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Abstract
We investigate the distribution of links in three large data sets: one of these covering
interbank loans in the electronic trading platform e-MID, and the other two covering
a large part of the loans of banks to non-financial companies in the Spanish and
Japanese economies, respectively. In contrast to all the previous literature, we do not
assume homogeneity of the link distribution over time and across different categories
of agents (banks, firms) but apply our hypothesized distributions as regressionmodels.
As it turns out, many of the tested sources of heterogeneity turn out to be significant
regressors. For instance, we find pervasive time heterogeneity of link formation in all
three data sets, and also heterogeneity for different categories of banks/firms that can
be identified in the data as well as some explanatory power of balance sheet statistics
in the case of the Japanese data set. Across all networks, the Negative Binomial model
almost always outperforms all alternative models confirming its good performance as
a model of economic count data in many previous applications.

Keywords Financial network · Interbank market · Degree distribution · Credit
network

JEL Classification G21 · G01 · E42

1 Introduction

Differentmajor classes of networks are routinely associatedwith their implied distribu-
tions of degrees, i.e., the number of links of nodes they generate. The major prototypes
are Erdös–Renyi and scale-free networks. The former are random networks that are
characterized by a constant probability of existence of a link which obviously leads
to a Binomial distribution of links that converges toward the Poisson distribution for
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large networks. Scale-free networks somehow mark the opposite end of the spectrum
in that they generate a very broad distribution of links via some kind of amplification
mechanism (like preferential attachment of new nodes to those that already possess a
large number of connections). As a result, the degree distribution emerging from such
a generating mechanism is of a very heterogeneous nature and its scale-free behavior
corresponds to a power-law decay of the distribution of links over its entire range or
at least in the upper tail region. Almost all of the related literature focuses on these
two possibilities. However, the Poisson and power-law distributions do certainly not
constitute an exhaustive list of candidate distributions for the number of links in a
network setting. Indeed classes of networks exist which focus on properties other than
the degree distribution and for which no general results for the distribution of links are
available. Examples are ‘small-world’ networks which are defined by a small average
distance between nodes (Watts and Strogatz 1998) or ‘core-periphery’ networks that
are defined by a dichotomic classification of nodes into a core group and its periphery
(Borgatti and Everett 1999). Both of these classes might contain members that also
share the property of an (asymptotically) power-law-like distribution of links or not.
In howmuch these different categorizations overlap or exclude each other seems to be
completely unknown and has not received any attention so far. However, the existence
of such alternative categorizations of classes of networks and their pertinent generat-
ing mechanisms makes it likely that for some empirical networks, other distributions
than the Poisson and scale-free could better describe the data.

This should also apply to financial networks, for which the asserted scale-free
behavior had already been disputed in certain cases (cf. Fricke and Lux 2015). Due
to the dominance of the Erdös–Renyi and scale-free paradigms, theoretical modeling
has typically made use only of these two classes of models (Nier et al. 2008; Haldane
and May 2011; Anand et al. 2013; Krause and Giansante 2013). When generating the
link structure of a theoretical model in this way, any inference on the stability of the
network and its susceptibility to contagion effects after shocks would be determined
to a large extend by the (known) properties of the pertinent class of models. Hence,
the extent of contagious cascade effects might be underestimated or overestimated
because of deviations of these theoretical benchmarks from the empirical structure. It,
thus, appears worthwhile to expand the range of candidate distributions and generating
mechanisms beyond these classical ones as it appears likely that often the distribu-
tion of links is located somewhere between these extremes. A better and hopefully
robust characterization of the degree distribution should, therefore, be valuable input
to inform the mushrooming literature on network contagion studies of the banking
sector.

Continuing the line of research initiated by Fricke and Lux (2015), this paper
will look at some intermediate distributions from the large class of compound Poisson
distributions (Karlis andXekalaki 2005) that have been found appropriate formodeling
discrete events in various fields but have seemingly not been applied to the discrete
variables defined by the counts of the number of links within a network so far. We
will focus here on the Poisson–Gamma and Poisson–Pareto distributions along with
the original Poisson and discrete Pareto (aka power law or scale-free) distribution and
will compare the performance of these four alternatives for three important data sets:
one covering interbank credit connections and the other two capturing the network
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structure of bank-firm loans. As another novel feature within the financial network
literature, we will also apply most of the mentioned distributions within a regression
framework. In this way, we can identify the influence of certain characteristics of the
nodes on their propensity to form links.

We will estimate these models for three large data sets of financial linkages due
to loan contracts: interbank loans contracted via the electronic trading platform e-
MID, and loans of financial institutions to non-financial firms in the Spanish and
Japanese economies. All data sets are available over at least one decade. The e-MID
data contain daily recordings of all interbank loans, while the other two data sets
have yearly granularity. As it will turn out, heterogeneity is pervasive in all three data
sets along various dimensions: There is both a change over time of the shape of the
estimated distributions as well as a highly significant influence of whether banks/firms
belong to some basic classes of agents that can be distinguished in the data. For the
Japanese data set, we can also identify an influence of certain balance sheet statistics on
the degrees of banks (for the other data sets, such covariates are not available). These
exogenous effects are mostly very robust as they appear in a qualitatively similar way
in all distributions under consideration. Irrespective of inclusion of exogenous effects
or not, in almost all cases, the Negative Binomial exhibits the best fit and dominates
all alternatives at any standard level of significance.

The rest of the paper is structured as follows: Sect. 2 introduces the various dis-
tributions under investigation and their use as regression models. Section 3 describes
our data, and Sect. 4 provides the empirical results. Section 5 concludes.

2 Statistical models

Since degree distributions are by definition distributions of discrete variables, the
present paper confines itself to comparing the performance of discrete distributions.
The simplest benchmark is the Poisson distribution given by:

P(x) = e−λλx

x ! , (1)

where x is the number of links (the degree of a node) and λ the unique parameter
of this distribution function. We note that empirical degree distributions are typically
truncated at zero, simply because pertinent data are only collected for entities that
are at least minimally connected to the network under investigation. Hence, in such
applications we would have to use the truncated Poisson distribution which is given
by:

PT (x) = e−λλx

x !(1 − e−λ)
, (2)

where the additional term in the denominator adjusts for the ‘missing’ zero of the
empirical data (note that P(0) = e−λ in the original Poisson distribution).
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The Poisson distribution approximates the exact Binomial distribution of degrees
in Erdös–Renyi networks with a high degree of accuracy if the networks are not too
small. Since all our applications would be based on at least three-digit numbers of
nodes, the Poisson estimates should be virtually identical to estimates for a Binomial
distribution.

The power law characterizing scale-free networks is usually described and esti-
mated in its continuous version, i.e., p(x) ∼ x−α . However, this of course neglects
the discrete nature of the data. The discrete counterpart of the continuous Pareto distri-
bution is also known as the Zipf or Zeta distribution, and it is given by the probability
mass function:

Pα(x) = x−α

ζ(α)
, (3)

where ζ(α) is the zeta function ζ(s) = ∑∞
n=1

1
ns . No adjustment for the lack of zeros

is needed in this case as the support of the discrete Pareto covers only positive integers.
Besides the elementary Poisson and the discrete Pareto, the most frequently encoun-
tered classes of discrete distribution functions are compound Poisson distributions.
Two of these are used in this paper: The first is the Negative Binomial (NBD) which
results if the parameter λ of the original Poisson distribution (1) is drawn from a
Gamma distribution. Note that this amounts to drawing the realizations from a family
of Poisson distributions with heterogeneous mean values and hence can be seen as
a reflection of heterogeneity of the statistical features of the nodes in a network. We
adopt here the following functional form of the Negative Binomial:

N (x) = Γ (θ + x)τ θ (1 − τ)x

Γ (1 + x)Γ (θ)
with τ = θ

θ + λ
(4)

with Γ (.) the gamma function, Γ (n) = (n − 1)!, and θ and λ the two parameters
for the shape of the distribution. Alternative functional forms can be found in Greene
(2008). The one of Eq. (4) is preferred in the present context as it can be easily related
to the Poisson distribution, since the mean value is in both cases identical to the
pertinent parameter λ and the Negative Binomial converges to the Poisson for θ → ∞.
The Negative Binomial has become hugely popular in many applications featuring
discrete data as it is able to capture the widespread phenomenon of overdispersion,
i.e., the variance exceeding the mean. Namely, while it is well known that the variance
of the Poisson distribution is VarP (x) = λ, for the Negative Binomial we obtain
VarN (x) = λ(1 + λ

θ
) > λ. For applications without zero counts, we also need to

adjust the Negative Binomial in an appropriate way to obtain its truncated version:

NT (x) = Γ (θ + λ)τ θ (1 − τ)x

Γ (1 + x)Γ (θ)(1 − τ θ )
. (5)

The Negative Binomial enjoys an almost legendary reputation in marketing as the
most versatile tool for fitting purchase frequencies of consumer goods. This literature
has been initiated by Ehrenberg (1959) and surveyed by Schmittlein et al. (1985).
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The last candidate to be considered in this paper is the Pareto–Poissonmixture. This
compoundmodel had been studied before in the actuarial literature (cf. Albrecht 1984)
and has been proposed by Lux (2016) as a model for the degree distribution of credit
networks. The justification for this functional form was the plausible observation that
the number of credit links of both banks and non-financial firms is increasing with
their balance sheet size (de Masi and Gallegati 2012; de Masi et al. 2011). Taking the
size of the underlying entity as a latent variable in a compound Poisson model and
taking into account that firm size distributions are close to a power or Pareto law1

leads to a formalization in which the shape parameter of the Poisson distribution is
drawn from a Pareto law:

PP(x) =
∫ ∞

λ

e−λλx

x ! α
λα

λα+1 dλ (6)

which defines a family of distributions with two parameters, α and λ. A closed-form
solution for the integral in Eq. (6) is not available, so that the probability mass function
can only be solved via numerical integration. In Eq. (6), α is the usual shape parameter
of the Pareto distribution (note that since the latent variable ‘firm size’ is a continuous
variable, we can adopt here the standard Pareto law), and λ > 0 is a lower boundary
for the latent variable which is necessary to guarantee convergence of the integral.
Again, we need the zero-truncated counterpart of Eq. (6) which formally we obtain
by setting:

PPT (x) = PP(x)

1 − PP(0)
(7)

which again is obtained by numerical integration. It is worthwhile to add that most
applications (e.g., in marketing) use the Poisson and Negative Binomial as regression
models (cf. Hilbe 2007), i.e., apply it formodeling the dependency of variables obeying
such distributions on exogenous variables. While network data have to the best of my
knowledge only be described via unconditional distributions so far, such a perspective
would bemost informative if additional information on the characteristics of the nodes
were available. The Poisson and Negative Binomial model could be embedded into a
regression framework by setting:

λi = exp(μ + y′
iβ) (8)

where yi is a vector of covariates and i = 1, . . . , N is the sample of nodes of the
network. This adds node-specific heterogeneity even in the Poisson model and, in
the case of the Negative Binomial, could be interpreted as a combination of both

1 Evidence for a Pareto shape of the distribution of firm sizes is provided by, among others, Axtell (2001)
and Segarra and Teruel (2012). In contrast, Cabral andMata (2003) provide evidence for their proximity to a
Lognormal distribution. Since both candidates (as well as some others) are strongly right-skewed, statistical
discrimination between them can be a delicate problem. In recent literature, Crosato and Ganugi (2007)
have attempted an explicit comparison of the Pareto and lognormal distributions and find a better fit of the
former.
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observable and unobservable heterogeneity, the later being represented by the Gamma
mixing distribution.

I am not aware of any previous use of the Poisson–Pareto model within a regression
framework. Nevertheless, this family can also easily be cast into such a format. It can
be shown that the mean of Eq. (6) is E[x] = α

α−1λ and so it seems most natural to
allow exogenous effects to enter via λ:

λ = exp(μ + y′
iβ) (9)

While Eq. (9) is motivated by the Poisson regression framework, it also allows
inference on the influence of exogenous factors if the mean actually does not exist,
i.e., if α ≤ 1 holds.

In contrast, no straightforward way suggests itself to add a regression framework to
the discrete Pareto distribution, and sowe just apply this alternative in its unconditional
format. Since not toomuch knowledge is available in our data set on the characteristics
of individual nodes, the regression framework model is used to allow for fixed effects
of different years, as well as different categories of actors the nodes belong to and so
we can investigate whether this categorization is of relevance for the number of their
links. In the case of the Japanese data set, we are able to add non-categorical covariates
as these data come with balance sheet information besides the identities of borrowers
and lenders.

It appears worthwhile to note that the statistical fitting of degree distributions is just
one level of analysis in network research. Another, equally important approach would
consist in modeling not the degrees of the actors, but the particular structure of links
within the network. In such an analysis, the effects of actor-specific and dyadic charac-
teristics as well as various network effects themselves (such as reciprocity, transitivity
or closure of subsets) would be investigated. The method of choice in recent literature
for such analyses is the so-called exponential random graph model (ERG) that basi-
cally captures all candidate factors of influence in an exponential function determining
the linking probabilities between each pair of actors (cf. Lusher et al. 2013). While
our fitting of degree distributions cannot shed any light on endogenous factors such
as reciprocity in the formation of a specific network, it can provide information on
important covariates that should be included when estimating an ERG model for the
same data. It is plausible that any significant explanatory variables for the degrees of
the actors should exert their influence via a higher or lower probability of link forma-
tion of these actors under certain circumstances, and so it would be surprising to not
find these variables also entering significantly in an ERG model. The same applies
for behavioral analyses of network formation on the base of longitudinal data and
actor-based models of link formation over time (cf. Finger and Lux 2017 for such an
analysis for the interbank market that yields results from a different perspective that
are broadly in harmony with those reported below).
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3 The data

We consider three large data sets of credit links: The first covers all transactions in
the interbank money market conducted within the electronic trading platform e-MID
over the years 1999–2014.

The second data set is a comprehensive database of credit extended from banks
to non-financial firms in Spain which has been extracted from the SABI (Sistema de
Análisis de Balances Ibéricos) archive based on the public commercial registry in
Spain. This complete list of bank connections of all publicly registered companies
is available for each year from 1997 to 2008 comprising more than 500,000 links
between individual banks and their borrowers. Our third data set is a similarly large
record of credit links between banks and non-financial firms in Japan collected by
Nikkei Media Marketing, Inc., from financial statements of the firms included. These
data are available for us over the period from 1979 through 2011. The Japanese data
set also includes a variety of balance sheet items of which we construct some key
financial statistics to be included among the covariates of Eqs. (8) and (9) .

All three sources have been used in other studies before: The SABI database has
been used by Illueca et al. (2014) who study the effects of the regional expansion of
Spanish saving banks during the real-estate boom of the years after the introduction
of the Euro. The Japanese data have been investigated from a network perspective
by Marotta et al. (2015). The e-MID data feature prominently in quite a number of
contributions to financial network theory (e.g., de Masi et al. 2006; Fricke and Lux
2015) as it is the only commercially available data set in this area.

Table 1 provides same basic information on the networks defined by the pooled data
of our three samples. “Appendix” covers histograms of the seven degree distributions
that we attempt to model with the statistical distributions presented in the preceding
section. First, the e-MID interbank market loans give rise to a unipartite network,
i.e., there is only one type of actors (banks) that are connected via the provision of
credit. We, therefore, have only one degree distribution. To be precise, the underlying
data here use the set union of the degree distributions extracted from the 64 available
quarters 1/1999 to 4/2014. Following Finger et al. (2013), we use such a large level of
time aggregation, since at the high-frequency end (e.g., for daily data), the resulting
networks would be very sparse. Presumably, over a short time horizon, only a small
fraction of all existing links (credit lines) get activated and, thus, high- frequency data
would provide us with a very small sample of what we want to measure: namely,
existing contacts between banks that could be used to obtain a loan in the money
market if the need arises. This view is also supported by the finding that many network
statistics (such as density and reciprocity) are very volatile at the high-frequency end
and becomemore stable at around themonthly to quarterly level of aggregation.Hence,
we define a link between two banks to exist if they have been trading at least once
with each other within a quarter and merge the 64 distributions of degrees obtained in
this way into a single one.

The resulting degree distribution is very broad (cf. Fig. 1 in “Appendix”): The
number of counterparts in the interbank market assumes values from a minimum of
one to a maximum of 273 which is close to the maximum number of active banks in
any quarter. The slow decay of the histogram could be indicative of a power law, but the
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visual impression from such histograms is usually not reliable enough to discriminate
between a power law and other strongly skewed alternatives. At the same time, the
pronounced heterogeneity of the degree distribution could be an artifact resulting
from heterogeneity of covariates rather than a particular shape of the distribution.
These questions will be addressed in the next section.

TheSpanish and Japanese data on bank loans to non-financial firms allowus to study
different types of degree distributions: First, the original bipartite network provides us
with the degree distribution of banks, i.e., the number of borrowers they extend credit
to within a certain span of time (one year in our analysis). Besides this straightforward
concept, another type of degree distribution can be obtained from the so-called one-
mode projection of the original data set. This is the projection of the original adjacency
matrix of links, say A, of the bipartite data onto a symmetric matrix for banks only that
identifies whether two banks have at least one lender in common, or do not have any
overlap within their group of borrowers. This matrix, say B, is obtained as B = AT A.

The resulting degree distribution provides information on joint lending, i.e., the
number of other banks with an overlapping population of client firms. As it turns
out, the latter degree distribution for Spanish banks is characterized by very similar
statistics like the degree distribution of the e-MID interbank network and the visual
appearance of their histograms is also relatively similar (cf. Figs. 1, 3). In contrast,
the degree distribution of banks from the original bipartite network is much broader
(stretching out to a maximum of about 48,500 links of the most active bank), and the
pertinent histogram (Fig. 2) also points to a higher degree of heterogeneity. This is
also confirmed by its degree of overdispersion that is actually much higher for the
histogram of Fig. 2 with a value of 13,915 compared to those of Fig. 1 (∼ 32) and
Fig. 3 (∼ 40). For the sake of completeness, we also include the degree distribution
of firms from the bipartite network in our analysis. In contrast to banks, this one has
a very narrow range with a maximum degree of 10 and is actually characterized by
underdispersion rather than overdispersion (the variance being smaller than themean).
It, thus, appears questionable whether the right-skewed distributions would add much
explanatory power to a baseline Poisson model.

As concerns the Japanese data set, Fig. 5 shows again a broad, right-skewed degree
distribution of banks in the bipartite network. With an overdispersion of 445, this one
appears somewhat less extreme than its Spanish counterpart. The degree distribution
for the one-mode projection of banks is the only one that clearly deviates from a well-
behaved distribution function with decaying probabilities for higher degrees. Quite in
contrast, this histogram (Fig. 6) has the smallest probabilities on the left-hand side
and higher occupation numbers on the right. Its degree of overdispersion is about 7.5
and, therefore, much lower than those of the other degree distributions for banks. Joint
lending of many banks to the same company seems, thus, to be much more common
in Japan than in Spain. This is also confirmed by the broader degree distribution of
Japanese firms as compared to its Spanish counterpart (Fig. 7). This one again obeys
the expected form of a degree distribution.

Figures 8 through 12 provide log–log plots of the inverse cumulative distribution
functions of all the bank-related networks of our study. As it is well known, data drawn
from a Pareto distribution will be characterized by a linear shape of their density or
cumulative distribution in a log–log plot. While estimation of the Pareto index via
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a regression in log coordinates might not be the most efficient way to identify this
parameter, such plots provide a useful indication of whether the data are close to a
Pareto law at all. Clauset et al. (2009) showed that the cumulative densities are more
reliable as a diagnostic tool and, hence, we have chosen the latter to shed light on the
distributional characteristics of our data. In all the plots of Fig. 8 through 12, we have
used 100 equidistant bins for the representation of the inverse cumulative distributions.
The impression from all these graphical displays appears very uniform: In all cases,
there does not seem to be any indication of a linear shape of the cumulative distribution
in the tail or in any intermediate region and, hence, the simple Pareto law should be
a misspecified model for our data. In general, the figures suggest that in all cases the
tail region is thinner than expected under a Pareto law which could be due to either
a different overall functional form of the degree distribution or heterogeneity of the
nodes.

Similar conclusions can be drawn on the base of rank-size plots (e.g., Gabaix and
Ibragimov 2011), that again under a Pareto lawwould turn out to have a linear shape in
a logarithmic representation, but in our case also always show curvature characteristic
of an exponential rather than Pareto-type decline (these alternative graphical repre-
sentations are available upon request). This evidence against the Pareto distribution
provides the motivation for the estimation of alternative distributional forms that as
an added benefit also allows their application as regression models and, hence, the
assessment of the explanatory power of important exogenous variables on the varia-
tion of the degrees of banks across types and over time. The next section will report
parameter estimates of these alternative models along with the results of explicit tests
of goodness of fit of these alternatives against the Pareto distribution and of different
specifications against the others.

4 Empirical results

We now move on to the results of estimating various discrete models for the degree
distributions computed for these data sets.

4.1 Interbank Loans from e-MID Platform

We first turn to the interbank credit data from the e-MID trading platform. These
data have been relatively intensely scrutinized in various previous papers. Among
those, de Masi et al. (2006) reported power-law exponents between 2 and 3 for the
distribution of degrees. Fricke and Lux (2015) questioned this result showing that the
histograms of the degree distribution do hardly resemble a power law. Their results
are also confirmed by the obvious nonlinear shape of the cumulative density of these
data depicted in Fig. 8. Fitting a variety of both continuous and discrete distributions,
Fricke andLux (2015) find that the power law is dominated bymany other distributions
in terms of proximity to the empirical distribution (evaluated via the Kolmogorov–
Smirnov statistic). Which distribution gets closest to the data, varies with the level of
time aggregation and across subsamples of the data.
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Here we complement this analysis in various ways: First, we use tests based upon
likelihood comparisons. Second, we use a larger sample for comparison, namely all
banks that have been operating in the money market within the e-MID platform (while
Fricke and Lux have confined their analysis to Italian banks which constitute the
majority of e-MID users). Third, we do not only estimate the parameters of uncondi-
tional distributions, but also apply the Poisson, Negative Binomial and Poisson–Pareto
mixture as regression models which also allows us a certain assessment of the value
added of including exogenous variables to explain the distributions of degrees. Since
the implementation of a regression framework is less straightforward in the case of the
discrete Pareto distribution, we estimate only the one shape parameter of this family.

As explained in the previous section, we have aggregated our data into quarterly
networks and we have pooled the degree distribution of the 64 quarters from 1999
through 2014 in our statistical analysis. The later step could be considered problematic
as our time span of 16 years covers very different periods: an expansive phase after the
launch of this market in which transaction volume and number of market participants
had been increasing sharply, the reduction of activity after the outbreak of the financial
turmoil in 2007–2008 and the subsequent operation of the exchange at a reduced level
of turnover. Since this exchange is operated by a company based in Milan, Italy, it
has always been predominantly used by Italian banks. However, the fraction of non-
Italian banks has been sharply increasing prior to the crisis and has collapsed again
during the aftermath of the financial turmoil. Finger et al. (2013) and Fricke and Lux
(2015) observed that both Italian and non-Italian banks have been mostly trading
with counterparts from their own group, so that the network consisted of two largely
distinct clusters. Given this outline of the history of tradingwithin the e-MIDelectronic
market, we might hypothesize that one might expect both time heterogeneity of the
distribution of degrees and an influence of the geographic location of the banks using
this system. Because of this clustering, Fricke and Lux (2015) neglected the non-
Italian participants and focused their analysis on the majority of market participants
operating under Italian law. In our regression framework, we can allow for differences
by including country-specific fixed effects. Since except for Italy, other countries are
hardly ever represented by more than a handful of banks, we restrict ourselves to
using a dummy for the non-Italian origin. In order to account for temporal variation,
we additionally include 15 yearly dummies (β2000 to β2014) for the years 2000 to 2014.

Table 2 exhibits the results of the estimation of the distributions presented in Sect. 2
for this data set togetherwith the factors entering as determinants of theirmean.Wefind
the best fit for the Negative Binomial, followed by the Poisson–Pareto mixture and the
discrete Pareto distribution (without exogenous factors). Here and in almost all other
applications, thePoisson distribution provides a definitelymuchworsefit than the other
alternatives. The yearly dummies and the dummy for non-Italian banks are all highly
significant according to their t-statistics. The coefficients are very close to each other
for both the Poisson and Negative Binomial distributions and behave qualitatively
similarly under the Poisson–Pareto mixture. Essentially, the coefficients depict an
almost monotonic decline of the mean degree which is first caused by mergers and
acquisitions and the resulting reduction of the number of market participants and later
by the strong decline of interbank trading during the financial crisis. Coefficients are, in
fact, almost identical for the years 2002–2007, and the years 2009–2014, respectively,
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Table 2 Pooled Italian Interbank Credit, 1999–2014, time dummies and dummies for Italian/non-Italian
origin

Observations: 9304 Poisson Negative Binomial Poisson–Pareto Discrete Pareto
Mean: 44.36, Variance: 1410.75

μ 4.287 4.285 2.637 –

(0.001) (0.026) (0.014) –

β2000 −0.060 −0.065 0.112 –

(0.001) (0.039) (0.020) –

β2001 −0.110 −0.109 0.128 –

(0.001) (0.041) (0.020) –

β2002 −0.215 −0.204 0.077 –

(0.001) (0.042) (0.021) –

β2003 −0.240 −0.199 −0.049 –

(0.001) (0.043) (0.021) –

β2004 −0.273 −0.208 −0.120 –

(0.001) (0.042) (0.021) –

β2005 −0.278 −0.181 −0.097 –

(0.001) (0.042) (0.021) –

β2006 −0.277 −0.168 −0.128 –

(0.002) (0.042) (0.021) –

β2007 −0.262 −0.166 −0.111 –

(0.002) (0.042) (0.021) –

β2008 −0.511 −0.499 −0.283 –

(0.002) (0.043) (0.024) –

β2009 −0.890 −0.971 −0.638 –

(0.003) (0.044) (0.001) –

β2010 −0.820 −0.896 −0.694 –

(0.003) (0.046) (0.031) –

β2011 −0.871 −0.942 −0.636 –

(0.003) (0.046) (0.032) –

β2012 −1.126 −1.163 −0.901 –

(0.004) (0.050) (0.039) –

β2013 −1.200 −1.235 −1.068 –

(0.004) (0.052) (0.042) –

β2014 −1.086 −1.119 −0.703 –

(0.004) (0.054) (0.035) –

Non-Ital. −0.918 −1.042 −1.072 –

(0.002) (0.022) (0.018) –

α – – 0.797 1.258

– – (0.019) (0.003)

θ – 1.931 – –

– (0.029) – –
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Table 2 continued

Poisson Negative Binomial Poisson–Pareto Discrete Pareto

logL −114,993.37 −42,516.16 −46,824.34 −53,118.76

Lkl ratio 87,202.13 3737.41 3916.03 –

(all dummies = 0) (0.000) (0.000) (0.000) –

Lkl ratio 35,296.60 2029.19 2020.33 –

(non-Ital. = 0) (0.000) (0.000) (0.000) –

The table shows estimates of the parameters of the various models for pooled degree data extracted from the
e-MID electronic platform for interbank credit, 1999–2014. Pooling here refers to the degree distributions
of the 64 quarters of this sample. The Poisson, Negative Binomial and Poisson–Pareto mixture models
allow for fixed effects depending on the year of the data and the regional origin of a bank while the discrete
Pareto distribution has been estimated without any covariates. Parentheses contain standard errors

so that one can recognize the well-known phases in the development of this market.
The dummy for non-Italian banks is almost exactly −1 for all three models. This
effect has to be seen in relation to the other parameter estimates. For instance, for
the negative binomial distribution, this would imply an expected degree of 72.60 for
Italian banks in 1999 (from β0 = 4.287), while non-Italian banks would be expected
to only have 25.61 links on average. This expectation does not exist in the case of
the Poisson–Pareto as the estimated tail index of the Pareto is α = 0.80. In contrast,
the discrete Pareto distribution would indicate existence of the first moment. It seems
remarkable that despite the high level of overdispersion, the fat-tailed Poisson–Pareto
and discrete Pareto distributions are both inferior to the Negative Binomial.

As it is also indicated in Table 2, likelihood ratio tests clearly reject restricted mod-
els without all dummies for all distributions that have been used in these regressions.
Table 3 shows results of a number of additional tests: The Poisson which is nested
in the Negative Binomial is rejected at all traditional levels of significance. Further,
a sequence of Vuong tests (Vuong 1989) shows that the Negative Binomial signifi-
cantly outperforms the Poisson–Pareto and discrete Pareto, and the same is obtained
for the Poisson–Pareto against the discrete Pareto. When adjusting the Vuong test for
the difference in estimated parameters2 (18 in the case of the Negative Binomial and
Poisson–Pareto against only one for the simple discrete Pareto), only the advantage
of the Negative Binomial remains, while the parsimonious discrete Pareto would be
preferred under this criterion to the Poisson–Pareto with exogenous factors. We have
finally compared the Negative Binomial and Poisson–Pareto without exogenous fac-
tors to the discrete Pareto (keeping only parameters θ and μ or α and μ, respectively)
and find the Negative Binomial and the Poisson–Pareto to appear still superior to the
discrete Pareto. Since here, the first two alternatives still enjoy the advantage of one
more parameter the adjusted version of the Vuong test can also be applied, which
leaves the pattern of dominance unchanged.

2 As proposed by Vuong (1989), one then subtracts 0.5(K1 − K2)logN from the differences of the likeli-
hoods (K1 and K2 the number of parameters of both alternative models, and N the number of observations).
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Table 3 Specification tests for e-MID data

Test Value p value

Poisson versus Negative Binomial (lkl) 144,954.41 (0.000)

Negative Binomial versus Poisson–Pareto 48.19 (0.000)

Negative Binomial versus discrete Pareto 104.57 (0.000)

Negative Binomial versus discrete Pareto (adj.) 26.89 (0.000)

Negative Binomial (2 params) versus discrete Pareto 89.25 (0.000)

Negative Binomial (2 params) versus discrete Pareto (adj.) 84.68 (0.000)

Discrete Pareto versus Poisson–Pareto −41.43 (1.000)

Discrete Pareto versus Poisson–Pareto (adj.) 36.24 (0.000)

Discrete Pareto versus Poisson–Pareto (2 params) −37.59 (1.000)

Discrete Pareto versus Poisson–Pareto (2 params, adj.) −33.02 (1.000)

Specification tests use the Vuong test for non-nested alternatives with the null hypothesis that both models
are equally good descriptions of the data against the alternative hypothesis that one model fits better. The
test statistics of the Vuong test is based upon the log likelihood differences of both models and, thus, a
positive value indicates a better fit of the first model, a negative value a better fit for the second model. The
resulting test statistic is asymptotically Normally distributed and its p value is recorded in the last column.
The adjusted Vuong tests includes an additional correction factor for the difference in parameters. For the
comparison between the Poisson and NBDmodel, the nestedness of the former in the later allows to conduct
a standard likelihood ratio test. Parentheses contain probabilities of acceptance of the null hypothesis

4.2 Spanish bank-firm credit network

We now move on to the analysis of the degree distributions extracted from the bank-
firm credit network for the Spanish economy over the years 1997–2008. Since this
is a bipartite network, it allows us to investigate degree distributions under different
perspectives: Tables 4 and 5 depict the results for the degree distribution of banks
within the bipartite network, Tables 6 and 7 exhibit the results obtained from the so-
called one-mode projection of the original data set. Tables 8 and 9 present results for
the degree distributions of firms from the original bipartite adjacency matrix. The one-
mode projection for firms is less interesting as the number of joint lenders assumes
very small values throughout.

Here, we use the original yearly records as basic input which we merge all into
one data set allowing, however, for both differences in the mean in each year and
differences in mean due to the category of banks in our data set. The latter categories
are: commercial banks, saving banks and credit cooperatives. Particularly, the latter are
typically very small, local institutionswhich only provide credit to very few borrowers.
Not accounting for their different behaviors would certainly introduce an element of
misspecification into any statisticalmodel of network links.We take commercial banks
as the default case and introduce dummies with coefficients γsb and γcc for saving
banks and credit cooperatives, respectively.

Startingwith the degree distribution of credit relationships of banks to non-financial
firms, we have already noted that this distribution is characterized by an even larger
degree of overdispersion (∼ 13,900) than the interbank network. All dummies except
for the first two years are significant under the Poisson and Negative Binomial, and
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Table 4 Spanish Bank-Firm Credit, 1997–2008, degrees of banks with dummies for years and type of
banks

Observations: 2343 Poisson Negative Binomial Poisson–Pareto Discrete Pareto
Mean: 915.40, Variance: 12,732,367

μ 6.416 6.056 0.463 –

(0.003) (0.121) (0.095) –

β1998 0.133 0.133 0.109 –

(0.004) (0.158) (0.111) –

β1999 0.177 0.177 −0.127 –

(0.004) (0.153) (0.106) –

β2000 0.323 0.356 −0.054 –

(0.004) (0.153) (0.101) –

β2001 0.344 0.390 −0.048 –

(0.004) (0.153) (0.105) –

β2002 0.759 0.918 0.353 –

(0.004) (0.161) (0.095) –

β2003 0.865 1.056 0.401 –

(0.004) (0.162) (0.094) –

β2004 0.981 1.194 0.369 –

(0.004) (0.164) (0.094) –

β2005 1.460 1.658 0.284 –

(0.004) (0.180) (0.098) –

β2006 1.532 1.763 0.205 –

(0.004) (0.178) (0.100) –

β2007 1.525 1.772 0.316 –

(0.004) (0.180) (0.009) –

γsb −0.049 −0.153 2.134 –

(0.002) (0.133) (0.060) –

γcc −2.933 −3.291 0.254 –

(0.004) (0.078) (0.005) –

θ – 0.161 – –

– (0.011) – –

α – – 0.330 1.211

– – (0.012) (0.004)

logL −3,192,707.70 −14,844.70 −15,283.88 −15,818.144

Lkl ratio 2,089,449.39 767.52 414.69 –

(β = 0) (0.000) (0.000) (0.000) –

The table shows estimates of the parameters of the various models for pooled degree data of the yearly
bank-firm credit networks in Spain, 1997–2007. Pooling here refers to the degree distributions of the 11
years. The Poisson, Negative Binomial and Poisson–Pareto mixture models allow for fixed effects while the
discrete Pareto distribution has been estimated without any covariates. Parentheses contain standard errors.
β1997 to β2007 are dummies for the years 1998 through 2007, while γsb and γcc are dummies for saving
banks and credit cooperatives, respectively
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Table 5 Specification tests for fitted degree distributions of banks in Spanish credit network

Test Value p value

Poisson versus Negative Binomial (lkl) 6,355,725.99 (0.000)

Negative Binomial versus Poisson–Pareto 9.064 (0.000)

Negative Binomial versus discrete Pareto 28.398 (0.000)

Negative Binomial versus discrete Pareto (adj.) −22.036 (1.000)

Negative Binomial (2 params) versus discrete Pareto 21.546 (0.000)

Negative Binomial (2 params) versus discrete Pareto (adj.) 17.666 (0.000)

Discrete Pareto versus Poisson–Pareto −11.069 (0.000)

Discrete Pareto versus Poisson–Pareto (adj.) 39.366 (0.000)

Discrete Pareto versus Poisson–Pareto (2 params) −10.581 (1.000)

Discrete Pareto versus Poisson–Pareto (2 params, adj.) −6.701 (1.000)

See Table 3 for details on the specification tests

Table 6 Spanish Bank-Firm Credit, 1997–2008, degrees of banks from one-mode projection

Observations: 2,310 Poisson Negative Binomial Poisson–Pareto Discrete Pareto
Mean: 35.003, Variance: 1415.951

μ 3.812 3.771 1.713 –

(0.011) (0.059) (0.045) –

β1998 0.031 0.031 0.056 –

(0.015) (0.084) (0.058) –

β1999 −0.017 −0.020 −0.035 –

(0.016) (0.085) (0.060) –

β2000 −0.084 −0.080 −0.109 –

(0.016) (0.086) (0.060) –

β2001 −0.115 −0.101 −0.133 –

(0.016) (0.084) (0.057) –

β2002 −0.022 0.015 0.027 –

(0.016) (0.087) (0.055) –

β2003 0.008 0.056 0.040 –

(0.016) (0.087) (0.055) –

β2004 −0.011 0.044 0.030 –

(0.016) (0.088) (0.055) –

β2005 −0.015 0.058 0.020 –

(0.016) (0.091) (0.056) –

β2006 −0.007 0.086 0.072 –

(0.016) (0.089) (0.056) –

β2007 −0.005 0.091 0.156 –

(0.016) (0.089) (0.003) –

γsb 0.172 0.168 1.225 –

(0.008) (0.063) (0.028) –

123



On the distribution of links in financial networks… 1035

Table 6 continued

Poisson Negative Binomial Poisson–Pareto Discrete Pareto

γcc −1.202 −1.251 −0.442 –

(0.011) (0.044) (0.001) –

θ – 1.285 – –

– (0.043) – –

α – – 0.832 1.286

– – (0.033) (0.006)

logL −32,949.19 −10,078.09 −11,456.19 −12,088.44

Lkl ratio 21,069.027 802.714 1147.596 –

(β = 0) (0.000) (0.000) (0.000) –

The table shows estimates of the parameters of the various models for pooled degree data of the yearly
bank-firm credit networks in Spain, 1997–2007. Pooling here refers to the degree distributions of the 11
years. The Poisson, Negative Binomial and Poisson–Pareto mixture models allow for fixed effects, while
the discrete Pareto distribution has been estimated without any covariates. Parentheses contain standard
errors. β1998 to β2007 are dummies for the years 1998 through 2007, while γsb and γcc are dummies for
saving banks and credit cooperatives, respectively

Table 7 Specification tests for the degree distributions of banks ‘co-lending’ degree obtained from the
one-mode projection of the bipartite Spanish firm network

Test Value p value

Poisson versus Negative Binomial (lkl) 45,742.187 (0.000)

Negative Binomial versus Poisson–Pareto 11.937 (0.000)

Negative Binomial (4 params) versus Poisson–Pareto (4 params) 12.011 (0.000)

Negative Binomial versus discrete Pareto 46.352 (0.000)

Negative Binomial versus discrete Pareto (adj.) −3.990 (1.000)

Negative Binomial (2 params) versus discrete Pareto 42.157 (0.000)

Negative Binomial (2 params) versus discrete Pareto (adj.) 38.258 (0.000)

Negative Binomial (4 params) versus discrete Pareto 46.229 (0.000)

Negative Binomial (4 params) versus discrete Pareto (adj.) 34.612 (0.000)

Discrete Pareto versus Poisson–Pareto −4.972 (1.000)

Discrete Pareto versus Poisson–Pareto (adj.) 45.371 (0.000)

Discrete Pareto versus Poisson–Pareto (2 params) −0.457 (0.676)

Discrete Pareto versus Poisson–Pareto (2 params, adj.) 3.416 (0.000)

Discrete Pareto versus Poisson–Pareto (4 params) −4.871 (1.000)

Discrete Pareto versus Poisson–Pareto (4 params, adj.) 6.747 (0.000)

See Table 3 for details on the specification tests. Models with four parameters neglect the dummies for
individual years, but maintain those for bank categories
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Table 8 Pooled Spanish Bank-Firm Credit, 1997–2008, degrees of firms

Observations:1,195,432 Poisson Negative Binomial Poisson–Pareto Discrete Pareto
Mean: 1.794, Variance: 1.295

μ 0.502 0.221 −0.017 –

(0.003) (0.006) (0.005) –

β1998 0.006 0.007 0.005 –

(0.004) (0.008) (0.007) –

β1999 −0.028 −0.032 −0.024 –

(0.005) (0.008) (0.007) –

β2000 −0.076 −0.086 −0.070 –

(0.005) (0.008) (0.007) –

β2001 −0.066 −0.075 −0.065 –

(0.004) (0.007) (0.007) –

β2002 −0.218 −0.246 −0.241 –

(0.004) (0.007) (0.006) –

β2003 −0.219 −0.247 −0.243 –

(0.004) (0.007) (0.006) –

β2004 −0.253 −0.285 −0.283 –

(0.004) (0.007) (0.006) –

β2005 −0.326 −0.367 −0.313 –

(0.004) (0.007) (0.006) –

β2006 −0.349 −0.392 −0.335 –

(0.004) (0.006) (0.006) –

β2007 −0.357 −0.401 −0.341 –

(0.004) (0.007) (0.000) –

θ – 1.761 – –

– (0.016) – –

α – – 2.887 2.188

– – (0.011) (0.001)

logL −1,492,588.72 −1,464,439.55 −1,470,854.81 −1,614,078.534

Lkl ratio 18.614.33 13,212.30 10,798.45 –

(β = 0) (0.000) (0.000) (0.000) –

The table shows estimates of the parameters of the various models for pooled degree data of the yearly
bank-firm credit networks in Spain, 1997–2007. Pooling here refers to the degree distributions of the 11
years. The Poisson, Negative Binomial and Poisson–Pareto mixture models allow for fixed effects while the
discrete Pareto distribution has been estimated without any covariates. Parentheses contain standard errors.
β1998 to β2007 are dummies for the years 1998 through 2007

pertinent coefficients are again very similar for these two distributions. This data set
shows an increase in activity over time which squares with the deregulation of the
Spanish banking sector and particularly the regional expansion of activity of saving
banks. The dummies for bank categories show a slightly negative effect for savings
banks significant only under the Poisson model and a much stronger negative effect
for credit cooperatives that is significant in both the Poisson and Negative Binomial
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Table 9 Specification tests for fitted degree distributions of firms in Spanish credit network

Test Value p value

Poisson versus Negative Binomial (lkl) 56,298.343 (0.000)

Poisson (1 param) versus Negative Binomial ( 2 params) (lkl) −25,423.321 (1.000)

Negative Binomial versus Poisson–Pareto 78.001 (0.000)

Negative Binomial versus discrete Pareto 332.022 (0.000)

Negative Binomial versus discrete Pareto (adj.) 255.055 (0.000)

Negative Binomial (2 params) versus discrete Pareto 138.102 (0.000)

Negative Binomial (2 params) versus discrete Pareto (adj.) 131.105 (0.000)

Poisson versus Poisson–Pareto −97.099 (1.000)

Poisson versus Poisson–Pareto(adj.) −90.102 (1.000)

Poisson versus discrete Pareto 180.531 (0.000)

Poisson versus discrete Pareto(adj.) 110.561 (0.000)

Poisson (1 param) versus discrete Pareto 161.962 (0.000)

Discrete Pareto versus Poisson–Pareto −286.823 (1.000)

Discrete Pareto versus Poisson–Pareto (adj.) −209.856 (1.000)

Discrete Pareto versus Poisson–Pareto (2 params) −204.804 (1.000)

Discrete Pareto versus Poisson–Pareto (2 params, adj.) −197.807 (1.000)

See Table 3 for details on the specification tests

models. To get a feeling of the relevance of the coefficients, note that the average degree
of commercial banks in the first year, 1997, would have been 427 under the negative
binomial, while the dummy coefficients of−3.29 reduce this number to only∼ 16 for
credit cooperatives. Results for the coefficients of exogenous variables differ under the
Poisson–Pareto model. In particular, while roughly a positive time trend is found, the
coefficients for the two categories are positive rather than negative which particularly
for credit cooperatives contradicts the basic features of the data. My conjecture is that
due to the pronounced fat-tailedness of the estimated mixture distribution (α = 0.33),
the non-stationarity of the resulting model makes identification of exogenous effects
very hard as with such a tail index the realizations of the process would be expected to
show immense variation anyway. While again the likelihood ratio tests indicate that
the dummies are jointly significant for all candidate distributions, the improvement in
the fit of the Poisson–Pareto obtained by inclusion of covariates appears quite small
in absolute terms compared to the other cases. This underscores that many of these
dummies do not contribute much in this particular case.

The discrete Pareto in contrast would again indicate finiteness of the mean, and its
estimated shape parameter α = 1.21 is very close to the one obtained in Table 2 for
the degree distribution of interbank credit data. While under the comparison of the
likelihood values without adjustment, the Vuong test in Table 5 indicates superiority of
the Negative Binomial, adjustment for the number of parameters turns the comparison
upside down in favor of the discrete Pareto. This changes, however, if the dummies
are discarded and only the two shape parameters of the Negative Binomial are used.
Hence, the two-parameter baseline Negative Binomial provides a better fit than the
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discrete Pareto, so that the result for the adjustedVuong testmight indicate an excessive
adjustment to the case with 15 parameters (or that the parameters for the covariates
contribute relatively little in this case.) The same applies to the comparison between
Poisson–Pareto and discrete Pareto. The result of the comparison of the adjustedVuong
test between the Negative Binomial or Poisson–Pareto and the discrete Pareto might
also seem cumbersome as it suggests to neglect known heterogeneity within our data
set. This shows that strong heterogeneity within a data set could, in principle, lead to
a spurious fit of a homogeneous power-law distribution.

Table 6 turns to the results for bank’s ‘co-lending’ degrees from the one-mode
projection. One surprising finding here is that the time dummies are almost never
significant under all three regression models. Hence, despite the structural changes
of the banking sector and its credit relationships to non-financial firms in this period,
banks seemed not to have become generally more connected via joint exposures to
the same borrowers. In contrast, the dummies for bank categories are both significant
and have identical signs under all three regression models: While saving banks are
more connected with other banks via joint borrowers, cooperatives are much less
connected. The former finding squares with the observation that saving banks often
came in as additional providers of credit to certain firms during the time of their
regional expansion (cf. Illueca et al. 2014). Again, we find the Negative Binomial to
perform best, followed by the Poisson–Pareto, the one-parameter discrete Pareto and
finally the Poisson regression. The first ranks are relatively close so that the choice
between Negative Binomial and discrete Pareto depends on whether one uses the
adjusted version of the Vuong test or not (cf. Table 7). Using only two parameters,
the decision is always in favor of the Negative Binomial (which seems plausible given
that most of the regression parameters are not significant). Similarly, the Poisson–
Pareto dominates over the discrete Pareto under the non-adjusted Vuong test, but this
result changes under adjustment for the number of parameters. The same applies to
the two-parameter Poisson–Pareto without exogenous factors. These patterns are also
preserved if we include the dummies for the type of financial institution (indicated by
the addition “4 params” in Table 7). As for parameter estimates, it is interesting to
note that the tail indices of both the Poisson–Pareto and discrete Pareto are extremely
close to their counterparts of Table 2 (while being different between both models).

Tables 8 and 9 exhibit the results for the degree distribution of firms from the
original adjacency matrices of the bank-firm credit network. One notes that these
data are characterized by a variance smaller than the mean, i.e., underdispersion.
Hence, there would not necessarily be a reason to turn to fat-tailed alternatives to the
Poisson distribution. Still, we find the Negative Binomial and Poisson Pareto fitting
the data significantly better than the Poisson. Here we only have used time dummies
as the bank categories obviously cannot be brought in directly (one could, however,
use them to test whether the type of creditor banks would make a difference). In
all three regression models, time dummies show a monotonic decrease, i.e., firms
have decreased their average number of creditors (from 1.65 in 1997 to 1.16 in 2008
according to the results of the Poisson model). This seems at first view a surprising
result as the geographic expansion of savings banks has often led to additional lenders
coming in for single firms. One reason for the overall negative trend could be that the
general increase in the number of registered firms over this period of strong growth
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of the Spanish economy has brought many new firms into the database that initially
started out with a single lender and, thus, had a dampening effect on the average. In the
absence of overdispersion, in fact, the present models basically capture time variation
of a narrow distribution of relatively small entries. Note that the Poisson beats the
Negative Binomial in this case if no regression parameters are included (second line
of Table 9), but falls back behind other alternatives when covariates are added. From
these test results, it appears that both theNegative Binomial and Poisson Paretomodels
provide for more flexibility in including effects of time-varying covariates.

4.3 Japanese bank-firm credit network

Results from our third data set, the network of bank-firm credit in the Japanese econ-
omy, are provided in Tables 10 through 15. Since this record covers a span of more
than thirty years, we have abstained from using annual dummies. Instead, we distin-
guish between three historical episodes as potential candidates for fixed effects: the
time up to the climax of the Japanese bubble, the more stagnative period afterward
and the recent crisis period. Hence, we impose dummies for the years 1990–2007,
and 2008–2018, respectively. In addition, similarly like in the Spanish data set, we
can distinguish between different categories of financial institutions. We take as the
default category large private banks (labeled ‘city banks’ in our data set) and define as
a second category that of regional banks (those designated explicitly as only region-
ally active banks in the data set as well as those identified as Shinkin banks, which
are regionally operating credit cooperatives). As a third category, we define insurance
companies active in the lending market together with so-called long-term credit banks
that are both identified as different classes in our database, since both of them should
be more active as long-term lenders pursuing business models different from those of
‘city banks’3.

Since the Japanese data come with official balance sheet information at the end of
the fiscal year (31 March), we can also add node-specific financial information. In the
analysis of banks’ degree distributions, the following statistics have been used: the
ratio of deposits over total assets, the ratio of equity over total assets, and the ratio of
net income over total assets. For all three covariates, we could argue that a positive
effect should be expected: Banks with a higher deposit base should be able to extend
more credit, and those with higher equity base should be more attractive as lenders.
Similarly, higher net income should providemore scope for additional lending activity.
There is unfortunately a mismatch between the reporting of credit links over calendar
years and the Japanese budget year that ends after the first quarter of the calendar
year. Since the budgeting reporting covers three quarters of the previous year, we have
matched the balance sheet data with lending activity of the previous year. In contrast
to the Spanish data set, we also have more detailed information on firms (including
balance sheet information) which here we only use for a binary classification: Namely,
in the Japanese case, our selection of non-financial firms as recipients of loans covers
those companies only that are listed on an official exchange. While the range of
companies covered in this way has been relatively constant from 1979 through 1995,

3 The overall number of cases of these two categories is too small to consider them separately.
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Table 10 Pooled Japanese Bank-FirmCredit, 1979–2011, Degrees of Banks time dummies are for the years
1990–2007 and 2008–2011

Observations:4302 Poisson Negative Binomial Poisson–Pareto Discrete Pareto
Mean: 132.04, Variance: 58,756.75

μ 7.099 8.840 6.530 –

(0.001) (0.201) (0.067) –

β1 0.220 0.019 0.176 –

(0.000) (0.042) (0.027) –

β2 0.076 −0.056 −0.031 –

(0.000) (0.063) (0.035) –

γRB −2.537 −2.135 −3.193 –

(0.000) (0.081) (0.024) –

γIC −0.741 −1.569 −1.321 –

(0.000) (0.111) (0.067) –

δD −0.927 −3.856 −2.387 –

(0.001) (0.283) (0.072) –

δE 2.290 14.587 8.273 –

(0.009) (1.358) (0.584) –

δI 2.891 −15.866 1.599 –

(0.017) (3.031) (0.586) –

θ – 0.953 – –

– (0.023) – –

α – – 0.602 1.236

– – (0.018) (0.004)

logL −145,350.14 −22,583.41 −23,616.72 −26,432.28

Lkl ratio 853,175.29 60,174.10 54,286.82 –

(all dummies = 0) (0.000) (0.000) (0.000) –

Lkl ratio 6313.25 332.22 269.21 –

(bal. sheet variables = 0) (0.000) (0.000) (0.000) –

The time dummies β1 and β2 are for the years 1990–2007 and 2008–2011. Categorical dummies γRB
and γIC are imposed on the groups of regional banks and insurance companies/ long-term credit banks,
respectively. The coefficients δD, δE and δI capture the effects of the deposit-to-assets, equity-to-assets
and net-income-to-assets ratio, respectively

the establishment of the new market and its index JASDAQ has greatly expanded the
scope of the database as of 1996. It would be very questionable whether the firms
operating in the NewMarket would share the structure of loan relationships of the old
industries, and so it appears sensible to distinguish between both groups. To do so, we
impose a dummy for firms listed in JASDAQ as well as in its later replacement called
Hercules. Again we apply the same chain of model estimations and specification tests
as for the other data. Tables 10 and 11 provide results for the degrees of banks in the
original bipartite networks, Tables 12 and 13 those for the one-mode projection for
banks’ co-lending relationships and Tables 14 and 15 those for the degrees of firms.
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Table 11 Specification tests for the fitted degree distributions of banks from the Japanese credit network

Test Value p value

Poisson versus NBD (lkl) 245,533.45 (0.000)

NBD versus Poisson–Pareto 20.27 (0.000)

NBD versus discrete Pareto 64.69 (0.000)

NBD versus discrete Pareto (adj.) 31.22 (0.000)

NBD (2 params) versus discrete Pareto 53.09 (0.000)

NBD (2 params) versus discrete Pareto (adj.) 48.91 (0.000)

Discrete Pareto versus Poisson–Pareto −44.96 (1.000)

Discrete Pareto versus Poisson–Pareto (adj.) −11.49 (1.000)

Discrete Pareto versus Poisson–Pareto (2 params) −36.51 (1.000)

Discrete Pareto versus Poisson–Pareto (2 params, adj.) −32.22 (1.000)

See Table 3 for details on the specification tests

Table 12 Pooled Japanese Bank-Firm Credit, 1979–2011, degrees of banks from one-mode projection time
dummies are for the years 1990–2007 and 2008–2011

Observations:4302 Poisson Negative Binomial Poisson–Pareto Discrete Pareto
Mean: 118.70, Variance: 887.47

μ 5.312 5.375 4.911 –

(0.006) (0.050) (0.023) –

β1 −0.029 −0.023 −0.081 –

(0.001) (0.011) (0.007) –

β2 −0.218 −0.211 −0.485 –

(0.002) (0.017) (0.010) –

γRB −0.128 −0.112 −0.741 –

(0.006) (0.023) (0.020) –

γIC −0.143 −0.165 −0.096 –

(0.007) (0.032) (0.027) –

δD −0.474 −0.564 −0.145 –

(0.007) (0.072) (0.024) –

δE 0.263 0.154 1.752 –

(0.041) (0.330) (0.213) –

δI 2.329 2.531 1.391 –

(0.076) (0.581) (0.415) –

θ – 13.543 – –

– (0.343) – –

α – – 1.618 1.190

– – (0.059) (0.003)

logL −30,578.01 −21,279.33 −24,954.40 −31,770.81

Lkl ratio 6320.23 46,008.86 53,309.27 –
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Table 12 continued

Poisson Negative Binomial Poisson–Pareto Discrete Pareto

(all dummies = 0) (0.000) (0.000) (0.000) –

Lkl ratio 818.92 101.56 82.66 –

(bal. sheet variables = 0) (0.000) (0.000) (0.000) –

The time dummies β1 and β2 are for the years 1990–2007 and 2008–2011. Categorical dummies γRB
and γIC are imposed on the groups of regional banks and insurance companies/ long-term credit banks,
respectively. The coefficients δD, δE and δI capture the effects of the deposit-to-assets, equity-to-assets
and net-income-to-assets ratio, respectively

Table 13 Specification tests for banks’ ‘co-lending’ degrees obtained from the one-mode projection of the
bipartite Japanese credit network

Test Value p value

Poisson versus NBD (lkl) 18,597.36 (0.000)

NBD versus Poisson–Pareto 34.93 (0.000)

NBD versus discrete Pareto 80.26 (0.000)

NBD versus discrete Pareto (adj.) 46.80 (0.000)

NBD (2 params) versus discrete Pareto 83.51 (0.000)

NBD (2 params) versus discrete Pareto (adj.) 79.32 (0.000)

Discrete Pareto versus Poisson–Pareto −31.74 (1.000)

Discrete Pareto versus Poisson–Pareto (adj.) 1.73 (0.042)

Discrete Pareto versus Poisson–Pareto (2 params) −27.80 (1.000)

Discrete Pareto versus Poisson–Pareto (2 params, adj.) −23.62 (1.000)

See Table 3 for details on the specification tests

Starting with the degrees of banks in the bipartite network, we find somewhat
different results for the fixed effects across models: The Poisson model indicates a
slight increase in links in 1990 to 2007 and a smaller positive effect (against the
benchmark of 1979 to 1989) thereafter. The Negative Binomial has no significant time
dummies, and the Poisson–Pareto only diagnoses a significantly positive effect in the
first period. Regionally active banks have distinctly fewer links leading to a significant
negative dummy for this category throughout. The dummy for insurances/long-term
credit banks also indicates that they have somewhat smaller degrees than city banks.
For the balance sheet statistics, the deposit-to-asset ratio enters significantly negative
in all models which indicates that the most active banks are not those that rely heavily
on deposits for funding. In contrast, the equity-over-asset ratio positively predicts
the number of credit links, while the models are split in terms of the sign of the net-
income-to-assets ratio. However, a glance at the likelihood ratio tests indicates that the
balance sheet variables contribute only a small part to the overall explanatory power:
The huge statistics that we get when testing for joint significance of all covariates are
reduced to comparatively small (though significant) numbers when testing only for
the significance of the three balance sheet variables.
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Table 14 Pooled Japanese Bank-Firm Credit, 1979–2011, degrees of firms time dummies are for the years
1990–2007 and 2008–2011

Observations:66,860 Poisson Negative Binomial Poisson–Pareto Discrete Pareto
Mean: 9.47, Variance: 66.94

μ 2.600 2.591 1.890 –

(0.001) (0.005) (0.004) –

β1 −0.354 −0.367 −0.336 –

(0.001) (0.006) (0.005) –

β2 −0.699 −0.722 −0.596 –

(0.002) (0.009) (0.008) –

γNM −0.435 −0.455 −0.328 –

(0.003) (0.008) (0.007) –

θ – 2.637 – –

– (0.017) – –

α – – 1.915 1.403

– – (0.013) (0.002)

logL −277,219.84 −204,527.21 −203,301.82 −260,337.93

Lkl ratio 49,524.32 10,826.04 9844.75 –

(all dummies = 0) (0.000) (0.000) (0.000) –

The time dummies β1 and β2 are for the years 1990–2007 and 2008–2011. γNM is a dummy for firms
listed in the new market indices JASDAQ and Hercules

Table 15 Specification tests for the fitted degree distributions of firms in the Japanese credit network

Test Value p value

Poisson versus NBD (lkl) 145,385.26 (0.000)

NBD versus Poisson–Pareto −8.20 (1.000)

NBD versus discrete Pareto 221.10 (0.000)

NBD versus discrete Pareto (adj.) 198.88 (0.000)

NBD (2 params) versus discrete Pareto 214.41 (0.000)

NBD (2 params) versus discrete Pareto (adj.) 208.86 (0.000)

Discrete Pareto versus Poisson–Pareto −214.67 (1.000)

Discrete Pareto versus Poisson–Pareto (adj.) −192.45 (1.000)

Discrete Pareto versus Poisson–Pareto (2 params) −208.20 (1.000)

Discrete Pareto versus Poisson–Pareto (2 params, adj.) −202.64 (1.000)

See Table 3 for details on the specification tests

In terms of shape parameters, we find that the Poisson–Pareto again has a very small
tail index α close to 0.6 which would indicate nonexistence of the theoretical mean,
while the discrete Pareto again turns out a value of about 1.2 (close to the pertinent
results for the Spanish credit network). As we see in Table 11, the dominating model
is again the NBD model which is preferred over all others independently of whether
dummies are included or not. The Poisson–Pareto is also always preferred over the
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discrete Pareto irrespective of whether dummies are included and whether the Vuong
test is adjusted for the different number of parameters.

In the one-mode projection of the banking sector (Table 12), we find a clearly
significant negative effect for the period 2008–2011, and a smaller, but also significant
tendency of reduced co-lending in 1990 to 2007 compared to the years before. The
regional banks are found to be less connected than city banks in all specifications, and
a similarly significant effect holds for the third category of insurance companies and
long-term credit banks. While all these effects are uniformly found for all models, for
the balance sheet variables only the deposit ratio and the net income ratio are significant
across all models: The former again has a negative effect, while the latter comes with
a positive coefficient. Equity is only significant in the Poisson and Poisson–Pareto
models. Similarly as in the bipartite network, the joint contribution of the balance
sheet effects is significant, albeit much smaller than the contribution of the remaining
covariates. We only find supportive evidence for a positive effect of the equity base
and net income on lending activity, while the negative relationship with banks’ deposit
base appears counterintuitive and calls for further detailed analyses. The ranking of
models is the by now ‘usual’ one with NBD dominating over the Poisson–Pareto and
discrete Pareto and all three of them clearly outperforming the simple Poisson model.
Specification tests in Table 13 show that the differences in likelihoods are reflected
in a preference for the ‘better’ performing Negative Binomial model according to the
Vuong test at all traditional confidence levels. The tail index of the discrete Pareto is
again remarkably close to its counterpart in the one-mode projection of the Spanish
credit network, but the tail shape parameter for the Poisson–Pareto comes out much
higher.

Finally, Tables 14 and 15 provide results for the degree distribution of non-financial
firms receiving loans from the Japanese banking sector. We first note that the mean
degree of 9.47 is much higher than the pertinent value for the Spanish firms. The
reason is likely that the restriction to publicly listed entities in the Japanese companies
leads to a selection of relatively large firms. In contrast, the Spanish data set is based
on the Spanish commercial register and, thus, provides a much broader, nearly com-
prehensive sample of the population of firms operating in the Spanish economy. In
contrast to the Spanish case, the degree distribution is also characterized by overdis-
persion justifying the estimation of our various fat-tailed alternatives to the elementary
Poisson distribution. In all models, the dummies for the stagnation and crisis period
as well as the one for firms listed in the new market are significantly negative. Hence,
the number of credit links per firm has decreased first after the burst of the Japanese
bubble and even more so after the onset of the worldwide financial crisis. For instance,
under the estimated parameters for the Negative Binomial, the average number of links
has decreased from 13.3 in the first period via 9.5 during the stagnation to 6.5 in the
post-crisis years. At the same time, an average firm from the new market that started
during the second period would have received credit simultaneously from 4.1 banks.

In the specification tests, we see a somewhat unusual outcome as the Poisson–
Pareto dominates over theNegativeBinomial.While themargin is small, the difference
is significant at all traditional confidence levels. However, the estimated parameters
for the Poisson–Pareto are also unusual as with an estimated α = 1.915, its shape
parameter is much higher than the estimates for the banks’ degree distribution in the
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bipartite network. While Spanish firm degrees do not exhibit overdispersion, in the
case of Japanese firms, the tail shape estimate of about 2 still indicates some degree
of tail fatness which among our selection of models is best captured by the Poisson–
Pareto. The discrete Pareto has more a typical parameter estimate (α = 1.403) but
is dominated under all perspectives by both the Poisson–Pareto and the Negative
Binomial irrespective of whether fixed effects are included as net.

5 Conclusion

Our analysis has demonstrated that heterogeneity is pervasive in the degree distribu-
tions extracted from credit networks of different origin. Almost all time dummies and
fixed effects for different categories of actors that we have included in our estimations
turned out to be highly significant. Hence, we can safely conclude that the structure
of network formation in the markets under consideration has changed over time and
that different types of actors behave in different ways in these markets. It would there-
fore be misleading to model the degree distribution of a financial network with any
specific unconditional distribution without taking into account the heterogeneity of
the data. When accounting for such known sources of heterogeneity, we find in five
cases (banks’ degrees in the interbank market as well as in the Spanish and Japanese
loan markets and their co-lending degrees in the same markets) a clear dominance of
the Negative Binomial model. The same applies to firms’ degree distribution in the
Spanish loan market whereas the Japanese firm degree distribution provided the only
case of a dominance of the Poisson–Pareto distribution (which in all other cases was
inferior to the Negative Binomial).

If we neglect heterogeneity, we often find the Negative Binomial and the Poisson–
Pareto in the vicinity of the one-parameter discrete Pareto distribution. What is more,
the discrete Pareto turns out estimates across all our seven empirical degree distri-
butions that are within a very narrow range (all between 1.2 and 1.4 with the only
exception of the Spanish firm degrees). The apparently good fit of power laws that had
been reported in previous publications might, then, be an artifact of lumping together
different categories of nodes. If a sample contains different classes of agents with
different orders of magnitude of links, it might erroneously lead to the impression of
a very fat-tailed unconditional distribution. As shown in Sect. 3, indeed already the
inspection of the cumulative distributions in a log–log plot provides evidence against
a Pareto law characterizing the degree distributions of the data under scrutiny. The
absence of scaling behavior in the tails or any intermediate region of the cumula-
tive distribution underscores that any previously reported evidence for power laws in
financial degree distributions could be a spurious outcome caused by neglected het-
erogeneity in the data. Taking the heterogeneity documented in this paper into account
in network studies of contagious defaults should also improve our assessment of the
risk of systemic disturbances in loan markets.
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Appendix: Histograms and log–log plots of degree distributions

See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.

Fig. 1 Histogram of degrees, e-MID data
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Fig. 2 Histogram of degrees, Spanish banks, in bipartite networks

Fig. 3 Histogram of degrees, Spanish banks, one-mode projection
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Fig. 4 Histogram of degrees, Spanish firms, in bipartite network

Fig. 5 Histogram of degrees, Japanese banks, in bipartite network
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Fig. 6 Histogram of degrees, Japanese banks, from one-mode projection

Fig. 7 Histogram of degrees, Japanese firms, in bipartite network
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Fig. 8 Inverse cumulative distribution of degrees for e-MID interbank network in logarithmic representation

Fig. 9 Inverse cumulative distribution of degrees for Spanish banks, from bipartite network
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Fig. 10 Inverse cumulative distribution of degrees for Spanish banks, from one-mode projection

Fig. 11 Inverse cumulative distribution of degrees for Japanese banks, from bipartite network
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Fig. 12 Inverse cumulative distribution of degrees for Japanese banks, from one-mode projection
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