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Abstract
We provide novel evidence about the innovation–employment nexus by decompos-
ing it by R&D intensity in a continuous setup and relaxing the linearity assumption.
Using a large international firm-level panel data set forOECDcountries and employing
a flexible semi-parametric method—the generalised propensity score—allows us to
recover the full functional relationship between the R&D-driven innovation and firm
employment as well as address important econometric issues, which is not possible in
the standard estimation approach used in the previous literature. Our results confirm
that the relationship between innovation and employment entails important nonlinear-
ities responsible for significant differences in employment response to innovation at
different R&D intensity levels.
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1 Introduction

In setting the Europe 2020 Strategy, the European Union (EU) has defined five
ambitious objectives—on employment, innovation, education, social inclusion and
climate/energy—to be reached by 2020 (European Commission 2013). Concerning
the first two targets, the strategy aims at: (1) increasing employment by raising the
employment rate of population to at least 75%and (2) promoting innovation by increas-
ing research and innovation expenditures to at least 3% of the GDP.

In the context of these two Europe 2020 Strategy’s objectives, an important policy
question arises whether innovation and employment processes can be complementary
and hence their EU targets can be achieved at the same time? Further, policymakers are
interested to know: (1) are there R&D intensity levels when innovation and employ-
ment are positively related to each other and when innovation may have an adverse
impact on the firm employment? (2) What type of innovators create most jobs and
hence provide the highest potential for policy synergies? Answering these questions
is the main objective of the present study, as they may help to design policies, which
can efficiently contribute to achieving both the innovation and employment targets of
the Europe 2020 Strategy at the same time.

At a first glance, a simultaneous boosting of both employment and innovation may
seem an easy and most natural task to achieve as any type of investments (including
R&D) increases the labour demand, at least in the short run. However, the theoretical
literature suggests that the relationship between innovation and employment seems to
be far more complicated than one can naively assume initially (Smolny 1998). Also
the econometric results reported in the literature on employment effects of innovation
are rather contradictory both with respect to their sign and magnitude, suggesting
that increasing the innovation intensity can have not only complementary but also
substitutionary effects on employment (Young 1993; Antonucci and Pianta 2002; Van
Reenen 1997).

In order to accommodate a wide range of possibilities in the innovation–
employment relationship ranging from highly negative to strongly positive, in the
present study, we propose an alternative methodological approach that has not been
employed in the innovation–employment literature before. In particular, we relax the
linearity assumption in the functional relationship between innovation and employ-
ment andhope that itwill contribute towards sorting out the likely reasons for observing
such a large range of estimated employment elasticities with respect to the firm innova-
tion activity. There are several reasons why the innovation–employment relationship
may be nonlinear. Conceptually, the nonlinearities in the functional relationship
between innovation and employment may arise, for example, due to the coexistence
of many mutually interdependent transmission mechanisms and general equilibrium
feedback loops, as the employment effect of innovation depends, among others, on
the nature of innovation (product or process innovation); the purpose of innovation
(to save labour or capital, neutral, or biased towards skills) and other factors (Pianta
2004). Empirically, the employment effect of innovation depends on the firm’s sector
of activity; formal and informal institutions; the time frame of analysis; specifics of
the existing production technology; dimensions of innovation (radical or incremental);
consumer preferences; the fierceness of competition in intermediate input and labour
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Employment effect of innovation 1375

markets; the structure of workforce skills, etc., which all contribute to differentiated
employment effects at different innovation intensities (Bogliacino and Vivarelli 2012;
Bogliacino et al. 2012; Lachenmaier and Rottmann 2007).

If the functional relationship between innovation and employment would indeed be
nonlinear—a fact confirmed in our econometric analysis—then an accurate estimation
of the functional relationship would depend crucially on the ability to account for these
nonlinearities in the innovation–employment nexus, which is highly challenging. Due
to complexities related to a suitable counterfactual at the firm level andmethodological
challenges in the estimation approach, however, there are no studies available in the
literature yet, that would attempt to account for nonlinearities in the R&D and firm
employment relationship in a continuous nonlinear setting. The present study attempts
to fill this research gap and estimate the full functional relationship between the firm’s
innovation and employment in a continuous setup.

To achieve this objective, we rely on a flexible semi-parametric method—the gen-
eralised propensity score (GPS) estimator—suggested by Hirano and Imbens (2004).
Two main features of the GPS methodology make it particularly attractive for our pur-
pose: (1) estimation can be based on a flexible semi-parametric regression allowing for
a nonlinear dependence between the variables of interest without imposing any a priori
restrictions and (2) the elimination of the selection bias arising from a non-random
assignment of treatment (R&D expenditure) intensity across firms by conditioning on
the observed firm characteristics. In applying the GPS methodology, we attempt to
identify the R&D intensity levels under which innovation can be complementary to
employment and under which it may have an adverse impact on employment. To the
best of our knowledge, the application of a flexible semi-parametric counterfactual
methods to the employment–innovation nexus is the first of this sort in literature and
hence constitutes our main contribution to literature.

We base our micro-econometric analysis on a large international firm-level panel
data set for OECD countries, and our proxy for technology is a measurable and con-
tinuous variable, while most of previous studies have relied on either indirect proxies
of the technological change or dummy variables (such as the occurrence of product
and process innovation). In particular, we employ the EU Industrial R&D Investment
scoreboard data set, which comprises data on the R&D investment, as well as other
financial and economic variables for the top 2500 innovators worldwide. In addition to
firm-level R&D expenditures, we make use also of other economic and financial vari-
ables, which allow us to control for important firm-specific characteristics. Moreover,
the scoreboard data also allow to identify the industrial sector (of the parent subsidiary)
as well as the geographical region of the R&D investment (according to the location
of the firm’s headquarter), which allows us to control for fixed sector-specific and
location-specific effects.

Our results enhance previous findings by facilitating to connect dots of existing
point estimates in the literature. Our findings confirm that the relationship between
innovation and employment entails important nonlinearities. There are notable differ-
ences in reaction of employment to the innovation activity of the firm, depending on
the actual level of the R&D intensity. It is also worthwhile mentioning that our results
also remind that the innovation impact on employment can be negative too—findings
that have been reported also in previous studies (Pianta 2004). For example, in our
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1376 D. Kancs, B. Siliverstovs

sample, this is the case for companies operating in high-tech sectors, characterised by
comparatively high levels of the innovation activity. These results imply that a fur-
ther increase in R&D expenditures by in high-tech sectors can have a non-negligible
labour-saving effect. Furthermore, we find that the labour-saving effect of innovation
could also be detected for companies operating in low- and medium–low-tech sectors,
though this effect is much less pronounced than for highly innovative firms.

The rest of the paper is organised as follows. Next section contains a review of the
relevant literature. In Sect. 3 we describe the econometric methodology. The data are
described in Sect. 4. The empirical results are presented in Sect. 5. The final section
contains conclusions and sets an outline for future research agenda.

2 Previous literature

The question of whether the technological change creates or destroys jobs has been
posed since the beginning of the classical economics of Karl Marx (1867):

“Suppose that the making of the newmachinery affords employment to a greater
number of mechanics, can that be called compensation to the carpet makers,
thrown on the streets?” (Marx (1867): 479).

Ciriaci et al. (2013), Bogliacino et al. (2012), Bogliacino and Vivarelli (2012) and
Bogliacino (2014) were among first attempts to decompose the employment effect of
innovation according to R&D intensity levels. Using a balanced panel comprising of
3300Spanish firms observed of the period 2002–2009,Ciriaci et al. (2013) investigated
the employment effect of innovation both for innovative and non-innovative firms.
Ciriaci et al. (2013) found that thosefirms,which engagemore intensively in innovation
activities, create more jobs than less innovative firms. In particular, this effect is more
pronounced for small and young innovative firms. At the same time, they pointed out
that for this group of firms, a successful launch of new products in the market as a
result of boosting the innovation activity can lead to a higher growth in sales rather
than in employment,which is consistentwith the labour-saving effects of technological
advances, discussed above.

Bogliacino et al. (2012) studied the employment effect of R&D expenditure using
the sample of 677 EU firms observed during the period 1990–2008. Employment elas-
ticities were estimated using a dynamic panel model allowing for lagged employment
bymeans of the least-squares dummy variable corrected (LSDVC) estimator (Bun and
Kiviet 2003; Bruno 2005). The results were obtained for the sample of all firms as
well as for subsamples comprising service-sector firms, all manufacturing firms and
subsamples comprising manufacturing firms further subdivided into high-tech and
non-high-tech firms. The estimated short-run elasticities were 0.023% for the whole
sample, 0.056% for service-sector firms, and 0.049% for high-tech manufacturing
firms. Interestingly, also the corresponding elasticity estimate for non-high-tech man-
ufacturing firms was also positive (0.021%), though not statistically significant. Using
the estimated coefficient on the lagged employment variable Bogliacino et al. (2012,
Table 1) derived long-run employment elasticities. The long-run elasticity of employ-
ment calculated for the whole sample were 0.075%, 0.097% for service-sector firms
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and approximately of equal magnitude of 0.11% both for all manufacturing firms and
high-tech manufacturing firms.

Bogliacino and Vivarelli (2012) conducted study on the employment effect of inno-
vation activity using a sample of 2295 firms from 15 European countries available over
the period 1996–2005. All main results of this study were reported for a number of
dynamic panel data estimators such as random effects, fixed effects and two versions
of the generalised method of moments [GMM-DIF, Arellano and Bond (1991)] and
[GMM-SYS, Blundell and Bond (1998)], where the last estimator could be identified
as the most reliable one (Bogliacino and Vivarelli 2012, Sect. IV). These estimators
were applied for the whole sample of firms. The short-run elasticity reported by the
GMM-SYS estimator was 0.025%, which was very similar to that reported in Boglia-
cino et al. (2012). However, the long-run elasticity was about 0.31%, which was about
four times larger than that reported in Bogliacino et al. (2012) for the whole sample
(0.075%). In order to ensure robustness of estimation results, a distinction was made
between firms with different levels of the technological sophistication, by allowing
for differential employment effects of high-tech, medium-tech and low-tech firms.
Employment elasticities were obtained by means of the LSDVC rather than the GMM
estimator; as the former estimator outperformed the latter one under given estimation
conditions. The main result of Bogliacino and Vivarelli (2012) was that the job cre-
ation effect of the R&D expenditure only was evident for the high-tech sector; both
for medium- and low-tech sectors, the estimated short-run elasticities were not signif-
icantly different from zero. For the high-tech sector, short- and long-run elasticities
were 0.017% and 0.17%, respectively.

3 Econometric strategy

In light of the diversity in the channels of adjustment and the reverse causality of inter-
dependencies between innovation and employment, the existing evidence discussed in
Sect. 2 suggests that very likely the functional relationship between these twoprocesses
is more nuanced than point estimates from previous studies are able to tell us. This
implies that an accurate estimation of the functional relationship depends crucially
on the ability to account for potential nonlinearities in the innovation–employment
nexus. In order to allow for a differentiated impact of innovation on employment
while accounting for differences among firms at different R&D intensity levels, an
appropriate estimation approach is required which does not average across all inno-
vators and employers, but instead allows for a differentiated employment effect at
various R&D intensity levels.

To estimate the full functional relationship between innovation and employment,
we rely on the generalised propensity score (GPS) approach introduced in Hirano and
Imbens (2004).1 The GPS approach is a further elaboration on the popular binary
treatment propensity score estimator of Rosenbaum and Rubin (1983) widely used

1 This approach was already applied to the following pairs of variables: R&D intensity and productivity in
Kancs and Siliverstovs (2016), migration and trade in Egger et al. (2012), and growth effects of the regional
policy in the European Union in Becker et al. (2012), inter alia.
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1378 D. Kancs, B. Siliverstovs

for impact evaluations of various programs.2 In the context of the present study, the
relevant features of the GPSmethodology are as follows. First, it allows for continuous
rather than binary treatment levels. Second, it allows to estimate the treatment effect
also without a ‘zero’ control group. Third, the GPS procedure eliminates the selection
bias arising due to a non-random assignment (choice) of treatment (R&D) intensity
acrossfirmsbyconditioningonobservedfirmcharacteristics. Finally, it captures poten-
tial nonlinearities in the functional relationship between the R&D investment and firm
employment, as it relies on a flexible semi-parametric specification.3 As result, the
estimated dose–response functions allow to retrieve the entire interval of average and
marginal treatment effects over all possible treatment levels (R&D intensity).

The counterfactual framework of the dose–response analysis naturally involves a
dose or treatment variable—R&D intensity and a response variable—employment,
both observed for firm i . The difference between usual analysis, typically based on
the OLS regression of the response variable on the treatment variable, is that one
introduces an additional auxiliary variable, called the generalised propensity score,
when modelling the dose–response relationship between the variables of interest. The
generalised propensity score is derived from a vector of observed covariates for firm
i , Xi , and its primary purpose is to remove estimation and inference biases related to
non-random dose assignment in the data sample, as discussed above.

Applicationof theGPSmethodology in order to estimate the dose–response analysis
typically involves the following three steps (Hirano and Imbens 2004) . In the first step,
the GPS variable is constructed using the OLS regression of the treatment variable,
ri , or, as most often in literature, its logarithmic transformation, ln ri , on a vector
of continuous and categorical covariates, Xi , characterising each firm i in the data
set:

ln ri = X ′
iγ + εi , εi ∼ N (0, σ 2). (1)

Observe that a usual assumption that is made is that the distribution of the error terms
is normal with variance σ 2. If this assumption is supported by the data, then the
GPS variable is defined as the normal probability density function estimated for the
regression residuals:

ŝi = 1√
2πσ̂ 2

exp

[

− 1

2σ̂ 2 ε̂i
2
]

. (2)

Hirano and Imbens (2004, Sect. 7.4) mention that other more flexible distributions
can be used in case if the normality assumption is not supported by the data, for
example, this could be mixture of several normal distributions or a normal het-
eroscedastic distribution, which variance is a function of covariates. Alternatively,
the departures from normality can be accommodated by nonparametric approach that
relies on the kernel probability density estimation. In the empirical part of the paper,
we resort to the latter option, since we find that the normality assumption is vio-
lated in our sample. To the best of our knowledge, this is the first attempt to rely
on nonparametric methods for estimation of the generalised propensity score in the

2 For an accessible presentation of the logic underlying the propensity-score matching, see Heinrich et al.
(2010).
3 According to Bia et al. (2011), the estimated dose–response function is robust to the choice of a semi-
parametric approach, but it is sensitive to a parametric specification.
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literature and it serves as an additional methodological contribution to the relevant
literature.

The propensity score in Eq. (2) fulfils its purpose of measuring the degree of sim-
ilarity across heterogeneous firms when the so-called balancing property is satisfied,
i.e., for those firms with assigned equal propensity scores (conditional on firm-specific
covariates) the associated treatment level is independent from firm characteristics. In
this step, we follow the test procedures of Hirano and Imbens (2004) in order to verify
whether the balancing property is not violated in our data sample.

In the second step, the expected value of response variable, lnωi , is modelled
as a flexible semi-parametric function of the treatment variable and the estimated
generalised propensity score, ln ri and si , respectively:

E[lnωi | ln ri , si ] = I ncpt + α11 ∗ ln ri + α12 ∗ [ln ri ]
2 + α13 ∗ [ln ri ]

3

+ α21 ∗ si + α22 ∗ [si ]
2 + α23 ∗ [si ]

3

+ α3 ∗ (ln ri ∗ si ), (3)

where the latter variable is substituted with its estimates, ŝi , from the first step. The
flexibility of the functional form can be controlled for by varying the power of variables
ln ri and si and their cross-products.

The average expected response of the response variable, ω, for a given treatment
dose, ρ, is estimated in the third step:

E[ln ω̂(ln ρ)] = 1

N

N
∑

i=1

[

̂I ncpt + α̂11 ∗ ln ρ + α̂12 ∗ [ln ρ]2 + α̂13 ∗ [ln ρ]3

+ α̂31 ∗ ŝ(ln ρ, Xi ) + α̂32 ∗ [̂s(ln ρ, Xi )]
2 + α̂33 ∗ [̂s(ln ρ, Xi )]

3

+ α̂3 ∗ (ln ρ ∗ ŝ(ln ρ, Xi ))] , (4)

where the coefficient estimates from Eq. (3) are used. The whole dose–response func-
tion is obtained by computing Eq. (4 ) for each treatment level by using a grid of values
in the corresponding range of the treatment variable.

In the final step, we derive the treatment effect function as a first derivative of
E[ln ω̂(ln ρ)] with respect to argument ln ρ. By , the treatment effect function com-
puted in this way measures estimated employment elasticity with respect to R&D,
allowing us to directly compare our results with those reported in the existing litera-
ture. Following Hirano and Imbens (2004), confidence intervals around the estimated
dose–response and treatment effect functions are obtained by means of a bootstrap
procedure.

4 Data sources, sample and variable construction

4.1 Data sources

The principal data source is the EU Industrial R&D Investment Scoreboard main-
tained by the European Commission. The R&D Scoreboard is an annual data set that
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1380 D. Kancs, B. Siliverstovs

comprises firm-level data on the R&D investment, as well as other financial and eco-
nomic variables (e.g., net sales, operating profits, employees) for the top 2500 R&D
performers worldwide. In addition to economic and financial variables, the R&D
Scoreboard also identifies the main industrial sector (of the parent company) as well
as the geographical region of R&D investment (according to the location of company’s
headquarter).

An important limitation of the R&D Scoreboard data concerns the issue of non-
random sample selection, putting under question the general validity of our results.
Given the underlying sampling and selection rules of the R&D Scoreboard data
set—ranking and selecting companies according to the total amount of their R&D
expenditures—the R&D Scoreboard is not a random sample. Hence the R&D Score-
board data set may be criticised that it has a sample bias affecting the results, as it only
represents top R&D investors. However, given our interest in the employment effect of
innovation, this issue is of lower order of magnitude, because we are covering almost
the entire population of the worldwide R&D investment (Moncada-Paterno-Castello
et al. 2010). As described below, out of the 2500 firms listed in the R&D Scoreboard
data only for 1659 companies, there were complete data records, prompting us to
analyse the available data.4 Still, these 1659 Scoreboard’s companies selected for the
present study represent around 80% of the worldwide business R&D expenditure.
While small R&D investors and non-R&D performers are excluded from our sample,
the aim of the present study is to focus on the impact of the R&D-driven innovation
on employment, but not to examine determinants of the labour demand in the entire
economy. Finally, the particular estimation approach that we adopt in the present study
allows us to estimate counterfactual treatment effects alsowithout a zero control group.

4.2 Sample construction

In the present study, we use R&D Scoreboard data for the last four available years:
2014–2017. Our choice of this sample is motivated by the fact that it is a reasonably
long period apart from the Great Financial Crisis (GFC) that undoubtedly had pro-
nounced effects on the firms’ investment activity. Including observations from years
during the GFC and shortly after its outbreak had a distortive impact on the long-run
relationship between innovation and employment prevailing in the business-as-usual
environment that we aim to capture in our study.

Since the scoreboard involves individual firm-level data covering many countries,
industries and technological levels of sophistication, it is rather unsurprising that due
to all this incumbent data heterogeneity the annual data for top 2500 Scoreboard
companies form an unbalanced panel. There are firms that were not present among the
top 2500 R&D performers either in the beginning or in the end of the sample period or
even at the both ends of the sample period and hence have missing observations. There
are also firms that were present in the top 2500 Scoreboard sample at the beginning and
at the end but have missing data points for some years within our sample period. All
these imply a loss of observations, if our identification strategy aimed at exploiting both

4 Companies which do not disclose figures for R&D investment or which disclose only figures which are
not material enough were also omitted from our analysis.
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Employment effect of innovation 1381

inter-temporal and cross-sectional dimensions of a balanced panel. Another option
would be to focus solely on the cross-sectional dimension for a particular year, but
this again involves loss of information as well as a certain arbitrariness in the choice
of the particular year. Hence, in order to retain as many observations as possible, we
construct our sample from firms for which there are at least two consecutive years of
observations for all variables of our interest. For these firms, we compute averages of
their characteristics using the available observations. This helps us smoothing year-
on-year fluctuations in our data and avoid a potential source of outlier bias.

Finally, we did a sanity check for the resulting subsample of firms and filtered out
firms that have extreme values of the R&D intensity which, as discussed in Sect. 4.3, is
defined as the ratio of the R&D investment to net sales. In particular, we removed firms
for which the estimated R&D intensity exceeds unity. For this subgroup of firms the
median R&D intensity is 6, whereas the maximum is 1210. It turns out that all these
firms are characterised by a rather small actual employment (the median employment
is 113 persons) and a negative operating profit. The former fact indicates that the
share and hence the impact of these firms on the total employment is rather small.
Moreover, the latter fact indicates that such business model/innovation pattern is not
sustainable in the long run. Therefore, in order tomake our samplemore homogeneous
we treat these firms as outliers that need to be removed from the empirical analysis.
As a result of data cleaning, we are left with 1659 observations that form the basis for
our empirical analysis.

4.3 Data set

The dependent (response) variable is a firm-specific employment measured by the
number of employees (EMPL). For each firm in our sample we use the average number
of employees for the available years. These companies included in our sample data
employed around 44.1 mln. workers with largest shares of about 10.6 and 14.5 mln.
workers pertain to companies registered in the US and the EU. The R&D investment
totalled 2,028 milliard Euro with about 42% and 28% of the total sum is attributable
to the companies from the US and the EU, with the Japan and China accounting for
about 17% and 6%, respectively.5

The remaining firm characteristics (Net sales (NSALES), Operating profit (OP),
Capital expenditure (CAPEX)) contained in the Scoreboard were complemented with
Market capitalisation (MCAP) sourced from both the Financial Times London Share
Service andReuters. In order to create a relativemeasure ofR&Dexpenditure that takes
into account firm commercial size, we create the treatment variable (R&D intensity)
as the ratio of the nominal R&D expenditure to Net sales.

There are several categorical dummy variables indicating level of technological
sophistication (low-tech, medium-low tech, medium-high tech and high-tech) that
are further subdivided into industrial sectors according to the ICB classification as

5 Note, however, that data reported by the Scoreboard companies do not inform about the actual geographic
distribution of the number of employees.Adetailed geographic analysis should take into account the location
of subsidiaries of the parent Scoreboard companies as well as the location of other production activities
involved in the value-chains.
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well as dummy variables indicating countries. Further details on the definitions of the
explanatory variables is provided in the online appendix.

The set of covariates used in our analysis is selected based on previous studies (e.g.,
see Hall et al. 2008), subject to their availability in our data set. In order to provide
an impression on the magnitude of the main firm characteristics and their relationship
to the variables of our main interest, we report median values of these characteristics
evaluated at each level of technological sophistication; see Table 1.

Thefirst observation is that the number of firmsbelonging either to high- ormedium-
high-tech sectors (1367) is much larger than the number of firms belonging either to
low- or low-tech sectors (292). Such an over-representation of the high-tech firms
in the sample naturally reflects the original intention of collecting and maintaining
the database on the world top R&D performers. In terms of employment, a median
firm-specific employment is inversely proportional to the level of technological sophis-
tication: in the high-tech sector themedian employment is 4200whereas in the low-tech
sector it comprises 20,960 employees. In nominal terms, the median level of R&D
expenditure is about the same across the different tech sectors with a typical value
about 60–80 mln. Euro. However, the sector-specific share of R&D expenditure is
not equally distributed as indicated in the column “R&D sectoral share”. The lion’s
share of the total R&D expenditure (about 90%) is accounted for the firms in high- or
medium-high-tech sectors.

As far as the treatment variable (R&D intensity) is concerned, the median level is
highest for the firms in the high-tech sector and it continuously decreases with the
level of the technological sophistication. A median firm in the high-tech sector spends
about 11.5% of its net sales volume on R&D, whereas the corresponding share for a
median firm in the low-tech sector is about 1%.

It is also interesting to observe that the median values of the financial variables like
operating profit, net sales, capital expenditure, and market capitalisation are highest
for the low-tech firms and the lowest for the high-tech firms.

5 Results

This section is subdivided into two parts. In the first part, we report estimation results
from a naive OLS regression of employment on the R&D intensity. Despite the asso-
ciated econometric issues, this naive model can serve as a useful benchmark against
which we can compare the results of more sophisticated methodology based on the
generalised propensity score approach applied to the estimation of the functional rela-
tionship between the variables of interest, reported in the second part of this section.

5.1 OLS estimation

The scatterplot of employment against R&D intensity is shown in Fig. 1 along with the
fitted regression line. The OLS coefficient estimates are shown in the figure as well.
The OLS estimate of the employment elasticity with respect to the R&D intensity is
reported− 0.739 indicating that a 1% increase in the R&D intensity is associated with
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Fig. 1 OLS regression: all firms

0.74% decrease in the number of employees. With the estimated standard error of the
slope coefficient 0.026, this elasticity estimate is statistically significantly different
from zero and the regression is characterised by a rather goodness of fit with the
associated R2 = 0.327.

5.2 GPS estimation

As explained in Sect. 3 above, the application of the GPS methodology in order to
estimate the dose–response function involves three steps. The results of the first step
GPS estimation procedure [see Eq. (1)] are reported in Table 2. They suggest that the
variation in the R&D intensity is best captured by variables such as the total capital
expenditure and its square, market capitalisation and its square, as well as operating
profits. Also the included industry- and region-specific dummy variables contribute
substantially to the explanatory power of the first step of the GPS regression.6 Indeed,
the goodness-of-fit of this regression is quite high, yielding a R2 of 68.2%, which is
necessary in order to create a mighty propensity score able to remove biases when
estimating the dose–response function between the variables of interest.

The assumption of normally distributed OLS residuals in Eq. (1) is verified by
means of the Shapiro–Wilk normality test, yielding the p value of 1.746 × 10−15.
Hence our data do not support the normality assumption. Therefore it is instructive to
take a closer look at the histogram of the regression residuals, shown in Fig. 2. The
fitted normal probability density function is shown as the dashed line. As seen, the
residuals are characterised by too large excess kurtosis and appear to be left-skewed to
be compatible with the normal distribution. Hence, instead of relying on the unfulfilled
normality assumption, we estimate the GPS by means of non-parametric approach
using a kernel density estimation (KDE) of the probability density function, since we
have a rather large data set of 1659 observations.

6 These are not shown in the regression output table in order to save the space.
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Table 2 Dose regression Dependent variable: ln R&D intensity

ln CAPEX − 0.326∗∗∗ (0.052)

[ln CAPEX]2 0.185∗∗∗ (0.057)

lnMCAP − 0.292∗∗ (0.120)

[lnMCAP]2 0.315∗∗∗ (0.078)

ln OP+ − 0.106∗ (0.064)
[

ln OP+]2 − 0.100 (0.072)

ln OP− 0.030 (0.084)
[

ln OP−]2 0.006 (0.013)

Constant − 1.070∗ (0.600)

Observations 1659

R2 0.682

The sign-preserving log transformation of theOperating profit variable
was carried out as follows: for positive values ln OP+ = if OP > 0 :
ln OP and zero otherwise; for negative values ln OP− = if OP < 0 :
− ln(−OP) and zero otherwise
Sectoral and country dummies (not shown)were included in the regres-
sion

Fig. 2 Equation (1): Residuals histogram; parametric (Normal) and non-parametric kernel density estima-
tion (KDE)

The estimated non-parametric GPS is shown as the solid line in the figure. Due to
its inherent flexibility, the kernel-estimated GPS matches the empirical distribution of
residuals much better than the one based on the normal distribution. The GPS range
is quite large [0.00289, 0.734], signifying substantial differences in the estimated
propensity of the treatment level assignment across firms in our sample.

According to the estimation procedure outlined in Hirano and Imbens (2004), the
next step is verification of the so-called balancing property of the GPS, preceded by
imposing the common-support restriction on the data in question. The latter procedure
aims to construct amore homogenised sample by filtering out aberrant observations for
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Table 3 Conditional regression Dependent variable: ln EMPL

ln R&D intensity − 3.150∗∗∗ (0.616)
[

ln R&D intensity
]2 − 0.869∗∗∗ (0.210)

[

ln R&D intensity
]3 − 0.083∗∗∗ (0.022)

GPS − 3.040∗∗∗ (0.629)

GPS ∗ ln R&D intensity − 0.885∗∗∗ (0.205)

Constant 5.510∗∗∗ (0.570)

Observations 1296

R2 0.226

which propensity-score-based matching turns out problematic. The former procedure
aims at testingwhether conditional on observed values of the GPS variable there are no
systematic differences in firms’ characteristics irrespective of the assigned treatment
intensity. As discussed in the online Appendix, the imposition of the common-support
restriction reduced the number of firms available for the further analysis from 1659 to
1296. At the same time, the balancing property of the constructed GPS in Eq. (1) is
supported by the data; see the online Appendix for further details.

Next, we proceed to the estimation of the dose–response relationship between the
firm innovation and employment variables. The estimation results for the second-step
regression corresponding to Eq. (3) are reported in Table 3. Second step regression
results clearly show that the employment response to the firm innovation (proxied
by R&D expenditures) is highly nonlinear, as all included polynomial terms of the
latter variable report highly significant coefficients. It is also worthwhile noticing that
the GPS variable enters as a statistically significant covariate both in levels and via
the interaction term with the (log) of our treatment variable, confirming its relevance
in eliminating the sample selection bias.7 The resulting R2 is 22.6%, which is of a
comparable magnitude reported in other studies (Egger et al. 2012).

In order to facilitate the interpretation of the estimation results, we have plotted
the estimated dose–response and marginal treatment effect functions in the upper and
middle panels of Fig. 3, respectively. The bands around the estimated functions are
95% bootstrap confidence intervals. Observe that in order to facilitate the description
of the results in the lower panel of the figure, we have plotted the cumulative share of
employment in the firms in our sample as a function of the R&D intensity. The curve
in the lower panel reveals that 90% of employment in our data sample is accounted by
firms with the R&D intensity in the interval between 0.6 and 15%. There are 1088 out
of 1296 firms, or about 84%, of the total sample in this interval. There are 21 and 187
firms in the left and right 5% tails of the cumulative employment distribution sorted
by the R&D intensity.

The shape of the estimated dose–response function is generally downward slop-
ing, which is broadly consistent with the naive OLS estimation results reported in
Sect. 5.1. However, recall that according to the OLS results the estimated employment

7 Higher-order power transformations of the GPS variable turned out to be insignificant and therefore were
omitted them from the model specification for the sake of parsimony.
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Fig. 3 Dose–response, treatment effect functions and cumulative employment share

elasticity is uniformly negative at all R&D intensity levels. In contrast, the estimated
dose–response function using the GPS suggests that the magnitude of the response
of employment to changes in the R&D intensity varies with the level of the firms’
innovation intensity. This nonlinearity in the employment response is well illustrated
by the marginal treatment effect function, which can be interpreted as employment
elasticity with respect to R&D intensity, that is shown in the middle panel of Fig. 3.
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The estimated elasticity of interest has a hump shaped form.Hence it is convenient to
summarise our findings by distinguishing between different treatment intensity levels
taking into the consideration such hallmarks as the top and bottom 5% cumulative
employment thresholds. For relatively low treatment intensity levels (below 0.6%),
the employment elasticity increases in the absolute value from − 0.5% up to about
− 1.5% as the treatment intensity falls. However, given a rather small number of
observations in this part of the distribution these estimate values have to be taken with
caution.

For the firms within the central 90% interval of the treatment intensity one can
make the following two observations. First, for the firms with R&D intensity in the
interval between 0.6 and 3%, the estimated elasticity is not significantly different from
zero, as the bootstrapped 95% confidence interval includes zero line. This suggests a
labour-neutral effect of innovation for the firms with medium-low and medium lev-
els of innovation intensity. Second, for the firms with the medium-high levels of the
R&D intensity pertaining to the interval between 3 and 15% the estimated elasticity is
negative and significantly different from zero. For these firms, it is estimated around
− 0.5%with the associated 95%confidence interval about (− 0.3%,− 0.7%), suggest-
ing labour-saving effect of innovation. Notwithstanding that this value is substantially
lower than that reported by the OLS estimation (− 0.74%) earlier in the text.

Turning to the firms with the highest R&D intensity (> 15%), this labour-saving
effect turns out to be even more pronounced. In this interval, the estimated employ-
ment elasticity gradually increases (in the absolute magnitude) from − 0.5 to − 2.0%,
suggesting that the innovation leaders tend to react more and more disproportionately
stronger to changes in the R&D intensity in reducing their labour force than innovation
followers and moderate innovators.

All in all, our estimation results when compared to those from the naive OLS
regression suggest that the employment effect of innovation varies with the level of
technological sophistication and warrant against application of estimation techniques
that does not accommodate such level dependence. For the firms with rather low-to-
medium ratios of R&Dexpenditure to net sales, this effect tends to be overestimated by
the OLS regression whereas understated for the firms on the other side of the spectrum
characterised by high values of R&D intensity.

It is instructive to compare our results with traditional point estimates available in
the previous literature, despite the fact that studies summarised in Sect. 2 focus on the
employment elasticity with respect to a nominal measure of the R&D expenditure,
whereas we focus on the employment elasticity with respect to a relative measure of
the R&D expenditure. Our results, emphasising the complexity of the nonlinear rela-
tionship between employment and innovation, are complementing those of Bogliacino
(2014), who equally finds that R&D investment expenditures have a nonlinear effect
on the firm employment, depending on the R&D intensity. However, compared to
the most of the published literature, our results reveal no support for a job-creating
aspect of innovation at least when the world top R&D performers are scrutinised.
For this particular subsample of firms, we find that the effect of innovation is at best
labour-neutral at the relatively low values of the R&D intensity. For higher inno-
vation intensity levels, the labour-saving effect of innovation becomes increasingly
pronounced, as knowledge intensive firms are looking for high-skilled labour force
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which is typically in much shorter supply and correspondingly more expensive than
their low-skilled fellows.

6 Conclusions, policy recommendations and limitations

The objective of the study is to expose the entire innovation–employment relation-
ship for different R&D intensity levels in a continuous framework. We use a large
international firm-level panel data set for OECD countries and employing a flexi-
ble semi-parametric method—the generalised propensity score — which allows us to
estimate the full functional relationship between the R&D-driven innovation and firm
employment as well as address important econometric issues, which is not possible
in the standard estimation approach used in the previous literature. This is our main
contribution to the academic literature and policy debate; to the best of our knowledge,
no comparable studies analysing the employment effect of innovation in a continuous
setting are available in the literature.

In order to answer these questions, we have based our empirical micro-econometric
analysis on a large international firm-level panel dataset for OECD countries, and our
proxy for technology has been a measurable and continuous variable, while the major-
ity of previous studies have relied on either indirect proxies of the technological change
or dummy variables (such as the occurrence of the product and process innovation).
In particular, we have employed the EU Industrial R&D Investment Scoreboard data
set for 2500 R&D performers worldwide. In addition to firm-level innovation expen-
ditures, we have used also of economic and financial variables, which allowed us to
control for important firm-specific effects, along with sectoral and regional dummies.

Our results suggest that a care should be taken when analysing employment–
innovation nexus. Depending on the level of R&D intensity, we find that the innovation
impact on employment can be negative too—findings that have been reported also in
previous studies. This labour-saving aspect of innovation is more pronounced for firms
with medium-high levels of R&D intensity and it tends to increase with the levels of
R&D intensity. In terms of policy recommendation, our results imply that these compa-
nies should not be immediately targeted by policies aiming to achieve both innovation
and employment targets of the Europe 2020 Strategy in the same time.

Turning to limitations of our study, an important caveat of our empirical analysis
concerns the nature of the Scoreboard sample. First, while other data sets, such as the
OECD BERD data, can be considered as fully representative of OECD economies,
in the EU Industrial R&D Investment Scoreboard data used in the present study only
R&D “champions” are considered. This is a clear limitation of our data, the results of
which cannot be straightforwardly extrapolated to, e.g., SMEs.

A further limitation of the data used in our study is that R&D Scoreboard data
do not allow us to identify the effect of product and process innovations separately.
However, as discussed in the introduction, the employment effect of innovation can be
very different depending on the nature of innovation. In order to separately identify the
employment effect of the product and process innovation, other sources of data, such
as the Community Innovation Survey (CIS), need to be used, which is a promising
area for the future research.
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Lastly, in our study we focus on the snapshot of the economy at one period of time
without taking higher-order effects of firms innovation activity. In the longer run,
investing in the innovation activity encourages knowledge-based economy, drives
demand for high-skilled, educated workers and eventually brings a country on the
higher growth path. However, a comprehensive assessment of these effects is only
possible within general equilibrium models that capture vertical and horizontal link-
ages between firms, which is not possible to account for in micro-econometric studies,
such as the one presented in this paper (Kancs and Ciaian 2011; Brandsma and Kancs
2016). Hence aligning our results with macro results is indeed important for enhanc-
ing our understanding of the employment effect of innovation and it sets a promising
avenue for the future research.
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