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Abstract
In parametric stochastic frontier models, the composed error is specified as the sum
of a two-sided noise component and a one-sided inefficiency component, which is
usually assumed to be half-normal, implying that the error distribution is skewed in
one direction. In practice, however, estimation residuals may display skewness in the
wrong direction. Model respecification or pulling a new sample is often prescribed.
Since wrong skewness may manifest as a finite sample problem, this paper proposes
a finite sample adjustment to existing estimators to obtain the desired direction of
residual skewness. This provides an alternative empirical approach to deal with the
wrong skewness problem that does not require respecification of the model.

Keywords Stochastic frontier model · Skewness · MLE · Constrained estimators ·
BIC

JEL Classification C13 · C23 · D24

1 Introduction

In parametric stochastic frontier models for cross-sectional data, the error term is
composed as the sum of a two-sided noise component and a one-sided inefficiency
component. The canonical model of Aigner et al. (1977) assumes that the noise dis-
tribution is zero-mean normal and the inefficiency distribution is half-normal. Other
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common distributional assumptions on the inefficiency term include the exponential
(Meeusen and van den Broeck 1977; Aigner et al. 1977), the truncated normal (Steven-
son 1980), and the gamma (Stevenson 1980; Greene 1980). For surveys, see Greene
(2007) and Kumbhakar and Lovell (2000). The beauty of the canonical model is it
allows for continuous inefficiency, does not require estimation of a support bound
(in what amounts to a deconvolution problem), and only has two unknown distribu-
tional parameters, making maximum likelihood estimation simple relative to other
specifications, except for (perhaps) the normal-exponential model. Consequently, the
normal-half normal specification of the model has found widespread use.

In the normal-half normal production function specification, the skewness of the
composed error is negative, and parameters can be estimated by maximum likeli-
hood estimation (MLE) or corrected ordinary least squares (COLS).1 Waldman (1982)
shows that when the skewness of the ordinary least squares (OLS) residuals is positive,
OLS is a local maximum of the likelihood function, and estimated inefficiency is zero
in the sample.2 Horrace and Wright (2020) generalize the Waldman result to the case
where the inefficiency distribution is from a scalable parametric class, like the expo-
nential distribution. This “wrong skewness” phenomenon is widely documented in the
literature and is often regarded as an estimation failure.3 When it occurs, researchers
are advised to either obtain a new sample (which is rarely feasible) or respecify the
model. While there are many ways one can respecify a model, a reasonable approach
would be to chose an inefficiency distribution that accommodates residuals of either
positive or negative skew. For example, Li (1996), Carree (2002), Almanidis and Sick-
les (2011), Almanidis et al. (2014), and Hafner et al. (2019) develop models with new
distributional assumptions on the inefficiency component that allow for skew in either
direction.

An alternative “solution” to the problem that does not require respecification is that
of Simar andWilson (2010), who argue that “wrong skewness” is not an estimation or
misspecification failure, but a finite sample problem that most likely occurs when the
ratio of the inefficiency variance to the noise variance (the inefficiency variance ratio)
is small. That is, wrong skewness may not indicate that the normal-half normal model
is wrong or that inefficiency does not exist in the population. They propose a bootstrap
method (called “bagging”) to construct confidence intervals for model parameters and
expected inefficiency which have higher coverage than traditional intervals, regardless
of residual skewness direction. Then, the sample under study can still be used to infer
the model parameters. While bagging can be applied to any parametric form of the
model, their technique is specifically intended to salvage the canonical model when
the residual skew has the wrong sign. Such is the spirit of this research.

We take Simar and Wilson’s (2010) view that wrong skewness may be a conse-
quence of a small inefficiency variance ratio in finite samples, even when the canonical
model is properly specified.4 However, instead of the bagging approach of Simar and

1 The skewness of the composed error is positive in the stochastic frontier cost function model. We use the
terminology COLS following Olson et al. (1980). COLS is also called MOLS. See Greene (2007).
2 Greene (2007, p.131) claims “In this instance, the OLS results are the MLEs, and consequently, one must
estimate the one-sided terms as 0.”
3 For example, estimating the variance parameters in COLS is invalid in this case.
4 It may also be a consequence of a misspecified model, but that is not our focus here.
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Wilson (2010), this paper provides a finite sample adjustment to existing estimators
in the presence of wrong skewness. That is, we impose a negative residual skewness
constraint in the MLE (or COLS) algorithm. A natural candidate for this constraint is
the upper bound of the population skew, which is a monotonic function of the positive
lower bound of the inefficiency variance ratio in the half-normal model. However,
the constraint is nonlinear in the parameters of interest, complicating computation of
the optimum. Therefore, a linearization approximation of the constraint is proposed.
Additionally, a model selection approach is proposed to determine the lower bound of
the inefficiency variance ratio used in the constraint. Monte Carlo experiments sug-
gest that our correction becomes more reliable as the true inefficiency variance ratio
increases. A shortcoming of the approach is that in finite samples the linear approxi-
mation may not be accurate enough to guarantee a negative residual skew, but it will
always give us nonzero estimates for firm-level inefficiencies. The possible failure of
correct residual skewness using the linearized constraint illustrates a trade-off between
computational complexity and accuracy. Using the original nonlinear constraint avoids
this issue, but the computational simplicity of our approach, as shown in our Monte
Carlo experiments and empirical example, would be lost.

The proposed finite sample adjustment provides a nonzero point estimate for tech-
nical (or cost) inefficiency that may be used in applied research and that serves as a
compliment to the bagging intervals of Simar andWilson (2010). That is, if the wrong
skew exists in the canonical model, then one may use Simar and Wilson’s bagging
technique to construct confidence intervals on efficiency, while the proposed method-
ology provides nonzero point estimates without having to respecify the model. Since
wrong skewness can occur fairly regularly (even when efficiency may exist in the
population under study), the finite sample adjustment is particularly attractive in cases
where the half-normal inefficiency assumption is maintained. It is noteworthy that the
proposed adjustment is only needed in finite samples, for as the sample size increases
wrong skewness is less likely to be an issue when the ratio of inefficiency variance to
noise variance is sizable.

This rest of this paper is organized as follows. The next section discusses the wrong
skewness issue in the literature. In Sect. 3, we propose a finite sample correction
approach.To simplify computation of the proposed constrained estimation, a linearized
version of the constraint is used, so that constrained MLE (or COLS) can be easily
implemented in most software packages (like STATA). The constrained estimators
are discussed in Sect. 4. In Sect. 5, Monte Carlo experiments are conducted to study
the properties of constrained COLS. An empirical example is used to illustrate the
proposed approach in Sect. 6, and all the point estimates of inefficiency lie within the
confidence intervals of Simar and Wilson (2010). The last section concludes.

2 Wrong skewness issue

A stochastic production frontier (SPF) model for a cross-sectional sample of size N
is:

yi = x ′
iβ + εi , i = 1, . . . , N , (1)
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with composed error εi = vi − ui . The disturbance vi is assumed i idN (0, σ 2
v ).

Inefficiency of firm i is characterized by ui ≥ 0. In the SPF literature, ui is usually
assumed half-normal |i idN (0, σ 2

u )| (Aigner et al. 1977; Wang and Schmidt 2009),
and independent of vi , with variance Var(ui ) = π−2

π
σ 2
u . The first component of the

p × 1 vector xi is 1, so the intercept term is contained in the p × 1 slope parameter
vector β. As in Aigner et al. (1977) and Simar and Wilson (2010), let σ 2 = σ 2

u + σ 2
v

and λ = σu/σv . The parameters to be estimated are θ = (β, λ, σ 2).
There are two primary estimators suggested in the literature: the maximum like-

lihood estimator and corrected least squares (Aigner et al. 1977; Olson et al. 1980).
Under the normal-half normal specification, theMLE of (β, λ, σ 2) is the set of param-
eters values maximizing the likelihood function:

ln L(β, λ, σ 2|(yi , xi ), i = 1, ..., N )

= N

2
ln

(
2

π

)
− N

2
ln σ 2

+
N∑
i=1

ln

[
1 − �

(
λ√
σ 2

(yi − x ′
iβ)

)]

− 1

2σ 2

N∑
i=1

(yi − x ′
iβ)2, (2)

where �(·) is the standard normal cumulative distribution function. The COLS esti-
mate of β is simply the least squares slope estimate in the regression of yi on xi .
However, the mean of εi = vi − ui is negative due to the term −ui , so the COLS
estimate needs to be adjusted by adding the bias,

√
2σ 2

u /π , back into the intercept
estimator. The bias can be consistently estimated using the variance estimates:

σ̂ 2
u =

[√
π

2

(
π

π − 4

)
μ̂′
3

]2/3
, σ̂ 2

v = μ̂′
2 − π − 2

π
σ̂ 2
u , (3)

where μ̂′
2 and μ̂′

3 are the estimates of second and third sample moments of the least
squares residuals.

Both MLE and COLS are consistent. The Monte Carlo experiments in Olson et al.
(1980) show that there is little difference between MLE and COLS for the slope
coefficients in finite samples. For the intercept and variance parameters, however,
MLE and COLS differ. In addition to MLE and COLS, Olson et al. (1980) also
consider a third consistent estimator, the two-step Newton–Raphson estimator, which
has different finite sample properties than MLE and COLS.

Waldman (1982) discovers an important property of MLE: for the likelihood func-
tion (2) above, the point (b, 0, s2) is a stationary point, where b and s2 are the OLS
estimates of β and σ 2. Intuitively, when λ = 0, the term ui disappears, so the likeli-
hood function of the SPF model (2) boils down to one of a linear model with ui = 0.
A salient result in Waldman (1982) is that when the skewness of the OLS residuals
is positive, i.e., μ̂′

3 > 0, then (b, 0, s2) is a local maximum in the parameter space of
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the likelihood function.5 This is the so-called wrong skewness issue in the literature,
because μ′

3 < 0 in the normal-half normal model. Olson et al. (1980) refer to this
phenomenon as “Type I failure” since the COLS estimator defined in (3) does not
exist when μ̂′

3 > 0.
TheMonte Carlo studies in Simar andWilson (2010) show that the wrong skewness

issue is not rare, even when the inefficiency variance ratio is considerably large. For
example, the frequency of wrong skewness could be 30% for a sample of size of 100
when λ = σu/σv = 1. Wrong skewness casts doubt on the specification of the SPF
model (Greene 2007). Moreover, it invalidates the calculation of standard errors of
parameter estimates (Simar and Wilson 2010).

Greene (2007) considers OLS residual skewness a useful diagnostic tool for the
normal-half normal model. Wrong skewness suggests there is little evidence of inef-
ficiency in the sample, implying that firms in the sample are “super efficient.” Thus,
λ and σ 2

u are assumed to be zero, and the stochastic frontier model reduces to a pro-
duction function without the inefficiency term.6 Another interpretation of the wrong
skewness issue is that the normal-half normal model is not the correct specification.
Other specifications may well reveal the presence of inefficiency and reconcile the dis-
tribution of one-sided inefficiency with the data. The binomial distribution considered
by Carree (2002) and doubly truncated normal distribution proposed by Almanidis
and Sickles (2011) and Almanidis et al. (2014) could have either negative or positive
skewness. They argue that models with ambiguous skewness may bemore appropriate
in applied research.

Simar andWilson (2010) argue thatwrong skewness is a finite sample problem, even
when themodel is correctly specified.7 They show that a bootstrap aggregatingmethod
provides useful information about inefficiency and the model parameters, regardless
of whether residuals are skewed in the desired direction. We also consider wrong
skewness to be a consequence of estimation in finite samples when the inefficiency
variance ratio Var(ui )/Var(εi ) is small.8 Since the OLS residuals of a production
function regression with ui = 0 display skewness in either direction with probability
50%, a sample drawn from an SPF model with small inefficiency variance ratio could
generate positively skewed residuals with high probability.9

5 Waldman (1982, p. 278) also suggests that (b, 0, s2) may be a global maximum. There are two roots
in this normal-half normal model: OLS (b, 0, s2) and one at the MLE with positive λ. When the residual
skewness is positive, the first is superior to the second (Greene 2007, note 28).
6 Kumbhakar et al. (2013) propose a stochastic frontiermodel to accommodate the presence of both efficient
and inefficient firms in the sample.
7 Waldman (1982, p.278) notes that for σu > 0 “as the sample size increases the probability that

∑
e3t > 0

and hence that (b, 0, s2) locates a local maximum goes to zero.”
8 Badunenko et al. (2012) find that the estimation of efficiency scores depends on the estimated ratio of the
variation in efficiency to the variation in noise. As discussed by Kim et al. (2007) and Feng and Horrace
(2012) in fixed effects stochastic frontier models, small signal-to-noise ratio leads to inaccurate inference.
9 As pointed out by Simar and Wilson (2010, p.72), this problem could happen in other one-sided spec-
ifications. In a previous version of this paper, our Monte Carlo experiments suggest that wrong skewness
could also occur with high probability in exponential and binomial SPF models, when the signal-to-noise
ratio is small.
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3 Finite sample correction

As illustrated by Simar and Wilson (2010), wrong skewness may occur when the
inefficiency variance ratio is sizable, so simply setting σ 2

u = 0 when the skewness
is positive could be a mistake. Instead of improved interval estimates proposed by
Simar and Wilson (2010), this paper proposes a finite sample adjustment to existing
estimators in the presence of wrong skewness.

For MLE, a constraint with non-positive residuals skewness is imposed:

max ln L(β, λ, σ 2|(yi , xi ), i = 1, ..., N )

s.t .
1

N

N∑
i=1

⎡
⎣ yi − ȳ − x ′

iβ + x̄ ′β√
1
N

∑N
i=1(yi − x ′

iβ − ȳ + x̄ ′β)2

⎤
⎦
3

≤ 0, (4)

where ȳ = 1
N

∑N
i=1 yi and x̄ = 1

N

∑N
i=1 xi . Unfortunately, when implementing max-

imum likelihood estimation with the inequality constraint defined by (4), there is a
practical issue. As pointed out by Waldman (1982), in the case of positive skewness
of residuals, OLS (b, 0, s2) is a local maximum and the unconstrained MLE is equal
to (b, 0, s2). Since OLS is a local maximum in the parameter space of unconstrained
MLE, the constraint (4) is always binding at the maximum, leading to zero skewness
of the constrained MLE residuals.10

If we regard the sign of residual skewness as an important indicator of model
specification, the constrainedMLEabove seems unsatisfactory.We, therefore, propose
a (negative) upper bound of skewness instead of zero in (4). This is relevant for
empirical modeling. As in the empirical example below, when there is evidence of
technical inefficiency in the data (Greene 2007, p. 202), its variance cannot be too
small, relative to that of the composed error εi . Denote the inefficiency variance ratio
by

k = Var(ui )/Var(εi ).

That is, a lower bound on the inefficiency variance ratio is implicitly imposed, k ≥ k0.
From this perspective, to impose a positive value of k0 is to obtain a nonzero estimated
inefficiency.

To develop the relationship between the upper bound of skewness and the lower
bound of the inefficiency variance ratio, consider the second and third moment of εi .
Under the normal-half normal specification, Olson et al. (1980) show that

Var(εi ) = σ 2
v + π − 2

π
σ 2
u (5)

10 This stems from the fact that Waldman (1982) shows that OLS is local maximum in the parameter space
of MLE when the OLS residuals are positively skewed. In fact, the non-positivity constraint will bind
globally (when the OLS residuals are positively skewed), if OLS is a global maximum, as the Monte Carlo
studies of Olsen et al. (1980) suggest.
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and

E[εi − E(εi )]3 = σ 3
u

√
2/π [(π − 4)/π ]. (6)

Using γ1(εi ) to denote the skewness of εi , we have

γ1(εi ) = E

[
εi − E(εi )√
Var(εi )

]3
= −

[
Var(ui )

Var(εi )

]3/2
γ1(ui ) = −k3/2γ1(ui ),

where γ1(ui ) = 4−π
π−2

√
2

π−2 � 0.9953, a constant for a half-normal distribution of ui .

Denote g(k) = γ1(εi ) = −k3/2γ1(ui ). Since γ1(ui ) > 0, g(k) < 0 (e.g., g(0.1) ≈
−0.0315, g(0.2) ≈ −0.0890 and g(0.3) ≈ −0.1635 ) and g′(k) = − 3

2k
1/2γ1(ui ) <

0. An important property of g(k) is that it is a monotonically decreasing function
of k. This implies that any upper bound, say g0, of the population skewness, g(k) =
γ1(εi ) ≤ g0, is equivalent to a lower bound, denoted by k0, of the inefficiency variance
ratio, k ≥ k0 , i.e., g0 = g(k0) < 0.

We impose this upper boundon the sample skewness, by replacing 0 in the constraint
(4) with the negative upper bound of the population skewness, g(k0). Consequently, a
modified constraint

1

N

N∑
i=1

⎡
⎣ yi − ȳ − x ′

iβ + x̄ ′β√
1
N

∑N
i=1(yi − x ′

iβ − ȳ + x̄ ′β)2

⎤
⎦
3

≤ g(k0)

is used in the constrained MLE in the event of wrong skewness of the OLS residuals.
Based on Waldman’s (1982) argument, the constraint above will also be binding at

a maximum in the neighborhood of OLS. The constraint becomes

1

N

N∑
i=1

⎡
⎣ yi − ȳ − x ′

iβ + x̄ ′β√
1
N

∑N
i=1(yi − x ′

iβ − ȳ + x̄ ′β)2

⎤
⎦
3

= g(k0) (7)

This finite sample adjustment gives a constrained estimator of parameter vector
(β, λ, σ 2).

The constrainedCOLS slope coefficients can be similarly defined.Weuse constraint
(7), but replace the likelihood (2) with the sum of squared residuals as the objective
function of a minimization problem. Since COLS reduces to OLS in the presence
of wrong skewness and OLS is a local maximum of likelihood, as a finite sample
adjustment to OLS, the constrained COLS slope coefficients are expected be close to
their constrained MLE counterparts.

3.1 Linearizing the constraint

The nonlinearity of β in the constraint (7) creates computational difficulties in cal-
culating the constrained MLE. To simplify computation, a linearized version of the
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constraint (7) is considered. Given that OLS is a local maximum of likelihood in
the presence of wrong skewness, empiricists normally start by estimating OLS with
ui = 0. This is the first step in LIMDEP (Greene 1995) and FRONTIER (Coelli 1996).
If the skewness of the OLS residuals is positive, then OLS is the optimum and the
point of departure for our linearization concept.

Since the primary concern is skewness correction, we impose the additional restric-
tion that the MLE residual variance 1

N

∑N
i=1(yi − x ′

iβ − ȳ + x̄ ′β)2 is equal to that
of OLS residuals, μ̂′

2, which is a consistent estimator of the error variance. Thus, the
linearized constraint becomes:

1

N

N∑
i=1

[yi − ȳ − (xi + x̄)′β]3 = g(k0) · (μ̂′
2)

3/2.

Denote f (β) = 1
N

∑N
i=1[yi − ȳ − (xi + x̄)′β]3. The first-order Taylor expansion of

f (β) at the OLS estimate β̂OLS is:

f (β) ≈ f (β̂OLS) +
[

∂ f (β)

∂β |β̂OLS

]′
· (β − β̂OLS),

where ∂ f (β)
∂β |β̂OLS is the derivative of f (β)with respect toβ evaluated at β̂OLS. f (β̂OLS)

is the third central moment of OLS residuals, i.e., μ̂′
3. Now,

∂ f (β)

∂β
= − 3

N

N∑
i=1

[yi − ȳ − (xi + x̄)′β]2(xi − x̄),

and

∂ f (β)

∂β |β̂OLS
= − 3

N

N∑
i=1

e2i (xi − x̄),

where ei denotes the OLS residual yi − x ′
i β̂OLS. Its sample mean is equal to zero

since a constant term is included in the regression. Hence, an approximation of the
constraint (7) is

μ̂′
3 − 3

N

N∑
i=1

e2i (xi − x̄)′(β − β̂OLS) = g(k0) · (μ̂′
2)

3/2, (8)

or

[
1

N

N∑
i=1

e2i (xi − x̄)

]′
(β − β̂OLS) = μ̂′

3

3
− g(k0)

3
(μ̂′

2)
3/2. (9)
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Letting the N × 1 vector ẽ be the squared OLS residual vector (e21, ..., e
2
N )′, the

constraint above can be written in matrix form as

1

N
ẽ′M0X(β − β̂OLS) = μ̂′

3

3
− g(k0)

3
(μ̂′

2)
3/2,

where M0 = I − 1
N ιι′ and ι = (1, ..., 1)′. Thus, the linear constraint above can be

written as

Rβ = q(k0) (10)

with R = 1
N ẽ

′M0X and q(k0) = Rβ̂OLS + μ̂′
3
3 + �

3 k
3/2
0 (μ̂′

2)
3/2, depending on the

value of k0.11

Therefore, the proposed finite sample correction for MLE of (β, λ, σ 2), i.e., the
constrainedMLE, is defined as the solution to maximizing the likelihood (2) subject to
the linear constraint (10). The corresponding estimators of σ 2

u and σ 2
v can be obtained

by using the relationship σ 2 = σ 2
u + σ 2

v and λ = σu/σv .
Similarly, the constrained COLS of β is defined to minimize the sum of squared

residuals subject to (10).As in the unconstrained estimation, the constrained estimators
of σ 2

u and σ 2
v can be obtained by formula (3).

If k0 = 0, then g(k0) = 0 and the constraint above becomes R(β − β̂OLS) = μ̂′
3/3.

This implies that the constrained and unconstrained estimators would be similar, since
μ̂′
3 is usually very small in the presence of wrong skewness. In the extreme case of

μ̂′
3 = 0, the constrained estimator reduces to OLS, which is a local maximum of the

likelihood.
Using the linearized constraint (10), the estimates, standard errors, and confidence

intervals of the constrained MLE and constrained COLS can be easily obtained using
Stata or other existing software.12

However, since (10) does not guarantee a negative residual skewness in finite sam-
ples, there is a possibility that wrong skewness could still occur after our correction.
The Monte Carlo experiments below show that this may only be a concern when the
underlying inefficiency variance ratio is very small. However, as stressed above, by
setting k0 > 0, a nonzero estimated inefficiency may be obtained even in the presence
of wrong residual skewness.

3.2 Choosing the value of k0

The idea of the proposed constrained estimators is to adjust the slope coefficients to
obtain a correct sign of residual skewness using the constraint (10), which is a function

11 It is worth noting that (10) is not a direct linearization of (7). Alternatively, a full linearization of (7)

can be similarly obtained by replacing R = 1
N ẽ′M0X with R = 1

N (ẽ′M0 −
√

μ̂′
2μ̂

′
3e

′)X . The additional
term− 1

N

√
μ̂′
2μ̂

′
3e

′X is from the effect of the denominator of the constraint in (7). Monte Carlo simulations

suggest that the estimation results are robust to this choice. Details are available upon request.
12 In the empirical example below, the command Frontier in Stata, which allows for a linear constraint, is
employed.

123



2846 J. Cai et al.

of k0. It is expected that when the chosen value of k0 is small, a slight adjustment
results in the constrained MLE (or constrained COLS), and its value will be close to
the unconstrained MLE.

Choosing a specific value of k0 is an empirical issue. On the one hand, when there
is a priori evidence of inefficiency, the inefficiency variance ratio cannot be too small.
On the other hand, as illustrated by theMonte Carlo study in Simar andWilson (2010),
wrong skewness is less likely to occur as the inefficiency variance ratio increases.13

In the spirit of this trade-off, we develop a model selection criteria to choose k0. The
idea is to incorporate a penalty function, so that as k0 increases the penalty decreases.
Hence, the fit of themodel and effect of the constraint on the optimum can be balanced.

For constrained MLE, we propose a Bayesian information criterion (BIC) via the
likelihood to choose the value of k0:

BIC(k0) = −2lr (k0) − k0 ln N ,

where lr (k0) is the log-likelihood evaluated at the constrained MLE of (β, λ, σ 2),
depending on k0. Since OLS (b, 0, s2) is a local maximum of the log-likelihood func-
tion in the presence of positive skewness with a restriction on k0, the value of lr (k0)
decreases with k0 in the neighborhood of (b, 0, s2).14 Different from the usual BIC,
here we use a negative sign in front of the penalty term k0 ln N so that −2lr (k0) and
−k0 ln N move in opposite directions with k0. An optimal value of k0 is chosen to
minimize BIC(k0):

k̃0 = arg min
k0∈[0,1) BIC(k0).

Similarly, for the constrained COLS, a criterion based on sum of squared residuals
is proposed to select the value of k0:

C(k0) = 1

N
SSRr (k0) − k0σ̂

2
ε

ln N

N
,

where SSRr (k0) is the sum of squared residuals of OLS with the constraint (10).
C(k0) is a Mallows’ Cp-type criterion, similar to the expression proposed by Bai

13 Table 1 in Simar and Wilson (2010) provides some guidance. On the one hand, when λ2 ≤ 0.1 (i.e.,
k = 1/( π

π−2
1
λ2

+ 1) < 0.035) for samples with size less than 200, the proportion of wrong skewness
is close to 50%, implying that the inefficiency term is hard to distinguish from noise. On the other hand,
when λ2 ≥ 1 (k ≥ 0.267), the wrong skewness probability decreases dramatically. For example, only 6%
of samples display wrong residual skewness for λ2 = 2 (k = 0.421) and N = 200. We have a similar
finding both for Simar and Wilson’s design and the design in Sect. 5 of this paper. Results are available
upon request.
14 The constraint k ≥ k0 is always binding in the neighborhood of OLS. And a restriction on k is equivalent
on λ, which is a monotonic increasing function of k in the half-normal model,

λ =
√

σ 2
u

σ 2
v

=
√

Var(ui )
π−2
π σ 2

v

=
√

k
π−2
π (1 − k)

=
√

π

π − 2

1

(1/k − 1)
.
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and Ng (2002) to choose the number of factors in the approximate factor models,
except that the penalty term takes a negative sign. By applying the properties of the
usual restricted least squares, it can be shown that SSRr (k0) increases with k0 (See
“Appendix”). Hence, the effect of increasing k0 on the model fit can be balanced by
the penalty term, thus an appropriate value of k0 is chosen to minimize C(k0):

k̂0 = arg min
k0∈[0,1)C(k0).

The estimated error variance σ̂ 2
ε provides an appropriate scaling to the penalty term.

Here, we use σ̂ 2
ε = 1

N SSR, where SSR is the sum of squared residuals of OLSwithout
constraint.

In practice, to find the value of k̃0 (or k̂0) a grid search can be applied to BIC(k0)
(or C(k0)) starting from a small positive value, e.g., 0.05.

Since the measures of the model fit in the constrained MLE and COLS, i.e., the
objective functions in the penalized least squares and penalized maximum likelihood
are different, k̃0 is not necessarily equal to k̂0. However, in the neighborhood of OLS

(b, 0, s2) with a small value of λ, when the term
∑N

i=1 ln
[
1 − �

(
λ√
σ 2

(yi − x ′
iβ)

)]
in l(β, λ, σ 2) has small values of partial derivatives in the first-order conditions, k̃0
should be close to k̂0.

It is worthwhile to note that k0 is not a model parameter here and is selected by
the proposed selection criteria only for finite sample correction. Thus, choosing k0
is inherently different from model selection in the literature, such as, choosing the
number of model parameters, where consistency is a primary requirement for the
penalty term. Therefore, we could use different penalty terms in BIC(k0) or C(k0)
above as long as a unique value of k0 can be chosen. The Monte Carlo experiments
and empirical example below suggest that the proposed selection criteria work well.15

4 Constrained estimators

With the proposed finite sample adjustment, the sample can still be used to construct a
point estimate for inferring population parameters in the presence of wrong skewness.
This is similar in spirit to Simar and Wilson (2010), who still rely on the MLE esti-
mation results, but provide more accurate interval estimates using improved inference
(bagging) methods.

As previously mentioned, any negative constraint on sample skewness is binding in
the presence of wrong skewness. This result implies that estimated λ (or k) is implicitly
determined by the constraint (10). Consequently, it is biased when the selected value
of k0 , the lower bound of k, is not equal to the true value of k. Inconsistency of the
proposed constrained estimators might be a concern. However, this concern may be
overstated. Under the true specification, as the sample size increases, wrong skewness

15 Per a referee’s advice, we experimented with selecting k0 by minimizing the mean integrated squared
error of the difference between the constrained and unconstrained residual densities, but the selection
performed poorly in terms of the RMSE of the estimated coefficients in finite samples.
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is less likely to appear. Thus, the proposed finite sample adjustment becomes unneces-
sary, and asymptotics are less of a concern. In addition, with the nature of finite sample
adjustment, the proposed method is regarded as an adjustment to existing estimators,
rather than a new estimator.16

In the next subsection, properties of constrained estimators are studied. Since the
constrained COLS is essentially restricted least squares, which has an analytical solu-
tion, we mainly focus on it.

4.1 Constrained COLS

The proposed constrained COLS, denoted by β̂r , is a two-step estimator. In the first
step, for a given k0, the constrained COLS β̂r (k0) is defined as the solution of

min
β

SSR(β) = min
β

(Y − Xβ)′(Y − Xβ)

s.t . Rβ = q(k0).

In the second step, k0 is selected such that k̂0 = argmink0 C(k0), where C(k0) =
1
N (Y − X β̂r (k0))′(Y − X β̂r (k0)) − k0σ̂ 2

ε
ln N
N . The proposed constrained COLS is

defined as β̂r = β̂r (k̂0).
This two-step estimator is equivalent to a one-step penalized least squares with the

linear constraint:

min
β,k0

1

N
(Y − Xβ)′(Y − Xβ) − k0σ̂

2
ε

ln N

N
s.t . Rβ = q(k0).

This equivalence comes from the fact that in the objective function k0 only appears in
the penalty term −k0σ̂ 2

ε
ln N
N . Thus, β can be concentrated out for a given k0.

For a given k0, β̂r (k0) is the restricted least square. By Amemiya (1985) or Greene
(2012),

β̂r (k0) = β̂OLS − (X ′X)−1R′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)],
and

SSRr (k0) = SSR + [Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)].
Thus, the criterion is

C(k0) = 1

N
SSR + 1

N
[Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)]

−k0σ̂
2
ε

ln N

N
.

16 In this sense, our approach is different from the literature on models with moment conditions, e.g.,
Moon and Schorfheide (2009).
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MinimizingC(k0) defines k̂0. The follow proposition proves the existence and unique-
ness of k̂0.

Proposition 1 In the presence of positive skewness of OLS residuals, i.e., μ̂′
3 > 0, (i)

dSSRr (k0)
dk0

> 0; (ii) for a relatively large sample size N, there exists a solution for k̂0

such that k̂0 minimizes C(k0); (iii)
d2C(k0)
dk20

> 0, implying that k̂0 is the unique solution.

The proof in “Appendix” shows that a relatively large N guarantees the existence
of k̂0. Since ln N

N → 0, when N → ∞, compared with the first term 1
N SSRr (k0),

which converges to a nonzero constant, the penalty term −k0σ̂ 2
ε
ln N
N in C(k0) can be

ignored asymptotically. This implies that k̂0 → 0 as N → ∞. Hence, when N is large,
the proposed constrained COLS approaches the OLS with constraint R(β − β̂OLS) =
μ̂′
3/3, which is very close to OLS in the presence of wrong skewness.
This property also implies that in a sample with a large number of firms, the selected

k̂0 could be 0. In this case, to obtain nonzero inefficiency estimates, a small positive
value, say, 0.05, is suggested.17

For a given sample, the difference between OLS and the constrained COLS

β̂OLS − β̂r = (X ′X)−1R′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k̂0)]

depends on k̂0, and

d[β̂OLS − β̂r ]
dk̂0

= −(X ′X)−1R′[R(X ′X)−1R′]−1�

2
k̂1/20 (μ̂′

2)
3/2

implying that the magnitude of this difference is positively correlated with the chosen
value k̂0.

4.2 ConstrainedMLE

For a given k0, the constrained MLE (β̂CMLE (k0), λ̂CMLE (k0), σ̂ 2
CMLE (k0)) depends

on k0. Minimizing BIC(k0) determines the value of k0, i.e., k̃0 =
argmink0∈[0,1) BIC(k0). Similar to the constrainedCOLS, (β̂CMLE , λ̂CMLE , σ̂ 2

CMLE )

is defined as (β̂CMLE (k̃0), λ̂CMLE (k̃0), σ̂ 2
CMLE (k̃0)). It can also be written as a penal-

ized maximum likelihood estimator with a constraint,

min
β,λ,σ 2,k0

−2l(β, λ, σ 2) − k0 ln N

s.t .Rβ = q(k0),

17 When N is large, the wrong skewness problem is less likely to occur unless the inefficiency variance
ratio is very small. When it does occur in this setting, alternative approaches including respecification may
be considered.
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where

l(β, λ, σ 2) = N

2
ln(

2

π
) − N

2
ln σ 2 +

N∑
i=1

ln

[
1 − �

(
λ√
σ 2

(yi − x ′
iβ)

)]

− 1

2σ 2

N∑
i=1

(yi − x ′
iβ)2

defined in (2).
Since there is no analytical solution to the constrained optimization problem above,

it is difficult to derive the properties of constrained MLE.
However, dividing by N , 1

N B IC(k0) = − 2
N lr (k0) − k0

ln N
N , compared with

− 2
N lr (k0) , which does not converge to zero, the penalty term −k0

ln N
N can be asymp-

totically ignored as N → ∞, implying that k̃0 tends to 0 as N → ∞. Since k̃0 is
small when N is large, the proposed constrained MLE is expected be close to MLE.
Since the MLE of slope parameters is very close to OLS, the constrained MLE and
constrained COLS are expected to be close. Similar to the constrained COLS, the
selected k̃0 could be 0 in a sample with a large N . In this case, we also impose a lower
bound of, say, 0.05 , to obtain nonzero estimated inefficiency.

We now consider the difference between constrained MLE and OLS by examining
the first-order conditions of (2). Aigner et al. (1977) show that:

∂ ln L

∂σ 2 = − N

2σ 2 + 1

2σ 4

N∑
i=1

(yi − x ′
iβ)2

+ λ

2σ 3

N∑
i=1

φ(·)
1 − �(·) (yi − x ′

iβ) = 0; (11)

∂ ln L

∂λ
= − 1

σ 2

N∑
i=1

φ(·)
1 − �(·) (yi − x ′

iβ) = 0; (12)

∂ ln L

∂β
= 1

σ 2

N∑
i=1

(yi − x ′
iβ)xi + λ

σ

N∑
i=1

φ(·)
1 − �(·) xi = 0, (13)

where φ(·) is the standard normal density function. φ(·) and �(·) are evaluated at
λ
σ
(yi − x ′

iβ) = λ
σ
εi . Waldman (1982) shows that in the presence of wrong skewness

λ = 0 and OLS is a local maximum of the log-likelihood.
For our constrained MLE, the constraint (7) or (9) involves the value of k0, not λ

directly. Since λ is a monotonic increasing function of k, k ≥ k0 implies

λ ≥
√

π

π − 2

1

(1/k0 − 1)
. (14)
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To show how restricting λ affects the estimation result and how the constrained MLE
of β is different from the OLS, consider equation (13).18 Taking the first-order Taylor
expansion at λ = 0 gives

φ
(

λ
σ
εi

)
1 − �

(
λ
σ
εi

) ≈
√

2

π
+ 2

π

λ

σ
εi .

Thus, (13) becomes

0 =
N∑
i=1

(yi − x ′
iβ)xi + λσ

N∑
i=1

φ( λ
σ
εi )

1 − �
(

λ
σ
εi

) xi ≈
N∑
i=1

(yi − x ′
iβ)xi

+λσ

N∑
i=1

(√
2

π
+ 2

π

λ

σ
εi

)
xi

=
(
1 + 2

π
λ2

) N∑
i=1

(yi − x ′
iβ)xi +

√
2

π
λσ

N∑
i=1

xi .

That is,

N∑
i=1

(yi − x ′
iβ)xi +

√
2
π
λ(

1 + 2
π
λ2

)√
σ 2

N∑
i=1

xi = 0. (15)

In matrix form, the equation (15) above can be written as

X ′y − X ′Xβ + ϕ(λ)
√

σ 2X ′ι = 0 (16)

where ϕ(λ) =
√

2
π
λ/(1 + 2

π
λ2) and ι is the N × 1 vector of ones. Equivalently,

β̂CMLE � (X ′X)−1X ′y + ϕ(λ)
√

σ 2(X ′X)−1X ′ι. (17)

In the presence of wrong skewness, OLS (i.e., λ = ϕ = 0) is a local maximum of the
log-likelihood. Under the constraint (14), the estimator of β is adjusted by the second
term in equation (17).19

Given the fact that ϕ(λ) is monotonically increasing in λ in the range [0, √π/2 ≈
1.2533], the difference between the constrained MLE and the OLS of β is positively

18 Strictly speaking, restricting λ as a constraint yields a different result from constraint (7). Though the
population skewness is equal to g(k0) and thus a monotonic function of λ, the sample skewness is not a
function of λ. However, the insights derived here on the effect of the chosen value of k0 on estimation still
apply.
19 As pointed out by a referee, the second term on the right-hand side of (17) is a constant in X . See
Papadopoulos (2018), pp. 338–339. This is due to the fact we only take a first-order Taylor expansion of
φ( λ

σ εi )/[1− �( λ
σ εi )]. With higher-order terms included, constrained MLE and COLS involve additional

terms.
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related to the value of λ.20 The larger λ (or k0) is imposed, the bigger is the difference
between the OLS and the constrained MLE. Furthermore, in a given sample this
difference depends not only on ϕ(λ), but also on the sample value of the regressors
and σ 2 jointly determined by first-order equations. We conjecture that constraint (10)
with a small value of k0 slightly adjusts the estimators of β and σ 2

v , but has a much
larger effect on the estimated σ 2

u and λ. This point is confirmed in the Monte Carlo
experiments and empirical example below.

5 Monte Carlo experiments

In this section, Monte Carlo experiments are conducted to study how the proposed
constraints affect the estimates and how the chosen value of k0, the imposed lower
bound of k, is affected by the sample size. Since respecification is always a solution to
wrong skew, we also study our approach under model misspecification. We consider
two forms of misspecification: when the inefficiency distribution is binomial (Carree
2002) and when it is exponential. The binomial case is particularly relevant since it
is a specification that allows for residual skewness in either direction. We compare
our approach under misspecification to the correctly specified estimators in terms of
the root mean squared error (RMSE) of the estimated efficiency variance and average
efficiency, and the proposed method’s performance is surprisingly good (given the
misspecification) when the sample size is small. Due to its computational convenience,
our focus is on the constrained COLS estimator.

We consider a specification

yi = β0 + β1x1i + β2x2i + εi , εi = −ui + vi , i = 1, . . . , N ,

where β0 = 1, β1 = 0.8, β2 = 0.2, x1i ∼ log(|N (4, 100)|), x2i ∼ log(|N (2, 60)|),
vi ∼ N (0, σ 2

v ) and ui ∼ |N (0, σ 2
u )|. k = Var(ui )/Var(εi ) is the inefficiency vari-

ance ratio.21 σ 2
u = π

π−2Var(ui ) = π−2
π

kVar(εi ) and σ 2
v = (1 − k)Var(εi ). We set

Var(εi ) = σ 2
v +Var(ui ) = 0.026, so the variance of x1i and Var(εi ) are comparable

to those in the empirical example below.
Since the focus is the proposed correction for samples with wrong residual skew-

ness, we report the frequency of wrong skewness in the replications and drop the
samples with correct skewness. The number of replications is 4, 000 before dropping
the samples with correct skewness. We conduct experiments with k = 0.1, 0.2, 0.3,
0.5, 0.7 and N = 50, 100, 200. For our binomial misspecification experiments, we
generate ui ∼ B(10, p) with Var(u) = p(1 − p). For exponential misspecification,
we generate ui ∼ Exp(σu) with Var(u) = σ 2

u . The same inefficiency variance ratio
and sample size combinations are considered in both cases.

Table 1 reports the simulation results. Column (2) gives the average value of k̂0.
To obtain k̂0 for each sample, a grid search is conducted to minimize C(k0) on the
interval [0.05, 0.9]. As expected, the average value of k̂0 decreases with N . Column

20 For a small value of k0, e.g., k0 ∈ [0.1, 0.3], λ lies in the interval [0.5530, 1.0860].
21 Coelli (1995) also uses this signal-to-noise ratiomeasure, denoted by γ ∗, in hisMonteCarlo experiments.
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(3) shows that there is still a possibility of wrong skewness after the proposed finite
sample correction. The frequency depends on the inefficiency variance ratio and sam-
ple size, varying from 16.3% to 39.9%. For example, for k = 0.5, N = 100, our
finite sample correction approach could fail with a possibility of 28.4%. This failure
is a cost of the linearization approximation (8). When k0 is small, g(k0)(μ̂′

2)
3/2 could

be a small negative value close to zero. Consequently, due to approximation error, a
linearized constraint does not guarantee a negative third moment of residuals or skew-
ness. However, as k increases, the failure frequency can be greatly reduced, e.g., to
16.3% for k = 0.7, N = 200.

For parameter estimators, columns (4)–(7) indicate that with the correction of
σ̂u

√
2/π , constrained COLS of β0 is less biased than OLS, but with a much larger root

mean squared errors (RMSE). But when k and N increase, the RMSE of constrained
COLS is comparable to that of OLS. (Bias and RMSE of OLS of β0 (and β1) are
included in columns (6), (8) (and (10), (12)) for comparison). In addition, compared
with OLS, the constrained COLS of β1 is slightly upward biased with bigger RMSE,
and the bias and RMSE decrease with k and N .

In the presence of wrong skewness, σ 2
u is typically assumed to be zero. Using our

correction, column (12) shows that the estimated σ 2
u tends to be overestimated for a

small value of k and underestimated for a big value of k. Compared with σ 2
u , σ

2
v can

be estimated more accurately in terms of bias, as indicated in column (14).
Columns (14) and (15) report the bias and RMSE of the mean technical efficiency

E[exp(−ui )] = 2 exp(σ 2
u /2)[1 − �(σu)] . In the presence of wrong skewness, tradi-

tional practice suggests that the estimated σ 2
u is 0, implying that the estimated mean

technical efficiency is 1. This practice obviously overestimates the true mean technical
efficiency. Column (14) shows that the mean technical efficiency estimator using the
proposed correction could be unbiased with a reasonable RMSE for a sizable value of
k, say, 0.2 here under the current design. It is downward biased for a small value of k,
and upward biased for k > 0.2.

Under binomial misspecification, we focus on the performance of the variance esti-
mate of σ 2

u and the mean technical efficiency score E(e−u). The binomial case is
particularly relevant since it is a specification that accommodates residual skewness
in either direction. The results are reported in Table 2. Columns (1)–(3) are very sim-
ilar to those in Table 1 except that the frequency of wrong skewness after applying
the proposed finite sample correction is higher. This makes sense considering the mis-
specified model in the current setting. Columns (4)–(7) report the coefficient estimates
and Columns (12)–(15) for Carree’s (2002) approach, which is OLS estimated with
a binomial inefficiency. Columns (8)–(11) report the bias and RMSE of the variance
estimates andmean technical efficiency estimates for the proposed constrained COLS,
and those using the Carree (2002) approach are in columns (16)–(19). We find that the
proposed method works well (i.e., smaller bias and RMSE) when the sample size or
k is small.22 As sample size increases, the precision of binomial estimation improves
very fast, and it is similar to that of the proposed method.

22 Due to misspecification and small sample, the variance estimates with proposed method do not show a
consistency property and may yield extreme estimates in some cases, for instance N = 200 with k = 0.5.
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We also conduct misspecified simulations, assuming that inefficiency follows an
exponential distribution, while applying our proposed finite sample correction in
Sect. 4 based on a half-normal distribution. The results are reported in Table 3. In
general, the performance of proposed estimator is similar to that in Table 1 (the normal-
half normal design), except for that of the mean technical efficiency, which depends
heavily on the distribution of the data generating process. The bias of the variance
estimator is small, indicating a degree of robustness of our approach.

6 Empirical example: the US airline industry

In this section, an airlines example is used to illustrate our approach. This is an
unbalanced panel data set with 256 observations. See Greene (2007) for detailed
information of this data set. In this example, the dependent variable is the logarithm of
output and the independent variables include the logarithm of fuel, materials, equip-
ment, labor, and property. Here, the unbalanced panel is treated as a cross section for
256 firms to ensure that the wrong skewness issue arises.23 Column (2) of Table 4
presents the OLS estimates along with standard errors (column 3). Except for the con-
stant term, the slope coefficients are consistent with Table 2.11 in Greene (2007). The
OLS residual skewness (0.0167) is in thewrong direction for the estimated normal-half
normal model. Thus, the estimates of λ and σ 2

u are set to zero and firms are considered
to be “super efficient.” However, Greene (2007, footnote 84) does suggest that there
is evidence of technical inefficiency in the data. The second root of the likelihood
with positive λ is reported in the second section of Table 4. This MLE yields a small
positive residual skewness 0.0093.24 Usually, in the presence of “wrong” skewness,
researchers are advised to obtained a new sample or respecify the model. For the pur-
pose of comparison, we also report the 95% confidence (prediction) intervals for MLE
obtained using the bagging procedure of Simar and Wilson (2010) in column (4) and
corresponding standard errors in column (5).

Instead, we use the constrained MLE (and constrained COLS), a finite sample
adjustment to the existing MLE (and COLS). The optimal value of k0 can be chosen
by BIC(k0) (and C(k0) for the constrained COLS) proposed above. For purposes
of illustration, we present constrained MLE results of k0 = 0.05, 0.1, 0.15, and 0.2
in columns (8)–(15) of Table 4 and compare the values of BIC(k0), showing that
k̃0 = 0.15 achieves the minimum of BIC(k0). Thus, the constrained MLE of λ and
σu are positive, 0.6829 and 0.1015 respectively. We also report the mean technical
efficiency, i.e., E(e−u) for comparison. Furthermore, consistent with the negative pop-

23 With the exception of perhapsGreen andMayes (1991),Mester (1997), and Parmeter andRacine (2012),
there appear to be very few empirical studies with wrong skewness in the literature. As in Greene (2007,
Table 2.11), we use this panel data example as a cross-sectional one only for the purpose of illustration.
24 Inconsistent with the statements of Waldman (1982) and Greene (2007), the MLE with positive λ

achieves a slightly bigger value of log-likelihood than OLS for this dataset. Similarly, the inconsistency
betweenOLS andMLE in the presence of positive OLS residual skewness by using FRONTIER is discussed
by Simar and Wilson (2010). Greene (2007, p. 202) notes: “... for this data set, and more generally, when
the OLS residuals are positively skewed, then there is a second maximizer of the log-likelihood, OLS, that
may be superior to the stochastic frontier.”
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ulation skewness of the composed error, the skewness of constrained MLE residuals
(− 0.0599) has the desired sign.

Since the constraint slightly adjusts the coefficients of constrained MLE, as
expected, the rest of the coefficients are very close to the unconstrained MLE and
OLS. For example, the constrained estimated coefficient of variable Log fuel is 0.3907
(column (12)), while its unconstrained counterpart is 0.3836 (in column 4) and OLS
coefficient is 0.3828 (in column (2)). All estimates obtained from constrained MLE
stay within the bagging confidence intervals. In addition, the bagging standard errors
are closer to those from the constrained MLE in column (12) than those from uncon-
strained MLE in column (5) or OLS in column (3). These provide a degree of comfort
for the validity of our proposed method.

Consistent with the analysis in Sect. 4.2, the difference between the constrained
MLE slope coefficients and its OLS (and unconstrained MLE) counterparts is pos-
itively related to the magnitude of k0. The bigger the value of k0 , the larger is the
difference. However, this difference is relatively small. For example, the constrained
estimated coefficients of variable Log fuel using k0 = 0.2 is 0.3939 (in column (14)
of Table 4), compared with the OLS 0.3828 and the unconstrained MLE 0.3836 (in
columns (2) and (4) of Table 4). This is also the case for σv and σ 2. In stark contrast
to this small difference in slope coefficients, the residual skewness and estimated k
change significantly, since they are implicitly determined by the chosen value of k0
in the constraint. Another important point observed in Table 4 is that the value of the
likelihood decreases with k0.25

The results of constrained COLS are reported in columns (8)–(15) of Table 5 and
are very close to their constrained MLE counterparts for given values of k0 = 0.05,
0.1, 0.15, and 0.2.26 However, for the constrained COLS, the optimal value of k0 is
0.1 by applying Mallows’ Cp-type criterion C(k0) proposed above. (Table 5 reports
N ×C(k0) instead of C(k0).) This is slightly different from k̃0 = 0.15 by minimizing
BIC(k0) in the constrained MLE. Therefore, the constrained COLS of σu is 0.0853
and skewness is − 0.0325 in column (10).

It is worthmentioning that the value of criterionC(0.15) is nearly equal toC(0.1) in
this empirical example, implying that BIC(k0) for the constrainedMLE andC(k0) for
the constrained COLS result in similar optimal values of k0. Again, all the estimates
obtained from constrained COLS stay within the bagging confidence intervals by
Simar and Wilson (2010) and the bagging standard errors are very close to those from
constrained COLS.

25 This property can be obtained by the equation (3) in Waldman (1982, p.278):

�l = μ3

6s3

√
2

π

π − 4

π

N∑
i=1

e3i

where μ can be regarded as λ changing from 0 as in the analysis in Sect. 3.1. Since π − 4 < 0, in the
presence wrong skewness (

∑N
i=1 e

3
i > 0), the log-likelihood decreases with the imposed value of λ (and

k0).
26 The constant term is calculated by OLS intercept plus

√
2σ̂ 2

u /π . The standard errors formula of the

COLS estimators of constant term, σ 2 and γ (not λ) can be found in Coelli (1995).
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Since the proposed finite sample adjustment restricts the inefficiency variance ratio,
it indirectly affects the estimated σ 2

u . In this example, it is 0.10152, for the constrained
MLE. Consequently, the mean technical efficiency estimate, 2 exp(σ̂ 2

u /2)[1−�(σ̂u)],
depends on the chosen value of k0. However, efficiency rankings appear to be preserved
under different choices of k0. For the unconstrained MLE, the least efficient firm is
the 79th with technical efficiency .8958. If we impose k0 = 0.05, 0.1, 0.15, 0.2 in the
constraint, the technical efficiency becomes .8583, .8308, .8015, .7722, respectively,
and it remains lowest among the 256 firms. The most efficient firm is the 250th with
technical efficiency .9696, 0.9669, .9655, .9644, .9636 for the unconstrainedMLE and
constrained MLE with k0 = 0.05, 0.1, 0.15, 0.2, respectively. This is also the case for
the median firm.

Finally, we also calculate the bagging prediction intervals for efficiency scores of
the least efficient firm (i.e., the 79th firm) and the most efficient firm (i.e., the 250th
firm): [0.5366, 0.9987] and [0.8865,0.9988], respectively. All above estimates fall
safely into these prediction intervals.

7 Conclusions

This paper studies the wrong skewness issue in parametric stochastic frontier models.
Following Simar and Wilson’s (2010), we consider wrong skewness to be a conse-
quence of estimation in finite samples when the inefficiency variance ratio is small.
(Another possibility is that the model is misspecified.) In finite samples, the data may
fail to be informative enough to detect the existence of inefficiency term in stochastic
frontier models, even though the population inefficiency variance ratio could be fairly
large. Thus, the resulting residuals could display skewness in either direction with
probability of as high as 50%.

As an alternative to the usual “solutions” to the wrong skew problem, we propose
a feasible finite sample adjustment to existing estimates. When there is evidence of
inefficiency, it is reasonable to impose a lower bound on the inefficiency variance
ratio in the normal-half normal model, equivalent to a negative upper bound on the
residual skewness. Thus, we propose to use this negative bound on residual skewness
as a constraint in the MLE and COLS in the event of wrong skewness.

The idea of the proposed constrained estimators is to slightly adjust the slope
coefficients in finite samples. They provide a point estimate that yields a negative
residual skewness, though a correct sign of residual skewness is not always guaranteed.
Since the constraint is based on k0, the choice of k0 affects estimation results. A
model selection approach is proposed to select k0. Monte Carlo experiments show
that the bias of constrained estimates is less of a concern when sample size is large
and inefficiency variance ratio increases. The proposed method is comparable with
existing methods in the literature such as the binomial estimation by Carree (2002).
The empirical example in this paper also shows that the value k0 has little effect on
the estimated slope coefficients and σv , σ 2, while the residual skewness and estimated
k are implicitly determined by the value of k0. In this sense, the proposed method can
be regarded as a finite sample adjustment to existing estimators, rather than a new
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estimator. When the sample size is large, since wrong skewness is less likely to occur,
such adjustment becomes unnecessary.

Appendix: Constrained COLS

Proof of Proposition 1 As defined in Sect. 3, the constrained COLS is the restricted
least squares with the linear constraint

Rβ = q(k0)

where R = 1
N ẽ

′M0X and q(k0) = Rβ̂OLS + μ̂′
3
3 + �

3 k
3/2
0 (μ̂′

2)
3/2, with the slope

estimator

β̂r (k0) = β̂OLS − (X ′X)−1R′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)]

and the corresponding sum of squared residuals

SSRr (k0) = SSR + [Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)],

where β̂OLS = (X ′X)−1X ′y. Thus,

dSSRr (k0)

dk0
= −2[Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1 dq(k0)

dk0
.

Given the facts that μ̂′
3 > 0 in the presence of wrong skewness, the scalar

Rβ̂OLS − q(k0) = Rβ̂OLS − [Rβ̂OLS + μ̂′
3

3
+ �

3
k3/20 (μ̂′

2)
3/2]

= −[ μ̂
′
3

3
+ �

3
k3/20 (μ̂′

2)
3/2] < 0.

In addition,

dq(k0)

dk0
= 1

2
(μ̂′

2)
3/2�k1/20 > 0,

and the scalar R(X ′X)−1R′ > 0 since the matrix X ′X is positive definite. Therefore,

dSSRr (k0)

dk0
> 0.


�
Since C(k0) = 1

N SSRr (k0) − k0σ̂ 2
ε
ln N
N , the FOC is

1

N

dSSRr (k0)

dk0
− σ̂ 2

ε

ln N

N
= 0,
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or

−2[Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1 dq(k0)

dk0
− σ̂ 2

ε ln N = 0.

Substituting Rβ̂OLS − q(k0) = −[ μ̂′
3
3 + �

3 k
3/2
0 (μ̂′

2)
3/2] and dq(k0)

dk0
= 1

2 (μ̂
′
2)

3/2�k1/20
into the equation above, we obtain

[
1

�

μ̂′
3

(μ̂′
2)

3/2 + k3/20

]
k1/20 = 3

�2

σ̂ 2
ε

(μ̂′
2)

3 ln N · [R(X ′X)−1R′].

The LHS k20 + 1
�

μ̂′
3

(μ̂′
2)

3/2 k
1/2
0 is a monotonic increasing function of k0, with a mini-

mum 0 at k0 = 0 and a maximum of 1 + 1
�

μ̂′
3

(μ̂′
2)

3/2 at k0 = 1 . Since the OLS residual

skewness
μ̂′
3

(μ̂′
2)

3/2 is usually a very small positive number in the presence of wrong

skewness, 1 + 1
�

μ̂′
3

(μ̂′
2)

3/2 is slightly bigger than 1.

Consider the RHS 3
�2

σ̂ 2
ε

(μ̂′
2)

3
ln N
N · N [R(X ′X)−1R′]. It is positive. In addition, the

positive scalar

N · R(X ′X)−1R′ = 1

N
ẽ′M0X(X ′X)−1X ′M0ẽ = 1

N
(ẽ − μ̂′

2ι)
′X(X ′X)−1X ′(ẽ − μ̂′

2ι)

= 1

N
[ẽ′PX ẽ − 2μ̂′

2ẽ
′PX ι + (μ̂′

2)
2ι′PX ι]

= 1

N
[ẽ′PX ẽ − N (μ̂′

2)
2] = 1

N
ẽ′PX ẽ − (μ̂′

2)
2,

where PX ι = ι and ẽ′ι = N μ̂′
2. We normalize ẽ by dividing it by its average μ̂′

2, i.e.,
e̊ = ẽ/μ̂′

2 , such that e̊
′ι = ẽ′ι/μ̂′

2 = N . Thus,

3

�2

σ̂ 2
ε

(μ̂′
2)

3 ln N · [R(X ′X)−1R′]

= 3

�2

σ̂ 2
ε

(μ̂′
2)

3 ln N · 1

N 2 ẽ
′M0X(X ′X)−1X ′M0ẽ]

= 3

�2

ln N

N
· 1

N
e̊′M0X(X ′X)−1X ′M0e̊].

Since for a large N ,

e̊′M0X(X ′X)−1X ′M0e̊ = 1

N
e̊′M0X

(
X ′X
N

)−1

X ′M0e̊ = Op(1),
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we obtain,

RHS = 3

�2

ln N

N
· Op(1)

N
.

For a relatively large sample size N , RHS falls into the unity interval, implying the
existence of k̂0 as the solution to mink0∈[0,1) C(k0).

Uniqueness of k̂0 is guaranteed by the second-order condition. The second-order
derivative of C(k0) is

d2C(k0)

dk20
= 1

N

d2SSRr (k0)

dk20

= �2(μ̂′
2)

3

3N [R(X ′X)−1R′]
d

[
1
�

μ̂′
3

(μ̂′
2)

3/2 k
1/2
0 + k20

]
dk0

= �2(μ̂′
2)

3

3N [R(X ′X)−1R′]
[

1

2�

μ̂′
3

(μ̂′
2)

3/2 k
−1/2
0 + 2k0

]
> 0

for any 0 < k0 < 1 since OLS residual skewness
μ̂′
3

(μ̂′
2)

3/2 > 0 in the presence of wrong

skewness.
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