
Empirical Economics (2021) 61:667–692
https://doi.org/10.1007/s00181-020-01891-7

Horizon confidence sets

Jack Fosten1 · Daniel Gutknecht2

Received: 7 May 2019 / Accepted: 20 May 2020 / Published online: 11 June 2020
© The Author(s) 2020

Abstract
This paper introduces a new statistical procedure to discriminate between competing
forecasting models at different forecast horizons. Unlike existing tests, which elim-
inate a model from all horizons if dominated according to some loss measure, our
methodology identifies an ‘optimal’ set of models at each horizon, retaining a model
that performs well at a given horizon even if dominated at others. While our method is
especially useful in applications to long-term forecasting as well as short-term now-
casting, it can also be applied in wider settings like the comparison of forecasting
models across countries. We conduct a small Monte Carlo study to investigate the
finite sample properties and apply our procedure to nowcasting US real GDP growth
and its subcomponents, comparing a factor-based nowcastingmethod to a naïve bench-
mark. Unlike existing methods, ours can formally detect the point in the quarter at
which the factor method beats the benchmark or vice versa.

Keywords Nowcasting · Multiple model comparison · Model confidence set ·
Bootstrap

JEL Classification C12 · C22 · C52 · C53

This paper was previously circulated under the title ‘Model Confidence Sets for Nowcast Procedures’. We
are grateful for the comments of Tim Robinson and Viet Nguyen as well as participants of the 2018
Econometric Society Australasian Meeting (ESAM), which have helped to improve this paper. Our thanks
go to Shaoni Nandi for the excellent research assistance on this project.

B Jack Fosten
jack.fosten@kcl.ac.uk

Daniel Gutknecht
Gutknecht@econ.uni-frankfurt.de

1 King’s Business School, King’s College London, London WC2B 4BG, UK

2 Faculty of Economics and Business, Goethe University Frankfurt, 60629 Frankfurt am Main,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00181-020-01891-7&domain=pdf
http://orcid.org/0000-0001-5123-8500


668 J. Fosten, D. Gutknecht

1 Introduction

Forecasters are often interested in the performance of econometric models at forecast-
ing different horizons into the future. However, as soon as we compare two or more
competing models across many horizons, challenging questions arise. Is there a single
best model at every horizon? Do models all perform equally well at all horizons?
Is there a different optimal model at different horizons? Many empirical studies in
different settings have suggested that the best predictive model does, indeed, change
with horizon. For instance, in long-run exchange rate forecasting, the survey of Rossi
(2013) finds that univariate models dominate at short horizons while models with
economic fundamentals are best at long horizons. In short-term nowcasting, where
horizons are typically thought of in terms of days before the release of gross domestic
product (GDP) data, studies such as Banbura et al. (2013) find that big data methods
like factor models only dominate when the daily nowcast horizon is small enough to
allow a lot of relevant information to become available.

In this paper, we propose a statistical procedure which addresses the above ques-
tions, and obtains the collection of models which dominate at different horizons with
a given level of confidence. We coin the term Horizon Confidence Set to denote the
collection of ‘optimal horizon-specific models’. Our approach is based on the model
confidence set (MCS) procedure developed by Hansen et al. (2011), but is modified
to operate over multiple horizons on the same set of models. Specifically, we compute
Diebold–Mariano t-statistics (Diebold and Mariano 1995) for equal predictive ability
(EPA) to compare two competing models in each of the horizons. Then we propose an
elimination rule based on the maximal t-statistic which removes a model from a spe-
cific horizon if its p-value falls below the nominal level. Unlike existing procedures,
our methodology therefore does not operate as a ‘horse race’-type test identifying only
the dominant model overall, but retains the optimal set of models across all horizons.
It does so while guarding against the multiple testing problem which occurs by testing
across horizons. In the ‘Appendix’, we generalize our procedure to allow more than
two models at each horizon.

Besides the multi-horizon context of forecasting and nowcasting, our procedure
can also be applied to other settings: for instance, replacing ‘horizon’ with ‘country’,
the methodology allows the comparison of two competing models across countries,
retaining possibly a different model for different countries. Alternatively, taking the
exchange rate forecasting example again, dating back to Mark (1995) it has become
custom to compare the predictive ability of the different exchange rate models for
different currency pairs with the US dollar. Our method could therefore be used to
perform this cross-currency comparison, instead of the multi-horizon aspect.

Thehorizon confidence set procedure proposed in this paper differs from theoriginal
MCS procedure of Hansen et al. (2011) in two important ways. Firstly, one could
consider directly applying the MCS procedure to all model-horizon pairs jointly.
However, this procedure would potentially eliminate all models from a single horizon
and would also involve computing unfair comparisons of, say, model A at horizon x
to model B at horizon y. Secondly, one might consider applying the MCS procedure
to each horizon independently. However, by not guarding against the multiple testing
issue across horizons, this may produce too many false positives and provide the
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Horizon confidence sets 669

researcher with a sparser set of models than is statistically justified. Such ‘sparsity’
cannot arise in our case as models are removed at a given horizon only when the
performance is worse relative to comparisons from other horizons. Moreover, note
that standard Bonferroni-type methods are typically not advisable in many of the
settings we consider as they become too conservative when the number of horizons is
large.

Our method also differs from other procedures which are in principle applicable to
multiplemodels at multiple horizons, such as theMCS procedure based on the concept
of uniform and average superior predictive ability (SPA) proposed by Quaedvlieg
(2020). In his procedure, Quaedvlieg (2020) aims to detect the model(s) which either
strictly dominate the competitor models (uniform SPA) or which exhibit the best
average performance (average SPA) across all horizons. Though of separate interest,
in the case where the ‘optimal’ set of models changes across horizons, uniform SPA
would fail to provide a conclusive answer, while average SPA may lead us to retain
all models in all horizons, even if models are dominated at specific horizons. On the
contrary, our procedure is able to potentially identify this changing pattern of ‘optimal’
models across horizons.1

We will apply our methodology to short-term nowcasting, which we consider to be
a leading case. Our method is complementary to various existing nowcasting papers
which have tended to shut down one of the two channels of multiple testing in model
evaluation. On the one hand, some studies have performed tests for nowcast evaluation
on a pair of models at single nowcast horizons (for example Giannone et al. 2016),
whereas other studies focus on the performance of a single nowcasting model across
many nowcast horizons (Fosten and Gutknecht 2020). To further add to the literature
of nowcasting, we outline how our method can be helpful in performing nowcast
combination at different release dates and demonstrate how this nowcast combination
approach using our confidence set output can be used to test nowcast monotonicity
(see also Banbura et al. 2013; Aastveit et al. 2014; Knotek and Zaman 2017).

More specifically, our empirical application looks at the factor model method used
by Bok et al. (2018) in making the New York Fed Staff Nowcasts. We extend their
analysis to consider nowcasts of the five subcomponents of US real GDP as well as
aggregate GDP. We compare the nowcasts of this factor method to a simple autore-
gressive benchmark across the different GDP subcomponents. This builds on existing
empirical nowcasting studies, including Marcellino and Schumacher (2010), Banbura
et al. (2013), Luciani and Ricci (2014), Foroni and Marcellino (2014), Aastveit et al.
(2014, 2017), Foroni et al. (2015), Antolin Diaz et al. (2017), Kim and Swanson
(2018) and McCracken et al. (2019). As a preview of the results, our procedure does
not find any evidence of substantial differences between the factor method and the
benchmark for aggregate GDP growth or consumption growth. On the other hand, in
subcomponents like investment and government spending, we are able to determine
the point in the nowcast period at which the factor method beats the benchmark, or vice
versa. This finding demonstrates how our method improves over the use of average

1 To give an example, we believe that short-termist nowcast users would prefer the method which produces
the best nowcast at the time they need it, rather than one which performs well on average across all horizons.
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670 J. Fosten, D. Gutknecht

or uniform SPA which would have forced us to reject or retain the models across all
horizons.

The rest of the paper is divided as follows. Section 2 describes the horizon confi-
dence set procedure, and Sect. 3 provides some further uses of this methodology for
practitioners. Section 4 contains a small Monte Carlo study to assess the procedure’s
small sample behaviour, while Sect. 5 is the empirical application to nowcasting US
real GDP. Finally, Sect. 6 concludes the paper. Additional figures and the extension to
multiple models are given in the Appendix.

2 The horizon confidence set

In what follows, we outline the set-up and details of our horizon confidence set
approach. We are interested in predicting a target variable yt , for which we have
observations t = 1, . . . , T . As stated above, for tractability we will take the sim-
plest possible modelling set-up where we wish to compare M = 2 models, which we
collect into the set M0 = {1, 2}, over a set of h = 1, . . . , H different horizons. In
the ‘Appendix’, we will set out how this extends so that M0 contains more than two
models. We note that these horizons can be as in the traditional multi-step forecasting
sensewherewemake forecasts of yt+h at increasing horizons for h = 1, . . . , H . Alter-
natively, in the near-term nowcasting literature, where we nowcast yt (at a quarterly
horizon of zero), the term horizon usually refers to daily, weekly or monthly horizons
throughout the nowcast quarter at which we make predictions before the release date
of the target variable.

In order to compare the predictions from different methods, we will use the losses
of each model computed at each of the H horizons. We define the loss Lh

i,t to be the

loss of model i ∈ M0 at horizon h in period t . With squared error loss, for instance,
we obtain the commonly used mean squared forecast error (MSFE) losses. In order to
illustrate this set-up, Fig. 1 shows two examples to visualize the kind of loss behaviour
one might observe in practice.

The examples in Fig. 1 mimic a typical case in nowcasting, where we compare a big
data factor method (Method 2) which is regularly updated at many nowcast horizons,

(a) (b)

Fig. 1 Illustrative example of MSFE
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with an autoregressive model (Method 1) which is only updated once in the quarter.2

We will explore this type of comparison in our empirical illustration later. Figure 1 is
useful to show how different patterns of optimal models can arise, even in a two-model
multi-horizon setting. On the one hand, in Example 1 in Fig. 1a we see that Method
2 dominates Method 1 in all horizons and we want a statistical procedure which is
capable of detecting this. On the other hand, in Example 2 in Fig. 1b we see that
Method 2 only dominates Method 1 in the second half of the horizons. In this case, we
want a procedure which can formally detect at which point Method 2 improves over
Method 1.

We define dhi j,t = Lh
i,t − Lh

j,t to be the loss differential between models i and j in

time period t and horizon h.3 Moreover, we define its expectation to beμh
i j = E[dhi j,t ].

Note that we generally expect the pairs of loss differentials to be correlated across time
t since one (if not both) of the models in M0 will be (dynamically) misspecified. At
each horizon h = 1, . . . , H , the horizon confidence set is defined as:

M∗
h ≡

{
i ∈ M0: μh

i j ≤ 0 ∀ j ∈ M0

}
. (1)

This gives us the identity of the model or models at each horizon which are weakly
dominant. The collection of horizon confidence sets {M∗

h}Hh=1, where each M∗
h is

determined according to Eq. (1), fully describes whichmodels should be used through-
out the whole sequence of horizons. Note that this differs from the MCS procedures
proposed in Quaedvlieg (2020) and Hansen et al. (2011), which can be compared best
in terms of the differing null hypothesis being tested (see below). Thus, our idea is to
arrive at a (different) subset of M0 at each horizon by eliminating any model which
is inferior to the other model at that same horizon. This is accomplished by testing a
sequence of null hypotheses H0,h , h = 1, . . . , H , given by:

H0,h : μh
i j = 0 (2)

Here, eachMh , h = 1, . . . , H , is a subset ofM0, andmay in fact be different across
h depending onwhichmodel survives elimination in specific horizons in the sequential
procedure we outline further below. As mentioned above, this differs conceptually
from Hansen et al. (2011), whose direct translation into a multi-horizon framework
(HLN-M) would be based on testing the following null:

HHLN-M
0 : μhl

i j = 0 for all i, j ∈ M, h, l ∈ {1, . . . , H},

where μhl
i j ≡ E[Lh

i,t − Ll
j,t ] and M denotes a generic subset of M0 containing

models across horizons 1, . . . , H . By contrast, the concepts of uniform and average

2 We depict Method 2 as downward-sloping as the majority of studies which nowcast real GDP growth
find that MSFE declines as we approach the publication date when a suitable big data method is used (see
for example, Banbura et al. 2013 or Fosten and Gutknecht 2020).
3 Note that we maintain the more general i , j notation (rather than 1 and 2) to facilitate the outline to
multiple models in the Appendix.
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672 J. Fosten, D. Gutknecht

SPA (uSPA and aSPA, respectively) as defined by Quaedvlieg (2020) condense to
testing the nulls:

HuSPA
0 : μh

i j = 0 for all i, j ∈ Mh, h ∈ {1, . . . , S},

and

H aSPA
0 :

H∑
h=1

ωhμ
h
i j = 0 for all i, j ∈ M,

where ωh , h = 1, . . . , H denote predetermined weights. Thus, the main concep-
tual difference between our approach and the multi-horizon version of Hansen et al.
(2011) as well as uSPA and aSPA of Quaedvlieg (2020), respectively, is that our
horizon-specific tests which are carried out focusing exclusively on comparisons at
each horizon h, while both Hansen et al. (2011) and Quaedvlieg (2020) compare
models across horizons dates h and l, for h, l ∈ {1, . . . , H}. As outlined in the Intro-
duction, restricting ourselves to ‘within-horizon’ tests avoids unfair comparisons of
say model 1 at horizon h with model 2 at horizon l. It also allows to retain models that
outperform at specific horizons, but underperform at others (and could thus be elimi-
nated by concepts such as uSPA or aSPA). Finally, note that an alternative application
of Hansen et al. (2011) could be to apply their procedure to each horizon separately.
This amounts to testing H0,h , h = 1, . . . , H , for each h as in our case. However, this
independent procedure does not take account of the issue of multiple testing which
occurs when we compare models across horizons. We therefore expect this method to
over-reject the null, whereas we expect our method to be better able to guard against
over-rejections. Our Monte Carlo simulations in Sect. 4 further explore this point.

An alternative way of writing our null hypotheses in Eq. (2) is to write a horizon-
stacked version of Hansen et al. (2011):

H0,H :
μ1
i j = 0

...

μH
i j = 0

(3)

The alternative hypothesis, denoted by HA,H , is that μh
i j �= 0 for at least some i, j ∈

Mh , h ∈ {1, . . . , H}. To implement the horizon-specific MCS procedure, we require
an equivalence test and a corresponding elimination rule (see Hansen et al. 2011).
Unlike in the original paper, however, both must be adapted so that they operate on
specific horizons. Let δH ,M be the equivalence test which is used to test the hypothesis
H0,H for any Mh ⊂ M0 and h = 1, . . . , H , and let eH ,M be the elimination rule
which removes an object i fromone of the setsMh , h ∈ {1, . . . , H}.More specifically,
for δH ,M, a natural mapping of the null hypothesis is:

TH ,M = max
1≤h≤H

Th, (4)
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where Th is an (H × 1) vector with elements Th ≡ maxi, j∈Mh |thi j |. Here, thi j can
either denote Diebold–Mariano t-statistics (Diebold and Mariano 1995) of the form:

thi j = d̄hi j√
V̂ (d̄hi j )

,

where d̄hi j and V̂ (d̄hi j ) are the estimated mean loss differential of models i, j at horizon

h and its estimated variance (see below), or simply a non-studentized statistic thi j = d̄hi j .
The use of non-studentized statistics (along with an appropriate bootstrap pro-

cedure) has been seen in papers such as White (2000). Moreover, standard HAC
estimators for the variance may suffer from size distortions in small samples unless
appropriately corrected (see Coroneo and Iacone 2019, and references therein). On the
other hand, as argued by Romano andWolf (2005) in the context of superior predictive
ability testing, studentization may have favourable properties in terms of improving
the power in finite samples. We therefore proceed in a general way allowing for thi j
to be either a studentized or a non-studentized statistic at this stage, although we will
restrict ourselves to non-studentized statistics later on in the empirical section.

In order to construct d̄hi j and V̂ (d̄hi j ), respectively, we use a sample of T time

series observations. However, while d̄hi j and V̂ (d̄hi j ) typically depend on parameters
which need to be estimated, we abstract from the parameter estimation problem in
this context to avoid additional notation. From a technical perspective, this may be
motivated by the fact that when the sample is split into sub-samples of sizes R and P ,
where R is the number of observations retained for parameter estimation and P the
number of observations used for pseudo-out-of-sample forecasts, a condition such as
limT→∞ (P/R) = 0 is sufficient to make parameter estimation error in the Diebold–
Mariano test negligible asymptotically, or that the in-sample and out-of-sample loss
function are the same (cf. West 1996).4

At each period t = 1, . . . , T , we define d̄ki j as:

d̄ki j = 1

T

T∑
t=1

dki j,t ,

while an appropriate and consistent HAC-type estimator V̂ (d̄hi j ) can be used for the

long-run variance of dhi j,t (see Newey and West 1987) to account for the (potential)
serial correlation in the loss differential due to model misspecification.

Intuitively, the test statistic in (4) picks out the largest gap across all pairwise
model comparisons for each horizon given the surviving set of models in each Mh ,
h ∈ {1, . . . , H}, and then chooses the largest such deviation across horizons. Letting

4 Note that when models are nested and the set-up of West (1996) is not directly applicable, this argument
still holds when restricting oneself to models estimated through ordinary least squares (cf. Clark and
McCracken 2005). This rules out certain model classes estimated for instance via nonlinear least squares
such as MIDAS nowcasting models with a nonlinear weighting function for the lags, whereas unrestricted
MIDAS models are permitted (as used in the empirical illustration in Sect. 5).
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H denote the set of all horizons 1, . . . , H , the procedure is completed by using the
following elimination rule:

eH ,M = arg max
i∈Mh ;h∈H

max
j∈Mh

thi j . (5)

This rule eliminates model i from the horizon h, identified by taking the argmax over
both h and i .5 We are now ready to state the horizon confidence set algorithm:

1. Initially setMh = M0 for all h = 1, . . . , H
2. Test H0,H using δH ,M at level α
3. If H0,H is accepted, let {M̂∗

h,1−α}Hh=1 = {Mh}Hh=1, otherwise use eH ,M to elim-
inate an object from the relevant Mh , leaving the remaining {M j } j �=h as they
were, and repeat from Step 2.

We refer to M̂∗
h,1−α as the estimated horizon confidence set, and the collection

{M̂∗
h,1−α}Hh=1 determines the full set of models to be used at every horizon. Given

that the equivalence test TH ,M and the elimination rule eH ,M adhere to the definition
of coherency of Hansen et al. (2011), the asymptotic validity of δH ,M and eH ,M
follows by arguments similar to Hansen et al. (2011).

Since the asymptotic distribution of the test based on Diebold–Mariano statistics
depends on unknown nuisance parameters, a bootstrap procedure will be used for
inference. More specifically, letting di j,t denote an H -dimensional vector containing
dhi j,t , h = 1, . . . , H as elements, we can construct bootstrap samples as follows. For
each b = 1, . . . , B:

• Re-sample blocks of length l from di j,t , t = 1, . . . , T , i, j ∈ Mh , with replace-
ment using the moving block bootstrap of Künsch (1989). Call these draws dbi j,t
with elements dhbi j,t , h = 1, . . . , H .

• Construct d̄hbi j = 1
T

∑T
t=1 d

hb
i j,t , h = 1, . . . , H , and, when the studentized version

of thi j is used, the bootstrap variance is estimated according to Götze and Künsch
(1996) and Gonçalves and White (2004):

V̂ hb
i j = 1

Q

Q∑
q=1

1

l

{
l∑

t=1

(
dhbi j,(q−1)l+t − d̄hbi j

)}2

,

where Q denotes the number of blocks and q is the corresponding counter (for
simplicity, assume that T = Q · l).

5 There are cases in nowcasting with more than two models, as set out in the Appendix, where it is possible
that some of the models are not updated at every horizon (e.g. if a nowcasting model contains only one
monthly variable, it is potentially only updated at three horizons). They therefore have fixed losses over
a set of horizons h ⊂ H. This makes it possible that the maximal Diebold–Mariano statistic is identical
for multiple horizons between infrequently updated models. In this case, the elimination rule is adapted to
eliminate the weaker model from all horizons h ⊂ H in which the maximal statistic occurs and not just a
single horizon.
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• Construct the statistic:

thbi j = d̄hbi j − d̄hi j√
V̂ hb
i j

or thbi j = d̄hbi j − d̄hi j , h = 1, . . . , H ,

and obtain:

T b
H ,M = max

1≤h≤H
max

i, j∈Mh

|thbi j |.

Finally, construct theα-critical value from the empirical distribution {T 1
H ,M, . . . , T B

H ,M},
say c(α). Rejection occurs when TH ,M > c(α).

3 Extensions to the horizon confidence set

There are several ways inwhich the horizon confidence set might be extended and used
for further analysis. In this section, we shine particular light on two such extensions.
Firstly, we might want to perform model averaging at the various horizons, thereby
extending the original suggestion of Hansen et al. (2011) to the multi-horizon setting.
Secondly, in the nowcasting case we might use these results to test for nowcast mono-
tonicity, which has become a common criterion used to check whether nowcasting
methods improve as we add information (Banbura et al. 2013).

3.1 Model averaging

The horizon confidence set procedure outlined above gives rise to a set of models
which are to be used at different horizons. Asymptotically speaking, one should in
principle be ‘indifferent’ between themodel(s) included at a given horizon. Depending
on the scenario, this could potentially lead to cases where individual models move in
and out as the horizon changes and the number of models used in each horizon could
change repeatedly. If there is more than one optimal model at different horizons, it
may be operationally preferable to just form averages constructed across the different
M̂∗

h,1−α , h = 1, . . . , H . For example, for every model i and horizon h, one could
form simple averaging weights from the non-eliminated models as follows:

ŵih = I{i ∈ M̂∗
h,1−α}

|M̂∗
h,1−α| (6)

where |M̂∗
h,1−α| denotes the number of models in M̂∗

h,1−α and the indicator function

I{·} returns a value of 1 if model i is included in M̂∗
h,1−α and zero otherwise. The
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nowcast combination is then calculated as:

ŷht =
M∑
i=1

ŵih ŷiht , (7)

where ŷiht is method i’s prediction at horizon h in quarter t . In the case of nowcasting,
this procedure gives an alternative to recent nowcast averaging procedures such as in
Aastveit et al. (2018) where the weights are estimated directly. We also note that the
resulting nowcasts retain the same asymptotic ‘optimality’ as the individual models
from the collection {M∗

h}Hh=1 as they are just a linear combination of optimal models.
Unlike using the individual models themselves, however, this simplification of the
horizon confidence set not only allows us to reduce the complexity of the nowcasting
procedure, but also to perform further specification tests such as the monotonicity test
outlined next.

3.2 Monotonicity testing

When looking at nowcasting, in addition to the selection of relevant nowcast mod-
els, an important consideration in the empirical literature is whether or not nowcast
methods are monotonically improving as we add information, Banbura et al. (2013)
is one example. In the presence of more than one model, however, there is little guid-
ance on how to perform monotonicity tests, with the recently proposed test of Fosten
and Gutknecht (2020) being established in the single-model case. One appeal of the
averaging approach from the previous subsection is that it results in a single nowcast
from the different models and allows us to perform this monotonicity test as if it were
a single model. More specifically, suppose one constructs the nowcast combination
ŷht as in Eq. (7) and the nowcast errors ε̂ht = yt − ŷht . Then, these errors can be
used to construct a monotonicity test to assess whether the losses from these multiple
models are (on average) declining over the horizon 1, . . . , H , i.e. as the nowcast period
approaches the publication date of the target variable.

4 Monte Carlo simulation

In this section, we report the results of Monte Carlo simulations to investigate the
properties of the horizon confidence set procedure developed in Sect. 2. In order to
assess the performance, wewill compare the results to thosewhere theMCS procedure
of Hansen et al. (2011) is applied independently to each horizon where we expect the
rejection rate to be too high even if models have equal predictive ability.6

We set up our Monte Carlo design to be similar in spirit to the related simulation
studies in Hansen et al. (2011) and Quaedvlieg (2020). As such, we will directly gen-
erate the losses Lh

i,t which gives us the flexibility to freely change various aspects
like which of the models appear in the true model set across horizons. This is impor-

6 We are grateful to two anonymous referees for suggesting we explore this comparison through simulation.
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tant given that our set-up has an additional dimension to the aforementioned studies,
specifically the operation of the elimination rule across h = 1, . . . , H ,

We focus on the two-model set-up described above with M = 2, and for models
i = 1, 2, we generate a sample of T observations of the losses across horizons Li,t =
[L1

i,t , . . . , L
H
i,t ]′ according to the following data generating process (DGP):

Li,t = θ i + ei,t (8)

ei,t = δei,t−1 + �1/2εt (9)

where δ is a scalar parameter which controls the time series dependence of the losses,
εt ∼ i .i .d.N (0, IH ) is an H × 1 random draw from a multivariate standard normal
distribution and� is used to control the dependence ofmodel i’s losses across horizons.
In the nowcasting setting, we indeed expect a reasonable amount of correlation of the
losses for a given model across data release dates. We set � to be the Toeplitz matrix
with elements �i,i ′ = ρ|i−i ′| so that cross-horizon dependence is only governed by
the single parameter ρ.

The important parameter vector θ i = [θ1i , . . . , θH
i ]′ controls the behaviour of the

mean of the loss differential because E[Lh
i,t ] = θhi , and therefore in the terminology of

the null hypotheses formulated in Eq. (2), we have thatμh
i, j = E[Lh

it
−Lh

j,t ] = θhi −θhj

for models i, j and for horizons h = 1, . . . , H . In this two-model case, for
[
θh1 , θh2

]
we use the following specification:

[θh1 , θh2 ] =
{ [θ̃ , 0] if h ≤ H/2

[0, θ̃ ] if h > H/2
(10)

where θ̃ is a scalar parameter. When θ̃ = 0, the models have equal loss at every
h = 1, . . . , H andwe do not expect the average rejection rate of the horizon confidence
set procedure to be larger than α. When θ̃ > 0, the models do not have equal loss:
model 1 has lower loss in the second half of the blocks when h > H/2, whereas model
2 has lower loss in the first half of the horizons (h ≤ H/2). Thismimics the nowcasting
setting described above where one model may have better predictive ability for earlier
data releases but be beaten by another model at other points in the data flow. Clearly,
the larger the θ̃ , the greater the the average loss differential and we expect the rejection
rate to increase towards unity.

We consider a variety of values for this DGP set-up. We let the number of horizons
be H ∈ {2, 4} which gives a small but representative example of the set-up above.
We let θ̃ ∈ {0, 0.1, 0.2, 0.5} to give a range for the loss differential behaviour, and we
consider values of ρ ∈ {0, 0.5} and δ = 0.2 for the time series and cross-sectional
dependence. The sample sizes we consider are T ∈ {100, 200, 500}. We use B = 400
bootstrap replications to derive the critical values at each step of the MCS procedure
and perform K = 1000 Monte Carlo replications. The nominal size is set to be
α = 0.1.

The results of these simulations are displayed in Table 1. The results compare the
average rejection rate for our method relative to the method where we independently
apply the MCS procedure of Hansen et al. (2011) to each horizon. We see that, in the
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Table 1 Average rejection rates across K = 1000 Monte Carlo simulations

θ̃ T = 100 T = 200 T = 500

H = 2 H = 4 H = 2 H = 4 H = 2 H = 4

ρ = 0.5

Horizon confidence set

0 0.188 0.104 0.151 0.108 0.149 0.100

0.1 0.231 0.172 0.290 0.224 0.451 0.391

0.2 0.424 0.334 0.600 0.535 0.901 0.877

0.5 0.940 0.932 0.998 0.997 1.000 1.000

Independent MCS

0 0.237 0.208 0.196 0.213 0.197 0.202

0.1 0.290 0.288 0.348 0.343 0.484 0.515

0.2 0.474 0.463 0.624 0.630 0.898 0.895

0.5 0.940 0.938 0.997 0.997 1.000 1.000

ρ = 0

Horizon confidence set

0 0.162 0.095 0.152 0.107 0.155 0.101

0.1 0.230 0.165 0.274 0.204 0.463 0.385

0.2 0.435 0.342 0.606 0.528 0.896 0.883

0.5 0.941 0.934 0.995 0.997 1.000 1.000

Independent MCS

0 0.225 0.212 0.210 0.217 0.216 0.215

0.1 0.288 0.286 0.334 0.341 0.514 0.501

0.2 0.486 0.469 0.647 0.637 0.902 0.896

0.5 0.948 0.939 0.995 0.997 1.000 1.000

case of θ̃ where the models have equal loss, our method delivers a rejection rate close
to the nominal size. This rejection rate improves with both H and T . On the other
hand, if we independently apply the Hansen et al. (2011) procedure to each horizon,
the rejection rate is too high with greater than 20% rejection rate.

As we increase θ̃ , we see that the rejection rate moves closer to 100% and this
rejection rate improves with the sample size as seen in the T = 500 case. We note
that the results are not very sensitive to changing the ρ parameter which controls the
degree of correlation of the losses across blocks. Overall, we find that our procedure is
better able to control the rejection rate than an independent procedure across horizons,
as is expected.

5 Empirical application

In order to illustrate our methodology, we use the example of nowcasting quarterly
aggregateUS realGDPgrowth and its subcomponents.Wewill focus on comparing the
performance of factor-based methods, which use the common component from a data
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set of macroeconomic series, to the predictions of a naïve autoregressive benchmark.
This kind of comparison of factor methods to a univariate benchmark has become
standard in the factor model nowcasting literature (see Anesti et al. 2019 for a recent
example). Our method will be able to formally detect at which points in the nowcast
period the univariate benchmark is dominated (if at all). We will report results for
aggregate GDP growth and five subcomponents (consumption, investment, govern-
ment spending, imports and exports). This will shed more light on recent analyses
of GDP subcomponent nowcasting, including Antolin Diaz et al. (2017) and Fosten
and Gutknecht (2020). In what follows, we will describe the data and empirical set-up
before presenting the results.

5.1 Data and set-up

In predicting quarterly real GDP and its subcomponents, we will follow the approach
of Bok et al. (2018) who document the New York Fed Staff Nowcast procedure based
on the factor model nowcasting methodology of Giannone et al. (2008). The data
series and their transformations to stationarity are described at length in Bok et al.
(2018). They construct a parsimonious database of the series most widely followed
by market participants, only focusing on the headline series and not disaggregates.
The data set comprises mostly monthly variables related to production, employment,
consumption and consumer sentiment, housing, trade and so on.We update the data set
using the FREDEconomic Data service, starting in 1985M1 as in Bok et al. (2018) and
ending in 2020M2, with the final data on the quarterly GDP series being in 2019Q3.7

We remove some variables which do not have sufficient data for the out-of-sample
analysis detailed below, which results in a total of N = 25 series being used.8

As is customary in nowcasting studies, we keep track of the calendar of releases of
all predictors, which dictates the nowcast horizons in the nowcast updating procedure.
We will make nowcasts which are updated at intervals of 10days from the start of the
nowcast quarter up until day 20 of the first month of the following quarter, which is
just before when GDP is first released by the Bureau of Economic Analysis (BEA).
This gives a total of H = 11 nowcast updates per quarter observed, each of which cor-
responds, respectively, to days 10, 20, 30, …, 110 after the beginning of the reference
nowcast quarter. Therefore, the last two nowcast updates are actually backcasts.

The factor-based method we use can be described as follows: we denote yi,t as the
monthly or quarterly variables in the data set, where i = 1, . . . , N and N = 25 as
above.We assume that there exists one latent factor, ft , which drives the co-movement
amongst the yi,t series as follows:

yi,t = μi + λi ft + εi,t , (11)

7 See https://fred.stlouisfed.org/. Data last accessed: 08/04/20.
8 We treat the real GDP series (either the aggregate or one of the five sub-components) as the ‘target
variable’ and only use that variable in the data set. In other words, we do not use all six real GDP series in
the data set at one time. This is simply because all these series are released at the same time, so they are not
useful for making timely nowcasts of each other.
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where λi is the factor loading for variable i and εi,t is an idiosyncratic error term. As in
Bok et al. (2018), we only use one global factor in this relatively small data set. We do
not mimic their use of additional local block factors due to the lack of data availability
in our initial estimation window in the pseudo-out-of-sample experiment described
below. We therefore have one factor, which we treat as fixed across all estimation
windows.9

Themodel in Eq. (11) is specified at themonthly frequency, with the quarterly series
treated as afilteredmonthly serieswithmissingobservations. For these quarterly series,
the aggregation from a latent monthly growth rate to the quarterly growth rate is dealt
with using themethod ofMariano andMurasawa (2003). In order to cast themodel into
state space form, the factor and idiosyncratic disturbances are state variables which
are both assumed to follow AR(1) processes with normal innovations:

ft = α ft−1 + ut (12)

εi,t = ρiεi,t−1 + vi,t (13)

for i = 1, . . . , N , where ut and vi,t are i.i.d. normal processes. Equations (11)–(13)
jointly form the state space model which is estimated using the Kalman smoother and
the expectation maximization (EM) algorithm (see Giannone et al. 2008; Doz et al.
2011, 2012; Bańbura and Modugno 2014 for full details of this procedure).

Having estimated the factor model and obtained the nowcasts for aggregate real
GDP growth and the five subcomponents, we will compare the predictions to that of
a simple AR(1) model as this is the most commonly used benchmark model in the
literature.10 For these quarterly target series, the AR(1) method only has one distinct
release date in the nowcast period, and so we only observe two distinct nowcasts
throughout the prediction period.

To generate the nowcasts and nowcast errors, we will split the sample into T =
R + P observations and use the pseudo-out-of-sample procedure as in West (1996).
We will use the rolling scheme as suggested by Hansen et al. (2011), but we will
compare the results to those of the recursive scheme which is widely used in empirical
studies. We therefore start using data on the first R quarterly observations to estimate
the models. The first predictions are made of quarter R + 1 where we begin adding
information released at the beginning of the quarter and we update the nowcasts
H = 11 times every 10days until day 20 of the first month of the next quarter, just
before the GDP data are released. Then, the sample is expanded by one quarter and
the procedure is repeated, adding one quarter at a time, until the end of the sample. We
start making nowcasts in 1994Q1 which results in P = 103 out-of-sample evaluation
periods. For the nowcast error loss function, we will consider both the absolute value
function L(e) = |e| and the squared error loss function L(e) = e2, giving rise to
test statistics involving mean absolute error (MAE) and mean squared forecast error

9 Results were also run for larger numbers of global factors, but these typically resulted in worse perfor-
mance.
10 We note that, since the GDP release for the previous quarter occurs at around day 28 of the nowcast
period, the AR(1) nowcast from day 1 through to day 28 is a two-step ahead prediction, whereas the nowcast
from day 28 onwards is a one-step ahead prediction.
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(MSFE).11 As pointed out in Sect. 2, the tests are constructed using non-studentized
statistics.

For the horizon confidence set procedure, we will construct these at the 75% confi-
dence level which, although using a somewhat high nominal level, is common practice
in most empirical work using MCS including that of Hansen et al. (2003, 2011).
Finally, the number of bootstrap repetitions is B = 400, where we chose the block
length as the estimated optimal AR length across the loss differential series.12

5.2 Horizon confidence set results

To gain a preliminary insight into the performance of the competing nowcast methods,
Figs. 2 and 3 graph the evolution of the MAE and MSFE throughout the H = 11
horizons of the nowcast prediction period. These graphs are for the rolling scheme,
whereas the corresponding figures for the recursive scheme are in the Appendix. From
these sets of charts, we can see that these six different target variables produce rather
different behaviour in terms of the loss differentials between the factor model and the
AR(1) benchmark across different nowcast horizons. This gives us a good mixture of
settings in which to apply the horizon confidence set procedure.

In the case of aggregate GDP, we see that there is no clear ‘winner’ between the
factor method and the AR(1) benchmark uniformly across nowcast horizons in terms
of MAE or MSFE. Looking at the scale of the MAE/MSFE, the two models indeed
appear to deliver very close nowcast error losses, which will be formally assessed
by our horizon confidence set procedure. For the cases of consumption, government
spending and exports, we find that the AR(1) model provides lower MAE and MSFE
than the factor method, whereas for investment the AR(1) model is worse over all
nowcast horizons. The loss differential appears to be much larger in the case of MSFE
in Fig. 5, especially for investment and government spending. In the case of imports,
there is a less clear differential between the two models.

In order to make more formal statements about the performance of the models in
Figs. 2 and 3, we now perform the horizon confidence set procedure. Figures 4 and 5
are graphical depictions of the final estimated collection {M̂∗

h,1−α}Hh=1. Looking at the
main case, aggregate GDP growth, we find no evidence that either model outperforms
the other at any of the nowcast horizons. This seems to confirm the graphical evidence
from above which shows there to be only a small loss differential on average. The
same picture holds in the case of consumption and imports, where we do not see a
rejection of any model over any of the nowcast horizons.

Looking at the other variables, focusing first on the MSFE results in Fig. 5, for
investment we see that the horizonMCS procedure removes the AR(1) model in every
nowcast horizon after the first 2months of the nowcast quarter. This implies that one
might consider averaging the nowcasts from the factor and AR(1) models only up
to day 60 of the nowcast period and only use the factor model nowcasts thereafter.
For government spending, the reverse is true: both the factor method and the AR(1)

11 The case of non-differentiable loss functions and MAE statistics in the context of out-of-sample evalu-
ation is considered by McCracken (2000).
12 This implementation is adapted from the MCS package in R.
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Fig. 2 MAE by nowcast horizon—GDP subcomponents

Fig. 3 MSFE by nowcast horizon—GDP subcomponents

method remain in the horizon confidence set until the end of the second month of the
nowcast quarter, after which only the AR(1) model should be used. Notably, in the
case of MAE, Fig. 4 shows fewer rejections for investment and government spending,
which reinforces the earlier comment analysing the graphical evidence in Figs. 2 and
3. In the case of exports, we also see a handful of rejections of the factor method in
the earlier part of the nowcast period.
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Fig. 4 Horizon MCS results—MAE loss

Fig. 5 Horizon MCS results—MSFE loss

The fact that we see a variety of different features in these horizon confidence
sets highlights the usefulness of our method in making decisions about the use of
different nowcast models across multiple nowcast horizons. In the case of aggregate
GDP, consumption and imports, our method justifies the use of model averaging of
these twomethods. On the other hand, for investment and government spending,model
averaging onlymakes sense up to a certain point in the nowcast period, after which one
of the two models is dominated. This kind of pattern would have remained undetected
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Fig. 6 Independent horizons MCS results—MAE loss

using the concept of uSPA or aSPA outlined in Quaedvlieg (2020), where we would
have to reject or retain a given model across all horizons.

5.3 Comparison with the independent horizons MCS

In this section, we compare the results of our horizon confidence set procedure to the
casewherewe treat horizons independently and run theMCSprocedure ofHansen et al.
(2011) separately at each of the horizons. Figures 6 and 7 display the equivalent results
to those in the previous section.We firstly see that there aremanymore rejections using
this procedure than using our procedure. This could be likened to the results of Sect. 4
where simulation evidence suggested that the independent method has a high rejection
rate even if the models have equal predictive ability. Our method also tends to produce
more stable results with less fluctuation of models in and out of the confidence set
across horizons than in Figs. 6 and 7.

To give an example of this switching behaviour, looking at the results for aggregate
GDP under MSFE loss in Fig. 7, we see that there the AR(1) model is removed in the
second and third nowcast periods, whereas the factor method is removed in the fifth.
This seems at odds with the graphical evidence in Fig. 3 where the small crossings in
the MSFE profiles are of very small magnitude relative to the scale.

5.4 Nowcast averaging andmonotonicity test results

Wenext aim to shed some light about the performance of nowcast averaging in terms of
monotonicity, when weights are constructed using the horizon confidence set results
or if a simple equal weights scheme is used. We first construct nowcast averages
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Fig. 7 Independent horizons MCS results—MSFE loss

ŷkt in Eq. (7) using the two models from the horizon confidence set procedure (we
denote this method ‘MCS_AVE’ in the following figures and tables). Clearly, these
weights will fluctuate between (1, 0), (0, 1) and (1/2, 1/2) across all the nowcast
horizons. This gives a single combined nowcast at each horizon which can be used
to test monotonicity using the recent procedure of Fosten and Gutknecht (2020). We
will also compare the MSC_AVE method to that of using a simple average across the
models in all nowcast horizons (denoted simply ‘AVE’).

Focusing on the MSFE results, Fig. 3 shows that, at least graphically, there is evi-
dence of non-monotonicity in the MSFE profiles of the factor method for aggregate
GDP, whereas cases like investment appear to be monotonically declining. Looking
at these two cases of aggregate GDP and investment, the MSFE of the nowcast com-
bination is shown in Fig. 8 which uses the MCS weights derived from the results
displayed in Fig. 5. For aggregate GDP, the results coincide as no model is removed
at any horizon. For investment, the MSFE of the MCS_AVE method is slightly lower
than that of the simple average across horizons.

To assess these two cases formally, we obtain results of the monotonicity test of
Fosten and Gutknecht (2020) for the null hypothesis of nowcast monotonicity of the
averaged MSFE profiles in Fig. 8. These results are provided in Table 2. We find no
evidence to reject the null hypothesis of nowcast monotonicity for either of the two
series. This indicates that, while we do see graphical evidence of non-monotonicity
for aggregate real GDP growth, these movements are very small and not statistically
different from the case of a flat MSFE profile. For investment, we see that the p-value
reduces slightly for theMCS_AVE version of the test relative to the AVE version. Both
results demonstrate that a simple average across all models is equally capable of pro-
ducingmonotonically decliningMSFE, even it is slightly outperformedbyMCS_AVE.
Overall, this indicates that the method of nowcast averaging is capable of producing

123



686 J. Fosten, D. Gutknecht

Fig. 8 MSFE of the nowcast combination

Table 2 Bootstrap monotonicity test with multiple models (MSFE loss)

κ U∗ 50% 90% 95% p-value

AVE

Aggregate GDP 55 2.935 2.638 8.160 9.874 0.433

Investment 55 10.832 49.654 241.325 296.483 0.938

MCS_AVE

Aggregate GDP 55 2.935 2.638 8.160 9.874 0.433

Investment 55 28.006 69.008 309.643 377.224 0.730

κ represents the number of moment inequalities used in the monotonicity test and Û∗ is the test statistic
of Fosten and Gutknecht (2020) along with the bootstrap 50th, 90th and 95th percentiles and the one-sided
p-value

nowcasts of GDP and its subcomponents which are monotonically improving as the
time horizon shrinks until the publication date of GDP.

6 Conclusion

In this paper, we have proposed a methodology which allows researchers to determine
which models to use at different horizons, which we call the Horizon Confidence Set.
We build on the MCS procedure introduced by Hansen et al. (2011), adapting it to
the multi-horizon set-up. In both long-term forecasting and near-term nowcasting,
which are the main applications of our methodology, we argue that we need a method
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capable of retaining models which are better at some horizon but removing them at
horizons where they underperform. Our proposed method sequentially eliminates the
worst models in each horizon, resulting in a potentially changing set of ‘optimal’
models across different horizons. This provides an advantage over existing multi-
horizon approaches which look for uniform or average model superiority (Quaedvlieg
2020). Our method also has advantages over naïvely applying the MCS procedure
independently across horizons.

To facilitate the practical applicability of our methodology, we discuss how model
combination can be performed on the basis of the horizon confidence sets. This is
similar in spirit to various existing nowcast combination studies (including Kuzin
et al. 2013; Aastveit et al. 2018) and also allows to conduct formal monotonicity tests
as recently proposed by Fosten and Gutknecht (2020).

Finally, we apply our methodology using the factor model methodology employed
by Bok et al. (2018) in making the New York Fed Staff Nowcasts. However, we extend
their analysis of nowcasting the aggregate US real GDP growth rate to that of the five
GDP subcomponents. Comparing this factor method to a naïve autoregressive bench-
mark, our procedure shows the point in the quarter at which the factor method beats
the benchmark model or vice versa. This finding is novel and could have potentially
remained undetected by existing tests for uniform or average SPA. On the other hand,
when no model is dominant at any horizon our method is capable of reaching this con-
clusion, and model averaging is considered in these cases. Our results are also more
stable than a simple independent horizons application of Hansen et al. (2011). We
therefore deem our procedure a useful and complementary tool to existing methods
in the literature which can yield new insights into the comparison of multi-horizon
forecasts and nowcasts.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Multiple model comparison

This subsection outlines the extension of our procedure to allow for the comparison
of more than two models. To start, note that the definitions of M0, M∗

h , and Mh ,
h = 1, . . . , H remain the same as in the text, but for the fact that these sets may now
contain more than just two models so that M > 2. In fact, the null hypothesis for each
h = 1, . . . , H is given by:

HM
0,h : μh

i j = 0 for all i, j ∈ Mh . (14)
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The procedure works as follows:

1. Set Mh = M0 for each h = 1, . . . , H .
2. Test the null hypothesis HM

0,h in (14) using the testing procedure below at level α̃.

3 If HM
0,h is not rejected, set {M̂∗

h,1−α}Hh=1 = {Mh}Hh=1, otherwise use eH ,M to
eliminate an object from the relevantMh , leaving the remaining {M j } j �=h as they
were, and repeat from Step 2.

The main difference between the two-model set-up and the more general case lies in
the need to account for the fact that different thi, j may have different critical values
as the maximum horizon h may not be the same across model pairs i, j . To mitigate
this problem, we followQuaedvlieg (2020) and propose a double bootstrap procedure,
which takes these different critical values into account.More specifically, the procedure
is based on the maximum of the re-centred t-statistics (thi, j −ci, j (α)), where ci, j (α) is
the first round critical value for model pair i, j as outlined in the following algorithm:

1. For each given pair i, j ∈ Mh , h = 1, . . . , H , compute thi, j and ci, j (α) using the
algorithm from the main text.

2. Define tmax = maxi, j∈{Mh}Hh=1

(
max1≤h≤H thi, j − ci, j (α)

)
, i.e. the test statistic

thi, j furthest away from its corresponding critical value across all possible model
pairs i, j .

3. For eachbootstrap sampledbi j,t ,b = 1, . . . , B, obtained in 1., execute the following
steps:

(a) For each pair i, j ∈ {Mh}Hh=1, apply the algorithm from 1. treating the boot-
strap sample dbi j,t , t = 1, . . . , T , as the actual sample to obtain cbi, j (α).

(b) Compute the bootstrap t-statistics:

tbmax = max
i, j∈{Mh}Hh=1

(
max

1≤h≤H
thbi, j − cbi, j (α)

)

4. Obtain the p-value as:

1

B

B∑
b=1

1{tmax < tbmax}.

As pointed out by Quaedvlieg (2020), to obtain reasonable p-values one can follow
Hansen et al. (2011) and impose that a p-value for a model cannot be lower than
any previously eliminated model and that the last remaining model at each horizon
h = 1, . . . , H obtains a p-value of one by convention.
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7.2 Additional figures

Fig. 9 MAE by nowcast horizon—recursive

Fig. 10 MSFE by nowcast horizon—recursive
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Fig. 11 Horizon MCS results—recursive—MAE loss

Fig. 12 Horizon MCS results—recursive—MSFE loss
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