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Abstract
In this paper we consider a stochastic frontier model in which both the noise and
inefficiency components are asymmetric, viz., the noise term is skew normal and the
inefficiency term is half-normal. This formulation avoids the criticism that skewness
of the composite error term (sum of the noise and inefficiency) cannot be an indicator
of inefficiency because skewness can also arise from the noise term. Our estimator of
inefficiency does not depend on skewness of the one-sided error alone; it controls for
skewness in the noise term as well. We further generalize the model by introducing
determinants of skewness of the noise term as well as determinants of inefficiency.
Additionally, we test hypotheses that the noise term is either symmetric (normal) or
has a constant skewness parameter. Instead of using the standard ML method, we
use the indirect inference (II) approach to estimate the parameters of the proposed
model. Formulae for predicting (in)efficiency are also provided. Finally, we provide
both simulation and empirical results using the II estimation approach to showcase
workings of our model.
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1 Introduction

In stochastic frontier (SF) models, the noise term is almost universally assumed to
be symmetric and normally distributed. The inefficiency term is assumed to have
several competing distributions – the most common being half-normal, exponential
and truncated normal. This makes the composite error term (noise minus inefficiency)
in a production function model have a negatively skewed distribution. Because of
this, the negative skewness is often used to test the presence of inefficiency (Ceolli
1995; Schmidt and Lin 1984) in a production function. However, skewness can be
significant and of the wrong sign because of other things. For example, empirically
skewness of the residual can be wrong (positive) in a production function even if the
true model (or the data generating process, DGP) has the right skewness (negative).1

Knowing that skewness can be wrong in the empirical model even though there is
nothing wrong in the model or the DGP, we consider a model in which the skewness
can be either positive or negative and allow the possibility of a skewed noise term.
That is, we allow the noise term in the SF model to be positively or negatively skewed
(asymmetric). This can be justified both theoretically and empirically (Badunenko
and Henderson 2021). Thus, the presence of a skewed composite error term may or
may not represent inefficiency. In the extreme case, inefficiency can be zero but the
composite error term, which contains only the noise, can still be skewed. Our goal is to
separate the skewness of the noise term so that it does not contaminate the estimate of
inefficiency. Alternatively, we guard against labeling skewness of the composed error
as an indicator of inefficiency because skewness can also arise from the noise term.

The generalization of symmetric noise to asymmetric noise in econometric mod-
els has been considered in many empirical applications. In financial studies, it is
commonly observed that return of a market portfolio exhibits kurtosis and possesses
skewness as well. Thus, a skew distribution is quite often used in financial applica-
tions. For instance, Adock (2010) uses a multivariate skew-Student-t distribution to
study asset pricing and portfolio selection. Kraus and Litzenberger (1976) develop an
asset pricing model that incorporates the effect of skewness on valuation. There are
also some applications in macroeconomics studies. For instance, Busch et al. (2020)
use the panel data on individuals and households from the United States, Germany and
Sweden to study the income risk over the business cycle. They found that skewness
of income growth is much more negative in recessions. In the studies on produc-
tion and productivity, Qi et al. (2015) consider the asymmetric effects of the whether
shocks on production; and Badunenko and Henderson (2021) consider a SF model
with skew-normal noise and exponentially distributed inefficiency.

Perhaps the maximum likelihood (ML) method is the most commonly used
approach to estimate models with skew noise. For instance, see Adock (2010) and
Badunenko andHenderson (2021). Different from the existing literatures, in this paper
we suggest using the indirect inference (II) approach, which was first introduced in
Gourieroux et al. (1993) and then applied by Lai (2022) to estimate the SF model with
skew-normal (SN) noise and half-normal inefficiency. The II approach can be easily

1 Models are developed to address the so-called “wrong” skewness problem (Simar and Wilson 2010;
Hafner et al. 2018), among others).
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generalized to different combinations of the distributions of the random noise and inef-
ficiency since there is no need to derive the probability density function. Similar to the
simulated likelihood estimation, the II estimation is also a simulation-based approach.
However, its implementation requires only the least squares estimation. Specifically,
we first estimate the model by the least squares approach, obtain the coefficients and
evaluate the empirical characteristic functions of the residuals. We then generate the
random sample given the model parameter and conduct the same estimation proce-
dure, including the least squares estimation and evaluating the empirical characteristic
functions of the residuals using the generated sample. In the final step, we match the
least squares coefficients and the empirical characteristic functions of the residuals
from the real and simulated data. The parameter that minimizes the distance between
the estimated coefficients and the empirical characteristic functions based on the real
data and simulated data is the solution of the II estimation.

We also extend the model by using variables that are determinants of the shape
parameter of the SN distribution. Similarly, inefficiency is also explained by some
variables viewed as determinants of inefficiency. We provide simulation results to
illustrate finite sample properties of the II estimation method in the case of SN noise
and a half-normal (HN) inefficiency term. For this, we consider several settings of
the data generating process. For example, we allow the skew-normal noise to have a
positive shape parameter, negative shape parameter or heterogeneous shape parameter,
and we examine whether the II estimation can correctly identify the direction of the
shape of SN noise. In order to compare the finite sample performance of the II and
ML estimators, we consider a SF model with a normal and HN distributions pair for
the noise and inefficiency. Finally, an empirical application is provided to illustrate
the workings of our model.

The rest of the paper is structured as follows. The model and estimation method are
introduced in Sect. 2. Simulation results are discussed in Sect. 3. The empirical model
and results are discussed in Sect. 4. Section5 concludes the paper with a summary and
future extensions.

2 Themodel formulation and estimation

We consider a cross-sectional production function with SN noise and HN technical
inefficiency, viz.,

yi = α + x ′
iβ + vi − ui , i = 1, ..., N , (1)

where yi is log output, xi consists of log inputs (for a Cobb-Douglas production
function),2 vi ∼ SN (σv, λ), u is HN and is written as u ∼ N+ (

0, σ 2
u

)
. If vi is

normally distributed, themodel in (1) is the standardSFmodelwithN-HNdistributions
for vi and ui . Following the SF literature, we assume vi and ui to be independent. The
input variables are assumed to be independent of vi and ui , i.e., we assume that inputs
are exogenous.3

2 For a translog production it contains the linear, square and cross products of log inputs.
3 The model can be extended to relax this assumption.
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The probability density function (pdf) of the SN noise vi is

fv (vi , σv, λ) = 2

σv

φ

(
vi

σv

)
�

(
λ

σv

vi

)
,

where σv is the scale parameter and λ is the shape parameter; φ(.) and�(.) are the pdf
and cdf of a standard normal variable. Two special cases of the shape parameter are
the following: (i) if λ = 0, then vi ∼ N

(
0, σ 2

v

)
, and (ii) if λ → ∞, vi ∼ N+ (

0, σ 2
v

)
.

For simplicity, we use θ to denote the vector of the parameters of the model in (1).
Thus θ = (βᵀ, σv, λ, σu)

ᵀ contains both the parameters in the frontier function and
the parameters in the distributions of v and u. The model in (1) is usually estimated
by the ML method. Here, we suggest using the II estimation method, where a linear
regression model is used as an approximation of the model in (1).4 The estimation
is based on the ordinary least squares (OLS) approach. This approximated model is
referred to as the instrument model in our following discussion. It is worth mentioning
that although we are making distributional assumptions of the error components, there
is no need to evaluate the likelihood function for the II estimation.

For the OLS estimation, we write the stochastic frontier model given in (1) as

yi = a + xiβ + (vi − u∗
i ), (2)

where a = α−Eui , u∗
i = ui −Eui , and the composite error

(
vi − u∗

i

)
has zero mean.

Let âN and β̂N denote the OLS estimators of the intercept a and the slope vector β. It
can be shown that β̂N is a consistent estimator of β, but âN is not a consistent estimator
of α because Eui �= 0.

Define ξi = yi − xiβ = a + vi − u∗
i = α + vi − ui . Although the OLS estimator

of a from (2) is not a consistent estimator of α, it is clear that the OLS estimators âN
and β̂N and the characteristic functions of ξ̂i are functions of the true parameter θ . In
other words, the information contained in the moments of the residual ξ̂i can be used
for identifying the parameters of the distributions of vi and ui .

Now consider the characteristic function of ξ , ϕξ (.), which is defined as

ϕξ (t) = E

(
eitξ

)
= E

(
eit(α+v−u)

)
= eitα · ϕv (t) · ϕu (t) , where t ∈ R. (3)

Using the OLS estimator β̂N and the observed sample, we obtain ξ̂i as

ξ̂i = yi − xi β̂N .

Given the set of points t = t1, . . . , tq , we can also compute the empirical characteristic
function at t via

ϕ̂N ,ξ (t) = 1

N

N∑

i=1

eit ξ̂i . (4)

4 Note that the model in (1) is log-linear but one can specify a nonlinear function that can be approximated
by a linear function.
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We use γ̂N to denote a vector containing the OLS estimators of a and β and the
empirical characteristic function evaluated at t = t1, . . . , tq , so

γ̂N =

⎛

⎜⎜⎜⎜⎜
⎝

âN
β̂N

ϕ̂N ,ξ (t1)
...

ϕ̂N ,ξ

(
tq

)

⎞

⎟⎟⎟⎟⎟
⎠

. (5)

Alternatively, the estimator γ̂N is the solution of the moment conditions of the approx-
imated model:

E (ei ) = E (ξi − a) = 0 (6)

E (ei · xi ) = E [(ξi − a) · xi ] = 0 (7)

E

(
eitξi

)
= ϕξ (t) , for t = t1, . . . , tq , (8)

where ei = (ξi − a). Equations (6) and (7) come from the first order conditions of the
OLS estimation, and Eq. (8) is the sample counterpart of the characteristic function
E

(
eitξi

)
. Under the distributional assumptions, the true value of γ is

γ =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

α − σu

√
2
π

β

E
(
eit1ξi

)

...

E
(
eitqξi

)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

. (9)

For the II estimation, it is required q/2 to be greater than the number of the param-
eters contained in the distributions of v and u so that we have enough identification
conditions. Since the empirical characteristic function contains the real and imaginary
parts, each point t gives two moment conditions. For the models in our simulation and
empirical sections, we choose ten points, i.e., q = 10, with equal space in the interval
[−0.1, 0.1]. See also Lai (2022) for more discussion about the choice of the points
and the relevant literature.

The vector γ is a function of the parameter θ , and we denote it as

γ = B(θ), (10)

whereB(θ) is called the binding function. It provides a link between the parameters of
the truemodel and the approximatedmodel. Since the characteristic function is unique
and t ∈ R, we can find infinite moment conditions for solving the true parameter θ.

We discuss the procedure below:
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Step 1: Given the approximate or instrumental model, we estimate γ by OLS using
the observed data and denote it as

γ̂N = (
âN , β̂

ᵀ
N , ϕ̂N ,ξ (t1) , ..., ϕ̂N ,ξ

(
tq

))ᵀ
, (11)

where
(
âN , β̂

ᵀ
N

)ᵀ
is the OLS estimate from (2) using the observed data

and ϕ̂N ,ξ (t) is the empirical characteristic function of (4) evaluated at
t = t1, t2, . . . , tq .

Step 2: For a given θ,we can simulate values of the endogenous variable
{
ymi (θ)

}N
i=1

using the truemodel given in (1). In otherwords, given themodel specification
and a value of the parameter θ, one can draw v and u from their distributions
and then generate the simulated

{
ymi (θ)

}N
i=1 conditional on the exogenous

variables (x1, ..., xN ) . The estimator of γ in the mth replication is denoted
as

γ̂m
N (θ) =

(
âmN (θ) , β̂

mᵀ
N (θ) , ϕ̂m

N ,ξ (t1) , ..., ϕ̂m
N ,ξ

(
tq

))ᵀ
, (12)

where
(
âmN (θ) , β̂

mᵀ
N (θ)

)ᵀ
is the solution of the problem

Qm
N (b) = min

b

1

N

N∑

i=1

(
ymi − a − xiβ

)2
, (13)

which is estimated based on the mth simulated data. Using the predicted
OLS residual ξ̂m, we can obtain the empirical characteristic function ϕ̂m

ξ (t)
defined in (4) and (12) at the points t = t1, t2, . . . , tq .With the simulated data
{
(ymi , xi )

}N
i=1, one can then replicate M times such simulations and estimate

the parameter γ.

Step 3: In this step, we then match the estimate of γ from the approximate model
based on the real data and that from the simulated data. The II estimator of
θ is defined as the one that has the minimum distance between the estimates
based on the real data and simulated data, i.e.,

θ̂M
N (
)=argmin

θ∈�

(

γ̂N − 1

M

M∑

m=1

γ̂m
N (θ)

)ᵀ




(

γ̂N − 1

M

M∑

m=1

γ̂m
N (θ)

)

, (14)

where 
 is a symmetric non-negative matrix.
For simplicity, we choose the weighting matrix 
 as a diagonal matrix, which

assigns 1 for each element of the OLS estimators (̂aN and β̂N ) and 1/q for each
element of the empirical characteristic functions ϕ̂N ,ξ (t1) , ..., ϕ̂N ,ξ

(
tq

)
.

It is worth mentioning that the characteristic function contained in the binding
function is evaluated by the empirical characteristic function, so it does not matter
what the form of the characteristic function is under the true distributions of v and u.
In other words, we estimate the parameters contained in the distribution by matching
the empirical characteristic functions from the observed data and the simulated data.
In order to identify the parameter θ, it is required that the binding function B (·) be a
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function of the true parameter θ and the dimension of the auxiliary parameter γ must
be larger than or equal to the dimension of θ .

Lai (2022) discussed some practical issues in implementing the II estimation and
suggested selecting the points close together and equally spaced around zero. The
main idea of the II approach is to use simulations performed under the ‘true’ model to
correct for the asymptotic bias of the approximate model γ̂N . In the above estimation
procedure, steps 1 and 2 require the OLS estimation and step 3 requires nonlinear
least squares estimation. Since the characteristic function is the Fourier transform
of the probability density function, it completely defines the probability distribution
of this random variable. The characteristic function provides an alternative route to
estimate the distribution of the random variable. Therefore, γ̂N is the binding function
used in the estimation of the SF model. After obtaining the II estimator θ̂M

N (
) from
(14), we can compute the standard error using the approach discussed in Lai (2022).
Alternatively, one can also use the bootstrap method to obtain the bootstrap standard
error, which is easier to implement from the practical point of view.
Prediction of (in)efficiency: Once we obtain the estimate of θ, the prediction of
inefficiency can be done using the simulated approach. Let g(u) be an integrable
function of u. For the SF analysis, we are particularly interested in g(u) = u and
g(u) = exp(−u). When g(u) = u, we have E [g(u)|ε] = E [u|ε] . If g(u) = e−u,

then E [g(u)|ε] = E
[
e−u |ε]. By the definition of conditional expectation, we have

E [g (u) |ε] =
∫ ∞

0
g (u) · fu|ε (u|ε) du (15a)

=
∫ ∞

0
g (u) · fu,ε (u, ε)

fε (ε)
du (15b)

=
∫ ∞

0
g (u) · fε|u (ε|u) fu (u)

∫ ∞
0 fε|u (ε|u) · fu (u) du

du. (15c)

It follows from (15c) that E [g(u)|ε] can be estimated using the simulated estimator

E
s [g (u) |ε] = 1

R

R∑

r=1

g
(
ur

)
(

fv (ε + ur )
∑R

r=1 fv (ε + ur )

)

. (16)

Let Wr
i = fv(ε+ur )

∑R
r=1 fv(ε+ur )

denote the weight based on the simulated probability. Then

the simulated estimator Es [g (u) |ε] takes the form of a weighted average of g (ur ).
Under the distribution v ∼ SN (σv, α), the pdf of v is

fv (v; σv, α) = 2

σv

φ

(
v

σv

)
�

(
α

σv

v

)
. (17)

Plugging (17) into (16), we obtain the simulated estimator of the inefficiencies and
TEs. The simulated estimator for predicting TE and inefficiency has been applied in
various stochastic frontier models, for example, the panel stochastic frontier models
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in Lai and Kumbhakar (2018) and Lai and Kumbhakar (2021) and also the spatial
autoregressive panel stochastic frontier model in Lai and Tran (2022).
Nonconstant σu : A simple way to model determinants of inefficiency is to make
σu nonconstant – for example, σu,i = exp

(
δ′wi

)
, where w is a vector of exogenous

variables that can be interpreted as determinants of inefficiency. When ui is HN,
Eui = √

2/πσu,i = √
2/π exp

(
δ′wi

)
. Consequently, the w variables can be viewed

as determinants of inefficiency. With nonconstant σu the SF model given in (1) can be
written as

yi = [α − h(wi ; δ)] + x ′
iβ + vi − u∗

i , i = 1, ..., N , (18)

where u∗
i = ui − h(wi ; δ) and h(wi ; δ) = √

2/π exp
(
δ′wi

)
, which is nonlinear.

Define h0 = E [h(wi ; δ)] and a = α − h0, then [α − h(wi ; δ)] can be decomposed
as

α − h(wi ; δ) = (α − h0) + [h0 − h(wi ; δ)] ,

where E [h0 − h(wi ; δ)] = 0 by construction. Note that h0 is the expectation of the
function h(wi ; δ) taken over w, thus it is a constant. Let a = α − h0 be the intercept
of the instrument model, then the above model in (18) can be represented as

yi = a + x ′
iβ + [h0 − h(wi ; δ)] + vi − u∗

i (19)

= x ′
iβ + ξi , (20)

where ξi = yi − xiβ = a + [h0 − h(wi ; δ)] + vi − u∗
i . Note that (20) has a similar

form as Eq. (2). Thus, the corresponding binding function is

γ =

⎛

⎜⎜⎜⎜⎜
⎝

α − √
2/πE

[
exp

(
δ′wi

)]

β

E
(
eit1ξi

)

...

E
(
eitqξi

)

⎞

⎟⎟⎟⎟⎟
⎠

. (21)

It follows that the II estimation of (18) can be done in the same way. One can apply
OLS to (20) and obtain the estimators âN , β̂N and the predicted ξ̂i . The empirical
characteristic function of ξ at points t1, t2, ..., tq is computed using (4). It is clear that
each element of γ is a function of the true parameter θ. The estimation procedure is
similar to the previous case of constant σu . By matching γ̂N from the observed data
and γ̂m

N (θ) from the simulated data, we obtain an estimate of θ , which minimizes the
distance between the two estimates.

3 Simulation

In this section, we conduct some Monte Carlo experiments to investigate the finite
sample performance of the II estimator. Furthermore, we are also interested in knowing
whether the proposed estimator can correctly identify the direction of the skewness
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from the data. In this regard, we consider opposite signs of the shape parameter that
determines the skewness in the data generating process (DGP) in our experiments.

We consider the following specification of our DGP:

yi = β0 + β1xi + vi − ui , (22)

where
v ∼ SN (σv, λ) and u ∼ N+ (

0, σ 2
u,i

)
. (23)

In order to allow exogenous determinants in the inefficiency u, we specify σu,i as
σu,i = exp (δ0 + δ1wi ) . The true parameters are set as

β0 = 0.5, β1 = 1, σv = 0.15,

and

δ0 = −1 and δ1 = −0.25.

The exogenous variables are randomly drawn as x
i .i .d.∼ U (0, 3) and w

i .i .d.∼ N (0, 1) .

For the skew-normal random variable v, we consider three different specifications.
In the first two specifications, v has the constant shape parameter λ, where λ = 3
in Case 1 and λ = −3 in Case 2. Empirically, we do not know the direction of the
skewness of v, which crucially depends on the sign of λ. Thus, we consider these two
opposite cases in our simulation to explore how our approach performs and whether it
can correctly identify the skewness of v when the shape parameter has opposite signs.
In Case 3, we allow the shape parameter λ to be heteroscedastic and parameterize it
as

λi = λ0 + λ1zi , (24)

where

λ0 = −0.1 and λ1 = −3.

We assume that the exogenous determinant variable z in the shape parameter follows

a normal distribution zi
i .i .d.∼ N (0, 1) . Under this setting, the scale parameter λi can

be either positive or non-positive, and the sample means of λi in the generated random
sample is about −3.

Finally, we consider Case 4, where λ1 = 0 and λ0 = 0, i.e., λi = 0 for all i . The
rest of the setting of the DGP in Case 4 is the same as in the previous case. If λi = 0,
then vi follows a normal distribution N

(
0, σ 2

v

)
. The normal-half normal specification

has been used widely in the empirical application of the stochastic frontier model.
Thus, we are also interested in comparing the performances of the II estimator and the
ML estimator.

In the II estimation, the total number of replications in all simulations is 1000. For
each estimation, we consider the number of replications M to be M = {10, 100} and
investigate the efficiency gain as we increase the number of replications.
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Table 1 Biases and RMSEs of Cases 1 and 2

Parameter \N Bias RMSE
250 500 1000 250 500 1000

Case 1A: Positive shape parameter (α = 3 and M = 10)

β1 −0.0046 −0.0022 −0.0011 0.0180 0.0131 0.0091

β0 0.0073 0.0042 0.0027 0.0309 0.0214 0.0152

σv 0.0017 0.0019 0.0020 0.0056 0.0053 0.0046

λ 0.0011 0.0041 0.0014 0.0464 0.0555 0.0526

δ1 −0.0134 −0.0178 −0.0183 0.0163 0.0189 0.0154

δ0 0.0124 0.0109 0.0132 0.0176 0.0147 0.0147

Case 1B: Positive shape parameter (α = 3 and M = 100)

β1 −0.0001 −0.0008 −0.0003 0.0180 0.0131 0.0091

β0 0.0031 0.0049 0.0043 0.0304 0.0214 0.0155

σv 0.0016 0.0012 0.0014 0.0050 0.0046 0.0043

λ −0.0001 0.0024 0.0015 0.0437 0.0515 0.0450

δ1 −0.0097 −0.0137 −0.0148 0.0150 0.0181 0.0138

δ0 0.0100 0.0099 0.0118 0.0170 0.0137 0.0157

Case 2A: Negative shape parameter (α = −3 and M = 10)

β1 −0.0023 0.0000 0.0004 0.0184 0.0131 0.0093

β0 0.0057 0.0030 0.0024 0.0313 0.0222 0.0158

σv 0.0006 0.0004 0.0004 0.0018 0.0024 0.0020

λ 0.0046 −0.0144 0.0027 0.1077 0.1862 0.1304

δ1 −0.0125 −0.0167 −0.0196 0.0102 0.0136 0.0140

δ0 0.0123 0.0113 0.0129 0.0105 0.0096 0.0104

Case 2B: Negative shape parameter (α = −3 and M = 100)

β1 0.0006 0.0002 0.0004 0.0183 0.0128 0.0096

β0 0.0049 0.0041 0.0043 0.0300 0.0217 0.0163

σv 0.0006 0.0004 0.0004 0.0019 0.0015 0.0017

λ 0.0019 −0.0018 −0.0056 0.0726 0.1047 0.0909

δ1 −0.0123 −0.0110 −0.0148 0.0165 0.0113 0.0106

δ0 0.0090 0.0087 0.0095 0.0113 0.0094 0.0085

The total number of replications is 1000

Table 1 summarizes the simulation results of the four cases, labeled as Case 1A,
Case 1B, Case 2A and Case 2B. In Case 1, we have a positive value of λ, so that v has
a positive skewness. We have a negative λ in Case 2, thus v has a negative skewness.
Moreover, we labeled the cases with the letter ‘A’ when the number of replications
M = 10 and ‘B’ when M = 100. Values in columns 2 to 4 give the biases when the
sample sizes are 250, 500 and 1000. Columns 5 to 7 summarize the root mean squared
error (RMSE). As shown in the table, all biases and RMSEs are in small magnitudes.
Most of the biases slightly decrease as we increase the sample size from 250 to 1000.
So do the RMSEs. On the other hand, by comparing Cases 1A (2A) and 1B (2B) we
find that the RMSEs slightly decrease for most of the parameters as we increase M
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from 10 to 100. For the negative skewness cases (2A and 2B), we find that the biases
of λ are slightly larger than those of the cases with a positive skewness (1A and 1B).
It could be due to the direction of the skewness. For example, consider three random
noises v1, v2 and v3, where v1 has a positive skewness, v2 has zero skewness and v3
has negative skewness. It is clear that the skewness of the composite errors satisfies
the relation SK (v1 − u) > SK (v2 − u) > SK (v3 − u) and 0 > SK (v2 − u) >

SK (v3 − u) . We conjecture that the bias of λ is slightly larger when v and u have the
same direction of skewness. However, the bias decreases quickly as we increase the
sample size.

In Case 3, we let the shape parameter be heteroscedastic and have it depend on
an exogenous variable z. The simulation results are summarized in the upper panel
of Table 2. As shown in the table, the pattern observed from the biases and RMSEs
is quite similar to what we found in Table 1. In Case 4, we compare the biases and
RMSEs of the ML estimator and the indirect estimators when M = 10 and M = 100.
The results are summarized in the lower panel of Table 2. As shown in the table, the
bias of the II estimator when M = 10 is slightly larger than that of the ML estimator.
However, as we increase the number of replications to 100, the bias of the II estimator
significantly decreases and performs quite similarly to theML estimator. Furthermore,
we find the RMSEs of the ML and II estimators when M = 10 and M = 100 are quite
similar. There is no significant evidence showing that the ML estimator is better in
terms of RMSE. The simulation results in Tables 1 and 2 show the consistency of our
proposed estimator. Based on these results, we conclude that our estimator performs
quite well in the small sample.

Below, we use an artificial random sample of N = 500 to compare the predicted
inefficiencies andTEs,which are computed usingEq. (16) under 1000 draws. The sam-
ple is generated according to the DGP specified in Eq. (22).We specify λ0 = −3.5 and

λ1 = −1, so that the average ratio of
√

Var(v)
Var(u)

is around 0.2275
0.2586 = 0.88. The remaining

parameters are specified as before. The true distribution of the composite error is het-
eroscedastic SN and half-normal distribution. This random sample is estimated under
three different specifications of the composite error. The three models are labelled as
follows:

M1: heteroscedastic SN noise and half-normal inefficiency
M2: normal noise and half-normal inefficiency
M3: homoscedastic SN noise and half-normal inefficiency.

Thus, M1 is the true model. We compare the true values of the inefficiencies and TE (u
and e−u) and their expectations (E (u|ε)and E

(
e−u |ε)) with their predictions under

models M1-M3. The graphs of the true TEs, their expected values, and their predicted
values are given in Fig. 1. As shown in the figure, the predicted TEs fromM2 seem to be
overestimated at the lower tail and underestimated at the right tail of the distribution of
TE. This is because M2 imposes a symmetric distribution on the random noise v, and
thus the prediction of TE ignores the asymmetric distribution of v. On the other hand,
the predictedTEs fromM1andM3havemore similarities because both of themassume
SN distributions on v. M1 has a heteroscedastic shape parameter and M3 assumes a
homoscedastic shape parameter. The conditional expectation functions are evaluated
using the true parameters. In order to compare the predicted inefficiencies and TEs
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Table 2 Biases and RMSEs of Cases 3 and 4

Parameter \ N Bias RMSE

250 500 1000 250 500 1000

Case 3A: (M = 10)

β1 −0.0024 0.0000 0.0004 0.0184 0.0131 0.0092

β0 0.0061 0.0034 0.0025 0.0310 0.0223 0.0159

σv 0.0006 0.0005 0.0004 0.0021 0.0018 0.0021

λ1 0.0012 0.0004 0.0024 0.1109 0.0513 0.0877

λ0 0.0041 0.0026 −0.0006 0.1727 0.1123 0.1276

δ1 −0.0134 −0.0176 −0.0202 0.0118 0.0140 0.0145

δ0 0.0130 0.0121 0.0131 0.0114 0.0100 0.0110

Case 3B: (M = 100)

β1 −0.0000 −0.0006 −0.0001 0.0184 0.0131 0.0093

β0 0.0044 0.0062 0.0055 0.0307 0.0218 0.0155

σv 0.0004 0.0004 0.0004 0.0016 0.0015 0.0018

λ1 −0.0015 −0.0017 −0.0016 0.0695 0.0589 0.0644

λ0 0.0024 −0.0011 0.0035 0.0746 0.0882 0.0785

δ1 −0.0092 −0.0137 −0.0169 0.0115 0.0137 0.0122

δ0 0.0091 0.0097 0.0104 0.0111 0.0096 0.0090

Case 4A: (M = 10)

β1 −0.0042 −0.0020 −0.0016 0.0196 0.0143 0.0100

β0 0.0008 −0.0014 −0.0029 0.0334 0.0242 0.0169

σv 0.0138 0.0101 0.0123 0.0231 0.0205 0.0198

δ1 −0.0058 −0.0073 −0.0080 0.0083 0.0097 0.0097

δ0 0.0092 0.0087 0.0084 0.0094 0.0079 0.0061

Case 4B: (M = 100)

β1 −0.0001 −0.0006 −0.0006 0.0195 0.0143 0.0100

β0 0.0024 0.0037 0.0031 0.0330 0.0241 0.0168

σv 0.0068 0.0087 0.0084 0.0256 0.0227 0.0295

δ1 −0.0042 −0.0049 −0.0067 0.0073 0.0107 0.0123

δ0 0.0069 0.0068 0.0069 0.0084 0.0078 0.0074

Case 4C: Maximum likelihood estimation

β1 0.0003 −0.0005 −0.0006 0.0183 0.0124 0.0088

β0 −0.0028 −0.0004 0.0003 0.0480 0.0310 0.0204

σv −0.0035 −0.0012 −0.0009 0.0271 0.0170 0.0119

δ1 −0.0087 −0.0015 −0.0034 0.0717 0.0453 0.0307

δ0 −0.0233 −0.0111 −0.0042 0.1490 0.0862 0.0558

The total number of replications is 1000
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Fig. 1 The predicted TEs of Models M1-M3

under modelsM1-M3, we define the absolute values of the biases and prediction errors
of inefficiencies and TEs as

absolute bias of E (u|Mj) = ∣∣Ê (u|ε; Mj) − E (u|ε)∣∣
absolute bias of E

(
e−u |Mj

) = ∣∣Ê
(
e−u |ε; Mj

) − E
(
e−u |ε)∣∣

absolute prediction error of E (u|Mj) = ∣∣Ê (u|ε; Mj) − u
∣∣

and

absolute prediction error of E
(
e−u |Mj

) = ∣∣Ê
(
e−u |ε; Mj

) − e−u
∣∣ ,

where j = 1, 2, 3. We summarize the descriptive statistics of the true and predicted
values of u, TE, and the absolute biases and absolute prediction errors in Table 3.
The means of the true values of u and E(u|ε) are about the same (0.30), but their
standard deviations and ranges are different (ranges of u and E(u|ε) are 1.43 and
1.21, respectively). The means of the predicted values of E(u|ε) for the three models
are almost the same as the true mean of the values of E(u|ε). Similarly, the means
of the predicted values of E(e−u |ε) from M1-M3 are identical and the same as the
mean of the true values of E(u|ε) (all about 0.75). However, the standard deviation
of predicted E(u|ε) from M2 (0.1055) is much smaller than those from M1 and M3
(which are around 0.20 ∼ 0.21). It seems that the predicted E(u|ε) from M2 has
the problem of under-dispersion. A similar finding also appears in the predictions of
E(e−u |ε). Furthermore, M2 has absolute biases that are quite different from the other
twomodels. Similarly, the means of absolute prediction errors ofE(u|ε) andE(e−u |ε)
from M1 and M3 are very similar and are different from M2. These results show that
although there are some similarities, model M2 (which ignores the skewness in the

123



2784 H. Lai

Table 3 The predicted
inefficiency and TE

Variable Mean Std. dev. Min Max

True value of u and E (u|ε):
u 0.2984 0.2586 0.0006 1.4287

E (u|ε) 0.3030 0.2008 0.0234 1.2332

Predicted E (u|ε;M j) for j = 1, 2, 3

M1 0.3144 0.2068 0.0270 1.2962

M2 0.3091 0.1055 0.1309 0.8117

M3 0.3100 0.2105 0.0154 1.2877

Absolute bias |E (u|ε;M j) − E (u|ε)| :
M1 0.0134 0.0122 3.80e−06 0.0779

M2 0.0901 0.0702 0.0004 0.4374

M3 0.0237 0.0272 0.0001 0.2262

Absolute prediction error |E (u|ε;M j) − u| :
M1 0.1209 0.0981 0.0002 0.6377

M2 0.1551 0.1198 0.0005 0.6847

M3 0.1223 0.1007 0.0004 0.6425

True values of e−u and E
(
e−u |ε) :

e−u 0.7644 0.1680 0.2396 0.9994

E
(
e−u |ε) 0.7594 0.1284 0.2994 0.9771

Predicted E
(
e−u |ε;M j

)
for j = 1, 2, 3

M1 0.7519 0.1301 0.2818 0.9736

M2 0.7537 0.0662 0.4770 0.8816

M3 0.7553 0.1341 0.2835 0.9849

Absolute bias
∣∣E

(
e−u |ε;M j

) − E
(
e−u |ε)∣∣ :

M1 0.0090 0.0071 0.0000 0.0288

M2 0.0624 0.0422 0.0003 0.1923

M3 0.0169 0.0202 0.0001 0.1683

Absolute prediction error
∣∣E

(
e−u |ε;M j

) − e−u
∣∣ :

M1 0.0865 0.0670 0.0003 0.4421

M2 0.1095 0.0738 0.0007 0.3815

M3 0.0875 0.0694 0.0006 0.4450

The results are based on a random sample of size 500

noise term) is different from models M1 and M3. We find similar results from models
M1-M3 in the application with real data.

4 Empirical application

In this section, we empirically demonstrate the estimation approach using real data (an
unbalanced panel of 59 US electricity transmission companies for the period 2001–
2009). The main objective is to showcase workings of our model instead of a thorough
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empirical analysis of efficiency of the electricity transmission sector as in Llorca
et al. (2016). Instead of searching for the best model in terms of their specifications of
inefficiency, our objective is to illustrate the working of the II estimation with SN noise
and half-normal inefficiency. Having said that, we want to point out that our approach
can be extended to accommodate the more general case where the mean and variance
of inefficiency can be functions of exogenous variables that can potentially explain
inefficiency. Thus, our model clearly extends the existing SF models by allowing an
asymmetric noise term where the asymmetry (the shape parameter of the SN variable)
is explained by some exogenous variables. In our application, we useweather variables
as determinants of inefficiency via the variance of the half-normal inefficiency term.
The shape parameter in the SN distribution of the noise term is allowed to depend on
peak load. In fact, one can use other variable(s) as determinants of the shape parameters
also.

Since electricity distribution/transmission are services in which outputs are con-
sidered exogenous, a cost or input distance is commonly used. Here, we use a cost
function approach in which the cost variable (C) is total cost (Totex). Totex is defined
as the sum of Opex, which is the total of the operation and maintenance expenses,
and Capex, which is the sum of annual depreciation on capital assets and the annual
return on the balance of capital. Opex, Capex and Totex are measured in year 2000 US
dollars. The output variables are Y1 – electricity delivered (del), Y2 – total capacity of
substations (cap_subs), and Y3 – network length (pole) measured in miles. The input
variables are labor and capital. Price of labor (LPR) is defined as the average annual
wage for the electric power transmission and distribution industry by state. As in the
case of Totex, this variable is also measured in year 2000 US dollars. The producer
price index for power transmission is used as a proxy for capital price (KPR). Since
we use a cost function to represent the technology, the dependent variable y is log of
Totex, and the x variables are log of input prices and outputs. The inefficiency term u
appears with a positive sign in the cost function because inefficiency increases cost.
There is no such requirement for the noise term. Input prices and Totex are normalized
by KPR to impose the linear homogeneity (in input prices) requirement on the cost
function. Details on these variables listed below can be found in Llorca et al. (2016).

The weather variables used to explain cost inefficiency are annual minimum tem-
perature in Fahrenheit degrees (tmin), average of the daily mean wind speeds in knots
(wind), average of the daily precipitation in inches (prcp), and Capex/Opex Ratio
(cor). We also include positive and negative average demand growth (pogrowth and
negrowth) as two separate determinant variables. The peak load demand is used to
explain skewness of the noise term, v.

Finally, we control regional variations in cost by including the following regional
dummies in the cost function: serc - Reliability Corporation, spp - Southwest Power
Pool, wecc - Electricity Coordinating Council, npcc - Northeast Power Coordinating
Council, rfc - ReliabilityFirst Corporation, mro - Midwest Reliability Organization,
and ercot - Electric Reliability Council of Texas. We report summary statistics of the
variables and their definitions in Table 4. Some of these variables are constructed using
the original variables. For instance, we used the variable tmincor, which is defined as
the product of tmin (Temperature) and cor (ratio of Capex and Opex). All the variables
used in the translog cost function and the skewness and inefficiency functions as well
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Table 4 Variable definitions and sample statistics

Variable Mean Std. dev. Definition

I. Variables used in the cost frontier function:

Cost, outputs, input prices and time trend

Totexd 145,111,000 120,627,000 Total cost (US$)

del 6,279,733 8,872,918 Electricity delivered (MWh)

cap_subs 27821.41 22719.78 Total capacity of substations

pole 4073.052 3263.2 Network length measured in miles

price 5.8419 0.1944 Labor price

ppi 179.2072 21.3485 Producer price index

t 4.8557 2.5176 Time

Regional dummies

serc 0.4030 0.4911 SERC Reliability Corporation

spp 0.2189 0.4140 Southwest Power Pool

wecc 0.2612 0.4398 Electricity Coordinating Council

npcc 0.0448 0.2071 Northeast Power Coordinating Council

rfc 0.2488 0.4328 ReliabilityFirst Corporation

mro 0.1393 0.3467 Midwest Reliability Organization

ercot 0.0448 0.2071 Electric Reliability Council of Texas

II. Exogenous determinants of skewness and inefficiency, v and u:

peak 6208.02 5539.243 peak load

tmin -10.3453 16.5734 Annual minimum temperature in Fahrenheit
degrees

wind 6.8257 1.0109 Average of the daily mean wind speeds in
knots

prcp 0.0712 0.0339 Average of the daily precipitation in inches

cor 1.1805 0.7019 Capex/Opex Ratio, where Capex is the sum
of annual depreciation on capital assets
and the annual return on the balance of
capital and Opex is the total of the
operation and maintenance expenses

pogrowth 1.8048 7.0760 Positive average demand growth

negrowth -1.7729 4.4181 Negative average demand growth

The sample size is 402

as the regional dummies, along with their means and standard deviations, are reported
in Table 4.

The model we discussed so far is for cross-sectional data. However, our data is an
unbalanced panel of 59 US electricity transmission companies for the period 2001–
2009 – giving us a total of 402 observations. Since this is the first paper on the use
of SN noise with determinants of the shape parameters while using the II approach to
estimate the parameters of the stochastic frontier model, we have not used company
effects and other possible panel extensions in the present model. Instead, we use a
pooled cross-sectional model with a time trend as a covariate and determinant of
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inefficiency.5 Using panel notations, the translog cost function, which we estimate, is
written as

lnCit =β0+
∑

m

βm ln Ymit +γ1 lnWit + 1
2

∑

m

∑

n

βmn ln Ymit ln Ynit + 1
2γ2 lnWit lnWit

+ βt t +
∑

δd Dd + vi t + u(wi t ), t = 1, 2, . . . , Ti , i = 1, 2, . . . , 59, (25)

where Ym,m = 1, 2, 3, are outputs, Dd are regional dummies, and t is the time trend.
Cost (C) and input price (W ) are normalized by the price of capital. Since there are
only two inputs, we have one normalized input price (labor), which is W . The shape
parameter λ is a function of zit variables. Here, zit includes only peak. The vector wi t

contains t, tmin, wind, prcp, tmin×cor, wind×cor, prcp×cor, pogrowth and negrowth,
which are used as determinants of inefficiency modeled in terms of σ 2

u . That is, we
model inefficiency via σu,i t = exp(δ′wi t ), where uit ∼ N+(0, σ 2

u,i t ). We include
neutral technical change by including the time trend variable (t) in the cost function.
We also include t in wi t to allow inefficiency to change over time in a systematic
manner.

Since the model with asymmetric noise is new, we test the specification with some
other models. We estimate three models, viz., M1-M3 mentioned in Sect. 3, and test
the appropriateness of each of them in terms of the data used. Because models M2 and
M3 are special cases ofM1, first we select betweenmodelsM1 andM2 using theWald
test. That is, we test the joint hypothesis H0 : λ0 = 0 and λ1 = 0, which is equivalent
to testing λi = 0 for all i , because the skew-normal distribution with a zero shape
parameter degenerates to the normal distribution. Using the bootstrap standard error
from model M1, we compute the Wald statistic, which follows a χ2(2) distribution
and gives a value of 12,880. Based on this result, we reject model M2 at the 1% level
of significance. Similarly, a test between models M2 and M3 is performed using the
null hypothesis H0 : λ0 = 0. Since the shape parameter λ (from Table 5) is significant
at the 5% level, we reject model M2. Finally, selection between models M1 and M3 is
made by testing the hypothesis H0 : λ1 = 0. Since the estimated coefficient of peak is
0.0302 with the standard error 0.0177, the corresponding p-value is 0.087. Therefore,
model M3 is rejected at the 10% level of significance, but not rejected at the 5% level
of significance. Based on these tests, we conclude that model M1 is supported by the
data. That is, we find evidence of asymmetric noise (v) even after controlling for the
inefficiency term (u), which is always asymmetric. In a standard SF model (model
M2), the composite error term (v + u) is skewed and the skewness of the composite
error term is viewed as an indicator of inefficiency. This assertion is wrong if the noise
term is skewed. Models M2 and M3 show how one can test for skewed v and still
identify inefficiency.

We report the parameter estimates of M1-M3 in Table 5. Given that the parameters
of the translog cost function have no direct interpretation, we compute scale elasticity
for each output (∂ lnC/∂ ln Ym,m = 1, 2, 3) and elasticity with respect to input price.
These are reported in Table 6. The mean values of these elasticities with respect to

5 We plan to include panel features such as the fixed/random effects in our model while estimating it using
the II approach in a separate paper.
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Table 6 Estimated elasticities of
Models M1-M3

Mean S.D Min Max

M1: Hetero SN-HN

del 0.2127 0.0513 0.0985 0.3417

cap_subs 0.9039 0.2309 0.0166 1.4270

pole 1.0307 0.3504 0.2014 2.3985

price 1.5325 0.3691 0.6472 2.6465

M2: N-HN

del 0.0090 0.0242 −0.3821 0.0747

cap_subs 0.5346 0.1678 −0.2200 0.8953

pole 0.1093 0.1849 −0.3712 1.0120

price 0.5527 0.2591 −0.0339 1.4585

M3: Homo SN-HN

del 0.0500 0.0435 −0.0634 0.1609

cap_subs 0.4606 0.2290 −0.5577 0.9844

pole 0.1012 0.3226 −0.6914 1.4083

price 1.0605 0.3389 0.3420 2.1687

Total number of observations is 402

Y1−Y3 (del, cap_subs and pole) are 0.2127, 0.9039 and 1.0307, respectively, in model
M1. For models M2 and M3, these elasticities are very different – 0.009, 0.5346, and
0.1093 in M2 and 0.0500, 0.4606, 0.1012 in M3. These elasticities for each output
measure percentage change in cost for a one percent change in output, and they are
supposed to be non-negative. It can be seen from Table 6 that the estimated elasticities
from M2 and M3 are negative for some observations although their mean values are
positive. For example, the elasticities of “del” fromM2 has 169 negative values out of
402 values. In contrast all the estimated elasticities from M1 are positive. Similarly,
the input price elasticity of labor fromM1 is positive for all observations (as should be
the case since an increase in input prices increases cost, ceteris paribus), whereas in
M2 there are some negative values. These results also vindicate model M1 in addition
to its support from the statistical test discussed above.

Estimates of technical change (TC = ∂ lnC/∂t) – the coefficient of t – is found
to be positive but insignificant in all three models. A positive (negative) value of TC
indicates technical regress (progress) – an increase (decrease) in cost over time –
holding everything else unchanged. TC in all three models is assumed to be neutral.

We predict technical (in)efficiency using the formula in (16), which gives predicted
values of both inefficiency (uit ) and TE (exp(−uit )) for each company at every year
it is observed. It is worth mentioning that one should use v = ε − ur in (16) since we
have a cost frontier model. The inefficiencies and TEs are predicted by Eq. (16) based
on 1000 draws. The mean values of inefficiency and TE in M1 are 0.1070 and 0.9032,
meaning that the costs of the transmission companies, on average, are 10.7% higher
because of inefficiency. Alternatively, their TE, on average, is 90.32%. However, the
mean inefficiency and TE from M2 and M3 are very different. These models predict
that TE, on average, is only 65%. Since models M2 and M3 are rejected and model
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Fig. 2 The predicted inefficiencies and TEs of models M1-M3

M1 is supported by the data, we argue that the results from M1 are to be trusted more
than those from the other two models for which mean inefficiencies, on average, are
48.45% and 50.19%. These numbers are too high to believe.

To get a closer look at the predicted inefficiency and TE, instead of their means, we
report their density plots in Fig. 2. In model M1 most of the companies are more than
88% cost efficient (less than 10% inefficient). The spreads of cost inefficiency in M2
and M3 are much larger, resulting in estimated cost efficiency varying from less than
2% to almost 100% in model M2 and from 0.25% to 90% in model M3. Companies
with very low cost efficiency inM2 andM3 drive the mean efficiency down, compared
to M1. Model M1 shows that more than 50% of the companies are more than 90%
efficient.

Sincewe include t as a determinant of inefficiency, we calculate technical efficiency
change from �T Eit = −∂(uit )/∂t ≈ −∂(Euit )/∂t = √

2/π δt × exp(δ′wi t ). Note
that here we replace uit by Euit and then use the estimated values of the parameters
to compute �T Eit . Recall that Euit = √

2/πσ̂u,i t = √
2/π exp (δ̂′

twi t ). Thus, the
sign on δt indicates whether �T EC is increasing or decreasing. In models M1 and
M2, δ̂t is positive, indicating a decreasing efficiency over time. In M3, δ̂t is negative,
implying increasing cost efficiency. However, δ̂t is statistically insignificant in all three
models.
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5 Conclusion

This paper makes three contributions in the stochastic frontier (SF) models. First, the
noise term is assumed to be asymmetric (skew normal) while the inefficiency term
is assumed to be half-normal. This formulation avoids the criticism that skewness of
the composite error term (sum of the noise and inefficiency) cannot be an indicator of
inefficiency because skewness can arise from the noise term. Also, skewness in this
model can be either positive or negative. Second, instead of using the standard ML
method, we use the indirect inference (II) approach to estimate the parameters of the
SFmodel, the parameters associated with the skewness function of the noise term, and
determinants of inefficiency modeled via the variance of the half-normal inefficiency
term. We tested this model against two special cases: (i) the noise term is symmetric
and (ii) the skewness is a function of some covariates. Third, we generalize the SN
and half-normal model even further in which the shape parameter of the SN model is
made heteroscedastic (function of exogenous variables). Also, we added determinants
of inefficiency by making the variance of the HN distribution heteroscedastic. We
provide simulation results using the II estimation approach to show small sample
performance of ourmodel. Finally, we use a stochastic cost frontier model to showcase
the workings of ourmodel using an unbalanced panel of 59US electricity transmission
companies observed for the period 2001–2009. Test results show that our model M1
with heterogeneity in inefficiency and the skewness parameter is favored by the data
against the two simpler models that are special cases of our model.

One caveat that we plan to address in the future is that our theoretical model is
cross-sectional but the application uses a panel data. We used a pooled model without
fixed/random effects to control for company-specific heterogeneity. Another future
extension in the panel model would be to accommodate persistent inefficiency along
with transient inefficiency with or without determinants.
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