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Abstract
For modeling the threshold effect in parameters of the mixed data sampling (MIDAS)
models, this paper introduces amodel called thresholdmixeddata sampling (TMIDAS)
regression, which allows for a threshold effect in the relationship between dependent
and explanatory variables sampled at different frequencies, and the explanatory vari-
ables being sampled at a frequency higher than the dependent variable.We develop the
estimation procedure of the proposed model and suggest test statistics for threshold
effect and the equal weighting scheme used typically in aggregating higher-frequency
data before estimating econometric models. Monte Carlo simulations are conducted
to examine the performance properties of the estimation and testing procedures, and
compare the forecasting performance of theTMIDAS relative to theMarkov-switching
(MS-)MIDAS and MIDAS models. Our simulation results point out that the estima-
tion and testing procedures work well in finite samples, and the proposed model has
a good forecasting performance. We apply the TMIDAS model to investigate pres-
ence and pattern of cyclical bias in quarterly GDP forecast errors, and compare the
out-of-sample performance of the TMIDAS relative to the MS-MIDAS and MIDAS
models for GDP forecast errors. Both simulation and empirical results demonstrate
the usefulness of TMIDAS.
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1 Introduction

Regressionmodelswithmixed sampling frequencies havegained increasingpopularity
in modeling economic activity since it is introduced in different contexts by Ghysels
et al. (2004, 2006), Ghysels and Wright (2009), Galvao (2013), Miller (2014) and
Ghysels andMiller (2015), among others. Despite the fact that time series observations
are often sampled at different frequencies, which is a situation often encountered
in many applications, the typical practice in estimating econometric models is to
aggregate all higher frequency variables to the same (low) frequency using an equal
weighting scheme. As illustrated by Andreou et al. (2010), using decaying weights
may be a more appropriate aggregation scheme for most time series data, and an equal
weighting scheme will often end up with inefficient and/or biased estimates. Mixed
data sampling (MIDAS) regression models aim at extracting information from high-
frequency variables to improve the efficiency of estimators and/or enhance the forecast
accuracy of target variables observed at a lower frequency. However, a threshold-type
MIDAS model is still unavailable, while threshold models can capture a very rich
set of stylized facts of modern economics, such as multiple states, asymmetries and
cyclical effects (e.g., Hansen 2000; Chen 2015). The main purpose of this paper is to
fill this gap in the literature.

In this paper, we contribute to the threshold and MIDAS literature by introducing
a new model called threshold mixed data sampling (TMIDAS) regression, in which
we allow for a threshold effect to capture nonlinear effects in the relationship between
dependent and explanatory variables, and the explanatory variables are sampled at a
frequency higher than the dependent variable. Specifically, the TMIDAS model can
be treated as an extension to the classical threshold regression model investigated by
Hansen (2000) by allowing for mixed data sampling. Hence, the TMIDAS model not
only has the important advantage of the classical threshold model in nonlinear effects
that widely exist in different fields of economics, but also enjoys the efficiency gains
from extracting information from high-frequency variables. Based on the literature
on MIDAS and threshold models, we develop the estimation procedure of the model
and propose test statistics for threshold effect and the equal weighting scheme. In
estimation, we suggest to use a two-step procedure: first estimate MIDAS models
using nonlinear least squares (NLS) approach for any given threshold value and then
estimate the threshold parameter using a grid-search method which is widely used in
the threshold literature. In the specification testing, we suggest a test statistic for testing
the presence of threshold effect, and a test statistic for testing the null hypothesis of
equalweights (simple average) in aggregating higher-frequency time series data before
estimating econometric models. Moreover, we conduct Monte Carlo simulations to
examine the performance properties of the estimation and testing procedures. Our
simulation results point out that the estimation procedure works well in finite samples,
and the test statistics are correctly sized and have good power properties.

To illustrate the usefulness of TMIDAS, we also conduct Monte Carlo experi-
ments to compare out-of-sample forecasting performance of the TMIDAS relative
to the Markov-switching (MS-)MIDAS, proposed by Guérin and Marcellino (2013)
and MIDAS models for different data generating processes (DGPs). The simulations
indicate that the proposed TMIDASmodel has the best forecasting performance when
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there is a threshold effect in the true model. The proposed TMIDAS model is applied
to investigate presence and pattern of cyclical bias in quarterly GDP forecast errors.
The empirical results support that there is an overestimation (underestimation) bias
during periods of relatively good (bad) state, indicating the predictability of the GDP
forecast errors.We then compare the out-of-sample performance of the TMIDAS rela-
tive to theMS-MIDAS andMIDASmodels for GDP forecast errors. The results imply
that TMIDAS models clearly outperform the MS-MIDAS and MIDAS models in the
considered application to GDP forecast errors. Both simulation and empirical results
demonstrate the usefulness of TMIDAS.

The remainder of this paper is organized as follows: Sect. 2 introduces the thresh-
old mixed data sampling (TMIDAS) model, develops the estimation method of the
model parameters and constructs tests for threshold effect and equal weights. Sec-
tion 3 presents Monte Carlo experiments evaluating the finite-sample properties of
the estimation procedure and the test statistics, and assessing out-of-sample forecast-
ing performance of TMIDAS models. Section 4 provides an application and Sect. 5
concludes.

2 Thresholdmixed data samplingmodel

Consider the mixed data sampling process {yt , zt , x(m)
t/m, qt }, where yt , zt and qt

are observed at t = 1, 2, ..., T , and index t represents a low frequency, x(m)
t/m =

(x (m)
1,t , ..., x (m)

p,t )′ is a p-dimensional vector of higher frequency data, and the super-
script m represents that the series are observed at most m times between t and t − 1.
The threshold mixed data sampling (TMIDAS) model in the paper is given by1

yt =
{
α′
1zt + β ′

1xt (θ) + et , if qt ≤ γ

α′
2zt + β ′

2xt (θ) + et , if qt > γ
, t = 1, 2, ..., T , (1)

where yt , zt , xt (θ) and qt are assumed to be weakly dependent, qt is the threshold
variable and is used to split the sample into two subgroups, the random vari-
able et is a regression disturbance, and γ is the threshold parameter. xt (θ) =
(x (m)

1,t (θ1), x
(m)
2,t (θ2), ..., x

(m)
p,t (θ p))

′ is a nonlinear function mapping the higher-
frequency data into a low frequency such that

x (m)
k,t (θk) = W (L1/m, θk)x

(m)
k,t =

J∑
j=1

w j,k(θk)L
j/mx (m)

k,t , for k = 1, 2, ..., p,

in which L j/m is the high-frequency lag operator such that L j/mx (m)
k,t = x (m)

k,t−( j/m),

and J is the number of high frequency lags used in the temporal aggregation of x(m)
t/m

1 A further investigation for a model with threshold variable being sampled at the higher frequency is
worthwhile, but it will not be pursued in this paper. We thank an anonymous referee to raise this point to
us.
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such that J ≥ m. To identify the slope parameters β1 and β2 , we assume that
0 < w j,k(θk) < 1 and

∑J
j=1 w j,k(θk) = 1.

One of the key features ofMIDASmodels is to parameterize the lagged coefficients
in a parsimonious way (e.g., Ghysels and Qian 2019). In the proposed model, it is suit-
able to employ the commonly used parsimonious polynomial specifications including
step functions, beta polynomial and Almon lag polynomial; see Ghysels et al. (2007)
for a detailed discussion. As illustrated by the MIDAS literature (see, e.g., Ghysels
et al. 2007; Andreou et al. 2010), a popular choice for the weighting scheme is the
two parameter exponential Almon lag polynomial, which is flexible enough to mimic
different weighting shapes for the lag coefficients:2

w j,k(θk) = w j,k(θk,1, θk,2) = exp(θk,1 j + θk,2 j2)∑m
j=1 exp(θk,1 j + θk,2 j2)

. (2)

It is worth noting that the Almon lag parameters are not identified when β1 =
β2 = 0. This is the well-known Davies’s problem (see, e.g., Davies 1987), while it
was addressed by Ghysels et al. (2007). To set focus, we do not discuss this question
in the next.

2.1 Model estimation

For ease of manipulation, we express the model defined in (1) and (2) in a more
compacted form. Define α = [α′

2,α
′
1 − α′

2]′, zt (γ ) = [z′
t , z

′
t {qt ≤ γ }]′, and β =

[β ′
2,β

′
1−β ′

2]′, xt (θ, γ ) = [x′
t (θ), x′

t (θ){qt ≤ γ }]′, where {.} is the indicator function,
then the model defined in (1) and (2) can be rewritten as:

yt = α′zt (γ ) + β ′xt (θ , γ ) + et . (3)

We first estimate MIDAS models using nonlinear least squares (NLS) approach for
any given threshold value. For any fixed γ , the model in (3) simplifies to a MIDAS
model. Following the MIDAS literature, consider the nonlinear least squares (NLS)
estimator. Define the following objective function

SSRT (α,β, θ , γ ) =
T∑
t=1

e2t (α,β, θ , γ ) =
T∑
t=1

(
yt − α′zt (γ ) − β ′xt (θ , γ )

)2
. (4)

We assume γ ∈ � and (α,β, θ) ∈ �, where the parameter spaces � and � are
bounded sets of the reals. Then NLS estimator is given as

(α̂(γ ), β̂(γ ), θ̂(γ )) = argmin
α,β,θ∈�

SSRT (α,β, θ , γ ). (5)

2 A more general polynomial function is given by w j,k (θk ) = w j,k (θk,1, ..., θk,q ) =
exp(θk,1 j+θk,2 j

2+···+θk,q jq )∑m
j=1 exp(θk,1 j+θk,2 j2+···+θk,q jq )

.
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We then estimate the threshold parameter using a combination of concentration
and grid search which is widely used in the threshold literature (e.g., Hansen 2000).

Denote the residuals as êt (γ ) = yt − α̂
′
(γ )zt (γ )− β̂

′
(γ )xt (θ̂(γ ), γ ), then the sum of

squared errors is ST (γ ) ≡ ST (α̂(γ ), β̂(γ ), θ̂(γ ), γ ) =
T∑
t=1

ê′
t (γ )êt (γ ). The threshold

parameter γ is estimated as

γ̂ = argmin
γ∈�

ST (γ ). (6)

Once γ̂ is obtained, the other parameters can be estimated as α̂ = α̂(γ̂ ), β̂ = β̂(γ̂ ),
θ̂ = θ̂(γ̂ ). In practice, following Hansen (2000), a grid-searching method is used to
estimate the threshold parameter in (6). We can divide the parameter space � into N
quantiles and let �N = {q1, q2, ..., qN }. Then the estimator γ̂N = argminγ∈�N

ST (γ )

is a good approximation to γ̂ when N is sufficiently large. In practice, it is often
undesirable to select a threshold γ̂ sorting too few observations into one or the other
regime. As suggested by Hansen (1999), this possibility can be excluded by restricting
the grid search of γ such that a minimal percentage of the observations (say, 10% or
15%) lie in both regimes.

It is well known that the estimated threshold γ̂ is super-consistent and asymptoti-
cally independent in the threshold literature (e.g., Chan 1993), and the distributions of
slope coefficients can be approximated as if γ were known with certainty(e.g., Chan
1993; Hansen 2000). Andreou et al. (2010) derived the asymptotic distribution of the
MIDAS-NLS estimator. Thus, this paper does not devote attention to the asymptotic
properties of the estimator. Instead, we focus on examining the finite sample properties
of the estimator through Monte Carlo simulations in this paper.

To construct confidence intervals for the model parameters, we invert the following
statistic for the null H0 : γ = γ 0 given by

LRT (γ ) = ST (γ ) − ST (γ̂ )

ST (γ̂ )/T
.

The null hypothesis is rejected for large values of LRT (γ 0). Following the literature
(see, e.g., Hansen 1996, 1999; Chen, 2015), we suggest to compute the confidence
intervals using a wild bootstrap procedure that conditions on the values of the explana-
tory variables.

Algorithm 1. Confidence Intervals for Parameters
Step 1 For t = 1,2,..., T, denote êt as the residuals from the fitted TMIDASmodel (3).

Treat {ê1, ê2, ..., êT } as the empirical distribution to be used for bootstrapping. Draw
(with replacement ) random variables {ê∗

1, ê
∗
2, ..., ê

∗
T } from the empirical distributions.

Step 2 Set y∗
t = α̂

′zt (γ̂ )+β̂
′
xt (θ̂ , γ̂ )+e∗

t , where (α̂
′
, β̂

′
, θ̂

′
, γ̂ ) are estimates based

on the original sample {yt , zt , x(m)
t/m, qt }.

Step 3 Using the bootstrap sample {y∗
t , zt , x

(m)
t/m, qt }, estimate the TMIDAS model

and obtain the parameter estimates (α̂
∗′
, β̂

∗′
, θ̂

∗′
, γ̂ ∗), and the sum of squared errors

S∗
T (γ̂ ∗).
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Step 4 Compute the statistic for γ̂

LR∗
T (γ̂ ) = S∗

T (γ̂ ) − S∗
T (γ̂ ∗)

S∗
T (γ̂ ∗)/T

,

where S∗
T (γ̂ ) =

T∑
t=1

(
y∗
t − α̂

∗′
zt (γ̂ ) + β̂

∗′
xt (θ̂

∗′
, γ̂ )

)2

.

Step 5 Repeat Steps 1-4 B times and obtain a sample of simulated coefficient

estimates (α̂
∗′
, β̂

∗′
, θ̂

∗′
, γ̂ ∗) and a sample of LR∗

T (γ̂ ). Construct 1− a bootstrap con-

fidence intervals for the estimates (α̂
′
, β̂

′
, θ̂

′
, γ̂ ) by the symmetric percentile method:

the estimates plus and minus the (1 − a) quantile of the absolute centered bootstrap
estimates. For example, the confidence interval of γ̂ is γ̂ ± q∗

1−a , where q
∗
1−a is the

1 − a quantile of |γ̂ ∗ − γ̂ |.

2.2 Model specification testing

In estimating a TMIDAS regressionmodel, the applied researcher may be interested in
investigating whether the TMIDAS model is significantly different from the MIDAS
model, and whether the simple aggregation using equal weights in threshold models
is supported by empirical data. In this section, we construct test statistics for threshold
effect and the equal weighting scheme.

To test for the existence of the threshold effect in MIDAS models, we consider the
null hypothesis H0 : α1 = α2,β1 = β2. Under this null, the TMIDAS model shrinks
to the MIDAS model given by:

yt = α′
1zt + β ′

1xt (θ) + et , t = 1, 2, ..., T . (7)

Here, the threshold γ is not identified under the null of linearity; hence, the null dis-
tribution of test statistic is non-standard due to the well-known Davies’s problem, and
the limiting distribution can be typically explored by taking the supremum of all possi-
ble values of unidentified parameters (see, e.g., Davies 1987;Hansen 1996).Denote the
sum of squared errors of theMIDASmodel (7) as SL0 (θ̂) and denote the sum of squared

errors of the proposed TMIDAS model as ST (θ̂(γ ), γ ) ≡ ST (α̂(γ ), β̂(γ ), θ̂(γ ), γ )

defined as in (5). Then, a natural test for the null hypothesis of the MIDAS model
against the TMIDAS model can be defined as follows:

LR1 = sup
γ∈�

SL0 (θ̂) − ST (θ̂(γ ), γ )

ST (θ̂(γ ), γ )/T
≡ SL0 (θ̂) − ST (θ̂(γ̂ ), γ̂ )

ST (θ̂(γ̂ ), γ̂ )/T
. (8)

When the null hypothesis of no threshold effect is rejected, one can further examine
whether or not the traditional approach using an equal weighting scheme in threshold
models is supported by the empirical data. As shown by Andreou et al. (2010), aggre-
gating the high-frequency data using equal weights (simple average) would generally
lead to an inconsistent estimator; hence, it is important to test whether or not using
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equal weights is suitable in applications. To this end, consider the null H0 : θ = 0
under which the weighting function in (2) becomes flat, leading to high-frequency
data being aggregated using equal weights, and thus the TMIDAS model (1) becomes
the usual threshold regression as in Hansen (2000):

yt =
{
α′
1zt + β ′

1x
∗
t + et , if qt ≤ γ

α′
2zt + β ′

2x
∗
t + et , if qt > γ

, t = 1, 2, ..., T , (9)

where x∗
t is taken as the simple average of the high-frequency data x(m)

t/m over the
periods between t and t − 1.

We can estimate the usual threshold model following Hansen (2000) and denote the
sum of squared errors of the usual threshold regression as ST H

0 . Then, a test statistic for
the equal weighting scheme (the usual threshold model against the TMIDAS model)
can be constructed as:

LR2 = ST H
0 − ST (γ̂ )

ST (γ̂ )/T
. (10)

To implement the above test statistics, we propose a wild bootstrap algorithm fol-
lowing the classical threshold literature such as Hansen (1996, 1999, 2000, 2017).
Hansen (1996) shows that the bootstrap approach produces asymptotically correct
p values. The bootstrap procedure goes as follows.

Algorithm 2. Testing for threshold effect and the equal weighting scheme
Step 1 For t = 1, 2, ..., T , ê1t are the residuals from the MIDAS model (7), and ê2t

are the residuals from the usual threshold model (9), where high-frequency data being
aggregated using equal weights. Treat {ê11, ê12, ..., ê1T } and {ê21, ê22, ..., ê2T } as the
empirical distributions to be used for bootstrapping. Draw (with replacement ) random
variables {ê∗

11, ê
∗
12, ..., ê

∗
1T } and {ê∗

21, ê
∗
22, ..., ê

∗
2T } from the empirical distributions.

Step2Set y∗
1t = α̂

′
0zt+β̂

′
0xt (θ̂)+e∗

1t , y
∗
2t =

{
α̂

′
1zt + β̂

′
1x

∗
t + e∗

2t , if qt ≤ γ̂

α̂
′
2zt + β̂

′
2x

∗
t + e∗

2t , if qt > γ̂
, t =

1, 2, ..., T ,, where (α̂
′
0, β̂

′
0, θ̂

′
0) and (α̂

′
1, β̂

′
1, α̂

′
2, β̂

′
2, γ̂ ) are estimates based on the

original sample {yt , zt , x(m)
t/m, qt }.

Step 3 Using the bootstrap sample {y∗
1t , y

∗
2t , zt , x

(m)
t/m, qt }, estimate the MIDAS

model (7), the usual threshold model (9) and the proposed TMIDAS. Compute the test
statistics LR1 and LR2.

Step 4 Repeat Steps 1–3 B times, so as to obtain two samples LR∗
1(1),LR

∗
1(2),

...,LR∗
1(B), and LR∗

2(1),LR
∗
2(2), ...,LR

∗
2(B) of simulated LR1 and LR2 statistics.

Step 5 The empirical p values can be obtained by calculating the percentage of
the simulated statistics that exceed actual value when the number of B is sufficiently
large.
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3 Monte Carlo simulations

In this section, we examine the finite sample performance of the estimation and model
specification testing approaches proposed in Sect. 2. We also conduct Monte Carlo
experiments to compare out-of-sample forecasting performance of the TMIDAS rel-
ative to the MS-MIDAS and MIDAS models.

The Monte Carlo design is based on the following DGP of the TMIDAS regression
model:

yt =
{
α′
1zt + β1xt (θ) + et , if qt ≤ γ

α′
2zt + β2xt (θ) + et , if qt > γ

, t = 1, 2, ..., T , (11)

where xt (θ) = ∑m
j=1 w j (θ)L j/mx (m)

t , zt = (1, zt )′, x (m)
t/m ∼ i .i .d.N (0, 1), zt , qt

and et follow i .i .d.N (0, 1) and are independent of each other. Similarly with Andreou
et al. (2010), xmt/m is sampledm times between t and t−1 such that the high-frequency
sample size ismT , while zt , qt and et are sampled at a low frequencywith a sample size
T . Furthermore, the high-frequency data x (m)

t/m are projected on to the low-frequency
data xt (θ), using the two-parameter exponential Almon lag polynomial given by

w j (θ) = w j (θ1, θ2) = exp(θ1 j + θ2 j2)∑m
j=1 exp(θ1 j + θ2 j2)

. (12)

in which we setm = 3 as in the case with a quarterly-dependent variable and monthly
explanatory variable.

We first assess the finite sample properties of the proposed estimation approach.
In these simulations, we follow Miller (2014) to investigate four weighing settings:
(a) flat weights, θ = (0, 0); (b) slow decaying weights, θ = (−0.5, 0.04); (c)
fast decaying weights, θ = (−1,−1); and (d) extreme weights, θ = (−5,−5),
assigning unit weight to the first high-frequency variable and zero to the remain-
ing high-frequency variables, which is a characteristic of selective sampling. We set
(α′

1, β1) = (α11, α12, β1) = (1, 1, 1) and (α′
2, β2) = (α21, α22, β2) = (2, 2, 2), con-

sider the four weighing parameters described as above, and run experiments on a range
of sample sizes (T = 100, 200, 500). Each experiment is replicated 1000 times to cal-
culate the summary statistics (i.e., mean and standard deviation) for the parameter
estimates. The simulation results are reported in Table 1. For all parameters, the mean
of each parameter is close to its true value in all cases of weighting scheme, and the
associated standard deviation becomes smaller as the sample size T increases. These
results indicate that the estimation approach works well in finite samples.

We next conduct simulations to evaluate the size and power properties of the
test statistics for threshold effect and the equal weighting scheme. In examining
the finite sample performance of the test for threshold effect (the MIDAS model
against the TMIDAS model), we set (α′

1, β1) = (1, 1, 1), θ = (−1,−1). Then the
rejection frequencies under DGP in (11) with (α′

2, β2) = (1, 1, 1) and (α′
2, β2) =

{(1.3, 1.3, 1.3), (1.5, 1.5, 1.5), (2, 2, 2)} (small threshold effect, medium threshold
effect and large threshold effect) are the size and power of the proposed test for thresh-
old effect, respectively. Meanwhile, in evaluating the performance of the test for the
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Table 1 Estimates of the model parameters using the proposed estimation procedure

α11 = 1 α12 = 1 β1 = 1 α21 = 2 α22 = 2 β2 = 2 γ = 0.1

(a) Flat weights

T = 100 Mean 0.994 0.995 0.994 1.997 2.006 2.012 0.096

SD 0.143 0.144 0.251 0.162 0.172 0.279 0.100

T = 200 Mean 0.994 0.998 1.002 1.998 1.999 1.994 0.100

SD 0.102 0.098 0.171 0.106 0.107 0.187 0.049

T = 500 Mean 1.000 0.998 1.005 2.001 2.000 2.002 0.099

SD 0.061 0.061 0.107 0.064 0.067 0.115 0.013

(b) Slow decaying weights

T = 100 Mean 0.992 0.998 1.008 2.013 2.006 2.003 0.099

SD 0.146 0.148 0.257 0.166 0.165 0.283 0.107

T = 200 Mean 0.997 0.996 0.985 2.001 1.999 2.008 0.099

SD 0.101 0.102 0.175 0.107 0.108 0.188 0.041

T = 500 Mean 0.997 0.997 0.999 2.000 1.998 1.998 0.100

SD 0.063 0.061 0.107 0.065 0.067 0.114 0.012

(c) Fast decaying weights

T = 100 Mean 0.996 0.998 1.115 1.999 1.994 2.099 0.091

SD 0.146 0.148 0.222 0.155 0.166 0.218 0.083

T = 200 Mean 1.000 0.998 1.065 2.008 2.001 2.056 0.100

SD 0.098 0.098 0.131 0.108 0.107 0.145 0.036

T = 500 Mean 1.001 0.998 1.039 2.002 2.001 2.042 0.100

SD 0.061 0.060 0.082 0.066 0.066 0.091 0.012

(d) Extreme weights

T = 100 Mean 1.003 0.993 1.103 2.002 2.006 2.111 0.098

SD 0.139 0.149 0.206 0.162 0.164 0.206 0.086

T = 200 Mean 1.001 0.995 1.066 2.001 2.003 2.078 0.099

SD 0.098 0.094 0.128 0.110 0.108 0.142 0.035

T = 500 Mean 0.999 0.999 1.045 2.001 2.003 2.052 0.100

SD 0.065 0.061 0.079 0.065 0.066 0.088 0.010

equal weighting scheme (the usual threshold model against the TIMDAS model), we
set (α′

1, β1) = (1, 1, 1) and (α′
2, β2) = (2, 2, 2). Then the rejection frequencies under

the flat weighting setting with θ = (0, 0) and the other three weighing settings ( slow
decaying weights, fast decaying weights and extreme weights) are the size and power
of the proposed test for the equal weighting scheme, respectively. The simulation
results are reported in Table 2, in which the size and power for each experiment were
constructed using 1000 replications and the number of bootstrap replications was set
as 100. The significance level is set at 5%. The simulation results indicate that the
empirical sizes of the test statistics are close to 0.05, and the powers enhance as the
sample size increases. Moreover, the power of the test for threshold effect increases as
the magnitude of threshold effect becomes large, and the power for the equal weight-
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Table 2 Size and power of the proposed test statistics

LR1 LR2

Size Power Size Power

Small Medium Large Slow Fast Extreme

T = 100 0.048 0.361 0.845 1.000 0.049 0.281 1.000 1.000

T = 200 0.046 0.739 1.000 1.000 0.044 0.679 1.000 1.000

T = 500 0.049 1.000 1.000 1.000 0.050 1.000 1.000 1.000

“small”, “medium” and “large” denote small threshold effect, medium threshold effect and large threshold
effect, respectively; “slow”, “fast” and “extreme” denote slow decaying weights, fast decaying weights and
extreme weights, respectively

ing scheme increases when the weights decay fastly. These results indicate that the
proposed test statistics have good size and power properties.

Finally, we conductMonte Carlo simulations to compare out-of-sample forecasting
performance of the TMIDAS relative to the MS-MIDAS and MIDAS models for
different data generating processes (DGPs). To better match the models employed in
the following empirical application, we set zt = 1 in (11) without loss of generality.
For the sake of comparison, we consider the following four data generating processes
(DGPs) based on (11) and (12): (a) threshold model with decay weights: (α1, β1) =
(1, 1), (α2, β2) = (2, 2), and θ = (0.5,−0.5); (b) thresholdmodelwith equalweights:
(α1, β1) = (1, 1), (α2, β2) = (2, 2), and θ = (0, 0); (c) linear model with decay
weights: (α1, β1) = (α2, β2) = (1, 1), and θ = (0.5,−0.5); (d) linear model with
equal weights: (α1, β1) = (α2, β2) = (1, 1), and θ = (0, 0). The sample size T is
set as 100, which is split between an estimation sample and an evaluation sample.
We set the sample size as 28 for the evaluation sample, which is roughly matched
with the empirical application. In assessing out-of-sample performance, we, following
Guérin and Marcellino (2013), estimate the model using the estimation sample and
compute one-step ahead forecasts, and we recursively expand the estimation sample
until we reach the end of the sample T so that we can compute 28 forecasts. The
simulation results are reported in Table 3, in which we report the average mean square
forecast errors (MSFE) over 100 Monte Carlo replications. When the true DGP are
threshold models with decay weights or equal weights, the proposed TMIDASmodels
outperform the MS-MIDAS model and obtain the best forecasts. When the true DGP
is the linear model with decay weights, the MIDAS model is the winner. In addition,
when the true DGP is the linear model with equal weights, the MIDAS with equal
weights, aggregating the high-frequency data using simple average, outperforms other
models. Overall, the simulations indicate that the proposed TMIDAS model has the
best forecasting performance when there is a threshold effect in the true model.3

3 It is worth noting that, although the MS-MIDAS is outperformed by the TMIDAS in our simulations, we
do not advocate that the MS-MIDAS should be replaced by the TMIDAS model, because when the true
DGP is the MS-MIDAS model, the true regime cannot be retrieved from TMIDAS models. The TMIDAS
has the best forecasting performance only when we have a suitable threshold variable qt capturing regime
changes.

123



Threshold mixed data sampling (TMIDAS) regression models… 543

Table 3 Forecasting exercise: mean square forecast errors (MSFE) based on different models

Data Generating Processes (DGPs) MIDAS with equal weights MIDAS MS-MIDAS TMIDAS

(a) Threshold model with decay weights 1.925 1.439 1.497 1.158

(b) Threshold model with equal weights 1.362 1.399 1.501 1.161

(c) Linear model with decay weights 1.290 1.061 1.184 1.148

(d) Linear model with equal weights 1.038 1.060 1.161 1.156

4 Empirical application

In this section, we apply the proposed TMIDAS model to investigate presence and
pattern of cyclical bias in the US quarterly GDP forecast errors and compare the
out-of-sample performance of the TMIDAS relative to the MS-MIDAS and MIDAS
models for GDP forecast errors.

Given the fact that GDP data are often subject to substantial revisions after initial
release and the most fully revised data are often accompanied with a long-time delay
in many countries (e.g., Sinclair and Stekler 2013; Sinclair et al. 2015; Yang 2017,
2020), it is clearly important to evaluate the accuracy of the first release data of GDP.
In doing so, one of the most commonly used approach is to treat the first release data
as a forecast of the actual GDP and investigate the cyclicality in the GDP forecast
errors following Holden and Peel (1990):

yt,h − zt = α + et , (13)

in which the most recent data yt,h reported at time t + h are treated as the actual data
of the quarterly GDP growth at time t , and zt is the first release data of quarterly GDP
growth at time t . The accuracy of the first release data is evaluated by testing the null
that α = 0. Rejecting the null is the evidence of the quarterly GDP data being biased
and inefficient.

To investigate the characteristics of the GDP forecast errors, it may be desirable
to introduce some available information into the above equation. Motivated by the
well-known Phillips curve and Okun’s law, we extend the Holden-Peel regression
by incorporating monthly non-farm payroll employment growth measuring employ-
ment, and incorporating the information of the monthly consumer price index (CPI)
data measuring inflation, respectively. A significant coefficient of employment or CPI
implies that the forecast errors are not unbiased because the information in employ-
ment or CPI is not incorporated into the GDP data. The modified regression is a
standard MIDAS model given by

yt,h − zt = α + βxt (θ) + et , (14)

in which xt (θ) = ∑3
j=1 w j (θ)L j/3x (3)

t , x (3)
t/3 is the monthly non-farm payroll employ-

ment growth or the monthly CPI, and w j (θ) = w j (θ1, θ2) = exp(θ1 j+θ2 j2)∑3
j=1 exp(θ1 j+θ2 j2)

. The

properties of the forecast errors are examined by testing the null that α = β = 0.
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Rejecting the null is the evidence of the quarterly GDP forecast being biased and
inefficient.

As suggested by the recent studies (see, e.g., Sinclair and Stekler 2013; Sinclair et al.
2015; Messina et al. 2015; Xie and Hsu 2016; Yang 2020), the macroeconomic data
might contain cyclical bias depending on business cycles; moreover, these systematic
forecast errors associated with the business cycle may offset each other, yielding that
the null of unbiasedness cannot be rejected when in fact there are systematic errors
that are associated with the state of the economy. To capture such a cyclical bias in the
quarterly GDP forecast errors, we extend theMIDASmodel to our proposed TMIDAS
model given as

yt,h − zt =
{

α1 + β1xt (θ) + et , if qt ≤ γ

α2 + β2xt (θ) + et , if qt > γ
, (15)

in which the threshold variable qt is chosen as the lagged dependent variable yt−1,h
(the actual data of the quarterly GDP growth at time t−1), since it provides an intuitive
choice as a measure of real activity to reflect the fact that the macroeconomic data
might be overestimated during slowdowns and underestimated during booms.

We use US quarterly GDP data from 2000Q1 to 2019Q3, and monthly non-farm
payroll employment growth and monthly CPI data from January 2000 to September
2019; there are 79 quarterly GDP observations and 237 monthly employment and CPI
observations. The GDP growth is the annualized quarterly growth rate of real GDP,
and the employment growth and inflation rate are the annualized monthly growth rates
of non-farm payroll employment and CPI. When aggregating the high-frequency data
using simple average,we take the average of the annualized rates. The analyzed data are
downloaded from the website of Federal Reserve Bank of Philadelphia (https://www.
philadelphiafed.org/surveys-and-data/real-time-data-research/first-second-third).

The empirical results are reported in Table 4. For the sake of comparison, we
also report the empirical results based on the Markov-switching MIDAS model (MS-
MIDAS) proposed byGuérin andMarcellino (2013), and the empirical results between
GDP growth and nonfarm payroll employment growth (or CPI). In Cases A and B for
the GDP forecast errors, the results based on the Holden-Peel regression and the
MIDAS with equal weights show that the intercept is not statistically significantly
different from zero, and the slopes of employment growth and CPI are not statistically
significantly different from zero at the 5% level, supporting the GDP forecast is unbi-
ased and efficient. However, when the MIDAS model is employed, the results show
that the intercept is negative and significantly different from zero, and the coefficient
of employment growth is positive and significantly different from zero; such signif-
icant results cannot be observed for CPI. Furthermore, by allowing for a nonlinear
effect, the TMIDAS outperforms the MS-MIDAS andMIDASmodels in terms of R2,
and the empirical results based on the TMIDAS and MS-MIDAS models share some
similarities. When the proposed TMIDAS model is employed to allow for a threshold
effect, the empirical results show that the intercept is significantly negative in boom
periods (q > γ̂ ) and significantly positive in recession periods (q ≤ γ̂ ), implying that
there is an overestimation (underestimation) bias during periods of relatively good
(bad) state; moreover, the coefficients of employment growth are positive and statis-
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Table 5 Mean square forecast errors (MSFE) based on different models

Predicted variable Predictor MIDAS with equal weights MIDAS MS-MIDAS TMIDAS

Case A: GDP
revision

Non-farm payroll
employment
growth

1.122 1.017 1.076 0.926

Case B: GDP
revision

CPI 1.308 1.254 1.098 1.039

tically significantly different from zero at the 5% level. These results indicate that the
GDP forecast is not unbiased and efficient, which is also supported by the coefficients
of CPI in Case B.4 According to the testing results based on B = 1000 bootstrap
replications, in Case A for the GDP forecast errors and employment growth, we can
reject the null of the flat weighting scheme and the null of no threshold effect at the 5%
level, and in Case B for the GDP forecast errors and CPI, we can reject these nulls at
the 10% level, indicating that the TMIDASmodel is suitable for investigating cyclical
bias in quarterly GDP forecast errors. Hence, we conclude that the GDP forecast errors
contain cyclical bias depending on the state of the economy.

The above empirical results imply that theGDP forecast errorsmay be forecasted by
monthly non-farm payroll employment growth and monthly CPI. Therefore, we next
investigate the out-of-sample performance of the mentioned models in forecasting
GDP forecast errors and GDP growth. To this end, the sample is split between an
estimation sample and an evaluation sample. We set the sample size as 28 (7 years) for
the evaluation sample. In assessing out-of-sample performance, we estimate themodel
using the estimation sample and compute one-step ahead forecasts, and we recursively
expand the estimation sample until we reach the end of the sample T so that we can
compute 28 forecasts. The results are reported in Table 5. The results show that the
TMIDAS can obtain the best forecasts in Cases A and B; these results are consistent
with the testing results in Table 4 and the forecasting simulations in Table 3.

In summary, based on TMIDAS and the GDP forecast errors, our empirical results
support that the GDP forecast errors contain cyclical bias depending on the state of
the economy, and monthly non-farm payroll employment growth and monthly CPI
can improve the forecast.

5 Conclusion

The relationship between economic variables are generally nonlinear, and the data are
usually sampled at different frequencies. This paper proposes a model called threshold
mixed data sampling (TMIDAS) regression, in which we allow for a threshold effect
to capture nonlinear effects in the relationship between dependent and explanatory

4 In “Appendix”, we also investigate whether the level of GDP growth could be forecasted by monthly non-
farm payroll employment growth and monthly CPI. We do not discuss these results, because, according to
the testing results based on B = 1000 bootstrap replications, the testing results show that there is no clear
evidence rejecting the flat weighting scheme and the linearity for the level of GDP growth.
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variables, and the explanatory variables are sampled at a frequency higher than the
dependent variable. The proposed model can be treated as an extension of the classical
threshold regression model in Hansen (2000) by allowing for mixed data sampling.
Hence, the TMIDAS model not only has the important advantage of the classical
threshold model in capturing nonlinear effects that widely exist in different fields
of economics, but also enjoys the efficiency gains from extracting information from
high-frequency variables.

We develop a two-step procedure to estimate the model based on nonlinear least
squares (NLS) and the grid-search method, and suggest a test statistic for testing
the presence of threshold effect, and a test statistic for testing the null hypothesis of
equalweights (simple average) in aggregating higher-frequency time series data before
estimating econometric models. Moreover, we conduct Monte Carlo simulations to
examine the performance properties of the estimation and testing procedures, and out-
of-sample forecasting performance.Our simulation results point out that the estimation
and testing procedures work well in finite samples, and TMIDASmodels have the best
forecasting performancewhen there is a threshold effect in the truemodel.Weapply the
TMIDAS model to investigate presence and pattern of cyclical bias in quarterly GDP
forecast errors and compare the out-of-sample performance of the TMIDAS relative
to the MS-MIDAS and MIDAS models for GDP forecast errors. Both simulation and
empirical results demonstrate the usefulness of TMIDAS.

One limitation of the proposed TMIDASmodel is that the threshold variable and the
dependent variable are sampled at a frequency lower than the explanatory variables.
It is imperative for future work to develop a model that allows the threshold variable
being sampled at the high frequency.5
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Appendix: Application to the level of GDP growth

In this “Appendix”,we investigatewhether the level ofGDPgrowth could be forecasted
by monthly non-farm payroll employment growth and monthly CPI. The empirical
results are reported in Table 6. In Cases A and B for the level of GDP growth, the

5 We thank the anonymous referees to raise this point to us.
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results differ from those for the GDP forecast errors in Table 4 in terms of significance
of coefficients; moreover, according to the testing results based on B = 1000 bootstrap
replications, we find that there is no clear evidence rejecting the flat weighting scheme
and the linearity in Cases A and B.

To assess out-of-sample performance, we estimate the model using the estimation
sample and compute one-step ahead forecasts, and we recursively expand the esti-
mation sample until we reach the end of the sample T so that we can compute 28
forecasts. The results are reported in Table 7. The results show that the winner is the
MIDAS with equal weights in Case A and is the MIDAS in Case B; these results are
consistent with the testing results in Table 6 and the forecasting simulations in Table 3.
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