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Abstract
This paper considers the problem of estimating a nonparametric stochastic frontier
model with shape restrictions and when some or all regressors are endogenous. We
discuss three estimation strategies based on constructing a likelihood with unknown
components.One approach is a three-step constrained semiparametric limited informa-
tionmaximum likelihood,where thefirst two steps provide local polynomial estimators
of the reduced form and frontier equation. This approach imposes the shape restric-
tions on the frontier equation explicitly. As an alternative, we consider a local limited
information maximum likelihood, where we replace the constrained estimation from
the first approach with a kernel-based method. This means the shape constraints are
satisfied locally by construction. Finally, we consider a smooth-coefficient stochastic
frontier model, for which we propose a two-step estimation procedure based on local
GMM and MLE. Our Monte Carlo simulations demonstrate attractive finite sample
properties of all the proposed estimators. An empirical application to the US banking
sector illustrates empirical relevance of these methods.
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1 Introduction

In most applications in stochastic frontier model, researchers typically assume that the
functional form of the frontier takes a specific parametric form (e.g., Cobb–Douglas,
translog, constant elasticity of substitution, etc.) for the data they want to analyze.
However, economic theories rarely predict specific functional form for the frontier,
and consequently, misspecification of the functional form can lead to biased and incon-
sistent parameter estimators as well as to misleading inference on inefficiencies. In
such cases, researchers may wish to adopt a semi- or nonparametric specification.1

Nonparametric stochastic frontier models have been previously considered by Fan
et al. (1996), Martins-Filho and Yao (2007), Kumbhakar et al. (2007), among others.
However, to the best of our knowledge, all of the above papers assumed that the regres-
sors are exogenous.When some or all of the regressors are endogenous, their proposed
estimation approaches are no longer valid and need to bemodified. An issue that arises
from nonparametric estimation and that is specific to stochastic frontier models is that
economic theory leads to shape restrictions such asmonotonicity, concavity, symmetry
and linear homogeneity of the estimated function. Thus, it is important to incorporate
these restrictions in nonparametric estimation.

In the context of parametric stochastic frontier models, the problem of endogene-
ity has been addressed by Kutlu (2010), Tran and Tsionas (2013, 2015), Griffiths
and Hajargasht (2016), Karakaplan and Kutlu (2015), Amsler et al. (2016, 2017);
Kutlu and Tran (2019), providing more references. In the context of nonparametric
regression estimation with shape restrictions and exogenous regressors, some recent
works include Hall and Huang (2001), Henderson and Parmeter (2009), Henderson
et al. (2012), Du et al. (2013), Sun (2015) and Malikov et al. (2016a), just to name
a few. The only paper that we are aware of that allows for endogenous regressors
in a nonparametric setting is Freyberger and Horowitz (2015) where they propose
monotone restrictions to identify an unknown regression with endogenous discrete
covariates under the assumption that the discrete instruments have fewer mass points
than covariates.

In this paper, we address the problem of endogeneity of regressors and shape restric-
tions in estimation of nonparametric stochastic frontier models. We propose several
estimation procedures. Our first approach is to extend the nonparametric simultaneous
equation models of Su and Ullah (2008) to a stochastic frontier framework where we
impose shape restrictions using themethod ofDu et al. (2013).We propose a three-step
estimation algorithm which provides a consistent estimator of the frontier and error
variances and can be used to obtain inefficiency predictions. Our second approach is
to use a local specification of a parametric frontier in the spirit of Gozalo and Linton
(2000) so that the shape restrictions are satisfied locally, and we construct a similar

1 The term “nonparametric” used in this paper refers specifically to the assumptions on the functional form
of the frontier. That is, no specific functional form of the frontier is assumed.
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three-step estimation procedure as in the first approach. OurMonte Carlo results show
that the two approaches perform equally well in finite samples.

Additionally, we extend the smooth-coefficient stochastic frontier models of Sun
and Kumbhakar (2013) to allow for endogenous regressors and develop a two-step
estimation procedure for these models. Our approach here is different from the recent
work by Kumbhakar et al. (2016) where they consider the estimation of a smooth-
coefficient stochastic frontier production system.

The rest of the paper is organized as follows: Section 2 presents the nonparametric
stochastic frontier model with endogenous regressors and provides detailed discussion
of the two estimation approaches. A smooth-coefficient stochastic frontier model with
endogenous regressors and the two-step estimation algorithm are presented in Sect. 3.
Section 4 presents the Monte Carlo simulations to assess the performance of the
proposed estimators discussed in Sects. 2 and 3. An empirical application from the
US banking sector is given in Sect. 5. Section 6 concludes.

2 Nonparametric stochastic frontier model

First, we consider a nonparametric stochastic frontier model (SFM) with endogenous
regressors in the simultaneous equation framework of the form:

{
Yi = g(Xi , Z1i ) + vi − ui ,

Xi = h(Zi ) + ηi , Zi =
(
Z

′
1i , Z

′
2i

)′
,

(1)

where Yi is an observable scalar random variable representing output of firm i , g(·)
denotes the true, unknown structural frontier, Xi is d × 1 vector of inputs that are
endogenous, Z1i and Z2i are l1 × 1 and l2 × 1 (where l2 ≥ d) vectors of exogenous
inputs and instrumental variables, respectively, h(·) = (h1(·), . . . , hd(·))′

is a d ×
1 vector of functions of the instruments Zi , vi is a two-sided symmetric random
noise, and ui is a one-sided error representing technical inefficiency of firm i . We are
interested in estimating g(·) consistently so that it satisfies the requisite axioms of
production (or cost), and in using this estimate to predict the firm-specific inefficiency
levels.

In this paper, we assume that ui is independent of ξi = (vi , ηi )
′
and that

E(εi |Zi , ηi ) = E(εi |ηi ), where εi = vi − ui , so that εi is uncorrelated with Zi

given ηi ; we further assume that vi ∼ N (0, σ 2
v ), ui ∼ N+(0, σ 2

u ) and, conditional

on Zi , ξi ∼ N (0,�), where � =
(

σ 2
v �vη

�ηv �ηη

)
. The assumption that the inefficiency

term ui is independent of the other error terms can be relaxed by introducing a copula
function to model the joint distribution of (ui , ξi ) similarly to Amsler et al. (2016).
Other assumptions on the marginal distributions of ui and ξi , and/or allow for ui to
depend on a set of environmental variables can also be considered.2 However, these
extensions are beyond the scope of this paper andwe leave them for future exploration.

2 See, for example, Kumbhakar et al. (1991), Huang and Liu (1994), Battese and Coelli (1995), Caudill
et al. (1995), Wang (2002) and Amsler et al. (2014) and the references therein.
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Under these assumptions, the density of the endogenous variables conditional on
the instruments can be decomposed as follows:

f (Yi , Xi |Zi ) = f (Yi |Xi , Zi ) f (Xi |Zi ). (2)

Following the derivations of Amsler et al. (2016), we have:

fε,η(εi , ηi ) = const × ∣∣�ηη

∣∣−1 exp

(
−1

2
η

′
i�

−1
ηη ηi

)
σ−1φ

(
εi − μci

σ

)
�

(−λ(εi − μci )

σ

)
(3)

where ηi = Xi − h(Zi ), εi = Yi − g(Xi , Z1i ), μci = �vη�
−1
ηη ηi , λ = σu

σc
, σ 2

c =
σ 2

v −�vη�
−1
ηη �vη, σ 2 = σ 2

u +σ 2
c , φ(·) and�(·) are, respectively, the standard normal

density and CDF. Then, the log-likelihood function is given by:

ln L = ln L1 + ln L2 (4)

where

ln L1 = −n

2
ln σ 2 − 1

2σ 2

n∑
i=1

(Yi − g(Xi , Z1i ) − �vη�
−1
ηη ηi )

2

+
n∑

i=1

ln�

(−λ(Yi − g(Xi , Z1i ) − �vη�
−1
ηη ηi )

σ

) (5)

and

ln L2 = −n

2
ln

∣∣�ηη

∣∣ − 1

2

n∑
i=1

(Xi − h(Zi ))
′
�−1

ηη (Xi − h(Zi )). (6)

Unlike Amsler et al. (2016), this likelihood contains nonparametric terms.

2.1 Estimation: semiparametric LIML

Since the functions g(·) and h(·) are unknown, the log-likelihood function given in
(4)–(6) is not feasible to maximize in practice. First, note that since u is independent
of η and uncorrelated with Z , we have from (1):

E(Y |X , Z , η) = g(X , Z1) + E[(v − u)|X , Z , η]
= g(X , Z1) + E[(v − u)|h(Z) + η, Z , η]
= g(X , Z1) + E[(v − u)|Z , η]
= g(X , Z1) + E(v|Z , η) − E(u|Z , η)

= g(X , Z1) + E(v|η) − E(u)
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= g∗(X , Z1) + E(v|η)

= g∗(X , Z1) + �vη�
−1
ηη η, (7)

where the second term on the right-hand side of the last equality in (7) comes from on
our assumption of joint normality of v and η, and where g∗(X , Z1) = g(X , Z1)−μu ,

with μu = E(u) =
√

2
π
σu . Thus, from the law of iterated expectations, we have

E(Y |X , Z1, η) = m(X , Z1, η) = g∗(X , Z1) + �vη�
−1
ηη η, (8)

and Eq. (8) resembles a standard partially linear regression model. In the spirit of Fan
et al. (1996), if we can obtain consistent estimates of g∗(X , Z1), �vη and �ηη then
by replacing g(X , Z1) by g∗(X , Z1)+μu and using the estimates of �vη, �ηη in (5),
the remaining parameters can be obtained by maximizing (4). However, the frontier
function g(X , Z1) must satisfy relevant shape restrictions such as monotonicity and
concavity for it to be considered a production function.Consequently, these restrictions
must be imposed in the estimation of g(X , Z1).

In the context of nonparametric simultaneous equationmodels, Su andUllah (2008)
discuss how to obtain a consistent estimator of the unrestricted function g∗(X , Z1)

based on a three-step estimation procedure. Thus, one approach is to extend their
estimation procedure to partially linear model that allows for resulting frontier to
satisfy these restrictions. We call this approach constrained semiparametric limited
information maximum likelihood (CSPLIML) method. Alternatively, we can follow
Gozalo and Linton (2000) (see also McManus 1994) and approximate the function
g(X , Z1) locally by a parametric production function that satisfied these restrictions.
That is, g(X , Z1) � m(X , Z1, α). A natural candidate for m(·, ·, α) would be the
Cobb–Douglas production function, albeit other production functions such as constant
elasticity of substitution (CES) or Leontief can also be used.3 We call this approach
local LIML (LLIML). We now provide a detailed discussion of the two approaches.

2.1.1 CSPLIML

To obtain the constrained estimator of g∗(X , Z1), let W = (X , Z1) and Q be a
deterministic weighting function such that

∫
�d dQ(ξ) = 1, and q be the density of Q

with respect the Lebesgue measure in �d . Then, the constrained three-step procedure
can be constructed as follows.

Step 1 Obtain a consistent estimator of h(Zi ) by local linear (or general local
polynomial) smoothing of Xi = (X1i , . . . , Xdi )

′
on Zi with kernel K1 and bandwidth

sequence b1(n). Denote the estimates of h(Zi ) by ĥ(Zi ) = (ĥ1(Zi ), . . . , ĥd(Zi ))
′
,

and calculate the estimated residuals η̂i = (η̂i1, . . . , η̂id)
′
where η̂i j = Xi j − ĥ j (Zi )

for j = 1, . . . , d. In addition, compute the estimate of �ηη by �̂ηη = n−1
n∑

i=1
η̂i η̂

′
i ,

3 In the parametric stochastic frontier literature, the Cobb–Douglas specification has been used most fre-
quently in practice.
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and let η̂∗
i = �̂−1

ηη η̂i . Note that this step is equivalent to maximizing the log-likelihood
function (6).

Step 2 Obtain a consistent restricted estimator of m(W , η̂) = g∗(W ) + �vηη̂
∗ by

constrained profile likelihood method (or more precisely, constrained profile least
squares in the current context) with the corresponding kernel K2 and bandwidth
sequence b2(n). In order to describe the estimator in detail, we needmore notation. Let
A be an (n×n)matrix with elements Ai j = Ai (Wj ), where Ai (w) is the kernel weight
(e.g., for a local constant estimator, Ai (w) = Kb2(Wi − w)/

∑n
i=1 Kb2(Wi − w)),

and let p = (p1, . . . , pn) and pu = ( 1n , . . . , 1
n ). In the spirit of Du et al. (2013)

and Parmeter and Racine (2013), the constrained kernel smoothing estimator is based
on the solution ( p̂1, . . . , p̂n) of a standard quadratic programming problem in which
the objective function D( p) = ( p − pu)

′
( p − pu) is minimized subject to the rele-

vant monotonicity and concavity constraints, as initially proposed by Hall and Huang
(2001) in a univariate, single-constraint setting. Specifically, let Y = (Y1, . . . , Yn)

′
,

W = (W
′
1, . . . ,W

′
n)

′
, W ∗ = (In − A)W and Y ∗ = (In − A)Y . Further denote

�̂vη = (W ∗′
W ∗)−1W ∗′

Y ∗ and Ỹi = Yi − �̂vηη̂
∗
i . Then, the monotonicity and con-

cavity constraints we impose are of the form:

(i)
∑n

i=1 pi Ai (w)Ỹi − Ỹi ≥ 0

(ii)
∑n

i=1 pi A
(s1)
i (w)Ỹi ≥ 0, for s1 ∈ S1,

(iii)
∑n

i=1 pi A
(s2)
i (w)Ỹi ≤ 0 for s2 ∈ S2,

where S1 = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)}; S2 = {(2, 0, . . . , 0),
(0, 2, . . . , 0), . . . , (0, . . . , 2)}, and A(sr )

i (w) is the r th order partial derivative of
Ai (w) with respect to the j-th element of w, j = 1, . . . , d + l1. Given the solu-
tion ( p̂1, . . . , p̂n), we can obtain the restricted estimator of g∗(w) as ĝ∗(w) =∑n

i=1 p̂i Ai (w)Ỹi .
Step 3 Once the estimates ĝ∗(X , Z1) are obtained, by replacing g(X , Z1) in (5)

with ĝ∗(X , Z1)+μu , the remaining variance parameters (σ 2
v , σ 2

u ) can be obtained by
maximizing Eq. (5). Let (σ̂ 2

v , σ̂ 2
u ) denote the resulting estimates, the structural frontier

g(X , Z1) can be estimated by ĝ(X , Z1) = ĝ∗(X , Z1) + μ̂u where μ̂u = σ̂u
√
2/π .

The following remarks are worth noting:

Remark 1 As is the case with all nonparametric estimations, implementing the esti-
mator ĝ∗(·) (and hence ĝ(·)) requires specification of a kernel function and a method
of choosing the values for the two bandwidth parameters b1(n) and b2(n). Let p1 and
p2 denote the order of the local polynomials in Steps 1 and 2, respectively. As Su and
Ullah (2008) pointed out for the case p2 = 1, as long as Assumption A5 in their paper
is satisfied, the bandwidth parameter b1 does not affect the asymptotic distribution of
ĝ(·), while b2 does. They suggest a systematic method for choosing b2 and a rule of
thumb for choosing b1. We follow these suggestions. For the kernel function, we use
a product of second-order univariate kernels, and the rule of thumb for selecting b1 is

given by b̂1 = b̂2n−(α2−α1)/(2ζ ) where α1 = max
{
p2+1
p1+1 ,

p2+3
2(p1+1)

}
, α2 = p2+d+l1−1

l1+l2

, ζ = 2(p2 + 1) + d + l1, and b̂2 is the optimal “plug-in” bandwidth which is given

by b̂2 =
{

(γ02)
d+l1 (d+l1)c̃2
(γ21)2 c̃1

}1/(4+d+l1) × n−1/(4+d+l1), where γi j=
∫
� t i K2(t) j dt , for
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i = 0, 2 and j = 1, 2; c̃1 and c̃2 are defined in equations (2.11) and (2.13) of Su and
Ullah (2008).

Remark 2 4 The estimation of E(Y |X , Z1, η) requires an estimate of h(Zi ). How-
ever, it is possible in principle to use the information contained in the constraints on
E(Y |X , Z1, η) during the Step 1 estimation of h(Zi ). This may provide an improve-
ment to the Step 1 estimator, but its asymptotics does not depend on these constraints
and so any potential gains would be limited to finite samples. Also, for large n, the
computation in Step 2 can be cumbersome and expensive due to the localization of the
entire sample. To reduce this computation burden, Henderson and Parmeter (2015)
show that by using a smaller (random) sample of, say, 20 to 30 percent of n, there is
almost no loss in the estimation precision. We follow the suggestion of Henderson and
Parmeter (2015) in our Monte Carlo simulations and empirical application below.

2.1.2 LLIML

In this section, we describe an alternative estimation procedure for m(W , η̂) in Step 2
of CSPLIML described above. In what follows, Step 1 and Step 3 are the same as in
CSPLIML but Step 2 is different.

Now, instead of directly imposing the constraints in the estimation of g∗(W ) in Step
2, we follow Gozalo and Linton (2000) and use an anchoring parametric specification
in which all the theoretical restrictions are satisfied in a local approximation of g∗(W ).
In this paper, we use the Cobb–Douglas production function as the anchoring model.
McManus (1994) showed that the nonparametric estimator basedon the local versionof
the Cobb–Douglas specification is efficient among the class of all linear nonparametric
estimators and nearly efficient among all nonparametric estimators. McManus (1994)
provides a detailed discussion of this point and an empirical application.

We use the following approximation: g∗(W ,α) � α0W
α1
1 . . .W

αp
p or its log-linear

version, g∗(W ,α) � ln α0 + ∑p
j=1 α j lnWj , where p = (d + l1). Note that the

Cobb–Douglas functional form explicitly imposes the restriction that g∗(0,α) = 0
and the monotonicity and concavity are automatically satisfied. Moreover, one can
also impose a constant return to scale, if desired, by writing αp = 1 − ∑p−1

j=2 α j .
The estimate of g∗(W ,α) can be obtained by minimizing the following criterion:

Sn(w,α) = n−1
n∑

i=1

{Yi − g∗(Wi ,α) − �vηη̂
∗
i }2KH (Wi − w) (9)

where KH (ζ ) = det(H)−1K (H−1ζ ), with H being a (d ×d) nonsingular bandwidth
matrix, while K (·) is a real value kernel function. The estimate of g∗(W ) is ĝ∗(w) =
g∗(w, α̂(w)). Note that for this estimator, the optimal bandwidth can be selected by
cross-validation and the bandwidth for the first stage can be selected using the rule of
thumb as discussed in Sect. 2.1.1.

4 We thank the Special Issue editors for bringing these points to our attention.
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2.2 Predicting inefficiency

Once the estimates of the frontier and the variances parameters are obtained, a popular
predictor of ui is ûi = E(ui |εi ) as suggested by Jondrow et al. (1982). Amsler
et al. (2016) improve upon the predictor by pointing out that given the reduced form
equation, a better predictor of ui can be constructed based on the additional information
contained in ηi , namely ûi = E(ui |εi , ηi ). That is, albeit ηi is independent of ui , it
is correlated with vi and hence informative about vi . Following Amsler et al. (2016),
we estimate ûi as follows:

ûi = E(ui |εi , ηi ) = E(ui |ε̃i ) = σ̂∗

[
φ(λ̂ ˆ̃εi/σ̂ )

1 − �(λ̂ ˆ̃εi/σ̂ )
− λ̂ ˆ̃εi

σ̂

]
(10)

where ˆ̃εi = ε̂i −μ̂ci and σ̂ 2∗ = σ̂ 2
u σ̂ 2

c /σ̂ 2. Equation (10) provides a better estimate than
the original formulation, E(ûi |εi ), due to the fact that σ 2

c < σ 2
v . However, the main

trade-off or disadvantage is that normality of errors in the reduced form equations is
assumed to be correctly specified.

Simar et al. (2017) propose an ingenious alternative by estimating E(ui |Zi , Xi )

using σ̂ 2
u , a nonparametric estimator of σ 2

u , which in their case is allowed to depend
on Zi and Xi .5 An attractive feature of this estimator is that it conditions on observed
values of covariates, rather than on the unobserved errors. They obtain σ̂ 2

u (Zi , Xi ) from
local estimators of second and third-order (conditional)moments of v−u+E(u|X , Z),
which is a zero-mean error. The higher-order moments of this error can be expressed
in terms of (conditional) moments of u which are well known functions of σ 2

u (Zi , Xi )

if u is half-normal.
This estimator does not require normality of v. Under the additional assumption that

v is normal, Simar et al. (2017) mention the option of using a heteroskedastic version
of Jondrow et al. (1982). In this case, the predictor of ui becomes E(ui |εi , Zi Xi )

and we compute it using the formula for E(ui |εi ) from Jondrow et al. (1982) after
replacing σ 2

u with the local estimator σ̂ 2
u (Zi , Xi ).

In a similar manner, we can further improve upon the estimators proposed by Simar
et al. (2017) by considering a heteroskedastic version of Amsler et al. (2016). In this
case, the predictor of ui can bewritten as E(ui |εi , ηi , Zi Xi ), where we use σ̂ 2

u (Zi , Xi )

in place of σ̂ 2
u in (11).

3 Semiparametric SFM: smooth coefficients frontier

In Sect. 2, we considered nonparametric specifications of the frontier which are quite
flexible and robust to misspecification of the functional form. However, the main
drawback is that when the number of regressors is large, the curse of dimensionality
prohibits precise estimation in such models. In this section, we propose an alternative
class of semiparametric frontiers that are still flexible and yet, more resistant to the
curse of dimensionality.

5 We thank an anonymous referee for pointing out this estimator to us.
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Consider the following semiparametric smooth coefficients (SC) stochastic frontier
model:

Yi = α(Zi ) + X
′
iβ(Zi ) + vi − ui , i = 1, . . . , n, (11)

where Yi , Xi , vi and ui are defined as in previous section; Zi is a p × 1 vector
of environmental factors, α(Zi ) is an intercept and β(Zi ) is a d × 1 vector; both are
assumed to be unknown but smooth functions of Zi . As before, we allow for some or all
components in Xi to be correlated with vi but assume that Zi are uncorrelated with vi
and ui , and vi and ui are independent. Moreover, we assume that vi ∼ i.i.d. N (0, σ 2

v ),
ui ∼ i.i.d. N+(0, σ 2

u (Zi )), where σu(Zi ) = exp(δ0 + Z
′
iδ1). Model (11) is essentially

an extension of the model considered by Sun and Kumbhakar (2013) by allowing for
the endogeneity of Xi .

It is important to note that in practice, the assignment of relevant variables Xi

and Zi is the practitioner’s prerogative, and it may be done on the basis of practical
convenience or on the basis of economic theory.Nevertheless, our results do not impose
any restrictions on the relationship between Xi and Zi . That is, Xi may or may not be
different from or unrelated to Zi .

To estimate the unknown coefficient functions and the variance parameters, we
suggest in the spirit of Sun and Kumbhakar (2013), a two-step estimation approach.
We now provide details of this estimator.

Let εi = vi − (ui − E(ui |Zi )) = vi − u∗
i , where the definition of u∗

i is apparent,

and under our assumption, E(ui |Zi ) = √
2/πσu(Zi ). Then, (11) can be expressed

as:

Yi = α∗(Zi ) + X
′
iβ(Zit ) + εi , i = 1, . . . , n, (12)

where α∗(Zi ) = α(Zi ) − √
2/πσu(Zi ) and E(εi ) = 0. Define θ(Zi ) =[

α∗(Zi ), β(Zi )
′]′

and X̃i =
[
1, X

′
i

]′
, then (12) can be compactly written as:

Yi = X̃
′
iθ(Zi ) + εi , i = 1, . . . , n. (13)

Thus, Eq. (13) resembles the smooth-coefficient stochastic frontier model of Sun and
Kumbhakar (2013). However, due to the endogeneity of Xi , their approach cannot be
directly used. To obtain consistent estimators of the unknown functions and parameters
of themodel, we suggest a two-step estimation procedure where in the first two steps, a
local generalized method of moments (LGMM) is used to obtain consistent estimator
for the unknown coefficient function θ(Zi ); while in the second step, the MLE is used
to obtain the remaining unknown parameters. A detailed description of the two-step
estimation procedure is given below.

Step 1: LGMM Estimation of θ(Zi ).
Suppose there exists an 1 × l (where l ≥ d) vector of instruments Wi (including

a constant) such that Wi are uncorrelated with εi so that E(W
′
i εi ) = 0. Assume that

the elements of θ(Zi ) are twice continuously differentiable in the neighborhood of z.
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Then, for Zi in the neighborhood of z, we have the following locally kernel-weighted
orthogonality conditions:

E
[
W

′
i Khi (z)(Yi − X̃

′
θ(Zi )

]
= 0, i = 1, . . . , n, (14)

where Khi (z) = ∏p
j=1 h

−1
j k((Zi −z)/h j ) is a product kernel function in which k(·) ≥

0 is a bounded univariate symmetric kernel satisfying the conditions
∫
k(ψ)dψ = 0,∫

ψ2k(ψ)dψ = c1 > 0 and
∫
k2(ψ)dψ = c2 > 0, and h = (h1, . . . , h p)

′
is a (p×1)

vector of bandwidths. Thus, Eq. (14) provides the moment restrictions to construct the
following local GMM criterion function:

Jn(θ(z)) =
n∑

i=1

[
{Yi − X̃

′
iθ(Zi )}′

Khi (z)Wi

] [
W

′
i Khi (z){Yi − X̃

′
iθ(Zi )}

]
. (15)

Minimizing (15) with respect to θ(·) yields the following local GMM estimator:

θ̂ (z) =
(

n∑
i=1

X̃
′
i�hi (z)X̃i

)−1 (
n∑

i=1

X̃
′
i�hi (z)Yi

)
(16)

where�h(z) = Khi (z)WiW
′
i Khi (z). Let ε̂i = Yi − X̃i θ̂ (Zi ) be the estimated residuals

from (13), then the remaining parameters, namely γ = (σv, δ
′
)
′
where δ = (δ0, δ1)

′
,

can be estimated using the ML procedure below.
Step 2: ML Estimation of γ . First, recall that εi was defined as εi = vi − u∗

i =
vi−ui+√

2/πσu(Zi ), where σu(Zi ) = exp(δ0+Z
′
iδ1), and hence can be re-expressed

as:

εi = √
2/π exp

(
δ0 + Z

′
iδ1

)
+ vi − exp

(
δ0 + Z

′
iδ1

)
ũi , (17)

where ũi ∼ N+(0, 1). Let σi = σv + σu(Zi ) = σv + exp(δ0 + Z
′
iδ1), and λi =

σu(Zi )/σv . Then, under our assumptions, the log-likelihood function associated with
(17) is given by:

ln L(γ ) = Constant − 1

2

n∑
i=1

ln(σ 2
i ) − 1

2

n∑
i=1

ε̂2i

σi
+

n∑
i=1

ln�

(
−λi ε̂i

σi

)
. (18)

The MLE of γ is then given by:

γ̂ = argmax
γ∈�

ln L(γ ), (19)

where� is the parameter space of γ which is assumed to be compact. The estimators of
σu(Zi ), λi and E(ui |Zi ) can be obtained as σ̂u(Zi ) = exp(γ̂0+Z

′
i γ̂1), λ̂i = σ̂u(Zi )/σ̂v
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and Ê(ui |Zi ) = √
2/πσ̂u(Zi ), respectively. The estimator of Ê(ui |Zi ) is needed to

identify the intercept term in (12).
We make the following remarks:

Remark 3 The model given in (13) is identical to the model considered by Tran and
Tsionas (2009) and hence, the asymptotic properties of the LGMM estimator θ̂ (Zi )

can be drawn directly from the results of Theorem 1 in their paper. As for the MLE
estimator γ̂ , it can also be shown to be consistent and asymptotically normal.

Remark 4 It is clear from (13) that the variance structure of ε = (ε1, . . . , εn)
′
is het-

eroskedastic sinceVar(ε) = � = σ 2
v In+�u where�u = diag

(
σ 2
u (Z1), . . . , σ

2
u (Zn)

)
.

Thus, it is tempting to construct an improved (i.e., more efficient) LGMM estimator of
θ(Zi ) bymodifying the objective function in (15) to account for this variance structure.
However, such a LGMM estimator can be problematic for the following two reasons.6

First, as the literature has shown (see, e.g., Martins-Filho and Yao 2009; Su et al.
2013; Parmeter and Racine 2019), incorporating the variance-covariance structure in
a nonparametric regression model is a delicate balance of bias and efficiency that does
not always lead to improvements even in large samples. Second, as argued by Lin
and Carroll (2000) for a typical random effects panel data models, when a standard
kernel-based estimator is used in estimating the regression, it is often better to use
the “working independence” approach by ignoring the correlation structure within a
cluster. Thus, additional work on this topic will be fruitful and we leave it for future
research.

We now turn to estimation of the marginal effects of inefficiency determinants and
inefficiency predictions.

Recall that E(ui |Zi ) = μu(Zi ) = √
2/π exp(δ0+Z

′
iδ1); hence, themarginal effect

of μu(Zi ) with respect to the j th element of Zi (which we will denote as zi j ) can be
estimated as:

δ̂ j = ∂μi (Zi )

∂zi j
= √

2/πδ̂1 j , (20)

where δ̂1 j is the MLE estimate from Step 2.
Next, given the estimates of the model’s parameters, we compute the efficiency, ξ̂i ,

using the following Jondrow et al. (1982) approach to predict ui conditional on εi :

ûi = Ê(ui |εi ) = σ̂vσ̂ui

σ̂i

(
φ̂i

1 − �̂i
− λ̂i ε̂i

σ̂i

)
, (21)

where ξ̂i = exp(−ûi ), σ̂ui = σ̂u(Zi ), φ̂i = φ
(
− λ̂i ε̂i

σ̂i

)
and �̂i = �

(
− λ̂i ε̂i

σ̂i

)
.

As alternatives, it is possible to use the estimators of Simar et al. (2017) and the
other improved estimators discussed in Sect. 2.2 to obtain δ̂ j and ξ̂i but we do not
pursue these alternatives here.

6 We would like to thank an anonymous referee for pointing these out.
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4 Monte Carlo simulations

4.1 Data generating processes (DGPs)

To examine the finite sample performance of the proposed estimators,
we conduct Monte Carlo experiments. We consider three data generating processes

(DGPs):
a. Nonparametric Frontier:

DGP 1:

{
Yi = g(Xi , Z1i ) = 1 + 0.5 log(Xi + 1) + 0.5 log(Z1i ) + vi − ui
Xi = Z2i + ηi

DGP 2:

{
Yi = g(Xi , Z1i ) = log

[(
0.5X2

i + 0.5Z2
1i + Xi Z1i

)1/2] + vi − ui
Xi = log

(
0.2 + Z2

2i

) + ηi

where the errors vi and ηi are generated as

(
vi
ηi

)
∼ i.i.d. N

(
0,

(
1 ρ

ρ 1

))
.

Here, ρ = {0.2, 0.5, 0.8} indicate weak,medium and strong endogeneity, respectively.
The one-sided error ui is generated as ui ∼ i.i.d. N+(0, λ2σ 2

c ), where σ 2
c = 1 − ρ2

and we set λ = {1.0, 2.0}. The exogenous variable Z1i and the instrument Z2i are
generated as i.i.d. each uniformly distributed on the interval [0,2]. It can be easily
verified that the above three DGPs satisfy the monotonicity and concavity conditions.

b. Smooth Coefficient Frontier:

DGP 3: Yi = α(Zi ) + β1(Zi )Xi1 + β2(Zi )Xi2 + vi − ui ,

where α(Zi ) = exp(Zi ), β j = exp(a j Zi ) for j = 1, 2 with a1 = 0.5 and a2 = 0.75.
The term ui is generated as ui ∼ N+(0, σ 2

u (Zi )), where σ 2
u (Zi ) = exp(δZi ), and the

values of δ are implied by λ = {1, 2}. All the remaining variables are generated as in
DGP 1. For each DGP, we consider two sample sizes, n = {100, 200, 400, 800}, and
the number of replications we run is 500.

For comparison purposes, we also include, along with our proposed estimators,
the estimators from the following scenarios for DGP 1 and DGP 2: (1) a correct
specification of the frontier with endogeneity which we denote as MLE-CE, and this
is our benchmark; (2) a correct specification of the frontier but ignoring endogeneity
which we call MLE-C; and (3) the Fan et al. (1996) semiparametric estimator that
ignores endogeneity which we label as FLW.

4.2 Simulation results

To assess the performance of the proposed estimators, we report, forDGP1 andDGP2,
the following measures: (i) the average mean squared errors (AMSE) of the estimated
CSPLIML and LLIML estimators over the number of replications; (ii) the ratio of
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AMSE for each estimator, described at the end of previous subsection, relative to that
of the proposed estimators over the realized values of X and Z1 and over the number
of replications. The values of the ratios that are larger than 1 indicate superior AMSE
performance of the proposed approaches; and (iii) the proportion of each constraint
being violated. For DGP 3, we report only the average of MSE for the proposed
two-step estimator over the number of replications.

For DGP 1 and 2, to obtain the estimator ĝ, we set p1 = 3 and p2 = 1, and we use a
product of the second-order Epanechnikov kernels standardized to have unit variance:

ki (w) = 3

4
√
5

(
1 − 1

5
w2

)
1(|w| ≤ √

5), i = 1, 2, 3.

The bandwidth sequences (b1, b2) are chosen as previously described.We also conduct
experiments with different bandwidth choices with b̂1 = cb̂2n−(α2−α1)/(2ζ ) where c
is constant and c = {0.5, 0.75, 1.25, 1.5, 2.0}, and b̂2 is defined as in Remark 1. Our
results indicated that the estimates are similar for various values of c, with the value
of c = 1 providing the smallest AMSE. Consequently, we set c = 1 throughout the
simulations.7 For DGP 3, the bandwidths are selected based on leave-one-out cross-
validation.

The simulation results for DGPs 1 and 2 (nonparametric frontier) are reported in
Tables 1 and 2. Note that the row “Violation” contains two entries where the top entry
shows the proportion of points violating the monotonicity (m) and the bottom entry
shows the proportion of points violating the concavity constraints (c) when we use the
proposed CSPLIML and LLIML methods.8

First, we discuss the results from the nonparametric frontier. From Tables 1 and 2,
we observe that the MSEs for the function g(·) are very similar for both approaches,
and the same is observed for the variance and correlation parameters. As the sample
size doubles, the MSEs for g(·) reduce and, for variance and correlation parameters,
the MSEs decrease roughly to half indicating the root-n consistency. The last row of
Tables 1 and 2 shows the proportion of violations of the constraints. We observe that
the CSPLIML method has more points violating both constraints than the LLIML
method, albeit the proportions of both constraints violations are relatively small.

Next, to illustrate the usefulness of nonparametric specification of the frontier when
some regressors are endogenous, Tables 3 and 4 provide the comparison of our pro-
posed model/approach to some of the parametric models/approaches discussed at the
end of Sect. 4.1 for DGP 1 and 2 (with λ = 2 and ρ = 0.5), respectively. Compared
to the benchmark case, we see that our proposed estimators perform reasonably well
in terms of MSEs, and as the sample size increases, our proposed semiparametric
methods converge to the correctly specified parametric model with endogeneity for
both DGPs considered (see MLE-CE column as n increases). In addition, as expected,
our results also show that our proposed estimators outperform both the correctly spec-

7 For conservation of space, we do not report these results here but they are available from the authors upon
request.
8 Let x(1) ≤ x(2) ≤ · · · ≤ x(n) be rank ordered values. We say that the function g(·) violates the
monotonically increasing condition at x(i) if g(x(i)) < g(x(i−1)). Moreover, we say that the function g(·)
violates the concavity condition at xi if its Hessian matrix is positive definite.
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Table 3 Ratio of AMSPE and MSE of Each Estimator Relative to CSPLIML and LLIML-DGP 1 (λ =
2, ρ = 0.5)

Relative to CSPLIML Relative to LLIML

MLE-CE MLE-C FLW MLE-CE MLE-C FLW

n = 100

g(·) 0.579 2.818 2.591 0.612 2.998 2.989

σv 0.611 2.429 2.484 0.563 2.427 2.403

σu 0.583 2.276 2.508 0.564 2.376 2.629

ρ 0.644 – – 0.647 – –

n = 200

g(·) 0.668 2.196 1.988 0.674 2.324 2.437

σv 0.683 2.181 2.108 0.646 2.127 1.996

σu 0.675 2.095 2.152 0.686 1.995 2.173

ρ 0.717 – – 0.718 – –

n = 400

g(·) 0.771 1.448 1.409 0.815 1.932 1.437

σv 0.826 1.814 1.778 0.806 1.817 1.766

σu 0.853 1.809 1.745 0.846 1.825 1.754

ρ 0.778 – – 0.784 – –

n = 800

g 0.859 1.442 1.823 0.885 1.778 1.884

σv 0.904 1.536 1.936 0.897 1.824 1.747

σu 0.913 1.514 1.942 0.907 1.806 1.679

ρ 0.926 – – 0.921 – –

ified parametric model but ignoring endogeneity (MLE-C), and the semiparametric
model of Fan et al. (1996) that is also ignoring endogeneity (FLW). The main impli-
cation of our results is that ignoring endogeneity when it is present can have serious
consequences for the estimation of productivity measures and efficiency.

For the smooth-coefficient frontier model, the results in Table 5 show the proposed
two-step estimator is well behaved in finite samples in the sense that when the sample
size increases, the MSE of the estimated coefficient functions reduces. In addition,
when the sample sizes doubled, theMSE of the estimated variance parameters reduces
to roughly half indicating

√
n-consistency is achieved for these estimated parameters.

5 Empirical illustration

5.1 Data andmodel

As an application, we use an input distance function of large US banks based on
the same data as in Malikov et al. (2016b), from whom we borrow heavily in this
discussion. The data on commercial banks come from Call Reports from the Federal
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Table 4 Ratio of AMSPE and MSE of Each Estimator Relative to CSPLIML and LLIML-DGP 2 (λ =
2, ρ = 0.5)

Relative to CSPLIML Relative to LLIML

MLE-CE MLE-C FLW MLE-CE MLE-C FLW

n = 100

g(·) 0.588 2.723 2.675 0.601 2.918 2.899

σv 0.621 2.642 2.841 0.613 2.829 2.663

σu 0.576 2.524 2.422 0.581 2.634 2.653

ρ 0.643 – – 0.649 – –

n = 200

g(·) 0.682 2.124 2.103 0.696 2.618 2.615

σv 0.704 2.457 2.259 0.692 2.504 2.269

σu 0.681 2.267 2.155 0.699 2.392 2.345

ρ 0.738 – – 0.726 – –

n = 400

g(·) 0.852 1.536 1.558 0.778 1.876 1.826

σv 0.846 1.827 1.654 0.768 1.725 1.707

σu 0.897 1.814 1.679 0.735 1.717 1.735

ρ 0.826 – – 0.807 – –

n = 800

g(·) 0.913 1.736 1.883 0.842 1.974 1.947

σv 0.902 1.757 1.845 0.831 1.934 1.826

σu 0.947 1.773 1.847 0.827 1.902 1.809

ρ 0.882 – – 0.876 – –

Reserve Bank of Chicago for 2001:Q1–2010:Q4. We use a selected sub-sample of
homogeneous large banks, namely those with total assets in excess of one billion
dollars (in 2005 US dollars) in the first 3 years of observation. The sample is an
unbalanced panel with 2397 bank–year observations for 285 banks.

We define the following desirable outputs of a bank’s production process: con-
sumer loans (y1), real estate loans (y2), commercial and industrial loans (y3) and
securities (y4). We also include off-balance-sheet income (y5) as an additional output.
The variable inputs are labor, i.e., the number of full-time equivalent employees (x1),
physical capital (x2), purchased funds (x3), interest-bearing transaction accounts (x4)
and non-transaction accounts (x5).

Malikov et al. (2016b) also have input price information which we take into account
here as instruments in Z2i (which includes four log relative prices normalized by the
price of x1). Moreover, we follow Färe et al. (2005) and standardize all variables prior
to the estimation by subtracting their respective sample means and dividing by their
sample standard deviations.

We use the above data to estimate both the nonparametric frontier and the smooth-
coefficient frontier models. However, our objective is not to determine and compare
the performance of both models but merely to illustrate the usefulness of our proposed
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Table 5 MSE-DGP 3 (Smooth-coefficient frontier)

λ = 1 λ = 2

ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 100

α(·) 0.115 0.113 0.112 0.092 0.085 0.081

β1(·) 0.077 0.072 0.068 0.062 0.053 0.047

β2(·) 0.064 0.058 0.049 0.042 0.033 0.029

σv 0.615 0.613 0.588 0.248 0.241 0.239

σu 0.559 0.545 0.546 0.284 0.289 0.277

δ 0.289 0.290 0.281 0.087 0.088 0.087

n = 200

α(·) 0.102 0.099 0.094 0.077 0.073 0.068

β1(·) 0.065 0.058 0.047 0.034 0.029 0.024

β2(·) 0.055 0.051 0.042 0.031 0.026 0.021

σv 0.312 0.289 0.265 0.143 0.131 0.110

σu 0.284 0.269 0.255 0.144 0.125 0.109

δ 0.140 0.121 0.108 0.044 0.030 0.022

n = 400

α(·) 0.092 0.088 0.082 0.065 0.061 0.058

β1(·) 0.045 0.041 0.036 0.023 0.020 0.017

β2(·) 0.044 0.040 0.037 0.024 0.022 0.018

σv 0.155 0.143 0.132 0.071 0.065 0.055

σu 0.141 0.135 0.128 0.071 0.063 0.054

δ 0.069 0.060 0.055 0.020 0.014 0.010

n = 800

α(·) 0.084 0.080 0.079 0.062 0.059 0.054

β1(·) 0.043 0.037 0.032 0.021 0.018 0.014

β2(·) 0.042 0.038 0.033 0.020 0.019 0.015

σv 0.074 0.071 0.065 0.038 0.032 0.027

σu 0.082 0.067 0.061 0.037 0.032 0.029

δ 0.035 0.030 0.024 0.011 0.005 0.004

approaches. Moreover, it is important to note that since we are using panel data,
whereas our proposed models are designed for cross-section data, and we need to
make assumptions on the temporal behavior of inefficiency, uit and noise, vi t . For
simplicity, we assume both uit and vi t to be independent and identically distributed
for nonparametric specification of the frontiermodel, and independently distributed for
the smoothing coefficient frontier model. In addition, we assume no specific temporal
behavior on inefficiency which implies a bank can be fully efficient in one year but
not in others.

The first model we consider is the smooth-coefficient input distance function in
which the translog functional form is used for the specification of the frontier. The
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Fig. 1 β j (Z) as a function of log equity. Note: Log-equity and time are normalized in the interval [0, 1]

translog distance function (IDF) has the form:

− ln xKit = β0 +
K+M∑

m=K+1

βm(Z it1) ln ym +
K∑

k=1

βk(Z it1) ln (xkit/xKit) + vit. (22)

The variables in Z it1 are a time trend and the log equity capital to account for
possible size effects. On the other hand, Z it2 includes Z it1 plus the four log relative
prices and non-performing loans in the previous period. We expect βm(Z it1) < 0
(m = K + 1, . . . , K + M) and βk(Z it1) > 0 (k = 1, . . . , K ).

5.2 Empirical results

Our empirical results are summarized in Figs. 1, 2 and 3. In Fig. 1, we plot β j s as a
function of log equity (Z ) which we normalize in the interval [0, 1]. In panel (a) we
report the output-related coefficients and in panel (b) the input-related coefficients.
As necessitated by the theory, the output-related coefficients are negative and the
input-related coefficients are positive. Moreover, the input distance function should
be linearly homogeneous with respect to inputs. Technical change is mostly negative
except for values of equity near the median, where it also attains its maximum. As
a function of equity, these coefficients show a variety of patterns which makes it
necessary to use nonparametric estimation.

Next, we report the estimates of returns to scale (RTS) and the results are given in
Fig. 2. The RTS can be estimated using the following equation:

RTS(z) = −
(

M∑
m=1

βm(z)

)−1

. (23)

The results in Fig. 2 indicate that large US banks exhibit, in general, decreasing returns
to scale except for relatively small banks that are in, approximately, the 30-th percentile
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Fig. 2 Returns to scale

of the log-equity distribution. Returns to scale are lower at the median and are close to
one for larger banks; see also the evidence in Restrepo-Tobón and Kumbhakar (2015).

Figure 3 reports the sampling distributions of the estimated technical efficiency
(panel (a) and productivity measures such as technical change (panel (b)), efficiency
change (panel (c)) and productivity growth (panel (d)) which is defined as the sum of
technical change and efficiency change. The results in Fig. 3 show that both efficiency
change and productivity growth are mainly positive, averaging about 2.4% and 2.7%,
respectively, while technical change is close to zero on average and extends from
roughly -1.8% to 1.6%. The estimated technical efficiency scores are ranging from
74% to 88% with an average of 83% indicating that for some banks, there is more
room for improvement.

Next, we consider the estimation of nonparametric input distance frontier model
where the frontier is left unspecified. For this model, we use both the local LIML
and constrained LIML approaches discussed in Sects. 2.1.1 and 2.1.2. Moreover, for
comparison purposes, we also estimate a parametric translog frontier as well as a non-
parametric frontier model assuming all regressors are exogenous. These comparisons
are particularly important as they highlight the impact of endogeneity. For simplicity
and ease of presentation, we summarize the results in the form of sample distributions
and these results are given in Fig. 4.

Panel (a) in Fig. 4 reports sample distributions of efficiency obtained using LLIML,
CSPLIML, a nonparametric model without endogeneity and a parametric (translog)
specification that also does not allow for endogeneity. Efficiency distributions are
rather similar for LLIML and CSPLIML, and the same is true for the measures of
technical change (panel (b)), efficiency change (panel (c)), and productivity growth
(panel (d)). Technical change and efficiency change distributions are quite different
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Fig. 3 Sample distributions of efficiency, efficiency change, technical change and productivity growth:
smooth-coefficient model

when endogeneity is ignored. For example, according to local LIML and constrained
LIML, technical change averages -0.5% and extends from roughly -1% to slightly over
zero,whereas according to the translog and nonparametricmodelwithout endogeneity,
it averages at 0.5% and spreads from -0.5% to nearly 1%. For efficiency changes, our
new techniques give an average close to 1.5%, but the prediction of the models that do
not account for endogeneity is that efficiency change averages -0.5% and ranges from
roughly -1.5% to slightly over 0.5%.Therefore, there are important differences in terms
of productivity growth as local LIML and constrained LIML imply an average value
close to 1%, ranging from about zero to nearly 2%. Themodels that ignore endogeneity
imply an average value close to zero, ranging from -1% to 1%, approximately.

The drastic impact of accounting for endogeneity on the average estimated produc-
tivity growth in Fig. 4 agrees with what was found in earlier studies. For example,
Malikov et al. (2016b) report an average growth rate of 1.1% and a similar sensi-
tivity of estimates to controlling for endogeneity of inputs. They obtain their results
using a Bayesian estimation of a directional technology distance function and cost-
minimization conditions on the same data set.
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Fig. 4 Sample distributions of efficiency, technical change, efficiency change and productivity growth:
nonparametric frontier model

6 Concluding remarks

In this paper, we consider the problem of estimating a nonparametric stochastic fron-
tier model with shape restrictions and when some or all regressors are endogenous.
The endogeneity is caused by correlation between the symmetric error terms in the
production function equation and in the reduced form.

First we propose two estimation procedures that share common features. Both are
implemented in a three-step algorithm. Specifically, in the first procedure, we develop
a three-step nonparametric constrained limited information maximum likelihood esti-
mator. In the second procedure, we construct a local parametric limited information
maximum likelihood estimator, where the constrained nonparametric estimation in the
first procedure (Step 2) is replaced by a local parametric approximation.

Additionally,we consider estimation of semiparametric smooth-coefficient stochas-
tic frontiermodelswith endogenous regressors andpropose a two-step procedure based
on local (or nonparametric) GMM and MLE estimators.

Our Monte Carlo simulations demonstrate an attractive finite sample performance
for all estimators proposed in this paper. An empirical application to US banks is
presented to illustrate the usefulness of our proposed methods in practice.
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Finally, the paper does not pursue several interesting extensions. For example, we
do not consider further sources of endogeneity such as dependence between ui and
ξi ; we do not consider the problem of testing for parametric versus nonparametric
specification of the frontier; nor do we consider the problem of testing constancy of
parameters in the smooth-coefficient model. These problems merit a separate paper
and are left for future work.
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