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Abstract
A well-known result due to Waldman (J Econom 18:275–279, 1982) states that, in
the standard normal/half-normal SFA model, estimated technical inefficiency will be
zero if the OLS residuals are positively skewed. It is not clear how much this result
generalizes. In this paper, we consider the normal/half-normal model in which the
distribution of the half-normal error depends on explanatory variables. We consider
estimation by nonlinear least squares and maximum likelihood. In both cases, we find
a stationary point (zero derivatives) at parameter values that indicate zero inefficiency,
a result similar toWaldman’s. However, both for nonlinear least squares and for MLE,
we show that in general the stationary point is neither a local minimum nor a local
maximum.

Keywords Environmental variables · Stochastic frontier · Wrong skew

1 Introduction

Consider the stochastic frontier model

yi � α + x
′
iβ + vi − ui � α + x

′
iβ + εi , (1)

where xi is “fixed” (independent of vi and ui ); vi is distributed as N
(
0, σ 2

v

)
; ui is

distributed as N+
(
0, σ 2

u

)
, i.e., “half normal”; and vi and ui are independent. We will

sometimes use the standard notation that σ 2 � σ 2
v + σ 2

u and λ � σu/σv . This is the
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2032 C.-K. Cho, P. Schmidt

model of Aigner et al. (1977) and Meeusen and van den Broeck (1977), and we will
call it the standard SFA model.

The distribution of εi is “skew normal,” and the model can be estimated by MLE
using the skew normal density. An alternative method of estimation is corrected OLS
(COLS), which was suggested by Aigner, Lovell and Schmidt and further analyzed in
Olson et al. (1980) and Waldman (1982), and which will be described below.

Under the assumptionsmade above, the thirdmoment of εi is negative. However, its
sample equivalent, the third moment of the OLS residuals, can be positive. This is the
so-calledwrong skew case. In thewrong skew case, two problems arise. The first, noted
in the original Aigner, Lovell and Schmidt article, is that the COLS estimate does not
exist. The second andmore subtle problem, or set of problems, was noted byWaldman.
The likelihood always (regardless of wrong or right skew) has a stationary point at the
parameter values that reflect no inefficiency (λ � 0 and other parameters� the OLS
estimates). At that stationary point, the Hessian is always singular. In the wrong skew
case, this point is a local maximum of the likelihood function, and empirically in this
case, this point is also the global maximum. Thus, with a positive probability the data
will indicate no inefficiency. This complicates the process of inference, see Simar and
Wilson (2009).

The question this paper addresses is whether similar problems occur in models in
which thedistributionof technical inefficiencydepends onobservable “environmental”
variables. Specifically, we will consider a form of the RSCFGmodel of Reifschneider
and Stevenson (1991), Caudill and Ford (1993) and Caudill et al. (1995). Here, we
obtain results that are similar to but different from those for the standard SFA model.
There is noCOLS estimator, but themodel can be estimated by nonlinear least squares,
and the least squares criterion function always has a stationary point at the parameter
values that reflect no inefficiency. The model can also be estimated by MLE, and the
likelihood always has a stationary point and the Hessian is singular at the parameter
values that reflect no inefficiency. In general, these stationary points are neither a local
minimum nor a local maximum of the relevant criterion function (sum of squares or
likelihood). None of these statements have any connection to the skew of the residuals.

This paper does not aim to give advice about how to proceed if in a particular data
set the stationary point is the global minimum of the NLLS criterion or the maximum
of the log-likelihood. Nor do we attempt to construct models in which a skew of the
residuals of either sign is not wrong. Some papers that do these thingswill be discussed
in the final section of the paper. We simply ask the questions of whether, for a given
criterion function, there is always a stationary point and whether we can say that it is
or is not a local maximum or minimum. These are rather specific questions, but as we
will see it is not trivial to answer them.

2 More detail on the wrong skew problem in the standard SFAmodel

We will now be a little more precise than in the previous section about the nature of
the wrong skew problem in the standard SFA model. We do this so that it is clear what
results we might hope or expect to generalize the RSCFG model.
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The model is as given in Eq. (1). It is well known that E(u) ≡ μ �
√

2
π
σu so that

E(ε) � −μ. Also var(u) � π−2
π

σ 2
u , E

(
u2

) � σ 2
u andμ′

3 ≡ E(ε+μ)3 �−E(u − μ)3

�
√

2
π

(
π−4
π

)
σ 3
u . Note that μ

′
3 ≤ 0. OLS implicitly estimates (α − μ) and β, and the

OLS residuals ei correspondingly are “estimates” of vi − (ui − μ). So

σ̂ 2 ≡ 1

N

∑

i

e2i →p σ 2 � σ 2
v + σ 2

u and μ̂
′
3 ≡ 1

N

∑

i

e3i →p μ
′
3 �

√
2

π

(
π − 4

π

)
σ 3
u .

(2)

Therefore, we obtain consistent estimates of σ 2
u and σ 2

v as

σ̂ 2
u �

[√
π

2

(
π

π − 4

)
μ̂

′
3

]2/3
, σ̂ 2

v � σ̂ 2 − σ̂ 2
u . (3)

If α̂, α̂ are the least squares estimates, the COLS estimates of α and β are α̃ �
α̂ +

√
2
π
σ̂u and β̃ � β̂. However, our interest in this paper is just in the estimates of

σ 2
u and σ 2

v (as given in Eq. (3)) themselves. In the wrong skew case that μ̂
′
3 > 0, in

Eq. (3) we have σ̂u < 0 and σ̂ 2
u is not really well defined. So the COLS method fails.

With respect to the MLE, the situation is more complicated. Waldman (1982)
showed that the point α̂, β̂ � OLS, σ̂ 2

u � 0, σ̂ 2
v � σ̂ 2 is always a stationary point of

the likelihood. He also showed that the information matrix is singular at this point.
Finally, Waldman showed that the stationary point given above is a local maximum
of the likelihood when μ̂

′
3 > 0. It is generally thought that it is also the global

maximum.
The wrong skew problem occurs most frequently when the sample size is small and

the population value of λ � σu/σv is small. Many people might find the frequency
with which it occurs to be surprising. For example, Simar and Wilson (2009, Table 1,
p. 71) report simulations in which the probability of a wrong skew is 0.301 when n �
100 and λ �1; it is 0.320 when n �500 and λ �0.5; and it is 0.386 when n �10,000
and λ �0.1.

3 The RSCFGmodel

We will now consider the case that the distribution of technical inefficiency (ui )
depends on some observable “environmental variables” zi that may or may not affect
the level of the frontier but that do affect the level of technical inefficiency. A possible
example of such a variable in an agricultural setting would be ownership of the farm
(private vs. state-owned).

The most commonly assumed case is that the distribution of ui is truncated normal.
In standard notation, ui is distributed as N+

(
μi , σ

2
i

)
. When μi � 0 and σ 2

i is constant
(does not depend on i), we have the standard stochastic frontier model of the previous
section. When μi and σ 2

i are constant, we have the truncated normal model of Steven-
son (1980). However, here we are interested in models in which μi and/or σ 2

i depend
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2034 C.-K. Cho, P. Schmidt

on environmental variables zi . For example, in the RSCFG model of Reifschneider
and Stevenson (1991), Caudill and Ford (1993) and Caudill et al. (1995), μi � 0 and
σ 2
i is a function of zi and some parameters. In the KGMHLBC model of Kumbhakar

et al. (1991), Huang and Liu (1994) and Battese and Coelli (1995), σ 2
i is constant

(does not depend on i) and μi is a function of zi and parameters. In the model of
Wang (2002), both μi and σ 2

i depend on zi and parameters. In the model of Alvarez
et al. (2006), there is a “scaling function” g(zi , θ) such that μi � μ · g(zi , θ) and
σi � σ · g(zi , θ). A related model is the model of Amsler et al. (2015) in which the
post-truncation mean and variance of ui are parameterized.

In this paper, we will consider the specific case of the RSCFG model with σi �
σuexp(z

′
iδ). We treat xi and zi as “fixed” (independent of vi and ui ) so that the model

is:

yi � α + x
′
iβ + vi − ui , vi ∼ N

(
0, σ 2

v

)
, ui ∼ N+

(
0, σ 2

u exp
(
2z

′
iδ

))
. (4)

This is a straightforward extension of the standard stochastic frontiermodel because
ui is still half normal. We will use the notation dz �dimension(zi ) and dx �
dimension(xi ).

4 Nonlinear least squares estimation of the RSCFGmodel

Given the RSCFG model with σi � σuexp(z
′
iδ), we have E(yi |xi , zi ) � α + x

′
iβ −√

2
π
σuexp

(
z

′
iδ

)
. This suggests a nonlinear least squares (NLLS) estimator that mini-

mizes (with respect to α, β, σu and δ) the criterion function

SSE �
∑

i

[

yi − α − x
′
iβ +

√
2

π
σuexp

(
z

′
iδ

)]2

. (5)

We will denote the NLLS estimates as α̃, β̃, σ̃u and δ̃.
We can note a few points about identification of the model based on this criterion

function. First, obviously δ is not identified when σu � 0. Second, α and σu are not
separately identified when δ � 0. Third, this criterion function does not lead directly
to an estimate of σ 2

v , but we can derive an estimate based on the NLLS estimates. Note

that if ui ~N+(0, σ 2
i ), then E

(
u2i

) � σ 2
i and so E

(
ε2i

) � σ 2
v +σ 2

i �σ 2
v +σ 2

u exp
(
2z

′
iδ

)
.

If ε̃i � yi − α̃ − x
′
i β̃, this leads to the estimate

σ̃ 2
v � 1

n

∑

i

ε̃2i − σ̃ 2
u
1

n

∑

i

exp
(
2z

′
i δ̃

)
. (6)

This is similar in spirit to the estimator given in (3) for the standard SFA model.
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Let ψ �

⎡

⎢⎢
⎣

α

β

σu
δ

⎤

⎥⎥
⎦, the parameters that we seek to estimate by NLLS. Let ψ∗ �

⎡

⎢⎢
⎣

α̂

β̂

0
0

⎤

⎥⎥
⎦, where α̂, β̂ �OLS of y on intercept and x . Obviously,ψ∗ is a set of parameters

that indicate no inefficiency. Note that we carefully said “a set of parameters that
indicate no inefficiency” rather than “the set of parameters that indicate no inefficiency”
because when σu � 0 we have no inefficiency regardless of the value of δ.

Result 1 The criterion SSE given in Eq. (5) has a stationary point at ψ∗.

Proof The derivatives of the NLLS criterion function with respect to the parameters
in ψ are:

∇αSSE � −2
∑

i

[

yi − α − x
′
iβ +

√
2

π
σuexp

(
z

′
iδ

)]

, (7A)

∇βSSE � −2
∑

i

{[

yi − α − x
′
iβ +

√
2

π
σuexp

(
z

′
iδ

)]

xi

}

, (7B)

∇σuSSE � 2

√
2

π

∑
{[

yi − α − x
′
iβ +

√
2

π
σuexp

(
z

′
iδ

)
]

exp
(
z

′
iδ

)
}

i

, (7C)

∇δSSE � 2

√
2

π
σu

∑

i

{[

yi − α − x
′
iβ +

√
2

π
σuexp

(
z

′
iδ

)]

exp
(
z

′
iδ

)
zi

}

. (7D)

These derivatives are all zero atψ∗. (The derivatives in (7A), (7B) and (7D) equal zero
when α � α̂, β � β̂ and σu � 0 regardless of the value of δ, but δ � 0 is required for
the derivative in (7C) to equal zero.) So this point is a stationary point of the NLLS
criterion function.

Next we ask whether there is any readily interpretable condition (analogous to
“wrong skew” in the standard SFA model) such that this stationary point is a local
minimum of the NLLS criterion function. The Hessian (second derivative) matrix H
is messy and is given in Appendix 1. The Hessian evaluated at the stationary point ψ∗
is simpler and is given by:

1

2
H

(
ψ∗) �

⎡

⎢⎢
⎢
⎣

n nx̄
′

nx̄
∑

i
xi x

′
i

−kn 0
−knx̄ 0

−kn −knx̄
′

0 0
k2n 0
0 0

⎤

⎥⎥
⎥
⎦

. (8)
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In this expression, k � √
2/π . The four block rows (and columns) correspond to

α, β, σu and δ, and they are of dimension 1, dx , 1 and dz , respectively. The matrix is
singular, with rank equal to dx + 1, so there are dz + 1 eigenvalues equal to zero.

The Hessian H(ψ∗) is positive semi-definite, which is a necessary condition for
ψ∗ to be a local minimum. However, because the Hessian is singular, this is not a
sufficient condition. As in Waldman (1982), we need to examine the values of the
criterion function in the directions that correspond to the eigenvectors associated with
the zero eigenvalues. To elaborate on this point, consider the Taylor series expansion
of SSE around the point ψ∗:

SSE(ψ) − SSE
(
ψ∗) � (∇ψSSE

(
ψ∗))′(

ψ − ψ∗) + 1/2
(
ψ − ψ∗)′

H
(
ψ∗)(ψ − ψ∗)

+ higher-order terms. (9)

The first term on the right-hand side of (9) equals zero because∇ψSSE(ψ∗) � 0, so

we consider the second term, (ψ − ψ∗)
′
H(ψ∗)(ψ − ψ∗). A necessary condition for

ψ∗ to be a localminimum is that H(ψ∗) is positive semi-definite, since, if there exists a
vector g such that g′H(θ∗)g < 0, then for small enough scalar τ >0,ψ � ψ∗+τg will
lead to a smaller SSE thanψ∗. However, for vectors that are linear combinations of the
eigenvectors corresponding to the zero eigenvalues (i.e., vectors in the null space of
H(ψ∗)) the second-order term above is zero, and we need to investigate the behavior
of the criterion function in those directions, since the higher-order terms could be of
either sign.

The eigenvectors that correspond to the zero eigenvalues, and which span the null
space of H(ψ∗), are as follows:

⎡

⎢⎢
⎣

1
0
1/k
0

⎤

⎥⎥
⎦,

⎡

⎢⎢
⎣

0
0
0
ι1

⎤

⎥⎥
⎦,

⎡

⎢⎢
⎣

0
0
0
ι2

⎤

⎥⎥
⎦, . . . ,

⎡

⎢⎢
⎣

0
0
0
ιdz

⎤

⎥⎥
⎦. (10)

Here 1
k �

√
π
2 ; ι j is a vector of zeroes except for a one in position j , and the

dimensions of the four blocks in the vectors in (10) are 1, dx , 1 and dz . Therefore, a

vector in the null space of H(ψ∗) will be of the form w �

⎡

⎢⎢
⎣

1
0
1/k
δ

⎤

⎥⎥
⎦ where in this

expression δ is arbitrary (not necessarily the true parameter value).
Now we consider what happens to the least squares criterion function for small

moves in this direction. That is, we consider a parameter value ψo � ψ∗ + τw for
small τ > 0. (We require τ > 0 because σu > 0.) Then, we calculate the following:

SSE
(
ψ∗) � usual least squares SSE �

∑

i

e2i , ei � OLS residuals, (11A)

SSE
(
ψo) �

∑

i

[
ei + τ

(
exp

(
τ z

′
iδ

)
− 1

)]2
, (11B)
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� ≡ SSE
(
ψo) − SSE

(
ψ∗) � τ 2

∑

i

[
exp

(
τ z

′
iδ

)
− 1

]2
+ 2τ

∑

i

ei exp
(
τ z

′
iδ

)
.

(11C)

For local movements (small τ ), the term of order τ will dominate the term of order
τ 2, and so a necessary and sufficient condition for ψ∗ to be a local minimum of SSE
is:

2τ
∑

i

eiexp
(
τ z

′
iδ

)
≥ 0 for all δ. (12)

This is a strong requirement that intuitively should not be expected to hold. And it
does not, as the following result shows.

Result 2 If
∑

i
z

′
i ei �� 0, the pointψ∗ is neither a local minimum nor a local maximum

of SSE.

Proof We have � �2τ
∑

i
ei exp

(
τ z

′
iδ

)
+ τ 2

∑

i

[
exp

(
τ z

′
iδ

)
− 1

]2
as given in

Eq. (11C). (For small τ , the first term will be the one that matters, which the cal-
culation we are about to do will verify.) We make use of the Taylor series expansion
exp(x) � 1 + x + 1/2x2 +h.o.t. (higher-order terms), which yields

� � 2τ
∑

i

ei [1 + τ z
′
iδ + 1/2τ

2
(
z

′
iδ

)2
] + τ 2

∑

i

[
τ z

′
iδ + 1/2τ

2
(
z

′
iδ

)2]2
+ h.o.t.

(13)

Since
∑

i ei � 0, when
∑

i z
′
i ei �� 0 the dominant term is 2τ 2

∑
i

(
z

′
i ei

)
δ.

This term can be made of either sign by appropriate choice of δ. For example,
suppose that the first nonzero element of

∑
i z

′
i ei is in position “j” and that it is

positive. Then, if we pick δ to be equal to zero except for a value of one in position
“j,” this term will be positive, and if instead we put a value of minus one in position
“j,” the term will be negative. (Reverse the signs when the first nonzero element of∑

i z
′
i ei is negative.) So � can be of either sign, and the condition in Eq. (12) cannot

hold.

If
∑

i z
′
i ei � 0, the dominant term in the expression for � will be τ 3

∑
i ei

(
z

′
iδ

)2
,

and we cannot find anything useful to say about the sign of that term. However, we
note that

∑
i z

′
i ei � 0 is an event of probability zero unless zi is made up of linear

combinations of xi . This is formally possible but very unlikely in empirical practice,
so this case is not of particular practical importance.
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5 MLE of the RSCFGmodel

We now consider the MLE of the RSCFG model. The model is as given in Eq. (4).
We define the following notation:

σi � σuexp
(
z

′
iδ

)
, λi � σi/σv, ω2

i � σ 2
i + σ 2

v , ci � −εiλi/ωi ,

ϕi � ϕ(ci ), Φi � Φ(ci ), (14)

where ϕ is the standard normal density and Φ is the standard normal cdf. Then, the
log-likelihood is given by

ln L � constant − 1

2

∑

i

lnω2
i − 1

2

∑

i

ε2i

ω2
i

+
∑

i

lnΦi , (15)

where εi � yi − α − x
′
iβ.

Let θ �

⎡

⎢⎢⎢⎢
⎣

α

β

σu
δ

σ 2
v

⎤

⎥⎥⎥⎥
⎦
, the vector of the parameters we wish to estimate. This differs

fromψ of the previous section because it includes σ 2
v . Let θ

∗ �

⎡

⎢
⎢⎢⎢
⎣

α̂

β̂

0
0
σ̂ 2

v

⎤

⎥
⎥⎥⎥
⎦
, our potential

stationary point, where α̂ and β̂ are the OLS estimates and σ̂ 2
v � 1

n

∑
i e

2
i where the

e2i are the OLS residuals. Then, we have the following result.

Result 3 The log-likelihood given in Eq. (14) has a stationary point at θ∗.

Proof The derivatives of the log-likelihood with respect to the parameters in θ are:

(16A)∇α ln L �
∑

i

[
εi

ω2
i

+
ϕi

Φi

λi

ωi

]

,

(16B)∇β ln L �
∑

i

[
εi

ω2
i

+
ϕi

Φi

λi

ωi

]

xi ,

∇σu ln L

�
∑

i

[

− σu

ω2
i

exp
(
2z

′
i δ

)
+

σu

ω4
i

exp
(
2z

′
i δ

)
ε2i − ϕi

Φi

1

σv

εi

ωi
exp

(
z

′
i δ

)
+ σu

ϕi

Φi

λiεi

ω3
i

exp
(
2z

′
i δ

)]

,

(16C)
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∇δ ln L �
∑

i

zi

[

− ϕi

Φi

εiλi

ωi
− σ 2

u

ω2
i

exp
(
2z

′
i δ

)
+ σ 2

u
ε2i

ω4
i

exp
(
2z

′
i δ

)
+ σ 2

u
ϕi

Φi

λiεi

ω3
i

exp
(
2z

′
i δ

)]

,

(16D)

(16E)∇σ 2
v
ln L � 1

2

∑

i

[
ϕi

Φi

1

σ 2
v

λiεi

ωi
− 1

ω2
i

+
ε2i

ω4
i

+
ϕi

Φi

λiεi

ω3
i

]

.

At θ∗, the following simplifications occur: σu � 0, λi � 0, ci � 0, ω2
i � σ 2

v ,
ϕi
Φi

�
√

2
π
and exp

(
z

′
iδ

)
�1. Then, we have ∇α ln L � 1

σ 2
v

∑
i εi , ∇β ln L � 1

σ 2
v

∑
i xiεi ,

∇σu ln L � −
√

2
π

1
σ 2

v

∑
i εi , ∇δ ln L � 0 and ∇σ 2

v
ln L � 1

2

∑
i

[
− 1

σ 2
v
+ 1

σ 4
v
ε2i

]
. All of

these expressions equal zero when evaluated at the OLS values ei and σ̂ 2
v .

Next we ask whether we can identify cases such that this may be a local maximum
of the likelihood. We use a Taylor series expansion (similar to Eq. (9)) of ln L around
the point θ∗:

ln L(θ) − ln L
(
θ∗) � (∇θ ln L

(
θ∗))′(θ − θ∗) + 1/2

(
θ − θ∗)′

H
(
θ∗)(θ − θ∗)

+ higher-order terms. (17)

Here H(θ∗) is the Hessian (second derivative matrix) evaluated at θ∗. The first term
on the right-hand side of (17) equals zero because ∇θ ln L(θ∗) � 0, so we need to
consider the second term, (θ − θ∗)

′
H(θ∗)(θ − θ∗). A necessary condition for θ∗ to be

a local maximum of ln L is that H(θ∗) is negative semi-definite, since, if there exists
a vector ν such that ν′H(θ∗)ν > 0, then for small enough scalar τ > 0, θ � θ∗ + τν

will lead to a higher likelihood value than θ∗.
The Hessian is complicated and is given in a supplemental file available from

the authors. However, at θ∗ the simplifications listed above hold, and we obtain the
following expression for the Hessian evaluated at θ∗.

H � − 1

σ 2
v

[
G 0
0 n

2σ 2
v

]

, (18A)

G �

⎡

⎢⎢
⎣

A11 A12
A21 A22

−k A11 0
−k A21 0

−k A11 −k A12
0 0

k2A11 ξ

ξ ′ 0

⎤

⎥⎥
⎦. (18B)

Here, k �
√

2
π
; ξ � k

∑

i
z

′
i ei (a row vector); and

[
A11 A12
A21 A22

]
�

⎡

⎣
n nx̄

′

nx̄
∑

i
xi x

′
i

⎤

⎦ (18C)
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which is positive definite.
Suppose first that

∑
i z

′
i ei �� 0 (ξ �� 0), which will be the case with probability

one unless zi is made up of linear combinations of xi . When ξ �� 0, G and H are
nonsingular if dz �1 (so that ξ is a scalar), and they are singular if dz ≥ 2. Regardless
of the dimension of ξ , H will be negative semi-definite if and only if G is positive
semi-definite. We now show that this is not the case.

Result 4 If ξ �� 0, then G is neither positive semi-definite nor negative semi-definite.

Proof (i) Let η1 � [k, 0, 1, ξ ]′. Then, η
′
1Gη1 � 2ξξ ′ > 0 so G cannot be negative

semi-definite. (ii) Now let η2 � [k, 0, 1,−ξ ]′. Then, η
′
2Gη2 � −2ξξ ′ < 0 so G

cannot be positive semi-definite.

This shows that when
∑

i z
′
i ei �� 0, θ∗ cannot be a localmaximumof the likelihood.

(The necessary condition for θ∗ to be a local maximum, namely that H should be
negative semi-definite, fails when G is not positive semi-definite.) It also cannot be a
local minimum.

Finally, we consider the case that ξ � 0 (
∑

i z
′
i ei � 0), which essentially means

that zi is made up of linear combinations of xi . This case is very similar to the case
considered in Sect. 4. The eigenvectors that correspond to the zero eigenvalues, and
which span the null space of H(ψ∗), are as follows:

⎡

⎢⎢
⎢⎢
⎣

1
0
1/k
0
0

⎤

⎥⎥
⎥⎥
⎦

,

⎡

⎢⎢
⎢⎢
⎣

0
0
0
ι1
0

⎤

⎥⎥
⎥⎥
⎦

,

⎡

⎢⎢
⎢⎢
⎣

0
0
0
ι2
0

⎤

⎥⎥
⎥⎥
⎦

, . . . ,

⎡

⎢⎢
⎢⎢
⎣

0
0
0
ιdz
0

⎤

⎥⎥
⎥⎥
⎦

. (19)

So a vector in the null space of H(ψ∗) will be of the form w �

⎡

⎢⎢⎢⎢
⎣

1
0
1/k
δ

0

⎤

⎥⎥⎥⎥
⎦

for

arbitrary δ. Now we consider what happens to the log-likelihood function for small
movements in this direction. That is, we consider a parameter value θo � θ∗ + τw for
small τ > 0. It is easy to calculate

ln L
(
θ∗) � constant − n

2
− n ln 2 − n

2
ln σ̂ 2

v . (20)

However, ln L(θ∗ + τw) yields an explicit but impenetrable expression, which we
give in Appendix 2. We do not see any way to say anything meaningful in this case.
This is arguably not troublesome, because (as noted above)

∑
i z

′
i ei � 0 is a zero-

probability event unless the elements of zi are linear combinations of xi .
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6 Practical implications

It is certainly possible for the residuals (OLS or NLLS or MLE) to have a positive
(wrong) skew. The main practical implication of our results is that this does not mean
that there is a problem. There is always a stationary point (ψ∗, above) of the NLLS
criterion thatwould indicate zero inefficiency, and similarly there is always a stationary
point (θ∗) of the log-likelihood that would indicate zero inefficiency. However, in
general these points are not a local minimum of the sum of squares or a local maximum
of the log-likelihood. This does not appear to have anything to do with the skew of the
residuals.

We will illustrate these issues with a small simulation. The DGP will be as simple
as possible: yi � α + vi − ui , i � 1, . . . , n, where vi is N

(
0, σ 2

v

)
and (conditional on

zi ) ui is half normal with pre-truncation variance σ 2
u · exp(2ziδ). Here, zi is N(0,1),

α � 0, σ 2
v � 1 and n �100. The number of replications is 1000.

We use three different choices for δ and σ 2
u . DGP1 has δ � 0 and σ 2

u � 1. This
is the same DGP as for the standard SFA model with λ � 1. DGP2 has δ � 0.5 and
σ 2
u � 0.6065 (σu � 0.7788), and DGP3 has δ � 1 and σ 2

u � 0.1353(σu � 0.3678).

Using the properties of the lognormal distribution, we have E
(
u2

) � σ 2
u e

2δ2 , and our
values of δ and σ 2

u are picked such that δ varies but E
(
u2

) � 1 for each of the DGPs.
For each replication, we estimate the model in three ways. (i) OLS, which estimates

α andσ 2
ε ≡ var(εi ) � σ 2

v +
π−2
π

σ 2
u e

δ2 ; (ii) NLLS,which estimatesα, δ andσ 2
u ; and (iii)

MLE, which estimates α, δ, σ 2
u and σ 2

v . We then calculate the mean, bias, variance and
MSE of each of the estimates. We count the number of times that each of the various
residuals has the wrong skew. Finally, we count how often the NLLS estimator equals
ψ∗ and how often theMLE equals θ∗. We need to be explicit about how this is defined.
For example, the event “MLE is equal to θ∗” is the complement of the event “MLE is
not equal to θ∗,” and this latter event occurs if and only if the likelihood evaluated at
the MLE is larger than the likelihood evaluated at θ∗. That is, we compare likelihood
values, rather than comparing the MLE parameter estimates to θ∗, and similarly for
NLLS. Inequality is easier to verify or disprove numerically than equality.

The results strongly support the supposition that the residuals can have a wrong
skew, but that this does not mean that there is a wrong skew problem. The proportions
of replications in which the OLS residuals have a wrong skew (positive third moment)
are 0.304, 0.104 and 0.064 for DGP1, DGP2 and DGP3, respectively. (As an aside,
the value of 0.304 is very close to the value of 0.301 reported by Simar and Wilson
(2009), Table 1, for the same parameter values.) The proportions of replications with
a wrong skew for the NLLS residuals are 0.019, 0.001 and 0.001, while for the MLE
residuals they are 0.072, 0.003 and 0.002. So a wrong skew can occur. However, it
was never the case, for any of the 1000 replications for any of the three DGPs, that the
NLLS estimator was equal to ψ∗ or that the MLE was equal to θ∗. This is obviously
a striking difference between the RSCFG model and the standard SFA model, where
a wrong skew of the OLS residuals implies that the MLE is degenerate at a value that
implies no inefficiency.

Although parameter estimation is not the focus of this paper, some evidence on the
performance of the various estimators was generated in the course of the simulations.
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Table 1 DGP1: δ � 0, σ 2
u � 1

OLS α̂ σ̂ 2
ε

True value 0 1.3633

Mean −0.7982 1.3465

Bias −0.7982 −0.01685

Variance 0.01238 0.04031

MSE 0.6495 0.04060

NLLS α̂ σ̂ 2
u δ̂

True value 0 1 0

Mean 123.33 35023 −0.05740

Bias 123.33 35022 −0.05740

Variance 6887 6.120 × 108 1.3011

MSE 22099 1.838 × 109 1.3044

MLE α̂ σ̂ 2
u δ̂ σ̂ 2

v

True value 0 1 0 1

Mean −0.1322 0.9748 −0.05270 0.9694

Bias −0.1322 −0.02516 −0.05270 −0.03056

Variance 0.1969 0.8849 1.1847 0.1134

MSE 0.2144 0.8856 1.1875 0.1143

In Tables 1, 2 and 3 (for DGP1, DGP2 and DGP3, respectively), we give the mean,
bias, variance and MSE of the OLS, NLLS and MLE estimators.

Consider first the results in Table 1. In DGP1, where δ � 0 and therefore exp(z
′
iδ)

is constant, the OLS estimate of α is the sample mean, and it correctly estimates

the population mean which equals α −
√

2
π
σu � −0.7979. NLLS fails to give any

coherent results because α and σu are not separately identified by the first moment
(conditional on z) of the data. There is no apparent problem with MLE, for which the
composed error distributional assumption yields identification. So the RSCFG model
gives sensible MLE results even in this case where the RSCFG model is not needed.

Similar comments apply to the results for the other two DGPs (Tables 2 and 3). The
only surprise (to us) is how poorly the NLLS estimator performs.With δ �� 0, we have
identification from the first conditional moment but still have a great deal of difficulty
of sorting out α from σu . Again, MLE is much better, and so the NLLS estimator is
not recommended for practical use in this model.

7 Concluding remarks

In the standard normal/half-normal SFA model, the “wrong skew” problem refers to a
set of problems that occur in the case that the OLS residuals are positively skewed. In
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Table 2 DGP2: δ � 0.5, σ 2
u � 0.6065

OLS α̂ σ̂ 2
ε

True value 0 1.2830

Mean −0.7036 1.4765

Bias −0.7036 0.1935

Variance 0.01423 0.07324

MSE 0.5092 0.1107

NLLS α̂ σ̂ 2
u δ̂

True value 0 0.6065 0.5

Mean 41.842 12053 0.7876

Bias 41.842 12053 0.2876

Variance 5865 5.120 × 108 1.5544

MSE 7616 6.573 × 108 1.6371

MLE α̂ σ̂ 2
u δ̂ σ̂ 2

v

True value 0 0.6065 0.5 1

Mean 0.01884 0.8176 0.6456 0.9054

Bias 0.01884 0.2111 0.1456 −0.09458

Variance 0.1124 0.5601 0.4390 0.07429

MSE 0.1127 0.6047 0.4602 0.08323

this case, Waldman (1982) showed that two things happen. First, the COLS estimator
does not exist. Second, there is always a stationary point of the likelihood at a parameter
value that corresponds to no inefficiency, and in the wrong skew case, this is a local
maximum of the likelihood.

In this paper, we investigated the extent to which these results generalize to related
but different models. Specifically, we considered the RSCFGmodel in which the (pre-
truncation) variance of the half-normal error depends on explanatory variables. There
is no equivalent of the COLS estimator for this model, but we considered NLLS as
well as MLE. We found that there is always a stationary point of the criterion function
(for both NLLS and MLE) at a parameter value that corresponds to no inefficiency,
thus generalizing one of Waldman’s results. For NLLS, we show that this parameter
value is generally neither a local minimum nor a local maximum of the sum of squares.
Similarly, for MLE, this parameter value is in general neither a local minimum nor
a local maximum of the likelihood. Some limited simulations indicate that these sta-
tionary points are not a global minimum (for NLLS) or a global maximum (for MLE).
So some of Waldman’s results generalize to the RSCFG model and some do not.

If nothing else, this paper shows the inherent limitations of proceeding on a
case-by-case basis. There are some other related results in models similar to the
normal/half-normal stochastic frontier model. For example, there is no analogue to
Waldman’s results in the normal/exponential stochastic frontier model. However, Rho
and Schmidt (2015) show that essentially the same results as Waldman’s hold in
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Table 3 DGP3: δ � 1, σ 2
u � 0.1353

OLS α̂ σ̂ 2
ε

True value 0 1.1336

Mean −0.4830 1.7616

Bias −0.4830 0.6280

Variance 0.01753 2.1539

MSE 0.2508 2.5484

NLLS α̂ σ̂ 2
u δ̂

True value 0 0.1353 1

Mean 10.733 3026 1.2721

Bias 10.733 3026 0.2721

Variance 1803 1.535 × 108 1.7982

MSE 1918 1.627 × 108 1.8723

MLE α̂ σ̂ 2
u δ̂ σ̂ 2

v

True value 0 0.1353 1 1

Mean 0.07512 0.3524 1.0335 0.9089

Bias 0.07512 0.2171 0.03351 −0.09104

Variance 0.07546 0.2472 0.3736 0.04460

MSE 0.08111 0.2944 0.3748 0.05289

the zero inefficiency stochastic frontier model of Kumbhakar et al. (2013). Horrace
and Wright (forthcoming) show that results similar to Waldman’s hold for a “delta
sequence” family of distributions of inefficiency, for which the inefficiency distri-
bution converges to a Dirac delta function located at the origin as the variance of
inefficiency goes to zero. This is a considerable generalization because this family
includes many (but not all) commonly assumed distributions. They indicate that their
results extend to models with determinants of inefficiency, like the RSCFG model,
but they do not give details. It does not appear that our Results 1 or 2 (which have
to do with NLLS, not MLE) or Result 4 (the stationary point of the log-likelihood
is neither a local min nor a local max) follow from their results. Some more general
results would be very useful to understand why results like Waldman’s hold in one
specific model and not in other closely related models.

An alternative direction of research is to find alternatives to the normal/half-normal
distributional assumption that allow both positive and negative skewness, so that the
skew cannot be “wrong.” Papers that do this include Carree (2002), Griffin and Steel
(2008), Almanidis and Sickles (2011), Almanidis et al. (2014), Bonanno et al. (2017)
and Hafner et al. (2018). A somewhat similar model is the Laplace model of Horrace
and Parmeter (2018), for which the population skewness is negative but a wrong skew
of the OLS or LAD residuals does not cause difficulties in inference. None of these
models include environmental variables, but they could be modified to do so.
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Our paper does not address the important practical question of what to do if in
an empirical setting one encounters a stationary point that is the global minimum
(for NLLS) or maximum (for MLE). Simar and Wilson (2009) provide guidance for
the normal/half-normal model without determinants of inefficiency. Extending their
results to other models like the RSCFG model is a reasonable task but one that is
beyond the scope of the present paper.

Compliance with ethical standards

Conflict of interest Both authors declare that they have no conflicts of interest.

Ethical approval This article does not contain any studies with human participants or animals performed
by any of the authors.

Appendix 1

Hessian for the NLLS problem

∇ααSSE � 2n,

∇αβSSE � 2nx̄
′
,

∇ασuSSE � −2k
∑

i

exp
(
z

′
iδ

)
,

∇αδSSE � −2kσu
∑

i

exp
(
z

′
iδ

)
z

′
i ,

∇ββSSE �
∑

i

xi x
′
i ,

∇βσuSSE � −2k
∑

i

exp
(
z

′
iδ

)
xi ,

∇βδSSE � −2kσu
∑

i

exp
(
z

′
iδ

)
xi z

′
i ,

∇σuσuSSE � 2k2
∑

i

exp
(
2z

′
iδ

)
,

∇σuδSSE � 2k
∑

i

(
yi − α − x

′
iβ + 2kσuexp

(
z

′
iδ

))
exp

(
z

′
iδ

)
z

′
i ,

123



2046 C.-K. Cho, P. Schmidt

∇δδSSE � −2kσu
∑

i

(
yi − α − x

′
iβ + 2kσu exp

(
z

′
iδ

))
exp

(
z

′
iδ

)
zi z

′
i .

Appendix 2

Expression for ln L
(
�o)

We define θo � θ∗ + τw �

⎡

⎢⎢⎢⎢
⎣

α̂ + τ

β̂

τ/k
τδ

σ̂ 2
v

⎤

⎥⎥⎥⎥
⎦
. We also define the following notation:

εoi � yi − (
α̂ + τ

) − x
′
i β̂ � ε̂i − τ ,

(
σ o
i

)2 �
(τ

k

)2
exp

(
2τ z

′
iδ

)
,

(
ωo
i

)2 � (
σ o
i

)2 + σ̂ 2
v ,

λoi � σ o
i /σ̂v,

coi � −εoi λ
o
i /ω

o
i .

Then, the log-likelihood is given by

ln L(θo) � constant −∑

i
lnωo

i − 1/2
∑

i

[(
εoi

)2
/
(
ωo
i

)2] +
∑

i
lnΦ

(
coi

)
.

This would need to be compared to ln L(θ∗) as given in Eq. (20) of the text. No
easy comparison is possible due to the various functions (logarithm, exponential,
normal cdf) present in the likelihood expression above. One could attempt Taylor
series expansions of these functions around the value τ � 0, which is similar in spirit
to what was done in Waldman (1982) and what we do in Sect. 4 for the least squares
problem, but that did not get us any useful result for the least squares problem, which
is simpler, so we will not follow that path here.
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