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Abstract
A common assumption in the banking stochastic performance literature refers to the
non-existence of fully efficient banks. This paper relaxes this strong assumption and
proposes an alternative semiparametric zero-inefficiency stochastic frontier model.
Specifically, we consider a nonparametric specification of the frontier whilst maintain-
ing the parametric specification of the probability of fully efficient bank.Wepropose an
iterative local maximum likelihood procedure that achieves the optimal convergence
rates of both nonparametric frontier and the parameters contained in the probabil-
ity of fully efficient bank. In an empirical application, we apply the proposed model
and the estimation procedure to a global banking data set to derive new corrected
measures of bank performance and productivity growth across the world. The results
show that there is variability across regions, and the probability of fully efficient bank
is mostly affected by bank-specific variables that are related to bank’s risk-taking
attitude, whereas country-specific variables, such as inflation, also have an effect.
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1 Introduction

One of the main assumptions in stochastic frontier analysis (e.g., Aigner et al. 1977;
Meeusen andvandenBroeck1977) is that all firms are inefficient, and their inefficiency
is modelled with a continuous density. However, when some firms are fully efficient (a
fact that cannot be excluded on a priori grounds), applying standard stochastic frontier
analysis has been shown to have serious implications on the inefficiency estimates
(Kumbhakar et al. 2013). Thus, to account for the possibility of fully efficient firms,
Kumbhakar et al. (2013) propose a special class of two-component mixture model
which they call “zero-inefficiency stochastic frontier model” (ZISF) that allows ineffi-
ciency to have a mass at zero with certain probability π and a continuous distribution
with probability 1 − π . They further extend the model to allow for the probability of
fully efficient firm to depend on a set of covariates via a logit or a probit function.
For a review of parametric ZISF models, see Parmeter and Kumbhakar (2014). Tran
and Tsionas (2016a) suggest a semiparametric version of the ZISF model by using
nonparametric formulation of the probability function and propose an iterative back-
fitting local maximum likelihood procedure to estimate the frontier parameters and
the nonparametric function.

In this paper, we propose an alternative semiparametric ZISF model, which is dif-
ferent from the one suggested by Tran and Tsionas (2016a). Specifically, we consider
a nonparametric specification of the frontier whilst maintaining the parametric speci-
fication (e.g., logit or probit function) of the probability of fully efficient firms. Unlike
Tran and Tsionas (2016a), by maintaining the parametric assumption of the probabil-
ity of fully efficient firm, there is no need for imposing local restrictions to ensure that
the estimated probability lies in the interval [0, 1]. To estimate the unknown function
of the frontier and the parameters of the probability of a fully efficient firm, we mod-
ify the iterative backfitting local maximum likelihood procedure developed by Tran
and Tsionas (2016a), which is fairly simple to compute in practice. We also provide
the necessary asymptotic properties of the modified proposed estimator. Specifically,
we show that the estimator for the parameter vector in the probability of fully effi-
cient firm is

√
n-consistent and follows the asymptotic normal distribution. Moreover,

based upon this
√
n-consistent estimate, the nonparametric estimates for the unknown

frontier function have the same first-order asymptotic bias and variance as the non-
parametric estimates with the true values of the parameter vector in the probability
function.

Next,we apply the proposedmodel and the estimation procedure to a global banking
data set. We follow the IMF’s World Economic Outlook classification to examine the
productivity growth and efficiency across banks in advanced, emerging and develop-
ing countries. Our application differentiates and contributes to the literature in several
ways. First, there are several papers on bank productivity (see Allen and Rai 1996;
Mester 1996; Berger and Mester 2003; DeYoung and Hasan 1998; Feng and Serletis
2010; Feng and Zhang 2014; Berg et al. 1992; Alam 2001; Orea 2002; Canhoto and
Dermine 2003; Barros et al. 2009; Tortosa-Ausina et al. 2008; Delis et al. 2011).
However, the majority of these papers are based on the approach of data envelop-
ment analysis (DEA). When it comes to parametric measurement of productivity
through stochastic frontier analysis, the evidence is scarce (see Kumbhakar et al. 2001;
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Koutsomanoli-Filippaki et al. 2009; Assaf et al. 2011). Thus, from the methodolog-
ical stand point, we provide, in this paper, a novel nonparametric stochastic frontier
approach to measure both bank efficiency and productivity, allowing banks to be fully
efficient. Second, to the best of our knowledge, this is the first study that presents large
bank productivity and efficiency at a global level, aiming to examine cross-country
variability, whilst controlling the impact of various control variables, whether bank-
or country-specific. Finally, we examine the effect of the credit crunch in 2008 and
estimate what control variables affect the probability of having a fully efficient bank
prior and ex post the crisis. This is of the utmost importance in terms of bank perfor-
mance, particularly over periods of high financial distress that could lead to a shift of
the whole frontier.

Overall, the results also show that there is variability across countries, and the prob-
ability of having a fully efficient bank ismostly affected by bank-specific variables that
are related to bank’s risk-taking, whereas country-specific variables, such as inflation,
also have an effect.

The rest of the paper is structured as follows. Section 2 develops the model and
the estimation procedure. Also, in this section, limited Monte Carlo simulations are
performed to examine the finite sample performance of the proposed estimators. Sec-
tion 3 provides an empirical analysis of global banking system. Possible extensions of
the model are discussed in Sect. 4, and concluding remarks are given in Sect. 5. The
proofs of the theorems are presented in “Appendix A”, whilst extension of the pro-
posed model to the fully localized (or fully nonparametric) case is given in “Appendix
B”.

2 Themodel and estimation procedure

2.1 Themodel

Suppose that we have a random sample {(Yi , Xi , Zi ) : i � 1, . . . , n} from the popu-
lation (X , Y , Z ) whereYi ∈ R is a scalar randomvariable representing output of firm i ,
Xi ∈ R

d is a vector of continuous regressors representing inputs of firm i and Zi ∈ R
r

is a vector of continuous covariates whichmay ormay not have common elements with
X . Let ξ be a binary latent class variable, and assume that for c � 0, 1, ξ has a condi-
tional discrete distribution P(ξ � 0|Z � z) � π (z) and P(ξ � 1|Z � z) � 1−π (z).
A nonparametric version of the zero-inefficiency stochastic frontier (NP-ZISF) model
proposed by Kumbhakar et al. (2013) can be written as

Yi �
{
m(Xi ) + vi with probability π (Zi )
m(Xi ) + vi − ui with probability 1 − π (Zi )

, (1)

where m(Xi ) is the frontier function, vi |Xi � x ∼ N (0, σ 2
v (x)) and ui |Xi � x ∼∣∣N (0, σ 2

u (x))
∣∣. Conditioning on Xi � x , the functions m(x), σ 2

v (x) and σ 2
u (x) are

unknown but assumed to be smooth. Note that model (1) is special case of a two-
component mixture model as well as latent class stochastic frontier models (e.g.,
Greene 2005) with the (technology) function m(x) being restricted to be the same
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for both regimes, and the composed error is vi − ui (1 − I {ui � 0}) where I {A}
is an indicator function such that I (A) � 1 if A holds, and zero otherwise. Model
(1) has several interesting features. First, when π (z) � 1, model (1) reduces to a
nonparametric regression model. Second, when π (z) � 0, it becomes a nonparametric
stochastic frontier model (e.g., Fan et al. 1996; Kumbhakar et al. 2007). Third, when
m(x) is linear in x andσ 2

u (.) � σ 2
u andσ 2

v (.) � σ 2
v , it becomes the semiparametric ZISF

model of Tran and Tsionas (2016a). Finally, when m(x) is linear in x and π (.) � π ,
σ 2
u (.) � σ 2

u and σ 2
v (.) � σ 2

v , model (1) reduces to the parametric ZISF model of
Kumbhakar et al. (2013). Consequently, model (1) can be viewed as a generalization
of semiparametric partially linear stochastic frontier regression models as well as the
ZISF models. Thus, model (1) provides a general framework for ZISF models.

2.2 Identification

We now turn our attention to the model identification. Under the standard stochas-
tic frontier framework regardless of parametric or nonparametric specification of the
frontier, the parameter σ 2

u , the variance of ui is identified through the moment restric-
tions on the composed errors εi � vi − ui , when ui is left unspecified. However,
when the inefficiency term ui is modelled in a flexible manner along with parametric
specification the frontier, there are possible identification problems between the inter-
cept and the inefficiency term. For more discussion on this identification issues, see,
for example, Griffin and Steel (2004). In the context of model (1), we have an addi-
tional parameter π (.), which can be identified only if there are nonzero observations
in each class. As Kumbhakar et al. (2013) and Rho and Schmidt (2015) point out,
when σ 2

u → 0, π (.) is not identified since the two classes become indistinguishable.
Conversely, when π (.) → 1 for a given z, σ 2

u is not identified. In fact, when a data set
contains little inefficiency, one might expect σ 2

u and π (.) to be imprecisely estimated,
since it is difficult to identify whether little inefficiency is because π (.) is close to 1
or σ 2

u is close to zero. For the present discussion, we will assume that σ 2
u > 0, and

0 < π (.) < 1 so that all the parameters in model (1) are identified.
To complete the specification of the model, first given Z � z, we assume that π (z)

takes a form of logistic function:

π (z) � exp(z
′
α)

1 + exp(z′
α)

, (2)

so as to ensure that 0 < π (z) < 1. Let f (Y , θ (x)) denote the conditional density of
Y given X � x , Z � z where θ (x) � (α

′
, γ (x)

′
)
′
and γ (x) � (m(x), σ 2(x), λ(x))

′
.

Given the distributional assumptions of v and u, the conditional pdf of Y given X � x
and Z � z is

f (Y |θ (x)) �
(

π (z)

σv(x)

)
φ

(
Y − m(x))

σv(x)

)
+ (1 − π (z))

×
[

2

σ (x)
φ

(
Y − m(x)

σ (x)

)
�

(
−(Y − m(x))

λ(x)

σv(x)

)]
, (3)
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whereπ (z) is defined in (2),σ 2(x) � σ 2
u (x)+σ 2

v (x),λ(x) � σu(x)/σv(x),φ(.) and�(.)
are the probability density function (pdf) and cumulative distribution function (cdf) of
a standard normal variable, respectively. It follows that the conditional log-likelihood
is then given by

L1n(α, γ (x)) �
n∑

i�1

log f (Yi |α, γ (x)). (4)

2.3 Estimation: backfitting local maximum likelihood

From (4), we note that the vector θ (x) contains both finite-dimensional and non-
parametric functions which makes the direct maximization of (4) over θ (x) in an
infinite-dimensional function space intractable and generally suffers from over-fitting
problem. To make (4) tractable in practice, we will employ local linear regression
for model (1), albeit one could consider higher orders of local polynomials. However,
general order of local polynomial fitting requires additional notational complexity, but
the approach is the same. In local linear fitting, we first approximate γ (x) by taking
the first-order Taylor series expansion of γ (x) at a given set point x0. That is, for a
given x0 and x in the neighbourhood of x0,

γ (x) ≈ γ0(x0) + �1(x0)(x − x0), (5)

where γ0(x0) is a (3 × 1) vector and �1(x0) is a (3 × d) matrix of the first-order
derivatives.

For the kernel function, we use a multivariate product kernel which is given by:

K
(
h−1(Xi − x0)

)
�

d∏
j�1

k
(
h−1
j

(
Xi j − x0 j

))
,

where k(.) is a symmetric univariate probability density function and h j is the band-
width associated with X j . Then the corresponding conditional local log-likelihood
function for data {(Yi , Xi , Zi ) : i � 1, . . . , n} can be written as

L2n(α, γ0(x0),�1(x0)) �
n∑

i�1

{log f (Yi ;α, γ0(x0) + �1(x0)(Xi − x0))}K
(
h−1(Xi − x0)

)
.

(6)

Thus, the conditional local log-likelihood depends on x . Notice, however, that the
global parameter α does not depend on x , and by maximizing (6), α will be estimated
locally, and hence, it does not possess the usual parametric

√
n-consistency rate. To

preserve the
√
n-consistency property of the estimator of α, we use a backfitting

approach similar to Tran and Tsionas (2016a), which is motivated by Huang and Yao
(2012). To do this, let γ̃ (x0) � {m̃(x0), σ̃ 2(x0), λ̃(x0)} and α̃(x0) be the maximizer of
the local log-likelihood function (6); then, the initial local linear estimators of γ (x)
and α(x) are given by γ̃ (x0) � γ̃0(x0) and α̃ � α̃(x0). Given the initial estimator
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γ̃ (x0), the parameter vector α can be estimated globally by maximizing the following
global log-likelihood function where we replace γ (x) with its initial estimate γ̃ (x0)
in (4):

L3n(α, γ̃ (xi )) �
n∑

i�1

log f (Yi |α, γ̃ (xi )). (7)

Let α̂ be the solution of maximizing (7). In Sect. 3, we will show that under certain
regularity conditions α̂ will retain its

√
n-consistency property. Given the estimates of

α̂, γ (x) can be estimated bymaximizing the following conditional local log-likelihood
function:

L4n
(
α̂, γ0(x0),�1(x0)

) �
n∑

i�1

{
log f

(
Yi ; α̂, γ0(x0) + �1(x0)(Xi − x0)

)}
K
(
h−1(Xi − x0)

)
.

(8)

Let �̂0(x0) and �̂1(x0) be the maximizer of (8); then, the local linear estimator of γ (x)
is given by γ̂ (x) � γ̂0(x). Finally, α̂ and γ̂ (x) can be further be improved by iterating
until convergence. The final estimates of α̂ and γ̂ (x) will be denoted as backfitting
local maximum likelihood (BLML). The final estimate of π (z) can be obtained via

π̂ (z) � exp(z
′
α̂)

1+exp(z′ α̂) .

We summarize the above estimation procedure with the following computational
algorithm:

Step 1: For each zi , i � 1, . . . , n, in the sample, maximize the conditional local
log-likelihood (6) to obtain the estimate of γ̃ (xi ). Note that if the sample size n is large
the maximization could be performed on a random subsample Ns , where Ns << n
so as to reduce the computational burden.

Step 2: From step 1, conditional on γ̃ (xi ), maximize the global log-likelihood function
(7) to obtain α̂.

Step 3: Conditional on α̂ from step 2, maximize the conditional local log-likelihood
function (8) to obtain γ̂ (xi ).

Step 4: Using γ̂ (xi ), repeat step 2 and then step 3 until the estimate of α̂ converges.

Note that to implement the estimation algorithm described above, specifications of the
kernel function K (.) as well as bandwidth matrix H are required. For the kernel func-
tion, we use a product of univariate kernel where Epanechnikov or Gaussian function
is a popular choice for each kernel. As for the bandwidth selection, we follow Kumb-
hakar et al. (2007) and use a d-dimensional vector of bandwidth h � (h1, . . . , hd)

′

such that h � hbsXn−1/(2+d) where hb is a scalar and sX � (
sX1 , . . . , sXd

)′
is the

vector of empirical standard deviations of the d components of X . This choice of
bandwidth vector is adjusted for different scales of the regressors and different sample
sizes. Then data-driven methods such as cross-validation (CV) can be used (see, for
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example, Li and Racine 2007) to evaluate a grid of values for hb. In our context, we
use a likelihood-based version of CV, which is given by

CV(hb) � 1

n

n∑
i�1

log f
(
Yi ; α̂

(i), γ̂ (i)(xi )|x , z
)
, (9)

where α̂(i) and γ̂ (i)(xi ) are the leave-one-out version of the backfitting local MLE
described above. However, it is important to note that, in semiparametric mod-
elling, under-smoothing conditions (see Theorem 1) are typically required in order
to obtain

√
n-consistency for the global parameters. The optimal bandwidth vector

ĥ � ĥbsXn−1/(2+d) selected by CV will be in the order of n−1/(2+d) which does
not satisfy the required under-smoothing conditions. However, a reasonable adjusted
bandwidth, which suggested by Li and Liang (2008) that satisfies the under-smoothing
condition, can be used, and it is given by h̃ � ĥ × n−2/15. We will apply this adjusted
bandwidth vector in our simulations and empirical application below.

2.4 Estimation of bank-specific inefficiency

Following the discussion ofKumbhakar et al. (2013), we can similarly consider several
approaches to estimate firm-specific inefficiency. The first approach is based on the
popular estimator of Jondrow et al. (1982) where under our setting, the conditional
density of u given ε(x) is

f (u|ε(x)) �
{
0, with probability π (z)
N+(μ∗(x), σ 2∗ (x)), with probability (1 − π (z)),

where N+(.) denotes the truncated normal distribution, μ∗(x) � −ε(x)σ 2
u (x)/σ

2(x)
and σ 2∗ (x) � σ 2

u (x)σ
2
v (x)/σ

2(x). Thus, the conditional mean of u given ε(x) � Y −
m(x) is:

E(u|ε(x)) � (1 − π (z))
σ (x)λ(x)

1 + λ2(x)

[
φ(λ(x)ε(x)/σ (x))

�(−λ(x)ε(x)/σ (x))
− λ(x)ε(x)

σ (x)

]
. (10)

A point estimator of individual inefficiency score may be obtained by replacing the
unknown parameters in (7) by their estimates discussed above and ε(x) by ε̂(x) �
Y − m̂(x).

Another approach is to construct the posterior estimates of inefficiency ũi . To do
this, let π∗

i denote the “posterior” estimate of the probability of being fully efficient
where

π∗
i � (π̂(z)/σ̂v(x))φ(ε̂i (x)/σ̂v(x))

(π̂(z)/σ̂v(x))(φ(ε̂i (x)/σ̂v(x)) + (1 − π̂ (z))(2/σ̂ (x))φ(ε̂i (x)/σ̂ (x))�(−ε̂i (x)/σ̂ (x))
.

(11)

Then the “posterior” estimate of inefficiency can be defined as ũi � (1 − π∗
i )ûi

where ûi is the estimate of inefficiency based on (11).
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2.5 Asymptotic theory

In this section, we derive the sampling property of the proposed backfitting local MLE
α̂ and γ̂ (x) � (β̂

′
(x), σ̂ 2(x), λ̂(x))

′
. In particular, we will show that the backfitting

estimator α̂ is
√
n-consistent and follows an asymptotic normal distribution. In addi-

tion, we also provide the asymptotic bias and variance of the estimator γ̂ (x), and show
that asymptotically, it has smaller variance compared to γ̃ (x). To this end, let us define
the following additional notations.

Let θ (x) � (α
′
, γ (z))

′
, and �(θ (x), z, y) � log f (y|θ (x), z). Define qθ (θ (x), z,

y) � ∂� (θ(x), z, y)
∂θ

, qθθ (θ (x), z, y) � ∂2� (θ(x), z, y)
∂θ∂θ

′ , and the terms qα , qγ , qαα , qαγ

and qγ γ can be defined similarly. In addition, letΨ (w|x) � E[qγ (θ (x), z, y)|x � w],

Iθθ (x) � −E[qθθ (θ (x), z, y)|x] �
[
Iαα(x) Iαγ (x)
Iαγ (x) Iγ γ (x)

]
,

where

Iαα(x) � −E[qαα(θ (x), z, y)|x]
Iγ γ (x) � −E

[
qγ γ (θ (x), z, y)|x

]
Iαγ (x) � −E

[
qαγ (θ (x), z, y)|x

]
.

Finally, letμ j � (∫ u j K (u)du
)
Id , κ j � (∫ u j K 2(u)du

)
Id and |H | � h1h2 . . . hd .

We make the following assumptions:

Assumption 1 The sample {(Xi , Yi , Zi ), i � 1, . . . , n} is independently and identi-
cally distributed from the joint density f (x , y, z), which has continuous first derivative
and positive in is support. The support for X , denoted by χ , is a compact subset of Rd

and f (X ) > 0 for all X ∈ χ .

Assumption 2 Theunknown functionsγ (x) � (m(x), σ 2(x), λ(x))
′
are twice partially

continuously differentiable in its argument.

Assumption 3 The matrixes Iθθ (x) and Iαα are positive definite.

Assumption 4 The kernel density function K (.) is symmetric, is continuous and has
bounded support.

Assumption 5 For some, ζ < 1 − r−1, n2ζ−1|H | → ∞ and E(X2r ) < ∞.

All the above assumptions are relatively mild and have been used in the mixture
models and local likelihood estimation literature. Given the above assumptions, we
now ready to state our main results in the following theorems.

Theorem 1 Under Assumptions 1–5 and in addition, n|H |4→ 0 and
n|H |2log(|H |−1) → ∞, we have

√
n(α̂ − α)

D−→ N
(
0, A−1�A−1

)
,
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where A � E{Iαα(x)} and � � Var
{

∂�(α, θ(x), z, y)
∂α

− Iαγ (x)d(x , y, z)
}
with d(x , y,

z) being the first (r × r ) submatrix of I−1
θθ (x)qθ (θ (x), z, y).

Theorem 2 Under Assumptions 1–5 and in addition, as n → ∞, |H |→ 0, and
n|H | → ∞ we have

(n|H |)1/2
{

γ̂ (x) − γ (x) − B(x) + Op

(
d∑

i�1

h2i

)}
D−→N

{
0, κ0 f

−1(x)I−1
γ γ

}
,

where B(x) � 1
2μ2|H |2 I−1

γ γ (z)Ψ
′′
(x |x).

The proofs of Theorems 1 and 2 are given in “Appendix A”. The proofs are straight-
forward extension of the proofs of Theorems 1 and 2 in Tran and Tsionas (2016a) to
the multivariate case, and therefore, we only provide the key steps of the proofs. Note
that the result from Theorem 2 shows that, as for common semiparametric model, the
estimate of α has no effect on the first-order asymptotic since the rate of convergence
of γ̂ (x) is slower than that of

√
n. Consequently, it is fairly straightforward to see that

γ̂ (x) is more efficient than the initial estimate of γ̃ (x).

2.6 Monte Carlo simulations

In this section, we use simulations to study the finite sample performance of the
proposed estimator. To this end, we consider the following data generating process
(DGP) for the specification of m(xi ), σ 2

u (x) and σ 2
v (x):

m(x1, x2) � 1 + x1 + x2 + 0.5x21 + 0.5x22 + x1x2,

σ 2
v (x1, x2) � 0.5 exp(0.2x1 + 0.5x2),

σ 2
u (x1, x2) � 0.5 exp(0.5x1 + 0.2x2),

π (z) � exp(0.5z)
/
[1 + exp(0.5z)].

The covariates x � (x1, x2) and z are generated independently from a uniform dis-
tribution on [0, 1]. The random error term v is generated as N (0, σ 2

v (x)), and the
one-sided error u is generated as

∣∣N (0, σ 2
u (x)

∣∣. For all our simulations, we set λ � (1,
2.5, 5}, and let the sample sizes vary over n � 1000 and n � 2000. For each experi-
mental design, 1000 replications are performed.

To implement our approach, we use theGaussian kernel function and the bandwidth
vector is chosen according to h̃ � ĥ×n−2/15 where ĥ is the optimal bandwidth vector
based on CV approach discussed earlier in Sect. 2.3. To assess the performance of the
estimators of the unknown functions m(xi ), σ 2

v (x) and σ 2
u (x), we consider the mean

average square error (MASE) for each experimental design:

MASE � 1

1000

1000∑
r�1

⎧⎨
⎩
1

n

n∑
j�1

[
ξ̂r (x j ) − ξr (x j )

]2⎫⎬
⎭,
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Table 1 MASE of (m̂(x), σ̂ 2
v (x), σ̂ 2

u (x)) and MSE of α̂

n � 1000 n � 2000

MASE

m(.) 0.129 0.106

σ 2
v (.) 0.124 0.102

σ 2
u (.) 0.136 0.111

MSE

α 0.008 0.004

Authors’ estimations. Mean square error (MSE), mean average square error (MASE)

where ξ̂ (.) � m̂(.), σ̂ 2
v (.) or σ̂ 2

u (.), and
{
x ji : j � 1, 2; i � 1, . . . , N

}
are the set of

evenly space grid points distributed on the support of x � (x1, x2).
To assess the performance of the estimator of the unknown parameter in the prob-

ability function, we use the mean square error (MSE):

MSE � 1

1000

1000∑
r�1

(α̂r − α)2.

Weuse a bootstrap procedure to estimate the standard errors and construct pointwise
confidence intervals for the unknown functions as well as the unknown parameters
of the probability function. To do this, for a given xi and zi , generate the bootstrap
sample Y ∗

i from a given distribution of Y specified in (1) with {m(.), σ 2
v (.), σ 2

u (.), α}
being replaced by their estimates. By applying the proposed estimation procedure, for
each of the bootstrap samples, we obtain the standard errors and confidence intervals.

Finally, in addition to the assessment of the above properties, we also examine the
average biases, standard deviations and MSEs of technical inefficiency and returns
to scale measures. For comparison purposes, we also include these results for the
parametric ZISF model of Kumbhakar et al. (2013) in which the frontier is estimated
by:

m(x1, x2) � β0 + β1x1 + β2x2.

Before reporting the simulation results, we notice that the wrong skewness problem
did occur in our simulation exercises. In order to obtain more accurate results, we only
report the results for samples with correct skewness and discard samples which have
wrong skewness. Table 1 displays the simulation results for the estimated MASE of
ξ̂ (x j ) and the estimated MSE of α̂ for two different sample sizes. From Table 1, first,
we observe that as the sample size increases, both the estimated MSE for parameter
estimates α̂ and MASE become lower. Second, we observe that as the sample size
doubles, the estimated MSE of α̂ reduces to about one half of the original values; this
is consistent with the fact that the backfitting local ML estimator of α̂ is

√
n-consistent

as predicted by Theorem 1.
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Table 2 Bootstrap standard errors, standard deviations and coverage probabilities

Parameter STD SE (STD) 95% coverage

n � 1000, h � 0.08

α 0.024 0.026 (0.005) 94.8

n � 1000, h � 0.16

α 0.029 0.028 (0.006) 93.9

n � 2000, h � 0.07

α 0.016 0.017 (0.003) 94.9

n � 2000, h � 0.14

α 0.018 0.019 (0.004) 94.5

Estimations based on 1000 estimated standard errors using bootstrap
STD standard deviations of estimated parameters, SE estimated standard errors using bootstrap procedure

We next examine the accuracy of standard error estimation via a bootstrap approach.
Table 2 summarizes the performance of the bootstrap approach for standard errors of
the estimated functions (m̂(x), σ̂ 2

v (x), σ̂ 2
u (x)) evaluated at x � {0.1, 0.2, . . . , 0.9},

for two different samples and two different bandwidths which correspond to under-
smoothing h̃ � ĥ × n−2/15 and appropriate amount ĥ. In the table, the standard
deviation of 1000 estimates is denoted bySTDwhich can be viewed as the true standard
error, whilst the average bootstrap standard errors are denoted by SE along with their
standard deviations given the parentheses. The SEs are calculated as the average of
1000 estimated standard errors. The coverage probabilities for all parameters are given
in the last column, and they are obtained based on the estimated standard errors. The
results from Table 3 show that the suggested bootstrap procedure approximates the
true standard deviations quite well, and the coverage probabilities are close to the
nominal levels for almost all cases.

Note that the bootstrap procedure also allows us to compute the pointwise coverage
probabilities for the probability functions. Table 3 provides the 95% coverage prob-
abilities of m(.), σ 2

v (.) and σ 2
u (.) for a set of evenly space grid points distributed on

the support of x using under-smoothing and appropriate smoothing bandwidths. In the
table, the rows labelled m(α̂)(x), σ 2

v(α̂)(x) and σ 2
u(α̂)(x) provide the results using the

proposed approach, whilst m(α)(x), σ 2
v(α)(x) and σ 2

u(α)(x) gives the results assuming
α is known. For most cases, the coverage probabilities are close to the nominal level.
However, the coverage levels are slightly low for points 0.1, 0.2 and 0.3 when the
right amount smoothing is used. This is consistent with the expectation that under-
smoothing is required.Note thatwe also conducted experimentswhere over-smoothing
of the bandwidth parameters is used, and the results (not reported here but available
upon request) show that over-smoothing does not provide satisfactory performance in
the sense that the coverage probabilities are much larger than the nominal level (i.e.,
ranging from 0.97 to 1.00 for almost all points of x).

Finally, Table 4 provides comparisons of the average biases and MASEs of the
estimated returns to scale (RTS) and technical inefficiency (TI) of our proposed
model against the (incorrectly specified) parametric ZISF proposed by Kumbhakar
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Table 3 Pointwise coverage probabilities for {m(x), σ 2
v (x), σ 2

u (x)}
x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n � 1000, h � 0.16

m(α̂)(x) 0.90 0.92 0.92 0.94 0.95 0.96 0.95 0.94 0.94

m(α)(x) 0.92 0.93 0.93 0.95 0.95 0.96 0.95 0.95 0.94

σ 2
v(α̂)(x) 0.89 0.89 0.91 0.92 0.94 0.95 0.95 0.95 0.93

σ 2
v(α)(x) 0.91 0.92 0.92 0.95 0.95 0.95 0.97 0.95 0.96

σ 2
u(α̂)(x) 0.84 0.88 0.90 0.91 0.94 0.95 0.95 0.95 0.95

σ 2
u(α)(x) 0.89 0.91 0.93 0.95 0.95 0.95 0.95 0.94 0.92

n � 2000, h � 0.08

m(α̂)(x) 0.91 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.95

m(α)(x) 0.93 0.94 0.95 0.95 0.95 0.96 0.96 0.95 0.95

σ 2
v(α̂)(x) 0.90 0.92 0.92 0.92 0.93 0.94 0.95 0.95 0.94

σ 2
v(α)(x) 0.92 0.94 0.93 0.95 0.95 0.95 0.95 0.95 0.95

σ 2
u(α̂)(x) 0.93 0.93 0.93 0.94 0.94 0.93 0.93 0.94 0.94

σ 2
u(α)(x) 0.93 0.94 0.95 0.95 0.95 0.95 0.96 0.95 0.95

m(α̂)(x): when α̂ is estimated andm(α)(x): when α is assumed to be known. σ 2
v(.)(x) and σ 2

u(.)(x) are defined
similarly

Table 4 Average biases and MASEs of estimated returns to scale (RTS) and technical inefficiency (TI):
NP-ZISF versus ZISF

n � 1000 n � 2000

Bias MASE Bias MASE

NP-ZISF

RTS 0.009 0.021 0.0062 0.009

TI 0.020 0.029 0.013 0.018

ZISF

RTS 0.152 0.187 0.129 0.177

TI 0.111 0.178 0.110 0.165

NP-ZISF is our proposed nonparametric zero-inefficiency stochastic frontier model, whilst ZISF is the
parametric zero-inefficiency stochastic frontier model of Kumbhakar et al. (2013)

et al. (2013). The results in Table 4 clearly show that when the parametric frontier is
incorrectly specified, the average biases for both returns to scale (RTS) and technical
inefficiency (TI) can be quite sizable, even in large samples. In another experiment
(not reported here), we examine the performance of RTS and TI where the parametric
ZISF model is correctly specified, and the results show that our proposed model and
method perform as well as the parametric model in terms of biases and MASEs.
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3 Empirical application: global banking analysis

3.1 The data set

In this section, we provide an application of the global banking system to illustrate
the usefulness and merit of our proposed model and approach. The data we use are
taken fromBankscope andWorld Bank Indicators databasewhich consist of only large
banks around the world from 2000 to 2014.1 The banks are categorized into groups of
advanced, emerging and developing countries. In addition, the banks are further classi-
fied into regional groups of Advanced, EU, Europe (outside EU), Asia–Pacific and the
rest of the world which includes Latin America and the Caribbean, Middle East and
North Africa, Common Wealth of Independence States and sub-Saharan Africa. The
classification of country groups is based on IMFWorldEconomicOutlook,April 2015.
The data include all the bank-specific financial variables (in thousand euros), as well
as other specific country-level variables. Detailed descriptions of these variables are
discussed below. After removing errors and inconsistencies, we obtain an unbalanced
panel that includes 3679 observations for 31 advanced countries, 2165 observations
for 35 emerging countries and 1461 observations for 40 developing countries.

We consider the following nonparametric cost stochastic frontier model:

TCi t �
{
f (Pit , Yit , Nit , t) + vi t , with probablity π (Zit )
f (Pit , Yit , Nit , t) + vi t + uit , with probability 1 − π (Zit ),

(12)

where TCi t is total cost for firm (bank) i at year t , Pit is a vector of input prices, Yit is
a vector of outputs, Nit is a vector of quasi-fixed netputs and Zit is a vector of country-
specific environmental variables. Since we are using panel data, whereas our model
is designed for cross-sectional data, we need to make assumptions on the temporal
behaviour of inefficiency, uit and noise, vi t in (12). For simplicity, we assume that
both uit and vi t are independent and identically distributed (albeit our model can be
easily extended to accommodate heteroscedasticity as discussed in Sect. 2), and we
do not enforce any specific temporal behaviour on inefficiency, which implies that a
bank can be fully efficient in 1 year but not in others. For comparison purposes, we
also estimated the parametric ZISF model using the standard translog form for the
frontier.

Inputs, input prices and outputs are selected based on the intermediation approach
and follow Koutsomanoli-Filippaki and Mamatzakis (2009) and Tanna et al. (2011).
The cost function includes two outputs: net loans (which include securities) and other
earning assets. The inputs are financial capital (deposits and short-term funding),
labour (personnel expenses) and physical capital (fixed assets). The price of financial
capital is computed as interest expenses on deposits divided by total interest-bearing
borrowed funds. The price of labour is the ratio of personnel expenses to total assets,

1 We exclude banks for which: (i) we had less than three observations over time; (ii) we had no information
on the country-level control variables; (iii) we had no information of nonperforming loans. Details of
construction of the data are available from the authors upon request.
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and the price of physical capital is the ratio of overhead expenses (excluding personnel
expenses) to fixed assets. Total bank cost is then calculated as the sum of overheads,
such as personnel and administrative expenses, interest income, fees and commission
expenses. Furthermore, we include equity as a quasi-fixed netput (Berger and Mester
2003; Koutsomanoli-Filippaki and Mamatzakis 2009) to capture the effect of alter-
native sources of funding on the bank cost structure. If such effects are ignored, then
this might cause bias in measuring efficiency, in particular for banks with high equity
capital. If a bank issues more equity capital that it would imply that bank management
leans towards risk aversion. In addition, we include nonperforming loans (NPL) as a
bad output (Hughes and Mester 2010) to proxy banks’ risk-taking activities and bank
fixed assets to proxy physical capital (Berger and Mester 2003). Finally, to take into
account heterogeneity in bank technology, we use the logarithm of total assets as a
proxy for bank’s size.

The following variables are used as determinants in the probability of being fully
efficient function. First, since there have been episodes of high risk during the period
of our sample (i.e., bank risk), we employ the z-score as a bank-specific measure

insolvency risk. This is defined as z-score � ROE−
(
Equity
Assets

)
σROE

, where ROE is the return
on equity and σROE is the estimate of standard deviation of ROE (as in Koutsomanoli-
Filippaki and Mamatzakis 2009; Delis and Staikouras 2011; Staikouras et al. 2008).

Second, to account for liquidity and capital risk, we use the ratio of liquid assets to
total assets and the ratio of equity to total assets, respectively (Koutsomanoli-Filippaki
and Mamatzakis 2009).2 High capital ratio implies low capital risk, viz. equity is a
buffer against financial instability.

Third, we include GDP per capita and inflation to account for the effects of different
macroeconomic environments.

Finally, to capture possible size’s effects in the banking industry, we include pop-
ulation density and market size.3

We estimate the model using the procedure described in Sects. 2.3, 2.4, and the
results are discussed below.

3.2 Results for bank efficiency in the presence of fully efficient banks

In Table 5, we report bank efficiency for each country group. There is some variability
in efficiency across the world, notably in theMiddle East and sub-Saharan Africa. Sur-
prisingly, there is also variability in bank performance as measured by bank efficiency
among economies in the EU. This is surprising because of the required convergence
process that economies must go through prior to their accession to the EU. Clearly,
when it comes to bank efficiency, we do not observe convergence in the EU. How-
ever, in the eurozone, the variability in efficiency is less pronounced, whereas for
some economies, like Greece and Slovakia, bank efficiency is quite low. Economies
in Latin America and the Caribbean show a rather low level of average efficiency at

2 Liquid assets are the sum of trading assets, loans and advances with maturity less than 3months. Liquidity
ratio reports bank’s liquid assets. If the ratio takes low values, it would imply high liquidity risk.
3 For conservation of space and given the plethora of countries in our sample, we do not report the summary
statistics of all the variables used in estimation, but they are available from the authors upon request.
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Table 5 Global bank efficiency in the presence of fully efficient banks

Advanced economies outside Europe

Australia 0.82 Japan 0.82 Singapore 0.90

Canada 0.87 Korea 0.81 Switzerland 0.87

Hong Kong 0.79 New Zealand 0.89 Taiwan 0.82

Iceland 0.81 Norway 0.84 USA 0.87

Israel 0.80 San Marino 0.81

Average: 0.84

EU

Austria 0.88 Germany 0.82 Poland 0.73

Belgium 0.87 Greece 0.79 Portugal 0.83

Bulgaria 0.75 Hungary 0.86 Romania 0.80

Cyprus 0.82 Ireland 0.82 Slovakia 0.77

Czech 0.81 Italy 0.85 Slovenia 0.79

Denmark 0.86 Lithuania 0.79 Latvia 0.82

Estonia 0.71 Luxembourg 0.85 Sweden 0.87

Finland 0.76 Malta 0.81 Spain 0.85

France 0.87 Netherlands 0.85 UK 0.84

Average: 0.82

Europe, except EU

Albania 0.73 Croatia 0.87 Serbia 0.81

Andorra 0.89 FYROM 0.82 Turkey 0.84

Bosnia and
Herzegovina

0.79

Average: 0.82

Latin America and the Caribbean

Argentina 0.83 Colombia 0.75 Jamaica 0.80

Bahamas 0.80 Costa Rica 0.72 Panama 0.72

Bermuda 0.82 Dominican
Rep.

0.72 Peru 0.79

Bolivia 0.77 Ecuador 0.70 Trinidad &
Tobago

0.73

Brazil 0.82 El Salvador 0.79 Uruguay 0.77

Chile 0.83 Honduras 0.87 Venezuela 0.75

Average: 0.78

Asia/Pacific

Bangladesh 0.75 Malaysia 0.83 Taiwan 0.81

Cambodia 0.71 Nepal 0.70 Thailand 0.78

China 0.72 Pakistan 0.81 Vietnam 0.72

India 0.87 Philippines 0.84

Indonesia 0.82 Sri Lanka 0.82
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Table 5 continued

Average: 0.78

Middle East, North Africa

Bahrain 0.81 Kuwait 0.81 Qatar 0.71

Egypt 0.67 Lebanon 0.83 Saudi Arabia 0.80

Jordan 0.73 Oman 0.77 UAE 0.83

Average: 0.77

Commonwealth of independent states

Armenia 0.72 Georgia 0.72 Russian 0.80

Azerbaijan 0.71 Kazakhstan 0.77 Ukraine 0.81

Belarus 0.75 Moldova Rep. 0.70

Average: 0.75

Sub-Saharan Africa

Angola 0.72 Mauritius 0.62 South Africa 0.88

Benin 0.77 Mozambique 0.65 Swaziland 0.64

Botswana 0.75 Namibia 0.72 Tanzania 0.62

Ethiopia 0.73 Nigeria 0.70 Uganda 0.71

Ghana 0.71 Senegal 0.65 Zambia 0.62

Kenya 0.67 Senegal 0.69 Zambia 0.70

Average: 0.70

The table reports average bank efficiency for each country according to geographic region. The classification
is based on IMF World Economic Outlook April 2014

0.78, as well as economies in sub-Saharan Africa at 0.70, but there is some variability.
Economies in Asia/Pacific and Common Wealth of Independent States have average
efficiency scores around 0.78 and 0.75, respectively.

3.3 Estimated densities of bank efficiency

One of the advantages of the proposed methodology is that it allows deriving den-
sity functions of bank-level efficiency, allowing explicitly for the possibility of fully
efficiency. In the previous section, we reported that there is considerable variation in
efficiency scores across the world, but also within selected group of countries, most
notably the EU. There aremany reasons that can explain this variability. Given the time
period covered by our sample, the importance of the financial crisis in 2008 cannot be
underrated. It is undoubtedly the case that bank efficiency changes over time due to
the impact of the financial crisis. We document this in our analysis, by presenting the
estimated densities of bank efficiency, before and after the crisis.

Top panels in Fig. 1 present the estimated densities of bank efficiency before and
after the crisis for all country groups using themodel and approach discussed in Sect. 2.
In the bottom panels, we present the estimated densities of bank-level efficiency using
the parametric approach proposed by Kumbhakar et al. (2013). The results in Fig. 1
show that fully efficient banks are present in both models (see Advanced and EU
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Fig. 1 Technical efficiency distributions; prior and ex post the credit crisis.NoteTo facilitate the presentation
and comparison purpose, we present the estimated densities of efficiency for both nonparametric (top panel)
and parametric ZISF (bottom panel) models

countries before and after the crisis). A standard stochastic frontier analysis would
miss this finding. Before the crisis, efficiency scores range from 0.7 to 1 with an
average of 0.83 for Advanced countries and the EU. In addition, there is evidence of
a bimodal efficiency density in both groups of countries. These results are of interest
as they confirm the importance of allowing for full efficiency. They also show that,
despite the fact that average efficiency is around 0.83, there are also fully efficient
banks in the sample. These findings change dramatically after the subprime crisis in
2008, as efficiency scores show greater variability, and range from 0.65 to 1. Also, it
is worth noting that in the EU, the density after the crisis remains bimodal but exhibits
higher presence of fully efficient banks, whilst for the Advance economies, the density
of efficiency becomes unimodal and also displays higher frequency of fully efficient
banks compared to the periods before the crisis. Thus, our results suggest that the
financial crisis was a catalyst for some banks in these two groups of countries to
become fully efficient.

The densities for Eurogroup countries display similar patterns with the density for
the EU banks before and after the crisis. The densities for Asia–Pacific countries and
the rest of the world display higher variations in the efficiency scores compared to the
other groups before the crisis, with zero frequency of fully efficient banks. But note
that after the crisis, the densities shift to the right towards higher efficiency scores for
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these groups. In addition, for Asia–Pacific countries, the density after the crisis shows
the presence of fully efficient banks, whilst for the rest of the world, the frequency
of fully efficient bank remains zero. Interestingly, Fig. 1 shows that the crisis has not
undermined bank efficiency in most countries. In fact, densities for most countries
shift to higher efficiency scores. This result is plausible in view of the fact that the
subprime crisis leads to reduced liquidity and therefore adoption of more cautious
cost reduction measures.

In contrast to our proposed model, the parametric ZISF models produce the oppo-
site results before and after the crisis. The estimated densities of bank efficiency are
unimodal for both periods (with the exception of Asia–Pacific banks), although there
is some small variation in the efficiency scores after the crisis compared to before the
crisis period. Moreover, except for Asia–Pacific, the absence of fully efficient banks
post-crisis seems to suggest that the crisis reduced bank’s efficiency in these countries.
Given that our approach proposes no functional form for the frontier, the contradictory
results from the parametric ZISF models suggest that misspecification of the frontier
is the main factor responsible for these findings.

To provide more information on efficiency when fully efficient banks are present,
we present the density of changes in efficiency that captures the underlying dynam-
ics around the financial crisis. The efficiency change is calculated as the difference
between efficiency of bank i at time t and efficiency of bank i at time t−1. These results
are displayed in Fig. 2. As expected, there is some variability in changes in efficiency
before and after the crisis. During the second period, bank efficiency changes for most
countries are slightly above zero. One of the main concerns that have been raised since
the credit crunch is the low degree of alertness of financial systems prior to the crisis
(Allen and Carletti 2010; Brunnermeier 2009; Covitz and Suarez 2013). Following
our modelling, our results show that signs of the crisis could have been identified
well in advance, thereby allowing for a better response to the crisis. For parametric
ZISF models, there is higher variation in bank efficiency changes for most countries,
and these changes tend to move towards negative values after the crisis, confirming
our previous finding that the financial crisis is responsible for the reduction in bank
efficiency for most of the countries considered.

In sum, the results from our analysis on efficiency and change in efficiency scores
suggest that misspecification of the functional of the frontier in the parametric ZISF
model is more likely the factor that provides contradictory results before and after the
crisis, since our proposed nonparametric ZISF model is robust to misspecification of
the frontier.

3.4 Productivity growth

Our model allows deriving not only the density of efficiency, but also densities of
efficiency change. In turn, productivity growth is computed as technical change plus
efficiency change. This is the first time that bank productivity growth is estimated at
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Fig. 2 Technical efficiency changes distributions; prior and ex post the credit crisis

global level, accommodating the possibility of fully efficient banks.4 In Fig. 3, we
present the density of productivity growth for the different regional classifications.
Apparently, the financial crisis has been detrimental for productivity growth of large
banks, across the world. Moreover, prior to the crisis, productivity growth of banks
in Advanced, EU, and European countries exhibits lower kurtosis compared to post
the financial crisis. It appears to converge to lower levels of productivity growth, and
densities exhibit different shapes after the crisis (with the exception of the EU). The
crisis has, clearly, led to lower levels of productivity growth compared to prior the
crisis, whereas variability in productivity growth is also lower. A similar pattern is
observed for bank productivity growth in Asian–Pacific countries. For the banks in
the rest of the world, they have improved their productivity growth after the crisis,
compared to prior the crisis.

For the parametric ZISF models, there is little variation in banking productivity
growth before and after the crisis, albeit the densities of productivity growth after the

4 Some bank productivity studies exist, but they focus mostly on a single country (e.g. Barros et al. 2009;
Assaf et al. 2011) or for a certain group of countries, i.e. in EU (Koutsomanoli-Filippaki and Mamatzakis
2009; Delis et al. 2011).
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Fig. 3 Productivity growth distributions; prior and ex post the credit crisis

crisis show somewhat higher variation. These results suggest that the crisis seems to
have had no effect in banking productivity growth which is counterintuitive.

3.5 Marginal effects of probability of full efficiency

Having derived bank efficiency at country and global level, it would be of interest to
examine their underlying association with key bank- and country-specific covariates.
Table 6 presents (average) marginal effects of probability of fully efficient banks,π (z),
with respect to the bank-specific and country-specific control variables.

The results show that not only bank-specific but also country-specific variables are
important for full efficiency. All variables, apart from inflation, increase the probability
of full efficiency. Note that economic as well as statistical significance is higher for
bank-specific variables, and particularly for those that are related to risk, such as z-
score and liquidity ratio. Improving the bank-specific risk profile appears to increase
the probability of being a fully efficient bank. Alas, country-specific uncertainty, such
as inflation, has a negative effect on this probability. Intuitively, the effects of country-
specific variables are beyond the banks’ control and they constitute one of the risk
factors that affect bank performances. Therefore, we expect that these variables would
make it harder for banks to become fully efficient.
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Table 6 Marginal effects of probability of full efficiency, π (z)

Adv. EU EUR As-Pac. Rest

Z-score 0.217 (0.044) 0.225 (0.002) 0.012 (0.017) 0.018 (0.005) 0.201 (0.018)

Capital ratio 0.032 (0.107) 0.025 (0.002) 0.022 (0.002) 0.044 (0.003) 0.103 (0.089)

Fees 0.032 (0.024) 0.021 (0.002) 0.035 (0.011) 0.032 (0.011) 0.044 (0.016)

Liquidity ratio 0.027 (0.005) 0.016 (0.007) 0.032 (0.012) 0.021 (0.007) 0.047 (0.011)

Securities 0.032 (0.011) 0.021 (0.005) 0.027 (0.003) 0.028 (0.009) 0.044 (0.018)

GDP per capita 0.014 (0.002) 0.017 (0.024) 0.021 (0.017) 0.015 (0.025) 0.022 (0.003)

Inflation −0.001 (0.001) −0.022 (0.017) −0.028 (0.022) −0.022 (0.001) −0.019 (0.018)

Population
density

0.0019 (0.031) 0.0021 (0.007) 0.0015 (0.014) 0.022 (0.019) 0.023 (0.030)

Market size 0.014 (0.005) 0.012 (0.003) 0.015 (0.002) 0.021 (0.003) 0.003 (0.001)

The table provides average elasticities of probability of full efficiency, π (z), with respect to the bank-
and country-specific control variables. Standard errors are reported in parentheses. Z-score� (ROE+
(Equity/Assets)/(Standard Deviation of ROE); capital ratio�equity over total assets; liquidity ratio� liquid
assets over total assets; fees�net fees, commission and trading income over total assets; securities� total
securities over total assets. Country-specific variables: GDP per capita; inflation; population density is the
number of people per square km; market size�value of total shares traded on the stock market exchange.
Adv refers to Advanced countries, EU, EUR to Europe (except EU), As-Pac. to Asia Pacific

4 Extension

The proposed model in this paper can be extended in two ways. First, notice that, in
our setting, one could model π (z) nonparametrically, which makes model (1) fully
nonparametric. “Appendix B” provides a brief discussion on how to estimatemodel (1)
when all parameters are fully localized. However, as noted by Martins-Filho and Yao
(2015), the main drawback of this approach is that, since all parameters are localized,
the rate of convergence becomes slow when the number of conditioning variables is
large (a case frequently encountered in practice), implying that the accuracy of the
asymptotic approximation can be poor (i.e., the curse of dimensionality problem).
Another possible extension of the model is to allow for endogenous regressors as
in Tran and Tsionas (2016b) for the parametric ZISF model. However, allowing for
endogeneity in nonparametric frontier can be quite complex and challenging. Finally,
the proposed approach in this paper can be easily modified and extended to allow
for the distribution of uit to depend on a set of covariates either parametrically or
nonparametrically, without affecting the proposed estimation algorithm.

5 Conclusions

This paper, first, provides an alternative semiparametric approach for estimating the
ZISF model by allowing the frontier to have an unknown smooth function of explana-
tory variables whilst maintaining the parametric assumption on the probability of fully
efficient firms. In particular, we suggest a modified version of the iterative backfitting
local maximum likelihood estimator developed in Tran and Tsionas (2016a). We show
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that the proposed estimator achieves the optimal convergence rates for both parameters
of the probability of fully efficient bank and the nonparametric function of the fron-
tier. We provide the asymptotic properties of the proposed estimator. The finite sample
performance of the proposed estimator is examined via Monte Carlo simulations.

Next, we use the proposed method to examine productivity growth and efficiency
of the global banking. Overall, our analysis demonstrates that the financial crisis has
provided a valuable lesson that allowed large banks to cope, and hence increase the
probability of full efficiency, particularly in Advanced countries and in the EU. To our
knowledge, this is the first time that such results see the light of day, as most studies
focus on the level of bank efficiency post-crisis.

Finally, in the interest of brevity, we did not consider hypothesis testing of paramet-
ric versus nonparametric frontier and/or whether all banks are fully inefficient/efficient
in this paper because they are beyond the scope of this paper. However, these topics
are of interest in their own right and deserve attention for future research.
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Appendix A: proofs of the theorems

Let γ̃ (.) � {m̃(.), σ̃ 2(.), λ̃(.)}′
. Also let γ (.) � {m(.), σ 2(.), λ(.)}′

and α denote the
true values.

Proof of Theorem 1 The proof of this theorem follows similarly to the proof of Theo-
rem 1 of Tran and Tsionas (2016a) and Huang and Yao (2012). Thus, we only outline
the key steps of the proof.

To derive the asymptotic properties of α̂, we first let

α̂∗ � √
n(α̂ − α),

�(γ̃ (Xi ), α, Zi , Yi ) � log f (Yi |γ̃ (Xi ), α, Zi )

�
(
γ̃ (Xi ), α̂ + n−1/2α∗, Zi , Yi

)
� log f

(
Yi |γ̃ (xi ), α̂ + n−1/2α∗, Zi

)

Then α̂∗ is the maximization of

Ln
(
α∗) �

n∑
i�1

{
�
(
γ̃ (Xi ),α + n−1/2α∗, Zi , Yi

)
− �(γ̃ (Xi ),α, Zi , Yi )

}
. (A.1)
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By using a Taylor series expansion and after some calculation, it yields

Ln(α
∗) � Anα

∗ + 1

2
α∗′

Bnα
∗ + op(1), (A.2)

where

An � n−1/2
n∑

i�1

∂�(γ̃ (Xi ), α, Zi , Yi )

∂α

Bn � n−1
n∑

i�1

∂2�(γ̃ (Xi ), α, Zi , Yi )

∂α∂α
′ .

Next we evaluate the terms An and Bn . First, expanding An around γ (Xi ), we
obtain

An � n−1/2
n∑

i�1

∂�(γ (Xi ), α, Zi , Yi )

∂α
+ n−1/2

n∑
i�1

∂2�(γ (Xi ), α, Zi , Yi )

∂α∂γ
′

[
γ̃ (Xi ) − γ (Xi )

]

+ Op

(
n−1/2||γ̃ (.) − γ (.)||2∞

)

� n−1/2
n∑

i�1

∂�(γ (Xi ), α, Zi , Yi )

∂α
+ D1n + Op

(
n−1/2||γ̃ (.) − γ (.)||2∞

)
,

where the definition of D1n should be apparent. Following Tran and Tsionas (2016a,
b), it can be shown that

An � n−1/2
n∑

i�1

{
∂�(γ (Xi ),α, Zi , Yi )

∂α
− Iαγ (Xi )d(Xi , Yi , Zi )

}
+ op(1), (A.3)

where d(X , Y , Z ) is the first r × r submatrix of I−1
θθ (X )qθ (θ (X ), Z , Y ). Similarly,

for Bn , it can be shown that

Bn � −E[Iαα(X )] + op(1) � B + op(1). (A.4)

Thus, from (A.2) in conjunction with (A.4), an application of quadratic approxi-
mation lemma [see, for example, Fan and Gijbels (1996, p. 210)] leads to

α̂∗ � B−1An + op(1) (A.5)

if An is a sequence of stochastically bounded vectors. Consequently, the asymptotic
normality of α̂∗ follows from that of An . Note that since An is the sum of i.i.d. random
vectors, it suffices to compute the mean and covariance matrix of An and evoke the
central limit theorem. To this end, from (A.3), we have

E(An) � n1/2E

{
∂�(γ (X ),α, Z , Y )

∂α
− Iαγ (X )d(X , Y , Z )

}
. (A.6)
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The expectation of each element of the first term on the right-hand
side can be shown to be equal to 0, and further calculation shows that
E
{
Iαγ (X )d(X , Y , Z )

} � 0. Thus, E(An) � 0. The variance of An is Var(An) �
Var
{

∂�(γ (x),α, Z , y)
∂α

− Iαγ (X )d(X , Y , Z )
}

� �. By the central limit theorem, we

obtain the desired result. �
Proof of Theorem 2 Recall that, given the estimate of α̂, γ̂ (x) maximizes (7). By
redefining appropriate notations:

η(x0, X ) � γ0(x0) + �1(x0)(X − x0),

γ ∗ � (n|H |)1/2
{
γ − γ0(x0), |H |(γ ′ − �1(x0))

}′
,

then the proof follows directly from the proof of Theorem 2 of Tran and Tsionas
(2016a, b). Thus, we omit it here for brevity. �

Appendix B: fully localizedmodel

The discussion in Sect. 2 has been limited to the case where the probability of fully
efficient firm π (z) is assumed to have a logistic function. In this appendix, we extend
the model to allow for a nonparametric function π (z). We will consider two cases. In
the first case, we assume that Z � X and show how to estimate this model as well
as discuss the asymptotic properties of the local MLE. In the second case where in
general Z �� X , we will briefly discuss only the estimation procedure but not the
asymptotic properties since they are more complicated and beyond the scope of this
paper.

Case 1: When Z � X
In this case, we first redefine the vector function θ (x) � (π (x), γ (x)

′
)
′
and for a

given set point x0 and x in the neighbourhood of x , we approximate the function θ (x)
by a linear function similar to (5),

θ (x0) ≈ θ0(x0) + �1(x0)(x − x0),

where θ0(x0) is a (4 × 1) vector and �1(x0) is a (4 × d) matrix of the first-order
derivatives. Then the conditional local log-likelihood function is:

L5n(θ0(x0),�1(x0)) �
n∑

i�1

{log f (Yi ; θ0(x0) + �1(x0)(Xi − x0))}KH (Xi − x0),

(B.1)

where the kernel function KH (Xi − x0) is defined as before. Let θ̂0(x0) denote the
local maximizer of (B.1). Then the local MLE of θ (x) is given by θ̂ (x) � θ̂0(x0). To
obtain the asymptotic property of θ̂(.), we modify the following notations:
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q1(θ (x), Y ) � ∂L5(θ (x), Y )/∂θ , q2(θ (x), Y ) � ∂2L5(θ (x), Y )/∂θ∂θ
′
,

I (x) � −E{q2(θ (X ), Y )|X � x}, and �(u|x) �
∫
Y

q1(θ (x), Y ) f (Y |θ (u))dY .

Assumptions
B1: The support for X , denoted by X , is compact subset of Rd . Furthermore, the

marginal density f (x) of X is twice continuously differentiable and positive for x ∈ X .
B2: The unknown function θ (x) has continuous second derivatives, and in addition,

σ 2(x) > 0 and 0 < π (x) < 1 hold for all x ∈ X .
B3: There exists a functionM(y), with E[M(y)] < ∞ such that for all Y , and all

θ ∈ nbhd of θ (x), |∂L5(θ , Y )/∂θ j∂θk∂θl | < M(y).
B4: The following conditions hold for all i and j :E{|∂L5(θ (x), Y )/∂θ j |3} < ∞,

E{(∂2L5(θ (x), Y )/∂θi∂θ j )2} < ∞.
B5: The kernel function K (.) has bounded support and satisfies:

(∫
K (u)du

)
Id � 1,

(∫
uK (u)du

)
Id � 0,

(∫
u2K (u)du

)
Id < ∞,

(∫
K 2(u)du

)
Id < ∞,

(∫
|K (u)|3du

)
Id < ∞.

B6: |H | → 0, n|H | → ∞, and n|H |5� O(1) as n → ∞.

Proposition 1 Suppose that conditions (B1)–(B6) hold. Then it follows that

(n|H |)1/2
{
θ̂ (x) − θ (x) − B(x) + o(|H |)2

}
D−→N

(
0, κ0 f

−1(x)I−1
θθ

)
,

where B(x) � 1
2μ2|H |2 I−1

θθ (z)�
′′
(x |x) with κ0 and μ2 being defined as in Sect. 2.

The proof of Proposition 1 is a straightforward extension of the proof of Theorem 2
in Huang et al. (2013) to the multivariate case, and hence, it is omitted.

Case 2: When Z �� X
In this case, the local MLE is similar to case 1, albeit it is more complicated.

To see this, let us once again redefine the vector function θ (z, x) � (π (z), γ (x)
′
)
′
;

then, for a given set points z0 and x0, approximate θ (z, x) linearly as before. Also,
define the kernel function for z as WA(Zi , z0) � |A|−1W (A−1(Zi − z0)) where
W (v) � ∏r

j�1 w(v j ) with w(.) being a univariate probability function, A being a
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bandwidth matrix and |A| � a1a2 . . . ar . Then the modified conditional local log-
likelihood function can be written as:

L6n(θ0(z0, x0),Θ1(z0, x0))

�
n∑

i�1

{log f (Yi ; θ0(z0, x0) + Θ1(z0, x0)(Zi − z0)(Xi − x0))}

× WA1 (Zi − z0)KH1 (Xi − x0). (B.2)

Let θ∗(z0, x0) be the maximizer of (14) where θ∗(z0, x0) � (π∗(z0, x0), γ (z0, x0)
′
)
′
;

then, the local MLE of θ (., .) � (π (., .), γ (., .)
′
)
′
is given by π̃ (z, x) � π∗(., .) and

γ̃ (z, x) � γ ∗(., .). Note that, however, since the π (z) do not depend on x and γ (x)
do not depend on z, the improved estimators of π (z) and γ (x) can be obtained using
integrated backfitting approach. Thus, given the estimates π̃ (z, x) and γ̃ (z, x), the
initial estimates of π (z) and γ (x) (up to additive constants) are given by

π̃ (z) �
∫

π̃ (z, x) fX (x)dx

γ (x) �
∫

γ̃ (z, x) fZ (z)dz,

where fX (x) and fZ (z) are marginal densities of X and Z , respectively. Now given
the initial estimator of π̃ (z), for every fixed set points x0 within the closed support of
X , the improved estimator of γ (x0) is defined as γ̂ (x0) � γ̂0(x0) � γ̂0 where γ̂0 is the
first minimizer of the following plug-in conditional local log-likelihood function:

(B.3)

L7n
(
π̃ (zi ), γ0(x0),�1(x0)

)

�
n∑

i�1

{log f (Yi ; π̃ (zi ), γ0(x0) + �1(x0)(Xi − x0))}KH2 (Xi − x0).

Given the estimates of γ̂ (xi ), we can obtain the improved estimator of π (zi ), denote
by π̂ (z0) � π̂0(z0) � π̂0 where π̂0 is the first maximizer the following plug-in
conditional local log-likelihood function:

L8n
(
π (z0), γ̂ (xi )

) �
n∑

i�1

{
log f (Yi ; γ̂ (xi ),π0(z0) + �1(z0)(Zi − z0))

}
WA2 (Zi − z0).

(B.4)
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