)+++

Age ≤ 29 − 0.025*** (0.005)

Age 30–39 − 0.030*** (0.005)

Age 40–49 − 0.034*** (0.005)

Age 50–59 − 0.048*** (0.007)

Age 60–69 − 0.081*** (0.010)

Age ≥ 70 − 0.112*** (0.013)+++

North − 0.043*** (0.006)

Northeast − 0.040*** (0.005)

Southeast − 0.046*** (0.005)

South − 0.044*** (0.006)

Centre-west − 0.041*** (0.007)+++

Panel B: Probabilities

πr 0.984*** (0.001) Pr(R � 1, S � 1) 0.232*** (0.002)

πs 0.236*** (0.002) Pr(R � 1, S � 2) 0.473*** (0.008)

πω 0.371*** (0.010) Pr(R � 1, S � 3) 0.279*** (0.008)

Pr(R � 2, S � 1) 0.004*** (0.000)

Pr(R � 2, S � 2) 0.008*** (0.001)

Pr(R � 2, S � 3) 0.005*** (0.000)

The fraction of completely labelled observations (i.e. |ri − si | � 0) is 23.3% for body height.
***p<0.01, **p<0.05, and *p<0.10 (significance levels for tests of APM=0).
+++p<0.01, ++p<0.05, and +p<0.10; significance level for tests for pairwise comparisons ofAPMs by gender
and for the joint significance of between-age groups and regional differences in APMs.

results show that the distribution of the latent true weight has a higher mean (by about
0.4 kg) than the mean of self-reported body weight (p-value of the difference in means
< 0.001). Differences across individual characteristics are as we expect. In line with
existing findings (Fryar et al. 2021),men have greater average andmore dispersed body
weight than women; gender differences in APM are highly statistically significant (as
shown by “+++” reflecting the statistical significance of the pairwise comparisons
of APMs by gender). Moreover, there is an inverted U-shaped association between
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mean true body weight and age (Baum 2007); variations in the dispersion of the true
weight distribution are also observed across age groups. We also observe systematic
regional differences in mean latent weight (with “+++” in Table 6, reflecting the joint
significance of between-region groups differences in APM); the APM for the mean
true body weight is higher in the South and the Southeast as opposed to other regions;
this confirms existing literature about higher obesity rates for these regions in Brazil
(Rimes-Dias et al. 2022).

Turning to the latent true height (Table 7), the estimated mean is 164.4 (with a
standard deviation σξ � 6.848); in line with the corresponding values from our model
without covariates (Table 4), the estimated true mean height is lower (by -0.8 cm) than
the mean of self-reported height (Table 3). Higher mean true height, but also a larger
dispersion in the relevant distribution, is observed for males and younger individuals
(Fryar et al. 2021). Regional variations in the mean and standard deviation of the true
height distribution are also evident in Table 7.

Measured anthropometrics: We find that the mean and the standard deviation of
measuredbodyweight andheight (μζ , σζ ) are comparable to the correspondingparam-
eters from our baseline models without covariates (Tables 6 and 7 versus Table 4),
and thus, estimating models with covariates does not change the conclusions of our
analysis. Note that, given absence of interviewer-level data, we do not condition these
parameters on covariates when estimating the factor mixture models presented in
Tables 6 and 7. Specifically, the error-prone measured body weight has a mean and
standard deviation (μζ � 78.792, σζ � 18.952), which are higher than the corre-
sponding values for the true weight distribution; in line with our results from our
baseline model without covariates, the estimated mean of measured body weight for
those cases that are subject to (intentional or unintentional) recording error is around
7 kg (or almost 10%) higher than the estimated mean of true weight.

Regarding height, the estimated mean of the measured height for those cases that
are subject to error (error-prone measured body height) is around 163.0 cm; this is
very close to the corresponding estimated mean from the baseline model without
covariates (around 160 cm in Table 4) and confirms our baseline results, suggesting
that the mean of the error-prone measured height is lower than the estimated mean of
true height. In linewith our baselinemodels, our analysis shows that errors inmeasured
anthropometrics occur with a probability (1−πr ) that is very low in magnitude (about
1.5% for body weight and height) but systematically different from zero (p-values <
0.01).

Measurement errors heterogeneity in self-reported weight: The estimated
mean value of precision error in self-reported body weight

(
μη

)
is -0.29(

with a standard deviation, ση � 1.60
)
. Taking these values as a benchmark (“All”

estimates, Table 6), there are systematic differences in the precision error distribution
across population groups. Mean of the reporting precision error is positive for males
(0.057), while it is negative for females (− 0.60); gender differences inAPMare highly
statistically significant (as shown by “+++” reflecting the statistical significance of the
pairwise comparisons of APMs by gender). Moreover, the standard deviation of the
imprecision error is higher for men. In other words, it seems that men and women
have different patterns of reporting for self-reported weight; there is systematic mean
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upward bias for males with a higher dispersion, while a downward bias with lower
dispersion is observed for females. Turning to age groups, the estimated APM of
mean imprecision error is negative for all age groups, with variations in both mean
imprecision error in body weight (and its dispersion) across age groups. There are
systematic regional differences in mean imprecision error (as evident by the “+++”
in Table 6 reflecting the joint significance of between-region groups differences in
APM); APM for the mean impression error is more negative for the Southeast (−
0.347) and Northeast (− 0.292), while the South has an APM for mean imprecision
error of − 0.180.

The additional random error in self-reported body weight data has a negative mean
(μω),− 0.460, and a standard deviation of σω � 4.97.As in the case of the imprecision
error, there is a gender differences, with random error being much more negative
and highly significant for females (− 0.713) than males (− 0.178). There are also
systematic age variations (with the joint test for between-age groups differences in
APMs being statistically significant at the 1% level)—notably the APM for the mean
random error is negative and (non-monotonically) increasing in absolute terms for
older respondents, while it is positive and higher in (absolute) magnitude for the
oldest age group (70 +); the oldest age group has the highest dispersion (APM for
standard deviation is 5.7). There are negative and statistically significant APMs for
mean random error for all regions and between-region differences in the mean random
errors and their dispersion.

Turning to the APM formean reversion (ρ), we confirm our results from themodels
without covariates suggesting the mean reversion is small in magnitude (close to zero)
but statistically significant (“all” APM in Table 6). There are gender, between-age
group and between-region differences in mean-reverting patterns.

Measurement error heterogeneity in self-reported height. The estimated mean and
standard deviation of precision error in self-reported body height

(
μη, ση

)
are 0.50

and 1.92 (“All” estimates, Table 7), respectively. Taking these values as a benchmark,
we observe differences in the precision error distribution across covariates (Table 7).
Themean of the reporting precision error does not differ systematically by gender. The
imprecision error in body height is almostmonotonically increasing across age groups,
with a similar pattern for the dispersion of the imprecision reporting error distribution
for older age groups. There are systematic regional variations for themean imprecision
error; the APM for the mean impression error which is more positive for the South
(0.70), while the Northeast has the lowest estimated APM for mean imprecision error
(0.39).

The additional random error in self-reported body height has a positive mean value
(μω), 1.28, and a standard deviation of σω � 4.96 (“All” estimates in Table 7).
Mean values of the additional random noise are higher for females as opposed to
males (2.34 vs. 0.09). There are also systematic age variations (as shown by “+++”
in Table 7)—notably the APM for the mean random error is positive and (mostly)
increasing with age; the oldest age groups (60–69 and ≥ 70) have the highest mean of
the random error and the highest dispersion. Systematic regional differences in APM
for mean random error as well as for the dispersion of the distribution of the errors are
also evident.
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As in the baseline model without covariates (Table 4), the mean reversion (ρ) for
the case of self-reported height is small in magnitude (close to zero) but statistically
significant (“all” APM in Table 7).

4.3 Post-estimation analysis

Table 8 shows the precision of the seven types of “hybrid” predictions for bodyweight,
for our factormixturemodelswith andwithout covariates, using simulationswith 1000
replications. The results for height are shown in Table 9. Our first measure of relia-

Table 8 Precision of “hybrid” body weight predictions

No covariates With covariates

Rel1 Rel2 MSE Rel1 Rel2 MSE

Measured body weight (r) 0.973 0.959 9.242 0.968 0.953 9.191

Self-reported body weight (s) 0.977 0.956 9.973 0.985 0.952 9.425

Hybrid body weight predictors

1. Weighted (unconditional) 0.978 0.964 8.142 0.975 0.959 8.080

2. Weighted (unconditional) unbiased 0.978 0.964 8.139 0.974 0.959 8.077

3. Weighted (conditional) 1.000 0.997 0.697 1.000 0.996 0.709

4. Weighted (conditional) unbiased 1.000 0.997 0.701 0.999 0.996 0.713

5. Two-stage 0.998 0.996 0.867 0.998 0.995 0.878

6. Two-stage, unbiased 0.998 0.996 0.869 0.997 0.995 0.881

7. System-wide linear 1.000 0.978 4.791 1.000 0.976 4.665

Table 9 Precision of “hybrid” body height predictions

No covariates With covariates

Rel1 Rel2 MSE Rel1 Rel2 MSE

Measured body height (r) 0.962 0.930 6.442 0.971 0.956 2.126

Self-reported body height (s) 0.927 0.901 9.804 0.838 0.811 10.877

Hybrid body height predictors

1. Weighted (unconditional) 0.980 0.946 4.881 0.982 0.962 1.790

2. Weighted (unconditional) unbiased 0.977 0.946 4.872 0.980 0.963 1.792

3. Weighted (conditional) 1.000 0.985 1.338 1.000 0.984 0.777

4. Weighted (conditional) unbiased 0.997 0.985 1.355 0.998 0.983 0.790

5. Two-stage 0.991 0.980 1.828 0.989 0.979 1.002

6. Two-stage, unbiased 0.989 0.980 1.839 0.988 0.979 1.017

7. System-wide linear 1.000 0.957 3.838 1.000 0.963 1.753
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Table 10 Distributions of BMI based on preferred “hybrid” anthropometric predictions, BMI based on
self-reported, “corrected self-reported” and measured body weight/height data

Self-reported
BMI

Corrected
self-reported
BMI

Measured
BMI

Hybrid BMI

No covariates With
covariates

Statistics

Mean 26.158 26.572 26.580 26.526 26.555

p10 20.776 21.142 20.911 20.936 20.942

p25 22.942 23.322 23.147 23.131 23.152

p50 25.510 25.939 25.960 25.914 25.950

p75 28.720 29.212 29.320 29.237 29.278

p90 32.242 32.748 32.941 32.829 32.863

Inter-quantile rages

p75–p25 5.778 5.890 6.173 6.106 6.125

p50–p10 4.735 4.798 5.049 4.977 5.009

p90–p50 6.732 6.809 6.981 6.916 6.912

p90–p10 11.466 11.607 12.030 11.893 11.921

bility is analogous to the slope coefficient from a (hypothetical) regression of true
anthropometrics on the observed anthropometrics measure; higher values correspond
to greater reliability, and a value greater than one indicates mean reversion. Reliabil-
ity 2 represents the squared correlation between true anthropometrics and observed
anthropometrics measure. These reliability measures should only be used to assess
how close a given measure is to the relevant true value and should not be compared
across model specifications. For the models of body weight and height, with and with-
out covariates, all hybrid measures provide very large reliability coefficients. A closer
look at Tables 8 and 9 shows that the smallest MSE is found for the weighted (con-
ditional) prediction for both anthropometric measures and across models with and
without covariates. This indicates that these predictors perform better, as shown by
the MSE using out-of-the-sample simulations, and thus, the weighted (conditional)
prediction is our preferred “hybrid” prediction for both weight and height.

Simulation analysis helps to identify the preferred predictors for the latent true
body weight and height. After choosing the preferred prediction, the sample data
are used to compute the true latent anthropometric measures in order to calculate a
BMI measure that aims to approximate the true BMI distribution. Table 10 provides
descriptive statistics of this preferred “hybrid” BMI measure obtained from models
with and without covariates. Table 10 presents descriptive statistics for the "corrected
self-reported BMI” measure—a frequently used measure in studies that do not have
access to measured anthropometric data (Cawley 2015).14 Although the “corrected

14 Existing studies in the economics of obesity literature that rely on self-reported anthropometrics often
estimate corrective equations (or utilize the coefficients from existing equations) based on the relationship
between measured and self-reported body weight and height data from alternative data sources (Cawley
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self-reported BMI” is not driven by the mixture measurement error models, adding
BMImeasures in Table 10 that are based on “corrective” equations allows comparisons
with a popular measure used in the existing literature in the absence of measured BMI
data.

The “hybrid” BMI measures, with and without covariates, and the BMI based
on measured data are very close both at the mean and across their distribution. It
seems, however, that at the right tails, the q75 and q90 are slightly lower for the
“hybrid” measures (both with and without covariates) as opposed to the BMI based on
measured data; the latter reflected in the difference in inter-quantiles ranges between
the “hybrid” measures and measured BMI. On the other hand, BMI values that are
based on self-reported data are always lower at the mean level and across quantiles
of the distribution as well as with a lower dispersion compared to both the “hybrid”
measures (obtained from models with and without covariates) and the BMI based
on measured data. Statistics for the “corrected self-reported BMI” depart from the
self-reported BMI values; the “corrected self-reported BMI” has a higher mean and
quantiles, up to median of the distribution, when compared to the “hybrid” measures,
while the opposite is the case at higher quantiles (p75 and p90).

Overall, these results suggest that similar “hybrid” measures are obtained from
the models with and without covariates and that these measures are very close to
the BMI measure based on the measured weight/height data. On the other hand, the
BMI based on self-reported data under-estimates the “true” values. This indicates
that the recording error in measured anthropometrics does not translate into major
differences between the “hybrid” and the measured anthropometrics as a result of their
small likelihood of occurrence in our sample. Finally, the distribution of the popular
“corrected self-reported BMI” does not perform well as an alternative to measured
BMI or our “hybrid” BMI measures.

4.4 Implications for the association between BMI and health care utilization

In this sub-section, we provide evidence to test the sensitivity of econometric analyses
where BMI is used as an explanatory variable. We compare results with the “hybrid”
BMI measures, estimated from our factor mixture models, with those based on self-
reported, “corrected self-reported” and measured anthropometrics.

We estimate linear regression models to measure the association between BMI
and the frequency of hospital admissions in the previous 12 months (Table 11). To
facilitate interpretation of specifications that use polynomials in BMI, Fig. 3 presents
the adjusted predictions at representative values (APRs), i.e. the predicted health care
use across selected BMI values with all the other variables kept at their mean values
(based on the models presented in Table 11). As shown in Fig. 3, the APRs for health
care use are practically identical for the “hybrid” measures of BMI. Although the
APRs for health care use for the measured and “hybrid” BMI measures are similar

Footnote 14 continued
2015). Tomimic correction procedures for self-reported anthropometrics in the existing studies, we estimate
analogous “corrective” equations by regressingmeasuredweight and height data on self-reports and a vector
of demographics (results from these equations are available in Appendix, Table 14). The predictions from
these equations are used to calculate self-reports of body weight and height that are corrected for reporting
error—these results from our "corrected self-reported BMI” measure as presented in Tables 10 and 11.
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Fig. 3 Predicted health care use across selected BMI values (based on OLS models in Table 11)

across their distribution, they differ at the very high tails of the BMI distribution (above
BMI values of 41.5 kg/m2). Turning to self-reported BMI, the relevant results depart
from those of our “hybrid” BMImeasures (and measured BMI) especially at the lower
(BMI values below 23.5 kg/m2) and higher tails (BMI values above 37 kg/m2) of the
BMI distribution. The APRs for health care use for the corrected self-reported BMI
lie between the corresponding results for self-reported andmeasured anthropometrics,
lying much closer to those for BMI based on measured data.

Our aim in this sub-section is not to guide whether or not “hybrid” BMI measures,
based on factor mixture model specifications, should be used in empirical research
on the economics of obesity. We only argue that, in the context of the analysis of the
association between BMI and health care utilization, results based on our “hybrid”
BMI data show some (limited) differences, compared to those obtained frommeasured
data, at the far-right tails of the BMI distribution. Given our evidence that a small but
statistically significant fraction of measured anthropometrics is attributed to recording
errors, the observed differences at the far-right tails of the BMI distribution suggest
that hybrid measures may offer some potential advances when targeting the far-right
tails of the BMI distribution, although more research should be undertaken on this.

5 Conclusion

Existing research in the economics of obesity shows that self-reported data are sub-
ject to measurement error, which can lead to biased estimates in empirical research
that relies on self-reported anthropometrics (e.g. Cawley 2015; Cawley et al. 2015;
Davillas and Jones 2021; Gil and Mora 2011; O’Neill and Sweetman 2013). These
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analyses, however, explicitly assume that measured anthropometrics are error-free as
they are treated as “gold standards” when compared to self-reported data. The lit-
erature provides little discussion of the potential measurement errors that measured
anthropometrics may entail. The latter is of particular relevance given developments in
large-scale social surveys that involve the integration of physical healthmeasurements,
in addition to traditional self-reportedmeasures. To fill this gap in the literature, we use
the KY factor mixture model (Kapteyn and Ypma 2007) to analyse and characterize
measurement error in both self-reported and measured anthropometrics with national
representative data from the 2013 National Health Survey in Brazil.

We find that a very small, but statistically significant fraction ofmeasured anthropo-
metrics, may contain recording errors. The estimated probability that the self-reported
anthropometrics are free from any measurement error is, as expected, relatively low
at about 10% and 23% for body weight and height data these results remain robust
with and without accounting for covariates in our factor mixture models. This high-
lights that respondent’s lack of awareness of their true anthropometrics in combination
with the lack of precision of the self-reported questionnaires may be sources of the
observed measurement error. For example, it has been argued that enhancing people’s
knowledge of their exact anthropometric values (by monitoring interventions) may
indeed improve their ability to accurately report their anthropometric values (Sherry
et al. 2007).

Of particular interest, our analysis reveals thatmean-reverting errors in self-reported
anthropometrics are low in magnitude, after accounting for other sources of errors
in self-reported data. These findings contradict the existing literature that compares
self-reported with measured anthropometrics, arguing there are strong mean-reverting
patterns at least for body weight (e.g. Cawley et al. 2015). However, unlike our anal-
ysis, it should be noted that most studies that compare self-reported with measured
anthropometrics assume measured anthropometrics are error-free and do not account
for other potential sources of measurement errors. Our study is, therefore, potentially
useful for exploring the sources of measurement errors that may affect both self-
reported and measured anthropometrics and the magnitude of bias that each source of
error may cause.

Factor mixture models that account for covariates are used to explore the potential
heterogeneity of reporting errors in self-reported as well as the true latent anthro-
pometrics across population groups. A limitation of our analysis is the absence of
interviewer-level data. This necessarily limits our factor mixture models, with no
covariates accounted for in the measurement error in measured anthropometrics. If we
had had the opportunity to provide insights on how measurement error in the physi-
cal measurements varies across interviewer characteristics, we would have been able
to provide relevant recommendations to survey data teams to improve measurement
protocols.

Latent true anthropometrics vary across age groups, by gender and across regions
broadly in line with the existing literature (e.g. Arntsen et al. 2023; Baum and Ruhm
2009; Davillas and Jones 2020; Fryar et al. 2021; Rimes-Dias et al. 2022). Males have
higher true mean body weight and height; mean true body weight is associated with an
invertedU-shaped relationshipwith age;mean true height ismonotonically decreasing
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with age, reflecting birth cohort effects and loss of height as people become older (e.g.
Arntsen et al. 2023).

Overall, we find that being older is associated with higher reporting errors (due
to imprecision error or other random errors) in self-reported body weight and height.
These results highlight the role of age-related changes in cognitive and communica-
tive functioning on self-reported data (Knäuper et al. 2016); it has been shown than
age-related impacts on cognitive ability, question interpretation as well as memory
retrieval have impacts of people’s self-reports as they become older. This is of par-
ticular relevance in the case of self-reports of body weight and height as it involves
respondent’s cognitive ability, memory and ability to process information. Moreover,
we find the presence of systematic gender differences in measurement error in self-
reported weight and height data, with women reporting with more errors than men.
These results are broadly in line with the existing literature (e.g. Cawley et al. 2015;
Gil and Mora 2011). For example, it may be the case that women experience greater
social stigma than men for having excess weight or that other related social norm
pathways affecting reporting behaviour in anthropometrics may be the relevant under-
lying mechanisms (Gil and Mora 2011; Puhl and Heuer 2009; Sattler et al. 2018). The
observed regional differences in self-reported measurement error may reflect cultural,
socioeconomic and demographic differences across Brazilian regions; however, it is
impossible to disentangle the role of particular characteristics on shaping these results
given the aggregate regional variations we employ in our analysis.

To explore the practical implications of our measurement error results, post-
estimation analysis and out-of-the-sample simulations are employed to estimate hybrid
anthropometric predictions that best approximate the true body weight and height dis-
tribution. Our proxies of true BMI distribution are very close to the distribution of BMI
based on measured anthropometrics. On the other hand, BMI based on self-reported
data seems to under-estimate the true BMI distribution. “Corrected self-reported BMI”
measures, based on conventional methods to mitigate reporting error in self-reports
using predictions from corrective equations, do not perform as well as our “hybrid”
BMI measures.

We implement analysis on the potential implications of themeasurement errorwhen
different BMI measures are used as explanatory variable in econometric models on
health care utilization. We find similar econometric results when they are based on
measured data or on our hybrid BMI measures across most of the BMI distribution,
while only small differences are observed at the very high tails of the distribution
(above BMI values of 41.5 kg/m2). Differences are also observed in the econometric
results based on self-reported or “corrected self-reported” data when compared to
our hybrid BMI measures at the lower and higher BMI tails. Our findings further
confirm existing evidence suggesting that BMI based on self-reported data may bias
econometric results when BMI is used as an explanatory variable (e.g. Cawley et al.
2015), and suggest that conventional ways to correct self-reported anthropometrics
may not provide mitigation.

Measured anthropometrics may encompass some systematic measurement error,
but our estimates suggest a very low prevalence of errors and this is reflected in
the presence of only small differences, concentrated at the right tail of the distribu-
tion, compared to our proxies of true BMI. Nevertheless, the possibility of errors in
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measured anthropometrics should be acknowledged when searching for an error-free
adiposity measure, especially when focusing on the extreme right tail of the distribu-
tion of BMI.

Appendix

See Figs. 4 and 5. Tables 12, 13 and 14.

Fig. 4 Kernel densities for the absolute differences between the 1st and 2nd body weight and height physical
measurement
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Fig. 5 Kernel densities: body weight, height and BMI
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Table 12 Estimation of factor
mixture model for body weight
and height—measured
weight/height data are rounded
at the nearest integer

Parameter Weight (kg) Height (cm)

μξ 71.571*** 164.338***

(0.077) (0.050)

σξ 14.883*** 9.459***

(0.055) (0.035)

μζ 79.543*** 158.978***

(1.457) (0.450)

σζ 20.207*** 8.591***

(0.949) (0.307)

μη 0.080*** 1.065***

(0.021) (0.029)

ση 2.287*** 2.306***

(0.023) (0.037)

μω − 0.511*** 0.544***

(0.101) (0.094)

σω 5.936*** 4.757***

(0.127) (0.101)

πr 0.990*** 0.970***

(0.001) (0.002)

πs 0.265*** 0.334***

(0.002) (0.003)

πω 0.252*** 0.379***

(0.009) (0.016)

ρ − 0.041*** − 0.056***

(0.001) (0.002)

Class probabilities

Pr(R � 1, S � 1) 0.263*** 0.324***

(0.002) (0.002)

Pr(R � 1, S � 2) 0.544*** 0.401***

(0.007) (0.011)

Pr(R � 1, S � 3) 0.183*** 0.245***

(0.006) (0.011)

Pr(R � 2, S � 1) 0.003*** 0.010***

(0.000) (0.001)

Pr(R � 2, S � 2) 0.005*** 0.012***

(0.001) (0.001)

Pr(R � 2, S � 3) 0.002*** 0.008***

(0.000) (0.001)

Log-likelihood − 249,954.7 − 230,849.5

Observations 37,335 37,335

The fraction of labelled observations (i.e. |ri − si | � 0) is 26.3% for
weight and 32.4% relative to height.
***p<0.01
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Table 13 Estimation of factor
mixture model for body weight
and height (measured data:
average between 1st and 2nd
measurement)

Parameter Weight (kg) Height (cm)

μξ 71.936*** 164.519***

(0.077) (0.050)

σξ 14.848*** 9.443***

(0.055) (0.035)

μζ 79.557*** 159.380***

(1.208) (0.391)

σζ 19.751*** 8.716***

(0.793) (0.260)

μη − 0.342*** 0.333***

(0.014) (0.022)

ση 1.600*** 1.695***

(0.017) (0.026)

μω − 0.351*** 1.216***

(0.065) (0.064)

σω 5.097*** 4.320***

(0.082) (0.066)

πr 0.988*** 0.967***

(0.001) (0.002)

πs 0.088*** 0.217***

(0.001) (0.002)

πω 0.309*** 0.437***

(0.007) (0.011)

ρ − 0.023*** − 0.032***

(0.001) (0.002)

Class probabilities

Pr(R � 1, S � 1) 0.087*** 0.210***

(0.001) (0.002)

Pr(R � 1, S � 2) 0.622*** 0.426***

(0.007) (0.009)

Pr(R � 1, S � 3) 0.278*** 0.331***

(0.007) (0.008)

Pr(R � 2, S � 1) 0.001*** 0.007***

(0.000) (0.000)

Pr(R � 2, S � 2) 0.008*** 0.015***

(0.001) (0.001)

Pr(R � 2, S � 3) 0.004*** 0.011***

(0.000) (0.001)

Log-likelihood − 250,889.2 − 234,764.3

Observations 37,335 37,335

Robust standard errors to heteroscedasticity in parentheses. The fraction
of labelled observations (i.e. |ri − si | � 0) is 8.7% for weight and 21.0%
relative to height.
***p<0.01
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Table 14 “Corrective equations”
for body weight and height Measured weight Measured height

Self-reported weight 1.0015*** –

(0.0017)

Self-reported height – 0.8344***

(0.0035)

Male − 0.5494* 2.4708***

(0.3314) (0.0575)

Age 0.0718*** − 0.0184**

(0.0105) (0.0072)

Age2 − 0.0008*** − 0.0003***

(0.0001) (0.0001)

Male x Age − 0.0226 –

(0.0149)

Male x Age2 0.0003** –

(0.0002)

Adj. R2 0.9366 0.8679

Observations 37,335 37,335

Standard errors robust to heteroscedasticity in parentheses
***p < 0.01, **p < 0.05, and *p < 0.1
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