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Abstract
In this paper, we study the behavior and effectiveness of several recently developed
forecast combination algorithms in simulated unstable environments,where the perfor-
mances of individual forecasters are cross-sectionally heterogeneous and dynamically
evolving. Our results clearly reveal how different algorithms respond to structural
instabilities of different origin, frequency, and magnitude. Accordingly, we propose
an improved forecast combination procedure and demonstrate its effectiveness in a
real-time forecast combination exercise using the U.S. Survey of Professional Fore-
casters.

Keywords Exponential re-weighting · Shrinkage · Estimation error · Performance
instability

JEL Classification C53 · C22 · C15

1 Introduction

Researchers and policymakers routinely combine forecasts from different sources.
A large number of studies have clearly demonstrated that combining forecasts helps
to improve forecast accuracy and hedge against individual forecasters’ idiosyncratic
errors. Several new and exciting forecast combination algorithms have been pro-
posed recently. However, even today, practitioners still frequently prefer the most
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basicmethod of combination, simple averaging, tomore sophisticated algorithms. The
mediocre performance of many sophisticated algorithms in practice is often attributed
to structural instabilities in real-world data.1 Several studies have since stressed the
need for combination algorithms to be robust to instabilities in the data generating pro-
cess of the target variable and in the performances of individual forecasters.2 However,
existing studies often focus on a specific algorithm’s robustness to a specific form of
instability.3 These studies, many of which also propose new combination algorithms
or strategies, invariably favor what they propose. While making valuable contribu-
tions in their own rights, these studies, limited by space and scope, often give little
consideration to alternative algorithms (beyond a few standard benchmarks) and alter-
native forms of instabilities. There has been no systematic study of the robustness
of forecast combination algorithms in unstable environments where the nature and
magnitude of instability is known a priori. Theoretical work on this topic is difficult
if not impossible: Each combination algorithm is proven optimal under a strict set
of assumptions, where deviations often make the math intractable, especially when
time-varying parameters, thick-tailed distributions, and non-stationarities have to be
considered. Relying solely on real-world data is in no way a better alternative: While
one can apply the combination algorithms and document their performances given any
particular data set, figuring out why an algorithm performs the way it does is difficult,
since real-world data are generated by unknown processes. To systematically study the
performance and robustness of different forecast combination algorithms in unstable
environments, the only feasible method is simulation.4

Our main objective is to document the behaviors and the performances of various
forecast combination algorithms in scenarios involving structural instabilities that
are commonly encountered in practice. We are primarily interested in a few recently
developed algorithms. The first is the set of aggregate forecast through exponential re-
weighting (AFTER) algorithms, proposed in Yang (2004), Wei and Yang (2012), and
most recently Cheng and Yang (2015). These algorithms accommodate the squared
error loss, the absolute error loss, and a synthetic loss that is a flexible mixture of the
first two. The AFTER algorithms are designed to adapt to changes in the performances
of individual forecasters and to produce accurate combined forecasts with few outliers.
The second is the algorithm proposed in Sancetta (2010). Compared with the AFTER
algorithms, it allows for more general loss functions and works under more relaxed
assumptions on the properties of individual forecasts. To hedge against structural
instabilities, this algorithm features a shrinkage step that reduces the differences in
individuals’ weights. The results, therefore, are closer to those based on equal weights.

1 Clemen (1989) reviewed more than 200 studies on forecast combination and observed that simple aver-
aging often outperforms more complicated weighting schemes. In a recent study, Lahiri et al. (2017)
documented that when combining the U.S. SPF forecasts using many of the methods also considered in this
study, simple averaging remains one of the most effective combination methods. Elliott (2017) provides
one explanation of this phenomenon that relates the size of common aggregate shocks to the potential gain
from using optimal weights.
2 See, among others, Stock and Watson (2004), Elliott and Timmermann (2005), Aiolfi and Timmermann
(2006), Smith and Wallis (2009), Pesaran et al. (2013), and Tian and Anderson (2014).
3 For example, Giraitis et al. (2013), Pesaran et al. (2013), Tian andAnderson (2014), and Chevillon (2016).
4 In as early as 1989, Armstrong (1989) explicitly cited realistic simulations as one of three broad directions
for future research, along with meta-analysis and rule-based forecasting.
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In addition, we examine the performance of the nonparametric approach proposed in
Bürgi and Sinclair (2017), where the authors suggested that only the forecasts with
a proven track record of outperforming simple averaging should be combined. This
approach eliminates the forecasters whose good performances are due to pure chance.
Thus, it has the potential to outperform simple averaging over all the forecasters.

In standard simulation exercises, the pool of candidate forecasts to be combined
are usually model-based.5 Structural instabilities are introduced through misspeci-
fications or breaks in model parameters. When using this approach, the sources of
instabilities are usually clear, but the relative performances of the models are often not
immediately apparent.6 Real-world situations tend to be very different: Practitioners
usually do not know the precise models behind individual forecasts (nor the reason for
a sudden change in their accuracy), especially when working with survey forecasts or
judgmental forecasts. However, from historical data, they do observe each individual
forecaster’s performance and how it changes over time. To mitigate this issue, we use
a different approach to simulate unstable environments. Instead of generating candi-
date forecasts from misspecified models, we directly simulate the forecast errors by
adding together three components: forecast bias, idiosyncratic error, and unpredictable
aggregate shock. This way, we can create unstable environments in which one or more
of these components vary cross-sectionally and over time. More importantly, having
direct access to each component allows us to precisely control the accuracy of each
individual’s forecasts.

In the following sections, we conduct seven sets of simulation exercises, in which
we simulate the effect of four broad types of instabilities that are likely present in real-
world data: The performances of individual forecasters may change due to sudden
breaks in their forecast biases or the variances of their forecast errors. Alternatively,
the performances could change gradually and continuously. We also consider insta-
bilities due to unpredictable aggregate shocks that affect the performances of all the
forecasters. In addition, we let individual forecasters occasionally produce outliers,
i.e., forecasts with unusually large errors.

We find that different combination algorithms excel in different kinds of unsta-
ble environments: Compared with the rest of the methods we examined in the paper,
the one proposed in Sancetta (2010) is more robust to breaks in performances due
to idiosyncratic errors; the AFTER algorithms are more robust to unpredictable and
sudden aggregate shocks; and the approach in Bürgi and Sinclair (2017) is quicker in
adapting to changes in individuals’ performances. In addition, our results suggest a
clear trade-off between the number of candidate forecasters and the accuracy of the
combined forecasts. As the candidate pool grows, the performances of sophisticated
algorithms rapidly deteriorate. For example, when combining 30 sets of equally accu-
rate forecasts, the mean squared errors (MSE) of the combined forecasts produced by
the AFTER algorithms may be 5–10 times higher than that of simple averaging.

Based on our observations, we believe that in order for the performance-based
weighting algorithms to deliver robust performance gains, one should reduce the

5 For example, simple linear regression models are used in Cheng and Yang (2015). Pesaran and Timmer-
mann (2005), Sancetta (2010), and Chevillon (2016) used ARIMA models.
6 For example, which model produces more accurate forecasts, one that omits a relevant predictor or one
that includes an irrelevant one?
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number of candidate forecasters and stabilize their performances before applying
the algorithms. Thus, it is advisable to exclude forecasters that have persistent and
known poor performances from the candidate pool and to group candidate forecasts
with similar performances. The weighting algorithms can then be used to combine
the “group consensus forecasts” calculated as simple averages of the forecasts in a
group. Using grouped forecasts also help to reduce missing values, which is particu-
larly beneficial when working with surveys such as the U.S. Survey of Professional
Forecasters (SPF). In addition, we believe that an effective way to combat frequent
regime changes is to limit the amount of historical data used to evaluate individual
forecasters’ performances. Such a limit could further improve the performance of the
AFTER algorithms given their recursive design and the resulting long memory. We
demonstrate the effectiveness of the above strategies by combining the forecasts of
four important macroeconomic variables reported in the SPF in real time. Comparing
our results and those reported in Lahiri et al. (2017), which looked into combining the
sameSPFvariables using the same algorithms,we observe notably higher performance
gains from the combination algorithms in our exercise.

The rest of the paper is organized as follows: Sect. 2 introduces the combination
methods and algorithms. The setup of our simulation exercises is presented in Sect. 3
and the results in Sect. 4. In Sect. 5, we develop a forecast combination strategy based
on the lessons learned from the simulations and use it to combine the SPF forecasts.
Concluding remarks are in Sect. 6.

2 Combinationmethods

The combination methods and algorithms we focus on in the simulation exercises
include the s-AFTER algorithm from Yang (2004), the L210-AFTER algorithm from
Cheng andYang (2015),7 the algorithmproposed inSancetta (2010) (henceforthSAN),
and the algorithm proposed in Bürgi and Sinclair (2017) (henceforth BS). For com-
parison, we also consider the recent best (RB) method and the method proposed in
Bates and Granger (1969) (henceforth BG).

Consider a standard forecast combination exercise: After each release (yt ) of the
target variable y becomes available, we first estimate a set of weights 0 ≤ ω j,t+h ≤
1, j = 1, 2, . . . , n. Then, ŷt+h , the combined forecast of yt+h , is calculated as the
weighted average of n individual forecasts ŷ j,t+h, j = 1, 2, . . . , n. Without loss of
generality, we set the forecast horizon h to 1. For an individual forecaster j , the most
recent forecast error at time period t + 1 is e j,t ≡ yt − ŷ j,t . Let σ̂ 2

j,t be the estimated
variance of j’s errors. We start the forecast combination exercise at period to. The
observations before to are used as training data where applicable. We measure the
performance of combined forecasts using the mean squared errors (MSE). The MSE

7 We use the term “algorithm” loosely and interchangeably with “methods,” “approaches,” and “proce-
dures.” Below, they are collectively referred to as the AFTER algorithms or the AFTERs. The L1-AFTER
algorithm and the h-AFTER algorithm fromWei andYang (2012) also belong to theAFTER family. The L1-
AFTER uses the absolute error loss (or L1 loss) and the h-AFTER uses the Huber loss. We omit the results
on the performances of the latter two AFTER algorithms, since they are similar to that of the s-AFTER and
L210-AFTER, respectively.
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of a series of combined forecasts changes over time, as more data become available.
At each period t , the MSE is calculated over the period to to t − 1. The MSE over the
entire evaluation sample is calculated over the period to to T , where T is the sample
size.

The AFTER algorithms have similar structures but differ in terms of their loss
functions: The s-AFTER algorithm uses the squared error loss (or L2 loss), and the
L210-AFTER algorithm uses a synthetic loss function—a mixture of L2, L1, and L0
loss, as discussed below. When combining the U.S. SPF forecasts using s-AFTER,
Lahiri et al. (2017) found that the performance of the algorithm is often driven by just a
few large errors of the combined forecasts around the target variable’s turning points.
The latest addition to the AFTER family, L210-AFTER, is designed to specifically
address this issue. Since the L0 loss imposes direct penalty on forecast outliers, the
L210-AFTER algorithm ismore robust to them.Also, the combined forecasts produced
by the algorithm tend to have fewer outliers.

The AFTER algorithms assign weights to individual forecasters recursively. Equal
weights are used in the first period, to. In the case of s-AFTER, the weights for
subsequent periods are calculated as

ω̂s−AFTER
j,t+1 =

ω̂s−AFTER
j,t σ̂−1

j,t exp

(
− e2j,t

2σ̂ 2
j,t

)

∑n
j=1

[
ω̂s−AFTER

j,t σ̂−1
j,t exp

(
− e2j,t

2σ̂ 2
j,t

)] for t ≥ to + 1. (1)

Weights assigned by the L210-AFTER algorithm are given by

ω̂
L210−AFTER
j,t+1 =

ω̂
L210−AFTER
j,t δ̂

−1/2
j,t exp

(
−L210(e j,t )

2δ̂ j,t

)

∑n
j=1

[
ω̂
L210−AFTER
j,t δ̂

−1/2
j,t exp

(
−L210(e j,t )

2δ̂ j,t

)] for t ≥ to + 1. (2)

Following the suggestions inChengandYang (2015),we set δ̂ j,t = t−1 ∑t
l=1 L210(yl−

ŷ j,l).8 The synthetic loss function L210(·), designed for outlier-protective combina-
tion, is defined as

L210(x) = |x | + α1
x2

m
+ α2mL̃0(x |γ1m, γ2m, r1r2). (3)

The parameters α1, α2, γ1, γ2, r1, r2, and m are set according to the suggestions in
Cheng and Yang (2015): a1 = 1, a2 = 1, g1 = 2, g2 = −2, r1 = 0.75, r2 = 0.75,
m = 2. Figure 1, a reproduction of Fig. 1 in Cheng and Yang (2015), shows the L̃0(·)
loss function, which is defined as

8 See Remark 3 to Theorem 2 in Cheng and Yang (2015).
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Fig. 1 L̃0(·) loss function. This figure, a reproduction of Figure 1 in Cheng and Yang (2015), shows the
L̃0(·) loss function, which the L210-AFTER algorithm uses along with the squared error and the absolute
error loss

L̃0(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if x ≥ γ1 or x ≤ γ2

1 − (x−γ1)
2

γ 2
1 (1−r1)2

if r1γ1 ≤ x ≤ γ1

1 − (x−γ2)
2

γ 2
2 (1−r2)2

if γ2 ≤ x ≤ r2γ2

0 if γ2r2 ≤ x ≤ γ1r1

. (4)

The SAN algorithm is implemented according to Algorithm 1 in Sancetta (2010).
In each time period, based on the final weights from the previous period (ωSAN

j,t ) and

the loss incurred by the combined forecast from the previous period, lt (ωSAN
t ), a

preliminary set of weights (ωSAN′
j,t+1) are calculated as

ωSAN′
j,t+1 =

ωSAN
j,t exp

[
−ηt−α∇ j lt (ωSAN

j,t )
]

∑n
j=1

{
ωSAN

j,t exp
[
−ηt−α∇ j lt (ωSAN

j,t )
]} , (5)

where ∇lt (ωSAN
t ) is the gradient of the loss function with respect to the previous

period weight ωSAN
t , and ∇ j lt (ωSAN

t ) is its j th element. η > 0 and α ∈ (0, 1/2] are
the parameters that control the responsiveness of theweight to changes in a forecaster’s
performance. We use two sets of values: {α = 0.5, η = 0.3} (subsequently labeled
as SAN1) and {α = 0.5, η = 0.7} (subsequently labeled as SAN2). With a higher
learning rate, SAN2 is more sensitive to new information (and noise). This should
make it respond to individual forecasters’ performance changes more quickly than
SAN1 does. To obtain the set of final weights used in the combination, ωSAN

j,t+1, all of

the preliminary weights (ωSAN′
j,t+1) that are lower than a predetermined small threshold

γ /n are set to γ /n, and the remainingweights are scaled down such that all the weights
sum to unity. We use γ = 0.5 in our implementations. This additional shrinkage may
lead to suboptimal performance in a stable environment, where either one forecaster
is clearly better than the rest, or when the optimal weights change only slowly. But
shrinkage should help in unstable environments, where the optimal weights often
change abruptly. In addition, as shown inSancetta (2007), shrinking theweights toward
equality helps to reduce outliers in combined forecasts.
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The BS method identifies a subset of forecasters that frequently outperform the
simple average and combines the forecasts of this subset of forecasters using equal
weights. More specifically,

ωBS
j,t+1 =

{
n∑

i=1

I
[(

1

t − to + 1

t∑
s=to

I(σ̂ j,s < σ̂ SA
j,s )

)
> p

]}−1

, (6)

where I(·) is the indicator function and σ̂ SA is the root mean squared error of the
simple average forecast. p is the proportion of times one must outperform the simple
average in order to be included in the subset. In our exercises we set p = 0.5.

The BG method sets ωBG
j,t+1 = σ̂−2

j,t /
∑n

i=1 σ̂−2
i,t . The recent best (RB) method

identifies the best forecaster from the previous period and uses his forecast as the
combined forecast, i.e., ωRB

j,t+1 = 1 if e2j,t = min{e21,t , e22,t , . . . , e2n,t } and ω j,t+1 = 0
otherwise.

Where applicable, we estimate the variance of individual j’s forecast errors using
a rolling window of size w, i.e., σ̂ 2

j,t = w−1 ∑w
τ=1 e

2
j,t−τ+1. Since we are working

in unstable environments, the need for a limited window size naturally arises. The
algorithms introduced above use very different strategies when they calculate the
performance of individual forecasters using historical data. In one extreme, RB bases
this calculation on nothing more than the most recent forecast error. In the other
extreme, BG weighs the most recent forecast error the same as all previous errors.
For the recursive algorithms such as the AFTERs, information from before t − w + 1
is carried over through the use of previous weights. But the impact of older forecast
errors on current weights is less than that of more recent errors. Finally, when simple
averaging is used to combine forecasts, past performances are not utilized at all. As
discussed below, these variations in how historical data are used may be important
in driving the algorithms’ adjustments to breaks in the performances of individual
forecasters.

3 Simulation setup

Let the actual value be the sum of a predictable component st and an unpredictable
component, i.e., common aggregate shock, ct :

yt = st + ct , ct ∼ N (0, 1). (7)

We decompose individual j’s forecast of yt into three components:

ŷ j,t = st + b j,t + ε j,t , ε j,t ∼ N (0, σ 2
j,t ). (8)

st enters the forecast since it is by definition predictable. b j,t represents potential bias
in the forecast. ε j,t is the remaining part of the forecast, which is constrained to have
zero mean so as not to cause any more bias. It becomes the only idiosyncratic part
of the forecast error when we assume unbiasedness. σ 2

j,t is the variance of ε j,t . The
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forecast error, therefore, depends on the unpredictable common aggregate shock ct ,
the forecast bias b j,t , and the remainder error ε j,t :

e j,t ≡ yt − ŷ j,t = ct − b j,t − ε j,t . (9)

The intuition behind this decomposition is similar to that discussed in Davies et al.
(2011), where ct is affected by aggregate uncertainty and b j,t is the source of dis-
agreement. Note that since st is not a part of the forecast error, no assumption needs
to be made about its properties.

In all subsequent exercises, n ∈ {5, 30}, to = 61, T = 300, and w ∈ {24, 60}.
These parameter choices allow us to recreate many familiar situations. For example,
when n = 5, we work as if we are to combine the forecasts from a small set of models.
When n = 30, the setup is similar to what used when combining survey forecasts.
A short window of w = 24 periods is often the preferred choice in highly unstable
environments, while w = 60 is suitable for more stable environments.

For each set of values of {n, to, T , w}, the simulation is carried out as follows:

1. Draw {b j,t , σ
2
j,t } ∀ j according to the specification of the simulation exercise.

Details on the setup of each exercise are presented below.
2. For each t , draw ct , draw ε j,t ∀ j given σ 2

j,t , and calculate σ̂ 2
j,t .

3. Apply the combination algorithms presented in the previous section to generate
combined forecasts. Record the MSE of the combined forecasts produced by each
algorithm.

4. Repeat Step 2 to Step 3 200 times. For each algorithm, obtain the average MSE
across these repetitions. These MSEs are conditional on the specific draws of b j,t

and σ 2
j,t .

5. Repeat Step 1 to Step 4 1000 times. For each algorithm, obtain the average MSE
across these repetitions. These MSEs are no longer conditional on specific draws
of b j,t and σ 2

j,t .

When presenting simulation results, we report relative MSEs. The relative MSE of
an algorithm is itsMSE from the last step divided by that of simple averaging.A relative
MSE bigger than one means that the algorithm produces combined forecasts that are
less accurate than the simple averages of individual forecasts. In the next section, we
report the results of seven sets of simulation exercises. In each exercise, we consider
a different data generating process for {b j,t , σ

2
j,t }. Other than in Exercise 1, where we

consider a stable environment, we set up four scenarios within each exercise, varying
the magnitude of the impact of instabilities on forecasters’ performances. When we
simulate forecast biases or outliers, for convenience, we only generate positive values.
There is no need to specifically allow for negative biases or forecast errors, since the
loss functions used by all of the algorithms are symmetric.

Note that while we attempt to set up the simulation exercises in ways that are
relevant to combination exercises in practice, we do not try to replicate the features of
any particular data set. When the objective is to identify the most suitable algorithm
for a given data set, one can simply use it rather than trying to simulate its features. We
choose the parameters in each simulation exercise so that the impact of instabilities on
the performances of different algorithms is easily observable, provided that our choices
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do not result in simulated data sets that are almost impossible to encounter in real life.9

In addition, even though we consider several combination algorithms and report their
relative MSEs, we do not intend to run a horse race and proclaim the “best,” neither
do we attempt to improve upon the standard algorithms by experimenting with small
changes to their implementations. All of the algorithms considered here have been
used in the literature and shown to have the potential to outperform simple averaging.
Instead of fixating on how an algorithm compares to this benchmark, we emphasize
its performances (and how they differ) in different scenarios. Our hope is to better
understand the respective strengths of the algorithms. This knowledge would help us
identify a more effective forecast combination procedure, i.e., more robust in unstable
environments, than blindly applying any one particular algorithm.

4 Simulation results

4.1 Combining unbiased and homoscedastic forecasts in a stable environment

In exercise 1, we look at the performances of the combination algorithms in a sta-
ble environment, in which all the forecasts are unbiased and homoscedastic. In this
environment, the optimal weights are equal weights. Here, b j,t = 0 and σ 2

j,t = σ 2

∀ j, t . While holding the variance of aggregate shocks fixed at 1, we consider a set of
forecast error variances that are progressively larger: σ 2 ∈ {0.2, 0.4, 0.6, . . . , 20}—
that is, we consider environments where the target variable becomes more and more
difficult to predict. Whenever we have to estimate individual-specific weights, there
are estimation errors. These errors may cause the combined forecasts to be less accu-
rate than a simple average of individual forecasts. This exercise allows us to clearly
reveal this cost.

Figure 2 plots the relative MSEs against σ 2, showing how quickly the cost of esti-
mation increases as the target variable becomes harder to forecast, i.e., everyone’s
forecasts are less accurate. Since BS does not estimate weights like, e.g., the AFTERs,
its performance does not deteriorate as σ 2 increases. The RB method in this envi-
ronment amounts to randomly choosing a forecaster each period, since no one is
systematically better. It is thus reassuring to see that RB does not outperform any
other method. The relative MSEs of s-AFTER and L210-AFTER increase at a much
higher rate than those of BG, SAN1, and SAN2. When the number of forecasts to be
combined is 30 instead of 5, the relative MSEs of s-AFTER and L210-AFTER become
almost three times bigger. To the contrary, the relative MSE of BG stays roughly the
same, and the relative MSEs of SAN1 and SAN2 decrease slightly. We do not see any
significant difference in the results when we increase the window size from 24 to 60.

As we observe here, even though the environment is stable, estimating a large
number of weights may become so costly that the resulting combined forecasts are
much less accurate than what simple averaging offers. For all of the algorithms, this

9 In fact, we carefully compared the parameters of the simulation exercises with relevant characteristics
of the SPF data used in Sect. 5. The boundaries of the distributions of b and σ used in the simulations are
largely consistent with their counterparts in the SPF data. Detailed results omitted but available from the
author.
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Fig. 2 Exercise 1 Results. This figure shows the relative MSEs of various combination algorithms when
combining unbiased and homoscedastic forecasts that are increasingly inaccurate

cost increases as the target variable becomes more difficult to forecast.10 For the
AFTER algorithms, the cost also increases significantly as the number of forecasters
increases.

4.2 Combining biased forecasts in a stable environment

In exercise 2,we combine biased, but homoscedastic, forecasts in a stable environment.
For each forecaster, the amount of bias and the variance of the forecast errors remain
constant over time: b j,t = b j ∀t and σ 2

j,t = σ 2 ∀ j, t . The optimal weights should
be such that the forecaster with the smallest amount of bias receives a weight of one,
while all other forecasters receive zeroweight. In this situation, the performance-based
weighting algorithms should perform well.

10 Although in both cases, simple averaging is found to be difficult to improve upon, our result is not the
same as those reported in Elliott (2017). We consider uncorrelated forecasts with large errors, whereas
Elliott (2017) considered highly correlated forecasts due to the errors having a large common component.
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Table 1 Relative MSEs: Exercise 2

Algorithm Exercise and Number of Forecasters (n)

Exercise 2.1 Exercise 2.2 Exercise 2.3 Exercise 2.4

n = 5 n = 30 n = 5 n = 30 n = 5 n = 30 n = 5 n = 30

Windows size: 24

BG 0.991 0.977 1.022 0.998 0.964 0.949 0.994 0.974

BS 1.169 1.244 1.155 1.380 0.984 0.835 1.240 1.354

L210-AFTER 1.348 1.402 2.212 2.931 0.968 0.898 1.504 1.592

RB 1.574 1.788 2.579 3.844 1.192 1.229 1.787 2.141

s-AFTER 1.366 1.440 2.288 3.124 0.974 0.913 1.535 1.663

Windows size: 60

BG 0.986 0.976 1.005 0.993 0.963 0.949 0.987 0.972

BS 1.118 1.227 1.026 1.022 0.943 0.799 1.169 1.363

L210-AFTER 1.347 1.400 2.209 2.923 0.967 0.897 1.503 1.590

RB 1.574 1.788 2.579 3.844 1.192 1.229 1.787 2.141

s-AFTER 1.365 1.438 2.286 3.119 0.974 0.912 1.534 1.661

Windows size: Not applicable

SAN1 0.978 0.930 1.049 1.000 0.922 0.858 1.010 0.940

SAN2 0.993 0.944 1.093 1.034 0.938 0.875 1.042 0.976

This table shows the relative MSEs of various combination algorithms when combinaing biased but
homoskedastic forecasts. In exercise 2.1, both the bias and the forecast error variance are small. In exercise
2.2, the bias remains small but the variance is large. In exercise 2.3, the bias is large and the variance is
small. In exercise 2.4, both the bias and the variance are large

We consider four scenarios with varying magnitudes of bias and forecast error
variance. Exercise 2.1 features small biases and a small variance: b j is uniformly
distributed over the interval (0, 1) and σ 2 = 1. In exercise 2.2, the distribution of the
bias term b j is the same as in 2.1, but the variance is four times bigger: σ 2 = 4. In
exercise 2.3, we look at large biases coupled with a small variance: b j ∼ U(1, 2) and
σ 2 = 1. Both terms are large in exercise 2.4, with b j ∼ U(1, 2) and σ 2 = 4.

Note that the boundaries of the distributions should be interpreted relative to the
variance of the forecast errors and the unpredictable component of the actual values.
While in real-world data sets like the SPF, distributions of biases or variances are
often bell-shaped, we use the uniform distribution in the simulation exercises here
and below. This is to make sure that we have a variety of values even with only five
forecasters. Using the uniform distribution also helps to create sufficiently large dif-
ferences among the forecasters so that there is a non-trivial potential for improvement
through combination.

Table 1 shows the results from this exercise. As expected, the performance-based
weighting algorithms performwell.11 Comparing exercise 2.1 with 2.2 and comparing
2.3with 2.4, we see that the combined forecasts become less accurate as forecast errors

11 The fact that many of the relative MSEs are larger than 1 is not a concern. We can easily lower these
relative MSEs by changing the parameters of the data generating process (in this exercise, increasing the
biases). The same applies to subsequent simulation exercises.

123



184 Y. Zhao

.9
46

.9
46

5
.9

47
.9

47
5

.9
48

50 100 150 200 250 300

Window = 24 Window = 60

Number of Forecasters: 30; Combination Method: BG

.8
8

.8
9

.9
.9

1
.9

2

50 100 150 200 250 300

Window = 24 Window = 60

Number of Forecasters: 30; Combination Method: SAFTER
.8

5
.8

6
.8

7
.8

8
.8

9
.9

50 100 150 200 250 300

Window = 24 Window = 60

Number of Forecasters: 30; Combination Method: L210A
.8

6
.8

7
.8

8
.8

9

50 100 150 200 250 300

Number of Forecasters: 30; Combination Method: SAN2

Fig. 3 Moving averages of relative MSEs: Exercise 2.3. This figure shows the 12-period moving average
of relative MSEs of various combination algorithms when combining biased but homoscedastic forecasts,
where the bias is large relative to the error variance

become more variable, making estimating individuals’ performances more difficult.
Consistent with our observations in exercise 1, this effect of increasing forecast error
variances is particularly pronounced for the AFTERs but very subtle for both SAN1
and SAN2. Comparing exercise 2.1 with 2.3 and comparing 2.2 with 2.4, we see that
the larger the biases, the more accurate the combined forecasts. In particular, as shown
in exercise 2.3, when combining forecasts with large biases, algorithms such as the
AFTERs may perform better despite having to combine a larger number of forecasts.

Figure 3 shows the 12-period moving averages of the relative MSEs of BG, s-
AFTER,L210-AFTER, andSAN2when combining30 forecasts in exercise 2.3.Wecan
clearly see how the performances of these algorithms change over time, as historical
data accumulate. In the case of BG, the performance of combined forecasts barely
changes (note the scale of the vertical axis). However, this is not the case for the other
three algorithms. For the two AFTER algorithms, the combined forecasts become less
accurate as more data become available, although the deterioration is only 3% to 5%.
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For SAN, the opposite is observed. But still, we are looking at a difference less than 3%.
These observations suggest that one may benefit more from the AFTER algorithms
when applying them to shorter samples. Alternatively, one may “reset” the algorithm
periodically by discarding historical data that are too old (or simply reset the weights
to equal). The performances of all the algorithms eventually stabilize after about 250
periods (which is a long time even when the data are monthly). But in practice, there
may not be nearly as many periods before a break in the forecasters’ performances
that change their optimal weights. In the exercises below, we start to build structural
instabilities into the simulations.

4.3 Combining biased forecasts with breaks in performances

In exercise 3, we destabilize the environment in exercise 2 with the simplest form of
structural break—a one-time mean shift. More specifically, for each forecaster, we
make a one-time change to the bias halfway in the sample. Let b j,t = b j,1 for t ≤ 181
and b j,t = b j,181 for t ≥ 181; σ 2

j,t = σ 2 ∀ j, t . We consider the same set of forecast
bias/error variance combinations as used previously: In exercise 3.1, both the biases
and the variance are small: b j,1, b j,181 ∼ U(0, 1) and σ 2 = 1. In exercise 3.2, the
bias remains small but the variance is large: b j,1, b j,181 ∼ U(0, 1) and σ 2 = 4. In
exercise 3.3, we consider large biases and a small variance: b j,1, b j,181 ∼ U(1, 2)
and σ 2 = 1. Finally, in exercise 3.4, both the biases and the variance are large:
b j,1, b j,181 ∼ U(1, 2) and σ 2 = 4. Note that the one-time break in forecast bias
amounts to simply redraw the bias term.12 The distribution of the bias term does not
change. In particular, it is possible for the pre- and post-break levels of forecast bias
to be very similar.

Table 2 presents the results. As expected, for all the algorithms, evenwith a one-time
break in individual forecasters’ performances, combined forecasts are more accurate
when the forecast error variances are small and/or the biases are large. Compared
with the previous exercise, we see minimal deterioration in the performance of the
combined forecasts.

However, we should not conclude that all the algorithms are robust to the kind of
breaks considered here. A closer look at how the algorithms’ performances change
over time provides additional insights: Fig. 4 shows the 12-period moving averages of
the relativeMSEs of BG, L210-AFTER, SAN1, and SAN2with n = 30 in exercise 3.3.
From the figure, we can clearly see the effect of the break. The relative MSEs of the
combined forecasts increase immediately after the break hits, before they gradually
decline as more post-break data become available. With over 30% increase in relative
MSE, L210-AFTER suffers the biggest loss from the break. The performances of SAN1
and SAN2 deteriorated by 13% and 9%, respectively. The difference between SAN1
and SAN2 is as expected. With a higher learning rate, SAN2 should adapt to the post-
break environment more quickly than SAN1 does, at the cost of having slightly worse

12 Here, we consider a sudden change in forecast performances, which, in reality, could be due to a change
in the underlying forecasting model or a personnel change in the forecast institution. The situation where
individuals’ performances steadily improve/decline is considered in exercise 5 below.
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Table 2 Relative MSEs: Exercise 3

Algorithm Exercise and number of forecasters (n)

Exercise 3.1 Exercise 3.2 Exercise 3.3 Exercise 3.4

n = 5 n = 30 n = 5 n = 30 n = 5 n = 30 n = 5 n = 30

Windows size: 24

BG 0.992 0.978 1.022 0.999 0.966 0.952 0.995 0.976

BS 1.170 1.249 1.155 1.380 0.991 0.846 1.241 1.362

L210-AFTER 1.398 1.457 2.233 2.975 1.059 0.986 1.567 1.682

RB 1.573 1.788 2.578 3.842 1.192 1.230 1.786 2.141

s-AFTER 1.417 1.494 2.310 3.170 1.065 1.002 1.600 1.754

Windows size: 60

BG 0.988 0.979 1.006 0.994 0.968 0.956 0.989 0.976

BS 1.118 1.237 1.027 1.022 0.966 0.825 1.169 1.381

L210-AFTER 1.397 1.453 2.231 2.967 1.058 0.984 1.566 1.679

RB 1.573 1.788 2.578 3.842 1.192 1.230 1.786 2.141

s-AFTER 1.415 1.492 2.309 3.165 1.064 0.999 1.599 1.751

Windows size: Not applicable

SAN1 0.987 0.954 1.050 1.007 0.934 0.885 1.012 0.949

SAN2 0.995 0.954 1.093 1.036 0.942 0.886 1.042 0.979

This table shows the relative MSEs of various combination algorithms when combining biased but
homoscedastic forecasts. There is a one-time random change in the magnitude of the bias in period 181. In
exercise 3.1, both the bias and the forecast error variance are small. In exercise 3.2, the bias remains small,
but the variance is large. In exercise 3.3, the bias is large and the variance is small. In exercise 3.4, both the
bias and the variance are large

performance in stable environments. Among all the algorithms we implemented, BG
is the least impacted, with only 4% increase in relative MSE.

A natural response to frequent structural breaks is to use a shorter window of
historical data. While this strategy is clearly helpful when the BG method is used, it
does little to speed up the adaptation of L210-AFTER to the post-break environment.
In fact, by the end of our sample period, the performances of BG, SAN1, and SAN2
have reached their pre-break level, while the relative MSE of L210-AFTER remains
10% worse. Again, the results suggest the need for periodically resetting the AFTER
algorithms in unstable environments. More generally, a more aggressive algorithm
may work better during unstable periods, but it may also be over-sensitive in stable
environments.

4.4 Combining heteroskedastic forecasts with breaks in performances

In the previous two exercises, individual forecasts are assumed to be biased. Even
though this makes it convenient for us to vary individuals’ performances, having a
significant amount of bias in all the forecasts is somewhat unrealistic. Therefore, from
this exercise onward, the assumption of unbiasedness will be maintained.
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Fig. 4 Moving averages of relative MSEs: Exercise 3.3. This figure shows the 12-period moving average
of relative MSEs of various combination algorithms when combining biased but homoscedastic forecasts.
There is a one-time random change in the magnitude of the bias in period 181

In exercise 4, we work with unbiased but heteroskedastic forecasts. In this exercise,
individual forecasters’ performances depend solely on the variance of the idiosyncratic
component of their forecast errors. Forecasts with a smaller variance are preferable
and should receive higher weights. Instabilities are introduced through breaks in indi-
viduals’ forecast performances. More specifically, in this exercise, b j,t = 0 ∀ j, t , and
σ 2
j,t = σ 2

j,r if δr−1 < t ≤ δr , where r = 1, 2, . . . , R indexes regimes, and δr is the
time when regime r ends. δ0 = 0, δR = T . In exercise 4.1 and 4.2, we introduce only
one break: R = 2, δ1 = 180. The difference between exercise 4.1 and 4.2 lies in the
variability of individuals’ forecast performances: In exercise 4.1, the performances
are less variable, σ 2

j,r ∼ U(0.1, 2.5), while in exercise 4.2, we allow much more vari-

ability with σ 2
j,r ∼ U(0.1, 6.5). There are three breaks in exercises 4.3 and 4.4, where

we have R = 4 and δ1 = 90, δ2 = 150, δ3 = 210). The variability of individuals’
performances is low in exercise 4.3, where σ 2

j,r ∼ U(0.1, 2.5), and high in exercise

4.4, where σ 2
j,r ∼ U(0.1, 6.5).
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Table 3 Relative MSEs: Exercise 4

Algorithm Exercise and number of forecasters (n)

Exercise 4.1 Exercise 4.2 Exercise 4.3 Exercise 4.4

n = 5 n = 30 n = 5 n = 30 n = 5 n = 30 n = 5 n = 30

Windows size: 24

BG 0.971 0.993 0.912 0.971 0.976 0.994 0.930 0.976

BS 1.121 1.251 1.086 1.275 1.139 1.280 1.124 1.344

L210-AFTER 1.406 1.373 1.766 1.891 1.548 1.620 2.068 2.532

RB 1.762 2.175 2.348 3.542 1.768 2.179 2.361 3.552

s-AFTER 1.412 1.377 1.776 1.884 1.561 1.638 2.088 2.557

Windows size: 60

BG 0.968 0.992 0.911 0.971 0.981 0.995 0.950 0.984

BS 1.075 1.179 1.048 1.160 1.119 1.250 1.137 1.277

L210-AFTER 1.403 1.365 1.761 1.852 1.546 1.615 2.060 2.502

RB 1.762 2.175 2.348 3.542 1.768 2.179 2.361 3.552

s-AFTER 1.409 1.367 1.769 1.836 1.558 1.631 2.079 2.520

Windows size: Not applicable

SAN1 0.983 1.017 0.942 1.038 0.998 1.015 0.968 1.035

SAN2 0.993 1.030 0.986 1.086 1.003 1.026 0.999 1.080

This table shows the relative MSEs of various combination algorithms when combining unbiased but
heteroskedastic forecasts. In exercises 4.1 and 4.2, there is a one-time random change in each individual’s
forecast error variance in period 181. In exercises 4.3 and 4.4, there are three changes in periods 91, 151,
and 211. In exercises 4.1 and 4.3, individuals’ performances are less variable. In exercises 4.2 and 4.4, the
performances are more variable

In Table 3, we report the results of this exercise. Comparing exercises 4.1 with 4.3
and comparing exercise 4.2 with 4.4, we see that having three breaks instead of one
only makes the performances of the combination algorithms slightly worse. Changing
the variability of individuals’ performances, on the other hand, has a much bigger
effect on the accuracy of the combined forecasts. Regardless of whether there are 5
or 30 forecasters, BG and BS tend to perform better when individuals’ performances
have higher levels of variability, as in exercises 4.2 and 4.4. But at the same time, RB
and the two AFTER algorithms perform worse in cases with high levels variability.
Interestingly, the number of forecasters affects the performance of SAN1 and SAN2
more than the level of variability.With fewer forecasters, they actually perform slightly
better in the higher variability cases.13 This is likely due to how the SAN method
shrinks the differences between individuals’ weights. When there are 5 forecasters,
with γ = 0.5, the smallest weight is 0.1, while it is only 0.017 when there are 30
forecasters. In unstable environments, the shrinkage step effectively helps SAN to
avoid producing combined forecasts that are significantly worse than the mean of the
individual forecasts.

13 Note that in terms of MSEs (not relative MSEs), both SAN1 and SAN2 perform worse in the higher
variability cases as expected.
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Fig. 5 Moving averages of relative MSEs: Exercise 4.4. This figure shows the 12-period moving average of
relative MSEs of various combination algorithms when combining unbiased but heteroskedastic forecasts.
There are three random changes in each individual’s forecast error variance in periods 91, 151, and 211

Next, we look more closely at exercise 4.4, where individuals’ performances are
highly variable and they change three times during the sample period. Figure 5 shows
the performances of BG, BS, L210-AFTER, and SAN2. Much like what we saw in the
previous exercise, BG adapts to new regimes quickly after breaks, especially when
the window size is small. BS adapts to new regimes even more quickly than BG does,
regardless of the window size. The slow adaptation and long memory of the AFTER
algorithms clearly affect their performances: The impact of breaks accumulates over
time, making combined forecasts increasingly unreliable. In situations with more fre-
quent breaks and shorter regimes, the AFTERs may suffer even heavier losses. This
behavior is the opposite of that of SAN2, where shrinkage helps to reduce the impact
of breaks, so much so that the combined forecasts become more accurate after each of
the three breaks (but still slightly worse than simple averages of individual forecasts).

Exercise 4 also illustrates the robustness of simple averaging. In none of the four
setups is simple averaging the optimal combination method. However, as we can see
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from Table 3, the only algorithm that delivers better performance across exercises
4.1 to 4.4 is BG. Both SAN1 and SAN2, as well as BS, behave similarly to simple
averaging. The AFTERs and RB perform notably worse.

4.5 Combining heteroskedastic forecasts with continuously changing
performances

So far, we have only simulated instabilities in the form of discrete changes in forecast
performances. In this exercise,we shift our focus to unstable environments inwhich the
accuracy of individuals’ forecasts is continuously changing. This type of environments
is arguably more realistic, since it is unlikely that a forecaster’s performance stays
exactly the same over a number of years.

We continue to maintain the assumption of unbiasedness and set b j,t = 0 ∀ j, t .
For performance-based weighting algorithms to work, a forecaster’s performance in
the future must at least in part depend on its past. When the performances change
continuously, we cannot allow the changes to be completely random. Let

σ 2
j,t = σ 2

j,1 + σ 2
j,T − σ 2

j,1

T − 1
· (t − 1), (10)

where σ 2
j,1 ∼ U(p1, q1) and σ 2

j,T ∼ U(pT , qT ). p1, q1, pT , and qT are parameters to
be specified below. This way, for each forecaster, while his performances in the first
period and the last period are randomly chosen, the way his performance changes over
time is predictable and the speed of the change is constant.

In exercise 5.1, changes happen to all the forecasters: p1 = pT = 0.1 and q1 =
qT = 6.5. In exercise 5.2, with probability 0.5, p1 = pT = 0.1, q1 = qT = 3.5. with
probability 0.5, p1 = pT = 3.5, q1 = qT = 6.5. In this setting, with equal probability,
the performance of a forecaster can either be good or poor. While everyone’s perfor-
mance gradually changes, nobody leaves his group: A good forecaster will always be
a good forecaster, and a poor forecaster will always remain so. Obviously, the optimal
weighting scheme should place no weight on the poor forecasters, while the weights
of the good forecasters change over time according to changes in their performances.
In exercise 5.3, with probability 0.5, p1 = 0.1, q1 = 3.5, pT = 3.5, qT = 6.5. with
probability 0.5, p1 = 3.5, q1 = 6.5, pT = 0.1, qT = 3.5. This setting is similar to
the that of exercise 5.2, except that, instead of remaining in the same group, every-
one slowly moves into the other group. Eventually, the group of good forecasters
become the group of poor forecasters, vice versa. In the process, the relative per-
formances within a group may change as well. In exercise 5.4, with probability 0.5,
p1 = 0.1, q1 = 6.5 and σ 2

j,T = σ 2
j,1. With probability 0.5, p1 = pT = 0.1 and

q1 = qT = 6.5. In this setting, the performances of half of the forecasters change
continuously over time, while the remaining forecasters’ performances remain stable.

We report the results of this exercise in Table 4. As expected, the more widespread
the breaks, the worse the performances of combination algorithms. In exercise 5.1,
everyone’s performance changes. In exercise 5.4, only half the forecasters’ perfor-
mances change over time. Comparing their results, we can see that almost all the
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Table 4 Relative MSEs: Exercise 5

Algorithm Exercise and number of forecasters (n)

Exercise 5.1 Exercise 5.2 Exercise 5.3 Exercise 5.4

n = 5 n = 30 n = 5 n = 30 n = 5 n = 30 n = 5 n = 30

Windows size: 24

BG 0.957 0.985 1.006 1.002 1.011 1.004 0.931 0.977

BS 1.133 1.348 1.137 1.295 1.151 1.351 1.102 1.294

L210-AFTER 1.722 1.704 2.053 2.557 2.108 2.691 1.510 1.441

RB 2.453 3.665 2.557 3.841 2.588 3.910 2.393 3.603

s-AFTER 1.738 1.718 2.098 2.661 2.146 2.779 1.522 1.450

Windows size: 60

BG 0.944 0.981 0.990 0.997 0.995 0.998 0.919 0.973

BS 1.054 1.103 1.041 1.087 1.039 1.043 1.029 1.101

L210-AFTER 1.721 1.700 2.051 2.553 2.106 2.686 1.509 1.439

RB 2.453 3.665 2.557 3.841 2.588 3.910 2.393 3.603

s-AFTER 1.736 1.715 2.096 2.658 2.144 2.776 1.521 1.448

Windows size: Not applicable

SAN1 0.977 1.036 1.031 1.036 1.035 1.036 0.951 1.038

SAN2 1.027 1.074 1.075 1.064 1.078 1.062 1.003 1.082

This table shows the relative MSEs of various combination algorithms when combining unbiased but
heteroskedastic forecasts, where the forecast error variances change continuously. In exercise 5.1, this
change is random and it happens to all the forecasters. In exercises 5.2 and 5.3, initially, half the forecasters
are in the “good” group and the other half are in the “poor” group. In exercise 5.2, despite the random
performance changes, forecasters always stay in the same group. In exercise 5.3, the random performance
changes eventually result in every forecaster switching to the other group. In exercise 5.4, the performances
of half the forecasters change randomly, while those of the other half remain constant

algorithms perform better in exercise 5.4, regardless of how many forecasters are in
the pool. A comparison between exercise 5.2 and 5.3 leads to similar observations.
However, SAN1 and SAN2 are the exceptions, most likely due to the shrinkage step
as discussed previously.14

4.6 Combining heteroskedastic forecasts subject to unexpected aggregate shocks

Next, we examine the effect of unexpectedly large aggregate shocks. Unlike breaks in
individuals’ performances, aggregate shocks are the same to all the individuals. They
do not affect an individual’s performance, but they domake estimating the performance
more difficult.We continue to work with unbiased but heteroskedastic forecasts. Apart
from aggregate shocks, there is no other instabilities or breaks in performances. The
optimal weighting scheme should place all the weights on the forecasts with the lowest
variance. Specifically, we set b j,t = 0 ∀ j, t and σ 2

j,t = σ 2
j ∼ U(0.1, 6.5). In all the

previous exercises, ct is simply a standard normal random variable, see equation (7).

14 Again, when we examine the MSEs instead of the relative MSEs, both SAN1 and SAN2 behave as
expected.
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Table 5 Relative MSEs: Exercise 6

Algorithm Exercise and number of forecasters (n)

Exercise 6.1 Exercise 6.2 Exercise 6.3 Exercise 6.4

n = 5 n = 30 n = 5 n = 30 n = 5 n = 30 n = 5 n = 30

Windows size: 24

BG 0.938 0.982 0.974 0.994 0.952 0.987 0.986 0.997

BS 1.070 1.185 1.071 1.137 1.059 1.146 1.050 1.090

L210-AFTER 1.217 1.109 1.121 1.052 1.180 1.085 1.082 1.033

RB 2.028 2.715 1.609 1.910 1.857 2.357 1.420 1.602

s-AFTER 1.225 1.113 1.128 1.059 1.187 1.090 1.088 1.041

Windows size: 60

BG 0.929 0.979 0.969 0.992 0.945 0.985 0.983 0.996

BS 1.015 1.078 1.025 1.064 1.013 1.062 1.017 1.042

L210-AFTER 1.217 1.108 1.121 1.051 1.180 1.084 1.082 1.033

RB 2.028 2.715 1.609 1.910 1.857 2.357 1.420 1.602

s-AFTER 1.225 1.113 1.127 1.059 1.187 1.090 1.088 1.040

Windows size: Not applicable

SAN1 0.956 1.040 0.995 1.033 0.970 1.037 1.007 1.028

SAN2 1.008 1.078 1.034 1.058 1.014 1.068 1.032 1.045

This table shows the relative MSEs of various combination algorithms when combining unbiased and
heteroskedastic forecasts, where forecasters face unexpected aggregate shocks. In exercise 6.1, infrequent
and small aggregate shocks are considered. In exercises 6.2, aggregate shocks are frequent but small. In
exercise 6.3, aggregate shocks are infrequent but large. In exercise 6.4, there are frequent large aggregate
shocks

In this exercise, to allow for unexpectedly large aggregate shocks, we let ct follow
a mixture distribution: With probability 1 − p, ct ∼ N (0, 1). With probability p,
ct ∼ U(2.5, q). The parameter p controls the frequency of large aggregate shocks,
while q determines how large they can be. In exercise 6.1, infrequent and small shocks
are considered, where p = 0.05, q = 4.5. Exercise 6.2 considers frequent small
shocks with p = 0.2, q = 4.5. Exercise 6.3 considers infrequent but large shocks,
where p = 0.05, q = 6.5. An environment which large shocks hit frequently is
considered in exercise 6.4 with p = 0.2, q = 6.5.

Table 5 shows the performances of the combination algorithms. Aggregate shocks
make it harder to differentiate the good forecasters from the poor ones. As a result, we
expect to see combined forecasts with higher accuracy in environments with smaller
and less frequent shocks. This turns out to be the case for most of the algorithms
including BG, SAN1, and SAN2, where the best performance is observed in exercise
6.1. However, BS, RB, and the two AFTER algorithms perform the best in exercise
6.4. Despite these observations, it is worth noting that the BGmethod remains the only
one that consistently outperforms simple averaging, although just by a few percentage
points. While this exercise does not precisely simulate the business cycle, having
unexpectedly large aggregate shocks is similar to forecasters missing a business cycle
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turning point. Therefore, the results here may also shed some light on the behavior of
these algorithms when the target variable is highly cyclical.

4.7 Combining heteroskedastic forecasts with outliers

Finally, in exercise 7, we look at the algorithms’ robustness to forecast outliers. Each
period, there is a small chance for a forecaster to produce an outlier, i.e., an unusually
large forecast error. Except when influenced by outliers, forecasts are all unbiased
with b j,t = 0 ∀ j, t and have stable performance σ 2

j,t = σ 2
j ∀t . For each fore-

caster, with probability 0.5, σ 2
j ∼ U(0.1, 3.5). Otherwise, he has poor performance,

with σ 2
j ∼ U(3.5, 6.5). Forecast outliers are introduced by letting ε j,t follow a mix-

ture distribution. With probability (1 − p j ), ε j,t ∼ N (0, σ 2
j,t ). With probability p j ,

ε j,t ∼ U(2σ j,t , 4σ j,t ). In this setup, outliers have random, but significantly larger than
usual, errors. p j controls the frequency of their occurrences. In exercise 7.1, everyone
produces outliers with a low probability p j = 0.05 ∀ j . In exercise 7.2, p j = 0.05 if
σ 2
j ∼ U(0.1, 3.5), otherwise, p j = 0. This means that only the good forecasters occa-

sionally produce outliers. In exercise 7.3, the opposite case is considered, where only
the poor forecasters may produce outliers: p j = 0.05 if σ 2

j ∼ U(3.5, 6.5), otherwise,
p j = 0. In the last setting, exercise 7.4, a random set of 20% of the forecasters produce
outliers, i.e., with probability 0.2, p j = 0.05, and with probability 0.8, p j = 0.

The results from this exercise are presented in Table 6. We first compare exercise
7.1 with 7.4. The combination algorithms are expected to perform better when there
are fewer outliers. This turns out to be true for all except BG, which performs slightly
better in exercise 7.1. But for the other algorithms, the performance differences are
small. Comparing exercise 7.2 with 7.3, we see that, relative to weighting everyone
equally, the performance-based algorithms take a bigger performance hit when the
good forecasters produce outliers. A natural remedy for outliers is a long window. The
effect of an outlier on theMSE of a forecaster becomes more diluted as more historical
data are used to compute the MSE. This is true for BG and BS. However, a longer
window does not help the AFTER algorithms. This is most likely because of the algo-
rithms’ already long memories. Finally, a comparison of the two AFTER algorithms
shows that the s-AFTER is uniformly worse (though only slightly), confirming the
effectiveness of the outlier-protective design of the L210-AFTER.

4.8 Lessons and remarks

After reviewing all seven sets of simulation exercises, we believe that, first, given the
high cost of estimating individual-specific weights, we should keep the number of
forecasters small. This can be achieved by excluding infrequent survey participants
and forecasters with consistent and obvious poor performances and by grouping the
forecasters and combining group consensuses instead of individual forecasts. Second,
using a short window to calculate individuals’ performances helps little when using
the AFTER algorithms. Instead, given the recursive structure of the algorithms, we
may reset individuals’ weights to be equal periodically or after an apparent structural
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Table 6 Relative MSEs: Exercise 7

Algorithm Exercise and number of forecasters (n)

Exercise 7.1 Exercise 7.2 Exercise 7.3 Exercise 7.4

n = 5 n = 30 n = 5 n = 30 n = 5 n = 30 n = 5 n = 30

Windows size: 24

BG 0.891 0.921 0.953 0.982 0.801 0.898 0.890 0.958

BS 1.099 1.258 1.110 1.302 1.048 1.203 1.078 1.245

L210-AFTER 1.413 1.186 1.617 1.368 1.095 1.068 1.308 1.180

RB 2.777 4.901 2.622 4.190 2.623 4.562 2.502 3.966

s-AFTER 1.429 1.194 1.634 1.378 1.103 1.071 1.315 1.183

Windows size: 60

BG 0.856 0.908 0.930 0.974 0.776 0.890 0.872 0.953

BS 1.013 1.101 1.029 1.121 0.976 1.078 1.008 1.098

L210-AFTER 1.413 1.185 1.616 1.368 1.095 1.067 1.307 1.179

RB 2.777 4.901 2.622 4.190 2.623 4.562 2.502 3.966

s-AFTER 1.430 1.194 1.634 1.378 1.103 1.071 1.315 1.183

Windows size: Not applicable

SAN1 0.930 1.052 0.971 1.048 0.849 1.037 0.915 1.045

SAN2 1.024 1.173 1.033 1.099 0.950 1.176 0.985 1.114

This table shows the relative MSEs of various combination algorithms when combining unbiased and
heteroskedastic forecasts, where there may be outliers, i.e., unusually large forecast errors. In exercise 7.1,
everyone produces outliers with a low probability. In exercises 7.2, only the good forecasters occasionally
produce outliers. In exercise 7.3, only the poor forecasters occasionally produce outliers. In exercise 7.4, a
random set of 20% of the forecasters produce outliers, regardless of whether they are good or poor

break. Third, wemay hedge against unexpected aggregate shocks and forecast outliers
using procedures similar to the shrinkage step in SAN. This can be as simple as, e.g.,
combining the combined forecast produced by s-AFTER with the simple average of
individual forecasts, where the latter receives a small but non-trivial weight. Finally,
we should keep in mind that, in a continuously changing environment, it may be
very difficult for performance-based combination algorithms to be effective, given the
amount of data they need to properly estimate individuals’ performances. Therefore,
if frequent structural breaks are expected or the amount of historical data is extremely
limited, using the mean of individual forecasts may be a prudent option.

5 Example: combining the SPF forecasts

The lessons learned from the simulation exercises should help researchers and policy
makers develop forecast combination procedures and workflows that are more robust
to various types of instabilities. To illustrate the usefulness of our suggestions in the
previous section, we revisit the exercise in Lahiri et al. (2017), where the authors
employed some of the algorithms examined in this paper when combining the fore-
casts reported in the U.S. Survey of Professional Forecasters, and they found that the
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more sophisticated algorithms only provided some limited improvements over simple
averaging.

The SPF is a well-respected quarterly survey that collects forecasts made by pro-
fessional forecasters. The survey was initially conducted by the American Statistical
Association (ASA) and the National Bureau of Economic Research (NBER). Starting
from 1990, the survey was taken over by the Federal Reserve Bank of Philadelphia.
Consistent with the setup of the exercise in Lahiri et al. (2017), we use the forecasts of
four different target variables: the real GDP growth rate (RGDP), the CPI inflation rate
(CPI), the GDP deflator inflation rate (PGDP), and the unemployment rate (UNEMP).
For each of the four variables, we separately combine the forecasts up to four quarters
ahead (h = 1, 2, 3, 4).

In order tomaximize potential performance gains, we try to improve the Lahiri et al.
(2017) procedure in three straightforward ways: First, when calculating the MSEs of
each individual forecaster, we use a rolling window of five years. Second, when using
theAFTERalgorithms,weperiodically reset theweights to equal. Tobe consistentwith
the size of the rollingwindow, the reset happens everyfiveyears. Third, before applying
the weighting algorithms, we put the forecasters into five groups based on their past
performances measured by the MSE. Within a group, all the forecasters receive equal
weights. These group means are then combined using a weighted average, with the
weights assigned by the combination algorithms.15 This way, we avoid the cost of
estimatingmanyweights. In addition, the groupmeans havemore stable performances
than those of individual forecasters, seeAiolfi and Timmermann (2006). Aswe discuss
below, these improvements help us obtain much more accurate combined forecasts.

Partly due to the change in the survey administrator, there is a large amount of
missing values in the survey. As shown in Lahiri et al. (2017), one cannot compare
the results of different combination algorithms when they are applied to unbalanced
panels, because all the algorithms implicitly impute the missing values and different
algorithms do so differently. Since we intend to compare the performances of different
combination algorithms, we must have balanced panels of forecasts. This is achieved
using the same procedure as in Lahiri et al. (2017). First, instead of using the entire
time series, we consider two subsamples separately. The first subsample covers the
period from 1968:IV to 1990:IV. The second subsample starts from 2000:I and ends at
2019:IV. The forecasts of CPI inflation rate before 1981 are not available. So, for CPI,
we only work with subsample 2. Second, we discard the forecasters with excessively
large amounts of missing forecasts.16 Specifically, in each quarter, we only combine
the forecasts of those who have reported at least 10 forecasts during the most recent
20 quarters. Imposing this restriction leaves us, on average, some 20 forecasters in
the first subsample and 30 in the second, depending on the specific target variable and
horizon. As the last step in data preparation, we impute the remaining missing values
ourselves. This imputation method is based on Genre et al. (2013) and is used with
good results in Lahiri et al. (2017). Specifically, a missing forecast f j,t is imputed as

15 The group means are treated as “individual forecasts” for all purposes. For example, RB takes the best
group mean and SA takes the average of the group means.
16 As reported in Capistrán and Timmermann (2009), Genre et al. (2013), as well as Lahiri et al. (2017), a
forecaster’s performance and the frequency of his participation appear unrelated.
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f j,t = f̄t + β̂ j [∑4
s=1( f j,t−s − f̄t−s)/4], where β̂ j is the OLS estimate. This way, a

missing forecast is imputed with an adjusted average for that time period. The average
is that of the non-missing forecasts for that same period. The adjustment is forecaster
specific and is based on the forecaster’s usual amount of deviation from the average
in the past year,

∑4
s=1( f j,t−s − f̄t−s)/4.

In real time, we implement the combination algorithms considered in the previous
section using these balanced panels of forecasts. Specifically, we place ourselves at the
end of each quarter trying to combine the forecasts reported in the current quarter’s
survey, which target the next four quarters. Due to their publication lags, we only
have the actual values up to the previous quarter when we calculate the weights.
These actual values are the first releases/vintages of the target variables. And they are
also used when we evaluate the performance of the combined forecasts. To avoid the
possibility of excessive data mining and to keep the results in this exercise comparable
with those in the previous section, all the algorithms are implemented using the same
set of parameters as in the simulation exercises.We put the forecasters into five groups.
As already mentioned, we use a window of 20 quarters for all the target variables and
subsamples. So we discard the first 20 quarters in each subsample before calculating
the MSE of the combined forecasts. We carry out this exercise separately for each
target variable, horizon, and subsample.

Similar to the practice in the previous section, in Table 7, we report the results as
relative MSEs. A relative MSE smaller than 1 means that the combination algorithm
performs better than simple averaging. In such cases, we shade the table cell. In
addition, we test all the cases using the one-sided modified Diebold-Mariano test
(Harvey et al. 1997) at 10% level. The statistically significant numbers are set in bold.
As Table 7 shows, the performance-based weighting algorithms often outperform
simple averaging. For all four target variables, significant performance gains can be
obtained from combining the one-quarter-ahead forecasts. For RGDP and UNEMP,
moderate improvements over simple averaging are observed even at higher horizons.
For all the algorithms, there are cases when they outperform simple averaging. In
several cases, the combined forecasts produced by the AFTER algorithms are much
more accurate than the benchmark.

There is a clear contrast between these results and those reported in Lahiri et al.
(2017), where the performance-based algorithms deliver verymodest improvements in
most cases. Here, we are able to achieve statistically significant and practically mean-
ingful performance gains with an improved procedure due to the lessons learned from
the simulation exercises. In practice, when the parameter values of the combination
algorithms can be more appropriately selected, one may obtain even better results.

As robustness checks, we repeated this real-time combination exercise using an
alternative window size of 40 quarters and the participation requirements of 8, 12, 16,
and 20 quarters. The longer window size results in slightly lower performance gains,
while a more stringent participation requirement tends to slightly boost the perfor-
mance gains. The precise amount varies by target variable and horizon. But overall, a
window size of 20 and a participation requirement of 10 provides the best balance for
this data set. Our conclusions stay the same regardless. We also carried out our combi-
nation exercise using individual forecasts directly, i.e., without grouping. On average
over all the target variables, subsamples, and horizons, the MSE of the combined
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Table 7 Combining SPF forecasts: relative MSEs and DM test results (with grouping)

Algorithm Subsample 1: 1968:IV to 1990:IV Subsample 2: 2000:I to 2018:II

h=1 h=2 h=3 h=4 h=1 h=2 h=3 h=4

Target variable: CPI

BG 0.856 1.004 1.005 1.001

BS 0.701 1.033 1.044 1.001

L210-AFTER 0.581 1.030 1.052 1.015

RB CPI data available 0.889 1.056 1.077 1.123

s-AFTER for subsample 2 only 0.579 1.037 1.059 1.011

SAN1 0.745 1.019 1.033 1.018

SAN2 0.727 1.028 1.035 1.020

Target variable: PGDP

BG 0.944 1.001 0.990 1.008 0.989 1.007 1.001 1.006

BS 0.882 1.048 1.106 1.027 0.994 1.087 1.057 1.133

L210-AFTER 0.911 1.112 0.983 1.055 0.926 1.050 1.025 1.062

RB 0.997 1.036 0.987 1.023 1.071 1.169 1.070 0.897

s-AFTER 0.899 1.130 0.999 1.037 0.934 1.039 1.045 1.105

SAN1 0.922 1.005 1.003 1.040 0.985 1.012 1.004 1.008

SAN2 0.916 1.001 1.000 1.015 0.966 1.027 1.012 1.032

Target variable: RGDP

BG 0.961 1.004 0.993 1.014 0.995 0.999 0.999 0.996

BS 0.869 1.169 1.005 1.002 1.011 1.021 1.021 0.965

L210-AFTER 0.849 1.089 0.967 1.165 0.981 1.014 0.999 0.973

RB 1.245 0.933 1.101 1.188 0.984 1.038 1.017 1.081

s-AFTER 0.866 1.105 0.966 1.136 0.982 0.979 1.000 0.969

SAN1 0.947 1.033 0.995 1.083 0.986 0.984 1.000 0.983

SAN2 0.995 1.001 1.007 1.008 0.983 0.989 0.999 0.986

Target variable: UNEMP

BG 0.960 1.002 0.980 0.985 0.939 0.972 0.976 0.987

BS 0.898 0.920 0.926 0.992 0.907 0.918 0.948 0.999

L210-AFTER 0.834 1.021 0.917 0.931 0.913 0.933 0.953 1.002

RB 1.260 1.079 1.053 1.157 0.983 0.891 0.971 1.052

s-AFTER 0.811 1.031 0.924 0.897 0.950 0.941 0.951 1.031

SAN1 0.996 1.001 0.982 0.985 0.997 0.994 0.993 0.994

SAN2 0.991 1.004 0.964 0.966 0.993 0.987 0.986 0.986

This table shows the relative MSEs of various combination algorithms when combining the SPF forecasts,
relative to theMSEof simple averaging. RelativeMSEs lower than 1 are italic. Bold numbers are statistically
significantly lower than 1 according to the one-sided DM test at the 10% level. Individual forecasters are
grouped according to their MSEs. The combination algorithms, including simple averaging, are used to
combine the group means

forecasts obtained without grouping is 9.1% higher. In 96% of the cases, combining
grouped forecasts results in a lower MSE than combining individual forecasts without
grouping.
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6 Concluding remarks

In this study, we examined the performances of several recently developed forecast
combination algorithms in unstable environments in seven simulation exercises. The
first exercise revealed the cost of estimating weights for individual forecasters as the
number of forecasters increases. In the second exercise, we documented the algo-
rithms’ performances when combining biased forecasts. A one-time break in forecast
bias was introduced in the third exercise, which allowed us to observe closely the
performances of the combined forecasts immediately after the break. We considered
multiple breaks and heteroskedastic forecasts in the fourth exercise. Next, we studied
cases in which individual forecasters’ performances were changing continuously. The
role of unexpectedly large aggregate shocks and the effect of forecaster-specific out-
liers were considered in the remaining two simulation exercises, respectively. Each of
the seven exercises was carried out using four different sets of parameter values, which
allowed us to perform comprehensive and in-depth analysis of the performances of
the combination algorithms.

The simulation exercises led to several observations. First, the accuracy of the com-
bined forecasts deteriorates rapidly as the number of forecasters increases. This is so
even when individual forecasters’ performances stay constant over time, i.e., there is
no structural instability. The second observation is that, in many cases, the length of
estimation window has little effect on the performance of the algorithms, especially
the AFTERs. Given their recursive structure, the AFTERs may benefit more from
resetting the recursion than limiting the window size used to estimate individual fore-
casters’ performances.We also observed that a higher level of heteroskedasticity in the
forecasts helps the algorithms to differentiate the good forecasters from the poor ones.
But at the same time, it makes estimating individuals’ weights more costly. Therefore,
a higher level of heteroskedasticity may be good for less aggressive algorithms such
as BG, but not for the AFTERs, which are more sensitive to small changes in forecast-
ers’ performances. In addition, our results suggested that it takes a long time for the
performance of an algorithm to stabilize after a break in forecasters’ performances.
In environments with frequent breaks, the performances of algorithms such as the
AFTERs may never reach the optimal level. In such cases, simple averaging may be a
better alternative. Based on these results, we proposed a combination procedure that
reduces the number of weights that must be estimated and stabilizes the performances
of candidate forecasts by pooling the forecasts from individuals with similar perfor-
mances. We demonstrated the effectiveness of this procedure in a real-time forecast
combination exercise using forecasts from theU.S. Survey of Professional Forecasters.
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