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Abstract
In this paper, we use the maximum simulated likelihood (MSL) approach to estimate
multiple stochastic frontier (SF) models with random effects and correlated composite
errors. We show that the separate estimation of the single equation ignores the correla-
tion between the composite errors and causes significant efficiency loss in estimation.
In addition to using Monte Carlo simulation to investigate the finite sample perfor-
mance of the simulated estimator, we demonstrate the usefulness of our approach
in estimating the technical efficiency of Taiwan’s international hotels based on their
accommodation and restaurant divisions.

Keywords Maximum likelihood estimation · Copula · Seemingly unrelated
stochastic frontier regressions · Random effects

JEL Classification C3 · C5 · R3

1 Introduction

Since the pioneering work of Aigner et al. (1977), stochastic frontier (SF) analysis
has been widely used in productivity and efficiency studies to describe and esti-
mate models of the production frontier. The empirical model typically assumes that
a decision-making unit (DMU) employs a single production process or technology in
the production of an output using multi-inputs. However, if an organization (a DMU)
operates multiple production divisions (sub-DMUs), with each division supported by
its own set of resource inputs, these sub-DMUs may be subject to the same random
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shocks as the parent DMU. Given that these divisions would share some commonly
observed or unobserved characteristics of the parent DMU, the divisions’ technical
efficiencies may well be correlated. A system of multiple stochastic frontier regres-
sions on the sub-DMUs will be a more appropriate model to investigate a DMU’s
operation and performance. Since the system estimation takes into account the mutual
dependency among the composite errors, the estimator is more efficient than that from
the regression-by-regression estimation.

Previously, Lai andHuang (2013) discussed the estimation of a system of stochastic
frontier models for cross-section data. When sub-DMUs are observed over time, some
unobserved heterogeneity may exist and a model that can capture the panel charac-
teristics will be able to provide more effective estimation and also a better prediction
of the inefficiency. The unobserved heterogeneity for the firm level panel data can
be incorporated into the model in several ways. For instance, one can introduce the
heterogeneity through fixed effects, random effects or heterogeneous variance in the
symmetric/one-sided random component. In the model considered in this paper, we
assume the firm heterogeneity comes from the random effects aswell as heterogeneous
variance of the inefficiency. The assumption of random effects can be easily extended
to the fixed effects under Mundlak (1978)’s assumption.

There are several applications of the joint estimation of the system of equations.
For instance, Huang et al. (2018b) consider a model with two equations, one for
cost efficiency and one for market power, where each equation has a composed error.
Similarly, Genius et al. (2012) use a system of input demands with composite errors.
Other empirical examples include Huang et al. (2017a, b), and Huang et al. (2018a).
See also Amsler and Schmidt (2021) for a systematic review. The common feature of
these empirical studies is that they all use the cross-sectional approach even though
some of them employ panel data. Accordingly, the main objective of this paper is to
extend themodel of Lai andHuang (2013) so that themodel can capture the unobserved
panel characteristics of the multiple SF regression models.

The plan of the paper is as follows. In Sect. 2, we introduce a system of panel
stochastic frontier regressions, where the composite errors are correlated. Section 3
discusses how to use the simulated maximum likelihood approach to estimate the
model. We then discuss how to estimate the inefficiency using the simulated approach
in Sect. 4. We examine the finite sample performance of the proposed estimator by
Monte Carlo simulation in Sect. 5. An empirical study of the hotel industry in Taiwan
is given in Sect. 6, and a summary conclusion is given in Sect. 7.

2 The seemingly unrelated SF panel model

Consider the following production frontiers of J sub-DMUs:

y1i t = β1
0 + x1′i t β1 + α1

i + v1i t − u1i t ,

y2i t = β2
0 + x2′i t β2 + α2

i + v2i t − u2i t ,

...
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y Jit = β J
0 + x J ′

i t βJ + α J
i + v J

i t − uJ
it , (1)

where j = 1, . . . , J , i = 1, . . . , N , and t = 1, . . . , T . y j
i t and x j

i t are the log output
and the log inputs of the j th sub-DMU. In order to implement themaximum likelihood
approach to estimate the model, wemake the following assumptions about the random
components:

[A1]: α
j
i ∼ N (0, σ 2

α j ) is the firm-specific random effect. For a fixed i , α j
i and α

j ′
i are

independent to each other for j �= j ′.
[A2]: v

j
i t ∼ N (0, σ 2

v j ) is a two-sided symmetric random noise. For fixed i and j , v j
i t

and v
j ′
is are independent across time. For fixed i and t , v j

i t and v
j ′
i t are correlated

for j �= j ′.
[A3]: u j

it ∼ N+(0, σ 2
u j,i t ) is a one-sided random component that captures the inef-

ficiency and its variance. Moreover, σu j,i t can be parametrized as σu j,i t =
exp

(
δ′
jw

j
i t

)
, where w

j
i t is the vector of exogenous determinants of inefficiency

u j
it . For fixed i and j , u j

it and u j ′
is are independent across time. For fixed i and

t , u j
it and u j ′

i t are correlated for j �= j ′.
[A4]: The three random components α

j
i , v

j
i t and u

j
it are independent to each other and

uncorrelated with xit for fixed i , t and j .

Althoughwe assume the randomeffects across divisions are independent in assump-
tion [A1], we will discuss in Sect. 3.2 that the assumption can be further extended to
include correlated random effects. Assumption [A2] suggests that the v

j
i t ’s of different

divisions at the same time are correlated with each other. The same scenario applies
to, the u j

it ’s by assumption [A3]. Now, let us define e ji t = α
j
i + v

j
i t − u j

it as the com-

posite error of the j th equation, then it follows from [A1]–[A3] that e ji t and e j
′

i t will

be correlated. For simplicity, we also define ε
j
i t = v

j
i t − u j

it , which is the composite

error containing all time-variant random components, so that e ji t = α
j
i + ε

j
i t . There

are two main distinctions between the model given in (1) and the SF model discussed
in Lai and Huang (2013). One is that we extend the cross-section model to the panel
model with random firm effects, and the other is that we allow for heteroscedasticity
in the distribution of inefficiency.

3 Copulas and the simulated likelihood function

To motivate the simulated likelihood approach, we first discuss the model without
random firm effects and then discuss the model with random effects.

3.1 Themodel without random effects

Consider the special case of the system of equations (1), where α
j
i = 0 for all i and

j . Let θ j = (β
j
0 , β ′

j , σ
2
v j , δ

′
j )

′ be a vector of parameters in the j th SF regression and
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ε
j
i t = v

j
i t − u j

it denote the composite error of the j th SF regression. In this model, the

only source of heterogeneity is the heteroscedastic variance of u j
it and the correlation

between equations comes from v
j
i t and v

j ′
i t and/or u

j
it and u j ′

i t .

Let Fε j (ε
j
i t ; θ j ) and fε j (ε

j
i t ) denote the cumulative distribution function (cdf) and

probability density function (pdf) of ε
j
i t , respectively. When the distribution function

of u is half normal, i.e., N+(0, σ 2
u j ), the pdf of the associated composite errors ε

j
i t is

fε j (ε
j
i t ) = 2

σ j
φ

(
ε
j
i t

σ j

)
	

(
−λ j

σ j
ε
j
i t

)
, (2)

where φ(·) represents a standard normal density function, σ j =
√

σ 2
v j + σ 2

u j,i t and

λ j = σ 2
u j,i t/σv j .1 It can be shown that ε j

i t follows a closed skew normal distribution,
i.e.,

ε
j
i t ∼ CSN1,1

⎛
⎜⎝0, σ 2

j ,−
λ2j

1 + λ2j
, 0,

λ2jσ
2
j(

1 + λ2j

)2

⎞
⎟⎠ , (3)

which has the cdf

Fε j (ε
j
i t ) = 2 · 	2

⎛
⎜⎜⎜⎝
(

ε
j
i t
0

)
;
(
0
0

)
,

⎛
⎜⎜⎜⎝

σ 2
j

λ2jσ
2
j

1+λ2j

λ2jσ
2
j

1+λ2j

λ2jσ
2
j

1+λ2j

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ , (4)

where 	2 (·;μ,�) denotes the cdf of the bivariate normal distribution with mean μ

and variance �.
For simplicity,we let εi t = (ε1i t , . . . , εJi t

)′
be a J×1 vector and εi . = (ε′

i1, . . . , ε
′
iT

)′
be a JT × 1 vector. According to the result of Sklar’s theorem (1959) and Schweizer
and Sklar (1983), the joint cdf of εi t can be represented as a copula function of its own
one-dimensional margins. More specifically,

Fε

(
ε1i t , . . . , ε

J
i t

)
= C

(
Fε1

(
ε1i t

)
, . . . , FεJ

(
εJi t

)
; R
)

, (5)

where R is the vector of parameters of the copula function. The dependence of the
marginal distributions is captured by the copula function. The corresponding copula
density is

c
(
Fε1

(
ε1i t

)
, . . . , FεJ

(
εJi t

)
; R
)

= ∂ JC
(
Fε1
(
ε1i t

)
, . . . , FεJ

(
εJi t

) ; R)

∂Fε1
(
ε1i t

)
. . . ∂FεJ

(
εJi t

) .

1 With slight abuse of notation, we abbreviate σ j ,i t and λ j ,i t as σ j and λ j to keep the notation simple.
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Therefore, it follows from (8) that the joint pdf of εi t can be represented as

fε
(
ε1i t , . . . , ε

J
i t

)
= c

(
Fε1

(
ε1i t

)
, . . . , FεJ

(
εJi t

)
; R
)

·
∏J

j=1
fεJ
(
εJi t

)
. (6)

One special copula is the independent (or product) copula, which is defined as

C
(
ζ 1
i t , . . . , ζ

J
i t

)
=
∏J

j=1
ζ
j
i t ,

where ζ
j
i t = Fε j

(
ε
j
i t

)
. The corresponding copula density is

c
(
ζ 1
i t , . . . , ζ

J
i t

)
= 1.

Therefore, Eq. (6) suggests that fε
(
ε1i t , . . . , ε

J
i t

) = ∏J
j=1 fε j

(
ε
j
i t

)
when the inde-

pendent copula is used. It implies ε
j ′
i t s are independent to each other.

Moreover, if the Gaussian copula is assumed, then

C
(
Fε1
(
ε1i t
)
, . . . , FεJ

(
εJi t

)
; R
)

= 	R

(
	−1 (Fε1

(
ε1i t
))

, . . . , 	−1
(
FεJ

(
εJi t

)))
,

where 	R(·) denotes the standardized multivariate normal distribution with the cor-
relation matrix R. The corresponding copula density2 is

c
(
ς1
i t , . . . , ς

J
i t

)
= 1

|R|1/2 exp

(
−1

2
ς ′
i .

(
R−1 − I

)
ςi .

)
, (7)

where ςi . = (ς1
i t , . . . , ς

J
i t )

′ and ς
j
i t = 	−1

(
Fε j

(
ε
j
i t

))
. Therefore, the joint pdf of

ε1i t , . . . , ε
J
i t is

fε
(
ε1i t , . . . , ε

J
i t

)
= fε (εi t ) = c

(
	−1

(
Fε1

(
ε1i t

))
, . . . , 	−1

(
FεJ

(
εJi t

))
; R
)

×
∏J

j=1
fε j

(
ε
j
i t

)
. (8)

The log-likelihood function is

ln L(θ) =
N∑
i=1

T∑
t=1

ln fε
(
ε1i t , . . . , ε

J
i t

)
. (9)

2 For instance, see Cherubini et al. (2004) and Trivedi and Zimmer (2005) for the Gaussian copula density
and other possible choices of copula functions.
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Let θ = (
θ ′
1, . . . , θ

′
J

)′ and � be the parameter space, then the maximum likelihood
(ML) estimator of θ is defined as

θ̂ML = argMax
θ∈�

ln L(θ). (10)

Since there are no random firm effects, this model is a pooled system of regressions.
Empirically, the true copula is in general unknown, so the sandwich formula is sug-
gested to used for computing the standard errors of the ML estimator.

Note that the current model has a very similar setting with the model discussed
in Amsler et al. (2014, APS hereafter). The main difference between them is that
the APS model has a single equation, i.e., J = 1, which is a special case of our
model. Moreover, they use the copula function to model time dependence instead
of the correlation between the multi-equations for the J divisions of firm i at time
t . Although in principal one can always estimate the model in (1) using equation-
by-equation estimation, the estimators of the model parameters are consistent but
inefficient due to ignorance of the correlation across equations. Empirically, it is not

clear how the randomcomponents, such as v
j
i t and v

j ′
i t and/or u

j
it and u

j ′
i t , are correlated.

With the copula framework, we can focus on modeling the marginal distributions of
each single equation and the dependence between the marginal distributions of the
composite errors can be captured by a copula function. Compared with other existing
approaches, such as directly specifying the joint distribution of the composite errors,
using a copula is relatively easy from the practical point of view.

3.2 Themodel with random effects

In this section, we discuss estimation of the system of equations (1) with random firm
effects. Let θ j = (β

j
0 , β ′

j , σ
2
α j , σ

2
v j , δ

′
j )

′ denote the vector of the parameters in the

j th division. In the system, the outputs y j
i1, y

j
i2, . . . , y

j
iT within the same division are

correlated due to their common component α
j
i . Under assumption [A1], the α

j
i ’s are

independent to each other.
To take into account the correlation between the J divisions, let αi = (α1

i , . . . , α
J
i

)′
be the J ×1 vector of random effects and let εi t = (ε1i t , . . . , εJi t

)′
be defined as before.

Recall that e ji t = α
j
i + v

j
i t − u j

it , so we denote eit = (e1i t , . . . , eJit
)′
as a J × 1 vector

and ei . = (
e′
i1, . . . , e

′
iT

)′ as a JT × 1 vector. The joint pdf of eit in the system SF
regression can be evaluated using the simulated approach.3 It is worth mentioning that
e ji1, . . . , e

j
iT are correlated with each other due to the common component α j

i , but they

are conditionally independent if α
j
i is known. In other words,

fe (eit ) =
∫

fe|α(e1i t , . . . , e
J
it |αi ) fα(αi )dαi , (11)

where fe|α(e1i t , . . . , e
J
it |αi ) = fε(ε1i t , . . . , ε

J
i t ).

3 For instance, see Greene (2003).

123



Maximum simulated likelihood estimation of the seemingly… 2949

The above result suggests that fe (eit ) can be evaluated by the simulated joint pdf

f se (eit ) = 1

M

∑M

m=1
fε(εi t(m)), (12)

where εi t(m) =
(
ε1i t(m), . . . , ε

J
i t(m)

)′
is a J × 1 vector, ε j

i t(m) = e ji t − α
j
i(m) and α

j
i(m)

denotes themth draw from the distribution of α j
i . The superscript s of f se (eit ) denotes

the simulated density. Therefore, it follows from Eqs. (8) and (12) that the simulated
joint pdf f se (eit ) can be evaluated by

f se (eit ) = 1

M

∑M

m=1

[
c
(
Fε1

(
ε1i t(m)

)
, . . . , FεJ

(
ε Ji t(m)

)
; R
)

×
∏J

j=1
f s
ε j

(
ε
j
i t(m)

)]
.

(13)
For the special case when J = 1, Eq. (11) degenerates to the single equation case

fe j (e
j
i t ) =

∫
fe j |α j (e

j
i t |α j

i ) fα j (α
j
i )dα

j
i , (14)

which can be evaluated by the simulated density

f se j (e
j
i t ) = 1

M

∑M

m=1
fε j (e

j
i t − α

j
i(m)) (15)

= 1

M

∑M

m=1
fε j (ε

j
i t(m)), (16)

where α
j
i(m) denotes the mth Halton draw from α

j ′
i s distribution N (0, σ 2

α j ).

Now, let us consider the JT × 1 random vector ei . = (e′
i1, . . . , e

′
iT

)′. The joint pdf
of ei . conditional on αi is

fe|α(ei .|αi ) = fe|α (ei1, . . . , eiT |αi )

= fε (εi .)

=
∏T

t=1
fε(εi t )

=
∏T

t=1
fε
(
ε1i t , . . . , ε

J
i t

)
.

The third equality is due to that ei1, . . . , eiT are conditionally independent given αi .
It follows from (13) that the joint pdf of ei . can be approximated by the simulated
density

f se (ei .) =
∫

f se|α(ei .|αi ) fα(αi )dαi

= 1

M

∑M

m=1

[∏T

t=1
fε(ε

1
i t(m), . . . , ε

J
it(m))

]
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= 1

M

∑M

m=1

∏T

t=1

[
c
(
Fε1

(
ε1i t(m)

)
, . . . , FεJ

(
ε Jit(m)

)
; R
)

×
∏J

j=1
f s
ε j

(
ε
j
i t(m)

)]
.

(17)

The logarithm of the simulated likelihood function of the SF system is

ln Ls (θ1, . . . , θJ , R)

=
∑N

i=1
ln f se (ei .)

=
∑N

i=1
ln

⎧⎨
⎩

1

M

∑M

m=1

∏T

t=1

⎡
⎣ c
(
Fε1

(
ε1i t(m)

)
, . . . , FεJ

(
εJi t(m)

)
; R
)

×
∏J

j=1
f s
ε j

(
ε
j
i t(m)

)
⎤
⎦
⎫⎬
⎭ .

(18)

Let θ = (
θ ′
1, . . . , θ

′
J , R

)′ be the set of all parameters and let � denote the parameter
space, then the maximum simulated likelihood (MSL) estimator of θ is defined as

θ̂MSL = arg Max
θ∈�

ln Ls (θ) . (19)

Similar to the ML estimator in Sect. 3.1, the sandwich formula is suggested to used
for computing the standard errors of the MSL estimator.

Note that in the above discussion we assumes the random effects α
j
i ’s are inde-

pendent to each other. In other words, in the MSL estimation we assume fα(αi ) =∏J

j=1
fα j (α

j
i ) in Eq. (11) and draw α

j
i for each j and i independently. Wemay gener-

alize our above discussion by extending assumption [A1] to allow correlated random
effects. We now focus on the marginal distribution of e ji t , fe j (e

j
i t ). Recall that it can

be represented as fe j (e
j
i t ) = ∫ fe j |α j (e

j
i t |α j

i ) fα j (α
j
i )dα

j
i whether α

j
i and α

j ′
i are cor-

related with each other or not. Therefore, the marginal pdf fe j (e
j
i t ) can be evaluated

by the simulated pdf f se (eit ) = 1
M

∑M

m=1
fε(e

j
i t − α

j
i(m)) = 1

M

∑M

m=1
fε
(
εi t(m)

)
.

According to Sklar’s theorem, the joint pdf of eit = (
e1i t , . . . , e

J
it

)′
can be repre-

sented as

fe (eit ) = c
(
Fe1
(
e1i t

)
, . . . , FeJ

(
eJit

)
; R
)

×
∏J

j=1
fe j
(
e ji t

)
,

where the dependence parameter R captures the correlation between e ji t ’s. Although

that α
j
i and α

j ′
i are correlated with each other, the following result holds for the

conditional pdf of e ji t

fe j |α
(
e ji t |α1

i , . . . , α
J
i

)
= fe j

(
e ji t |α j

i

)
,
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which suggests that the information about α j ′
i , where j ′ �= j , is redundant for predict-

ing e ji t once we know α
j
i .

Given the information set αi = (
α1
i , . . . , α

J
i

)
, the conditional joint pdf of

fe|α (eit |αi ) can be represented as

fe|α (eit |αi ) = c
(
Fe1
(
e1i t |αi

)
, . . . , FeJ

(
eJit |αi

)
; R
)

×
∏J

j=1
fe j
(
e ji t |αi

)

= c
(
Fe1
(
e1i t |α j

i

)
, . . . , FeJ

(
eJit |α J

i

)
; R
)

×
∏J

j=1
fe j
(
e ji t |α j

i

)
.

(20)

Since ei1, . . . , eiT are conditionally independent given αi ,

fe(ei .) =
∫

fe|α(ei .|αi ) fα(αi )dαi

=
∫ ∏T

t=1
fe|α (eit |αi ) fα(αi )dαi

=
∏T

t=1

∫ [
c
(
Fe1
(
e1i t |α j

i

)
, . . . , FeJ

(
eJit |α J

i

)
; R
)

×
∏J

j=1
fe j
(
e ji t |α j

i

)]
fα(αi )dαi , (21)

where the third equality is due to (20). Thus, (21) can be evaluated by the simulated
density

f se (ei .) = 1

M

∑M

m=1

{∏T

t=1

[
c
(
Fe1
(
e1i t |α j

i(m)

)
, . . . , FeJ

(
eJit |α J

i(m)

)
; R
)

×
∏J

j=1
fe j
(
e ji t |α j

i(m)

)]}
.

Although α
j
i(m)’s are drawn independently, their dependence will be captured by the

copula. The logarithm of the simulated likelihood function of the whole sample is

ln Ls (θ1, . . . , θJ , R) =
∑N

i=1
ln f se (ei .), (22)

where f se (ei .) is given by (21). Note that the simulated joint pdf f se (ei .) in (21) and
the simulated joint pdf in (17) are equivalent. In other words, the model is estimated
in the same way whether the random effects αi ’s are correlated or not. However, it is
worth mentioning that when the correlated random effects are correlated, the copula

not only captures the dependence between ε
j
i t and ε

j ′
i t , but also captures the dependence

between α
j
i and α

j ′
i . Therefore, assumption [A1] can be further extended by allowing

the possible correlation between the random effects, i.e., correlated α
j
i and α

j ′
i for

j �= j ′. The MSL estimator from (22) is also consistent.
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4 Prediction of the inefficiency and technical efficiency

The prediction of the inefficiency and technical efficiency (TE) can follow the
simulated approach proposed by Lai and Kumbhakar (2018). For a given division
j , let g(·) : R

+ → R be a continuous function of u j
it and we are interested

in the conditional expectation E

(
g(u j

it )|e ji t
)
. For instance, if g(u j

it ) = u j
it , then

E

(
g(u j

it )|e ji t
)

= E

(
u j
it |e ji t

)
; if g(u j

it ) = e−u j
i t , then E

(
g(u j

it )|e ji t
)

= E

(
e−u j

i t |ε j
i t

)
.

The conditional expectation of the inefficiency given the composite error e ji t is
defined as

E

(
u j
it |e ji t

)
=
∫ ∞

0
u j
it fu j |e j

(
u j
it |e ji t

)
du j

it ,

where

fu j |e j
(
u j
it |e ji t

)
=
∫∞
−∞ fu j ,e j ,α j

(
u j
it , e

j
i t , α

j
i

)
dα j

i

fe j
(
e ji t

)

=
∫∞
−∞ fu j |e j ,α j

(
u j
it |e ji t , α j

i

)
fe j |α j

(
e ji t |α j

i

)
fα j

(
α
j
i

)
dα j

i
∫∞
−∞ fe j |α j

(
e ji t |α j

i

)
fα j

(
α
j
i

)
dα j

i

.

Therefore, it follows that

E

(
u j
it |e ji t

)
=
∫ ∞

0
u j
it

∫ ∞

−∞
fu j |e j ,α j

(
u j
it |e ji t , α j

i

) fe j |α j

(
e ji t |α j

i

)
fα j

(
α
j
i

)

∫∞
−∞ fe j |α j

(
e ji t |α j

i

)
fα j

(
α
j
i

)
dα j

i

dα j
i du

j
it

(23a)

=
∫ ∞

−∞

(∫ ∞

0
u j
it fu j |e j ,α j

(
u j
it |e ji t , α j

i

)
du j

it

) fe j |α j

(
e ji t |α j

i

)
fα j

(
α
j
i

)

∫∞
−∞ fe j |α j

(
e ji t |α j

i

)
fα j

(
α
j
i

)
dα j

i

dα j
i .

(23b)

Equation (23b) is related to the law of iterative expectation

E

(
u j
it |e ji t

)
= E

[
E

(
u j
it |e ji t , α j

i

)∣∣∣ e ji t
]
. (24)

Given f
(
u j
it |e ji t , α j

i

)
= f

(
u j
it |ε j

i t

)
and the well-known result

E

(
u j
it |ε j

i t

)
= μ̃

j
i t + σ̃

j
i t

⎡
⎣ φ

(
−μ̃

j
i t/σ̃

j
i t

)

1 − 	
(
−μ̃

j
i t/σ̃

j
i t

)
⎤
⎦ , (25)
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where ε
j
i t = v

j
i t − u j

it , μ̃
j
i t = −ε

j
i tσ

2
u j,i t/

(
σ 2
u j,i t + σ 2

v j

)
and σ̃

j2
i t = σ 2

u j,i tσ
2
v j/(

σ 2
u j,i t + σ 2

v j

)
, by assumptions [A2]–[A5], one may combine the results in Eqs. (24)

and (25) to obtain the simulated estimatorEs
(
u j
it |e ji t

)
ofE

(
u j
it |e ji t

)
, which is defined

as

E
s
(
u j
it |e ji t

)
=
∑M

m=1

⎧
⎨
⎩μ̃

j
i t(m) + σ̃

j
i t

⎡
⎣ φ

(
−μ̃

j
i t(m)/σ̃

j
i t

)

1 − 	
(
−μ̃

j
i t(m)/σ̃

j
i t

)
⎤
⎦
⎫
⎬
⎭W j

it(m), (26)

where μ̃
j
i t(m) = −ε

j
i t(m)σ

2
u j,i t/

(
σ 2
u j,i t + σ 2

v j

)
, ε

j
i t(m) = e ji t − α

j
i(m) and the weight

W j
it(m) is defined as

W j
it(m) = fε j (e

j
i t − α

j
i(m))∑M

m=1 fε j (e
j
i t − α

j
i(m))

= fε j (ε
j
i t(m))∑M

m=1 fε j (ε
j
i t(m))

. (27)

Note that the weightsW j
it(m) form = 1, . . . , M have a sum equal to one. The estimator

(26) has the form of the weighted average and gives the simulated estimator of the

inefficiency E

[
u j
it |e ji t

]
.

Moreover, given the result

E

(
e−u j

i t |ε j
i t

)
=

1 − 	
(
σ̃i t − μ̃

j
i t/σ̃

j
i t

)

1 − 	
(
−μ̃

j
i t/σ̃

j
i t

) exp

(
−μ̃

j
i t + 1

2
σ̃

j2
i t

)
, (28)

and
E

(
e−u j

i t |e ji t
)

= E

[
E

(
e−u j

i t |e ji t , α j
i

)∣∣∣ e ji t
]
, (29)

one can obtain the simulated estimator of TE,

E
s
(
e−u j

it |e ji t
)

=
∑M

m=1

⎡
⎣1 − 	

(
σ̃

j
i t − μ̃

j
i t(m)/σ̃

j
i t

)

1 − 	
(
−μ̃

j
i t(m)/σ̃

j
i t

) exp

(
−μ̃

j
i t(m) + 1

2
σ̃

j2
i t

)⎤
⎦W j

it(m),

(30)
by the same approach used in (26).

In a manner similar to (26) and (30), we can also compute the conditional expec-

tation of the marginal effect of w
j
i t,k on E

(
u j
it |e ji t

)
. If w

j
i t,k is a continuous variable,
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by the law of iterative expectation and the formula

∂E
(
u j
it |ε j

i t

)

∂w
j
i t,k

= δ j,kσu j,i t

⎡
⎢⎢⎢⎢⎣

(
1 +

(
μ̃

j
i t

σ̃
j
i t

)2
)(

φ
(
−μ̃

j
i t/σ̃

j
i t

)

1−	
(
−μ̃

j
i t/σ̃

j
i t

)
)

+
(

μ̃
j
i t

σ̃
j
i t

)(
φ
(
−μ̃

j
i t/σ̃

j
i t

)

1−	
(
−μ̃

j
i t/σ̃

j
i t

)
)2

⎤
⎥⎥⎥⎥⎦

(31)

one can obtain the simulated estimator

∂Es
(
u j
it |e ji t

)

∂w
j
i t,k

=
M∑

m=1

δ j,kσu j,i t

⎡
⎢⎢⎢⎢⎣

(
1 +

(
μ̃

j
i t(m)

σ̃
j
i t

)2
)(

φ
(
−μ̃

j
i t(m)

/σ̃
j
i t

)

1−	
(
−μ̃

j
i t(m)

/σ̃
j
i t

)
)

+
(

μ̃
j
i t(m)

σ̃
j
i t

)(
φ
(
−μ̃

j
i t(m)

/σ̃
j
i t

)

1−	
(
−μ̃

j
i t(m)

/σ̃
j
i t

)
)2

⎤
⎥⎥⎥⎥⎦
W j

it(m).

(32)
Moreover, if w

j
i t,k is a dummy variable, the conditional expectation of the marginal

effect of w
j
i t,k on E

(
u j
it |e ji t

)
is

�E

(
u j
it |e ji t

)

�w
j
i t,k

= E

(
u j
it |e ji t , w j

i t,k = 1
)

− E

(
u j
it |e ji t , w j

i t,k = 0
)

, (33)

where the estimators of E

(
u j
it |e ji t , w j

i t,k = 1
)

and E

(
u j
it |e ji t , w j

i t,k = 1
)

can be

obtained using Eqs. (26) and (27) and substituting w
j
i t,k = 1 and w

j
i t,k = 0, respec-

tively. Therefore, the inefficiency, TE, and marginal effect of w
j
i t,k on inefficiency can

be estimated using (26), (30), (32) and (33), where the parameters are replaced by the
MSL estimates obtained from (19).

5 Simulation

In this section, we conduct a Monte Carlo simulation to investigate the finite sample
performance of the proposed simulated estimator. We consider the following data
generating process (DGP) for the following system of two equations:

y1i t = β1
0 + x1i tβ

1
1 + α1

i + ε1i t ,

y2i t = β2
0 + x2i tβ

2
1 + α2

i + ε2i t ,

where ε
j
i t = v

j
i t − u j

it , v
j
i t ∼ i .i .d.N (0, σ 2

v j ), and u
j
it ∼ N+(0, σ 2

u j,i t ) for j = 1, 2. α1
i

and α2
i are generated from a bivariate normal distribution with zero mean, correlation

coefficient ϕ, and variance σ 2
α j , where j = 1, 2, The heteroscedastic variance of u j

it
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is specified as σu j,i t = exp(δ j
0 + δ

j
1w

j
i t ). The true parameters are set as

β1
0 = 0.75, β1

1 = 0.75, σα1 = 0.1, σv1 = 0.15, δ10 = −0.5, δ11 = 0.1,

and

β2
0 = 1.5, β2

1 = 0.5, σα2 = 0.15, σv2 = 0.1, δ20 = −0.75, δ21 = 0.5.

The exogenous variable x1i t is drawn from Uniform[5, 10], w1
i t is drawn from

N (−1, 0.52), x2i t is drawn from Uniform[2, 5] , and w2
i t is drawn from N (0, 0.42).

Given the above marginal distributions of v
j
i t and u j

it , we generate the composite
errors ε1i t and ε2i t from the Gaussian copula with the copula parameter ρ.4 Under the
above setting for δ′s , the sample means of σu1,i t and σu2,i t are about 0.549 and 0.472,
and their standard deviations are about 0.029 and 0.028, respectively.

Below, we consider three experiments, labeled as Experiment I, Experiment II and
Experiment III. In Experiment I, we intend to investigate the finite sample performance
of the MSL estimator discussed in Sect. 3.2, and we also compare the MSL estimators
with and without taking into account the dependence between divisions in estimation.
In Experiment II, we intend to investigate the consequences of a misspecified copula.
We examine the finite sample performance of the estimator when the random effects
are correlated in Experiment III. Moreover, the total number of replications is 500 and
300 Halton draws are used in these experiments.

In Experiment I, we investigate the sampling patterns of our estimator by consid-
ering the following different combinations of N , T and ρ:

N = {100, 200}, T = {5, 10} and ρ = {0.25, 0.75}.

In the first experiment, we let the random effects be uncorrelated, i.e., we set ϕ =
0. In addition to estimating the model under the Gaussian copula specification, we
also estimate the model using an independent copula, which ignores the correlation
between the two equations, in order to compare the finite sample performances of
these estimators. We summarize the biases and root mean squared errors (RMSE) in
Tables 1 and 2, respectively. The results of independent and Gaussian copulas are
given in Panels A and B of these tables.

From Tables 1 and 2, we find that the magnitudes of the biases and those of RMSEs
are small for both copulas considered in these experiments. Nevertheless, we do not
see any clear pattern that the biases of the Gaussian copula are smaller than those of the
independent copula; but it can be observed from these tables that most of the biases in
Panels A andB decrease as the sample size increases. However, Table 2 reveals that the
RMSEs decrease when we increase either N or T for both independent and Gaussian
copula specifications. Indeed, the RMSEs of the independent copula are larger than
those of theGaussian copulawhen N or T increases. In summary, the results inTables 1
and 2 together provide evidence that the MSL estimators are consistent under both the

4 More details about how to generate ε1i t and ε2i t from the Gaussian copula can be found in Lai and Huang
(2013).
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independent and the Gaussian copula specifications, and the MSL estimator with the
Gaussian copula is more efficient than that with the independent copula.

In our Experiment II, we reestimate the above model using Clayton, Gumbel, FGM
(Farlie–Gumbel–Morgenstern) and AMH (Ali–Mikhail–Haq)5 copulas for the sample
size N = 100 and T = 5 in order to investigate how the MSL estimator performs
under a misspecified copula. Both the Clayton and Gumbel copulas are Archimedean
copulas, so their copulas can be represented in the form

CArch(ζ1, ζ2) = ψ−1 [ψ(ζ1) + ψ(ζ2)] ,

where ψ : [0, 1] → R
+ is called the Archimedean generator. ψ(·) is a continuous,

strictly decreasing, and convex function and satisfies ψ(0) = ∞ and ψ(1) = 0.

Moreover, the two arguments ζ j,i t are defined as ζ j,i t = Fε j

(
ε
j
i t

)
for j = 1, 2 in our

model. The corresponding density of the Archimedean copula is

cArch(ζ1, ζ2) = −ψ ′′ (CArch(ζ1, ζ2)) ψ ′(ζ1) + ψ ′(ζ2)
[ψ ′ (CArch(ζ1, ζ2))]3

.

(i) If ψ(ζ ) = ζ−a − 1, we obtain the Clayton copula, which has the form

CClay(ζ1, ζ2) = (ζ−a
1 + ζ−a

2 − 1
)−1/a

,

where 0 < a < ∞ controls the strength of dependence. When a = 0, there is no
dependence, and when a = ∞, there is prefect dependence.

(ii) If ψ(ζ ) = (− ln ζ )a , we obtain the Gumbel copula, which has the form

CGum(ζ1, ζ2) = exp
{
− [(− ln ζ1)

a + (− ln ζ2)
a]1/a} ,

where a ≥ 1 controls the strength of dependence. When a = 1, there is no
dependence, and when a = ∞, there is prefect dependence.

(iii) The third copula we considered is the FGM copula, which is defined as

CFGM(ζ1, ζ2) = ζ1ζ2 [1 + κF (1 − ζ1)(1 − ζ2)] ,

where −1 ≤ κF ≤ 1 is the copula parameter and ζ1 and ζ2 are defined as before.
The corresponding copula density is

cFGM(ζ1, ζ2) = 1 + κF (1 − 2ζ1)(1 − 2ζ2).

The Spearman’s ρ of the FGM copula is κF/3, so it ranges between −1/3 and
1/3.

5 See Smith (2008) for more bivariate copulas.
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(iv) The last copula is the AMH copula, whose copula function is defined as

CAMH(ζ1, ζ2) = ζ1ζ2

1 − κA(1 − ζ1)(1 − ζ2)
,

where −1 ≤ κA ≤ 1 is the copula parameter and ζ1 and ζ2 are defined as before.
The AMH copula density is

cAMH(ζ1, ζ2)

= [1 + κA (ζ1ζ2 + ζ1 + ζ2 − 2+ κA(1− ζ1)(1− ζ2))] [1− κA(1− ζ1)(1− ζ2)]
−3 .

In the DGP, the true copula is a Gaussian copula and we consider ρ = 0.25 and 0.75.
We summarize biases and RMSEs of our estimates in Table 3. Since the dependence
parameters of the Clayton, Gumbel, FGM and AMH copulas are not directly compa-
rable with the Gaussian copula parameter ρ, we do not report the biases and RMSEs
of the dependence parameters. We found that the bias of β1

0 is relatively large when
the Gumbel copula is used and ρ = 0.25. However, the biases of the estimates of the
other parameters are quite close to the estimates of the Gaussian copula in Tables 1
and 2. Most of the estimates have biases slightly larger than the estimates from the
Gaussian copula, but they are also of a small magnitude. Moreover, there is no clear
evidence showing that the estimators of the misspecified copulas have larger biases
than that of the independent copula. For the RMSEs, we found that some RMSEs from
the misspecified copulas are slightly larger than those from the Gaussian copula, but
there is no clear pattern. On the other hand, it is worth mentioning that the RMSEs of
the independent copula are in general larger than the other copulas, which suggests
that using a copula to capture the dependence between the divisions is helpful for
improving the estimation efficiency even if the copula is misspecified. From the above
experiment, we may conclude that if a misspecified copula is used, the ML estima-
tor may have a slightly larger bias and RMSE than that from the correctly specified
copula, but the problem may not be serious as one expects.

In Experiment III, we allow correlation between the random effects, i.e., α1
i and

α2
i are correlated with correlation coefficient ϕ. Similar to Tables 1 and 2, we con-

sider independent and Gaussian copulas for (N , T ) = {(100, 5), (200, 10)} and
ρ = {0.25, 0.75}. To investigate how the degree of the correlation between the ran-
dom effects affect the performance of the MSL estimator, we set ϕ = {0.25, 0.75} and
compare their differences. We summarize the simulation results in Tables 4 and 5. It is
worth mentioning that the same model specification is used in Experiments I and III,
but their DGPs are slightly different. The only difference between them is the value of
ϕ. ϕ = 0 in Experiment I. Similar to what we have observed from Table 1, the biases
from the independent copula are quite close to that of the Gaussian copula. This is
because both independent and Gaussian copulas give consistent estimators whether
α
j
i ’s are correlated or not. However, it is clear that the estimator using the Gaussian

copula is more efficient than the estimator using the independent copula in terms of
RMSE. By comparing the biases in Tables 1 and 5, we find that the biases of ρ in
Table 5 are slightly larger than those in Table 1 because the correlation between the
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random effects has been picked up by the copula parameter in the model. Moreover,
we also find that the estimator using the independent copula loses efficiency as the
degree of dependence between ε

j
i t ’s (or α

j
i ’s) increases.

In summary, we find that using either the independent copula or Gaussian copula
gives a consistent estimator of the model parameter. Misspecification of a copula may
cause estimation bias, but the problem may not be too serious. Even though we do
not estimate the correlation coefficient ϕ between the random effects in the model, the
MSL estimator is still consistent and the correlation will be automatically captured by
the copula parameter, maintaining the estimation efficiency.

6 The empirical application

This paper applies the proposed method to the production frontier of Taiwan’s interna-
tional hotels; each hotel has two divisions, accommodation and restaurant, i.e., J = 2
for the system in (1). The data are derived from the annual report of the Taiwan
Tourism Bureau at the Ministry of Transportation and Communications. Our sample
is an unbalanced panel data, which contains 725 sample observations from 61 interna-
tional grand hotels during 2001–2013. The minimum observed time period is 6 years,
while the maximum period is 13 years.

For the accommodation division, the output is measured in total revenue (y1), while
the inputs include the total number of workers (x11), the total number of rooms (x12),
and other expenses (x13), which include utilities, materials, maintenance fees and
so on. The output and inputs are allocable within the accommodation division. The
output for the restaurant division is also measured by the total revenue (y2), while
the corresponding inputs are the total number of workers (x21), the floor area of the
restaurant (x22) and other expenses (x23), including utilities, materials and so on.
Again, the output and inputs are attributable and accountable within the restaurant
division. All revenues and other expenses are measured in New Taiwan dollars (NT$).
Logarithms are applied to outputs and inputs. The exogenous determinants of the
inefficiencies of the two divisions include the scale of the hotel (w1) and the area
dummy variable (w2). The scale variablew1 ranges from 1 to 5.6 The dummy variable
w2 is equal to one if the hotel is located in a scenic area and zero otherwise. Since
these two divisions of a hotel share certain common characteristics, such as the same
DMU, brand and location, we expect the two outputs y1 and y2 should be correlated
with each other and the composite errors to be also.

The empirical model is specified as

y j
i t = β

j
0 + β

j
1 x

j
1,i t + β

j
2 x

j
2,i t + β

j
3 x

j
3,i t + α

j
i + ε

j
i t , j = 1, 2. (34)

6 w1 = 1 if the total number of employees is less than 100; w1 = 2 if the total number of employees is
larger than 100 and less than 200; w1 = 3 if the total number of employees is larger than 200 and less than
300; and so on. w1 = 5 if the total number of employees is more than 400.
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Table 6 Empirical results

I. Separate II. Joint estimation III. Joint estimation
Estimation Independent copula Gaussian copula

coef. s.e.a coef. s.e. coef. s.e.

Accommodation division

β1
1 0.3104 0.0086∗∗∗b 0.3426 0.0214∗∗∗ 0.3000 0.0003∗∗∗

β1
2 0.4276 0.0117∗∗∗ 0.5229 0.0183∗∗∗ 0.3958 0.0011∗∗∗

β1
3 0.2835 0.0044∗∗∗ 0.2929 0.0040∗∗∗ 0.4411 0.0012∗∗∗

β1
0 13.0459 0.0583∗∗∗ 12.3334 0.0376∗∗∗ 11.9497 0.0029∗∗∗

Random components

σα1 0.2808 0.0032∗∗∗ 0.3309 0.0034∗∗∗ 0.3244 0.0006∗∗∗
σv1 0.0766 0.0016∗∗∗ 0.0758 0.0018∗∗∗ 0.0021 0.0004∗∗∗

σu1 = exp(δ11w1 + δ12w2 + δ10)

δ11 −0.0863 0.0093∗∗∗ −0.0872 0.0080∗∗∗ −0.0759 0.0033∗∗∗

δ12 −0.0304 0.0220∗∗∗ −0.0583 0.0184∗∗∗ −0.0549 0.0117∗∗∗

δ10 −1.0901 0.0344∗∗∗ −1.0606 0.0299∗∗∗ −0.8321 0.0127∗∗∗
Restaurant division

β2
1 0.4295 0.0083∗∗∗ 0.4611 0.0087∗∗∗ 0.3778 0.0044∗∗∗

β2
2 0.0442 0.0021∗∗∗ 0.0451 0.0018∗∗∗ 0.0223 0.0012∗∗∗

β2
3 0.1627 0.0049∗∗∗ 0.1566 0.0046∗∗∗ 0.3883 0.0043∗∗∗

β2
0 15.1821 0.0815∗∗∗ 15.104 0.0704∗∗∗ 13.8552 0.0340∗∗∗

Random components

σα2 0.4038 0.0075∗∗∗ 0.4855 0.0096∗∗∗ 0.3063 0.0027∗∗∗
σv2 0.1373 0.0018∗∗∗ 0.1377 0.0018∗∗∗ 0.1675 0.0022∗∗∗

σu2 = exp(δ21w1 + δ22w2 + δ20)

δ21 −1.9918 0.0759∗∗∗ −1.9702 0.0907∗∗∗ −0.9068 0.0315∗∗∗

δ22 −1.8949 0.0930∗∗∗ −1.8748 0.0940∗∗∗ −1.0208 0.0416∗∗∗

δ20 2.1571 0.1309∗∗∗ 2.1193 0.1588∗∗∗ 0.5395 0.0613∗∗∗
Copula coeff.

ρ N/Ac N/A 0.8431 0.0068∗∗∗
lnL 362.0287 356.0293 581.9081

aAll reported standard errors are computed using the sandwich formula
b∗∗∗, ∗∗ and ∗ represent significance at the 1%, 5% and 10% levels
cN/A denotes not applicable

To obtain the likelihood function of the empirical model, we differentiate Eq. (8) with
respect to ε1i t and ε2i t and obtain the joint pdf

fε
(
ε1i t , ε

2
i t

)
= c

(
Fε1

(
ε1i t

)
, Fε2

(
ε2i t

))
fε1
(
ε1i t

)
fε2
(
ε2i t

)
, (35)
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Table 7 Predicted Inefficiencies, TEs and marginal effects

Accommodation Restaurant

mean s.d. mean s.d.

Panel A. Inefficiency E

(
u j
i t |ε j

i t

)

I. Separate estimation 0.2071 0.0897 0.0874 0.2795

II. Independent copula 0.2130 0.0701 0.0848 0.2795

III. Gaussian copula 0.2506 0.0886 0.1301 0.2023

Panel B. TE E

(
e−u j

i t |ε j
i t

)

I. Separate estimation 0.8231 0.0667 0.9356 0.1278

II. Independent copula 0.8181 0.0523 0.9404 0.1243

III. Gaussian copula 0.7914 0.0629 0.8949 0.1171

Panel C. Marginal effects

10 × ∂E
(
u j
i t |ε j

i t

)
/∂w1

I. Separate estimation − 0.0681 0.0305 − 0.6842 1.0502

II. Independent copula − 0.0660 0.0243 − 0.6908 1.0213

III. Gaussian copula − 0.0002 0.0006 − 0.6459 0.5155

10 × �E

(
u j
i t |ε j

i t

)
/�w2

I. Separate estimation − 0.0469 0.0307 − 0.0520 0.0214

II. Independent copula − 0.0952 0.0487 − 0.8343 2.0495

III. Gaussian copula − 0.1012 0.0404 − 0.7774 0.7399

where c(Fε1(ε
1
i t ), Fε2(ε

2
i t )) = ∂C(Fε1(ε

1
i t ), Fε2(ε

2
i t ))/∂Fε1(ε

1
i t )∂Fε2(ε

2
i t ) is the cop-

ula density.
For the sake of comparison, we consider three differentmodel specifications:Model

(I) is the separate estimation, where each division is estimated by a single-equation
stochastic frontier model with random effects. Model (II) uses the joint estimation,
where the joint pdf of (35) and an independent copula are used. For the independent
copula, we have c(Fε1(ε

1
i t ), Fε2(ε

2
i t )) = 1 and, therefore,

fε(ε
1
i t , ε

2
i t ) = fε1

(
ε1i t

)
fε2
(
ε2i t

)
. (36)

The independent copula implies that the two divisions are uncorrelated, so the cor-
relation between the two divisions is ignored in the empirical model. It is worth
mentioning that the simulated likelihood functions of Models (I) and (II) are different
since their simulated likelihood functions are evaluated in different ways. In Model
(I), the log-likelihood function of the system is the sum of the logarithms of the simu-
lated likelihood functions of each single equation. For Model (II), it is the logarithm
of the simulated product of the marginal pdfs. We may expect that both of them give
consistent estimators of the parameters as long as the marginal probability model is
correctly specified. Model (III) uses the joint pdf in (35) and the Gaussian copula,
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where the correlation between the two divisions is captured by the copula parameter
ρ. Under the Gaussian copula assumption, the joint pdf of ε1i t and ε2i t is

fε
(
ε1i t , ε

2
i t

)
= c

(
Fε1

(
ε1i t

)
, Fε2

(
ε2i t

))
fε1
(
ε1i t

)
fε2
(
ε2i t

)
, (37)

where

c
(
ς1
i t , ς

2
i t

)
= 1√

1 − ρ2
exp

((
ς1
i t

)2 + (ς2
i t

)2
2

+ 2ρς1
i tς

2
i t − (ς1

i t

)2 − (ς2
i t

)2
2
(
1 − ρ2

)
)

,

(38)

ς
j
i t = 	−1

(
r j
i t

)
= 	−1

(
Fε j

(
ε
j
i t

))
and r j

i t = Fε j (ε
j
i t ) for j = 1, 2. Under the

Gaussian copula, the linear correlation between Fε1 and Fε2 is

γSpearman = 6

π
arcsin

ρ

2
, (39)

which measures the correlation of the two divisions in terms of the cdfs of ε1i t and ε2i t
and is also called the Spearman’s rank correlation coefficient of ε1i t and ε2i t .

We summarize the simulated ML estimates of Models (I), (II) and (III) in Table 6.
As we expected, the estimated parameters ofModels (I) and (II) are quite close to each
other since they have the same probability model but their likelihood functions are
evaluated in different ways. The estimates of Model (III) are slightly different from
those of Models (I) and (II). Model (III) allows for correlation between the two divi-
sions, and thus, its MSL estimator is more efficient. For the accommodation division,
the input elasticities of x11 and x12 from the separatemodel and the independent copula
model are smaller than those from the Gaussian copula models, while the elasticity of
x13 from the Gaussian copula model is larger than the other two specification. A sim-
ilar pattern can also be found in the restaurant division. Moreover, almost all standard
errors of Model (III) are much smaller than those obtained from Models (I) and (II).
The coefficients of the exogenous determinants of inefficiencies have the same signs
in the three models. Given the estimated Gaussian copula parameter ρ̂ = 0.8431, the
corresponding Spearman’s rank coefficient γ̂Spearman is 0.8311, which suggests that
Fε1(ε

1
i t ) and Fε2(ε

2
i t ) are highly correlated and that the two divisions are also. Both

Models (I) and (II) give less efficient estimators.
Once we obtain the estimated parameters, we may predict the inefficiencies, TEs

and the marginal effects of the exogenous determinants (wi t ) on the inefficiency using
(26), (30), (32) and (33). Their sample statistics are summarized in Panels A, B and
C of Table 7, respectively. Given the estimators of Models (I) and (II), it looks like
the inefficiencies of the two divisions from Models (I) and (II) are lower than those
from the Gaussian copula, and, therefore, the TEs are larger inModels (I) and (II) than
those inModel (III). The predictedmarginal effects from the threemodels consistently
suggest that increasing the scale of a hotel has negative effects on inefficiencies of the
accommodation and restaurant sectors and is thus helpful in improving the technical
efficiency. Moreover, our results also show that the hotels located in scenic areas are
also less efficient compared with those located in cities.
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7 Conclusion

In this paper, we used a copula-based simulated maximum likelihood approach to esti-
mate multiple panel stochastic frontier regressions with correlated composite errors.
The innovation of the proposed model is to address the unobserved heterogeneity of
the panel data. Compared with the separate estimation, the joint estimation of the
multiple SF regressions is more efficient since the joint approach takes into consider-
ation the correlation among composite errors. Therefore, this paper provides a better
prediction of the inefficiency under this panel data framework. Although the system
model considered in the current paper focuses on a production frontier system, it is a
straightforward extension to modify the current production frontier system to a cost
frontier system or to a system consisting of a combination of the production and cost
frontiers.
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