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Abstract Ever since the end of the Great Recession, the US economy has experienced
a period of mild inflation, which contradicts with the output–inflation relationship
depicted by a traditional Phillips curve. This paper examines how the permanent
output loss during the Great Recession has affected the ability of the Phillips curve
to explain US inflation dynamics. We find great similarity among several established
trend–cycle decomposition methods: potential output declined substantially after the
Great Recession. Due to the fact that a lower level of potential output implies a lesser
deflationary pressure, we then show that the Phillips curve does predict a period of
mild inflation. This finding is largely consistent with the observed data.
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1 Introduction

Other than the fact that it is the greatest economic downturn in post-WWII US history,
the “Great Recession” associatedwith the onset of the sub-prime crisis in 2008 receives
particular attention for the puzzling relationship between weak economic activities
and moderate inflation afterward. In particular, Ball and Mazumder (2011) estimate
a standard Phillips curve with the Congressional Budget Office’s (CBO) measures of
output gaps and find that the predicted deflation was absent during the period from
2008 to 2010. This “missing deflation” puzzle has prompted an array of research on
the changing dynamics of US inflation.

Given a steady level of inflation expectation, the Phillips curve describes a positive
relationship between inflation and output gap, usuallymeasured by the deviation of real
output from its potential, or trend, level. However, output gap is not directly observable
and can be measured using different estimation methods, which show great variations
in their results. Figure 1 shows two widely used estimates of output gap, the CBO
output gap and the Hodrick–Prescott (HP) filtered gap. The differences between them
are striking: the HP-filtered estimates indicate a substantial degree of potential output
loss during and after the Great Recession, while the CBO estimates imply the opposite.
The notion that recessions can have permanent effects is not novel (e.g., Hamilton
1989; Kim et al. 2005); thus the possibly substantial declines in the potential output
thus provide a plausible explanation for the absence of deflation in the post-2008 era.

In this paper, our aim is to investigate the extent to which the missing deflation
puzzle can be explained by the potential output loss during the Great Recession. Our
empirical strategy is comprised of two steps. First, wewill construct different potential
output measures by several established methods. Second, we will study the inflation
dynamics during the Great Recession through the lens of both backward- and forward-
looking Phillips curves.

In order to measure the potential output variations, we consider a wide range of
established and commonly used filteringmethods, including the HP filter, unobserved-
component models, the Beveridge–Nelson decomposition and neoclassical growth
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Fig. 1 The measures of the output gap and the potential output (2005:1–2013:3). These estimates were
obtained using the sample from 1947:1
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models. Except for the CBO estimates, all measures indicate that a substantial portion
of the declines in the US real GDP after 2008 can be considered as permanent. That
is, it is likely that the US economy suffered long-term damage to its potential output
after the Great Recession (Bijapur 2012; Furceri and Mourougane 2012; Benati 2012;
Reifschneider et al. 2013; Ball 2014; Fernald 2014). Our results also support the view
that the USA has experienced a one-time, permanent shock to wealth (Bullard 2012).

Can the estimated potential output variations explain the missing deflation? Fol-
lowing Ball andMazumder (2011), we conduct a dynamic simulation of inflation after
2008with different output gapmeasures.Wefind that the traditional backward-looking
Phillips curvewith any of themeasures considered except theCBO’s predicts near-zero
or positive inflation. In order to account for the uncertainty associated with different
measures of the output gap, we construct a weighted-averaged dynamic simulation
based on the Bayesian information criterion. As a result, both the observed moderate
inflation and the severe economic downturn after 2008 can be reconciled to a great
extent within a backward-looking Phillips curve, if the potential output variations are
considered.

Several studies have pointed out that these puzzling inflation dynamics can be
explained by well-anchored inflation expectation (Ball and Mazumder 2011; Math-
eson and Stavrev 2013) or by higher inflation expectation due to oil price (Coibion
and Gorodnichenko 2015). Accordingly, we extend our model by incorporating the
forward-looking inflation expectation based on the Survey of Professional Forecasters
(SPF) and also considering the core CPI as an alternative inflation measure to remove
the effect of oil price fluctuations. Our empirical results are consistent with existing
findings: in our extended exercise, the inflation prediction improves substantially with
the CBO’s output gap. However, it still sits below the realized path. We then show
that the model-averaged simulation accounting for possible lowered potential out-
put does, in fact, capture the inflation dynamics more precisely, suggesting that the
potential output variations play an important role in inflation dynamics after the Great
Recession.

The outline for the remainder of the paper is as follows. In Sect. 2, we investi-
gate the potential output variations using several trend–cycle decomposition methods.
In Sect. 3, we re-assess the missing deflation puzzle using various measures of the
potential output. Section 4 is our conclusion.

2 Potential output variations: a retrospective study

2.1 Methods for obtaining the potential output

In this section, we investigate how the potential output evolves, based on the following
trend–cycle decomposition methods:

– The Hodrick–Prescott (HP) filter. The smoothing parameter is set to be 1600 in
accordance with quarterly data.

– The unobserved-component (UC) models.
– The Beveridge–Nelson (BN) decomposition.
– The neoclassical growth models, including the one used by CBO.
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TheHPfilter is a convenientmechanical detrending device applied formacroeconomic
data, and the other methods hinge on some structural assumptions discussed in what
follows.

2.1.1 UC model

The UC model has been a popular detrending method since it was developed in 1980s
(Harvey 1985; Watson 1986; Clark 1987, etc). In general, the results obtained from
the UC models vary with the assumptions for the econometric modeling of the trend,
as well as with those for the cyclical components. In this paper, we adopt a version
of the UC model used by Luo and Startz (2014), which nests a wide range of popular
assumptions:

yt = τt + ct (1)

τt = μt + τt−1 + ηt (2)

ct = φ1ct−1 + φ2ct−2 + εt (3)

In the above model, yt is the logarithm of the quarterly real GDP, which consists of
a trend component, τt , and a cyclical component, ct . τt follows a random walk with
a drift μt , which is interpreted as the mean growth rate of the real output. The mean
growth rate is assumed to be constant except for a possible one-time structural change.1

We assume an unknown break date to be estimated with other model parameters. The
cyclical component, ct , is assumed to follow a stationary AR(2) process. The two
shocks, ηt and εt , are usually assumed to be jointly normally distributed. We denote
this model simply as UC.

In addition, we extend the distributional assumption by specifying skew-normal
distributions for the trend and cycle shocks. The skew-normal distribution has an
extra shape parameter compared to the normal distribution. It collapses to normal
distribution if the shape parameter is estimated to be zero.2 We call this UC model
with asymmetric shocks the UCSNmodel. Both models are estimated using Bayesian
methods, as detailed in “Appendix A.”3

2.1.2 BN decomposition

The BN (Beveridge and Nelson 1981) decomposition is another useful and general
approach for trend–cycle decomposition. Given a reduced form ARIMA model, the

1 Luo and Startz (2014) show that two breaks in the mean growth rate are not as likely as the one break
assumption with quarterly real GDP data ended at 2013:3, and the detrending results are fairly similar to
both assumptions if uncertainty in break dates is incorporated.
2 A random variable x follows a multivariate skew-normal distribution, SN (Ω̄, α), with density given by
fSN (x; Ω̄, α) = 2φ(x; Ω̄)Φ(α′x), where φ(x; Ω̄) is the pdf of the multivariate zero mean N (0,Ω) and
Φ(.) is the cdf of the univariate N (0, 1) distribution.
3 Methodology and priors are mostly consistent with Luo and Startz (2014). Results are based on 20,000
effective samples after saving one of every 10 draws in 300,000 MCMC simulation and discarding the first
100,000 as burn-in samples.
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BN trend is constructed according to the long-horizon conditional forecast of the time
series minus any deterministic drift. Following Morley et al. (2003), we specify an
ARIMA model for the quarterly growth rate of real GDP (Δyt ) as follows:

Φ(L)(Δyt − μ) = Ψ (L)et ,

where Φ(L) and Ψ (L) denote lag polynomials with all roots outside the unit circle.
The order of the lag polynomials is set to be 2. To account for the structural breaks in the
mean growth rate, we allow μ to break at 1973:1 and 2006:1 (Perron and Wada 2009;
Luo and Startz 2014). The model is cast into a state space form and estimated using
the maximum likelihood estimation, and the BN trend component can be constructed
based on the parameter estimates.

2.1.3 Neoclassical growth model

As for the neoclassical growthmodel,wefirst adopt the estimates providedby theCBO,
due to its popularity in the empirical literature. In addition, we estimate the potential
output based onCBO’smethod, but use the short-run unemployment rate instead of the
total unemployment rate, to capture cyclicality of any variable.4 We denote the latter as
CBO-SR. Use of the short-run unemployment rate is motivated by dramatic changes
in the composition of the total unemployed since the onset of the Great Recession: the
long-term unemployment rate had been stable at approximately 1% for six decades
but skyrocketed to 4% in 2010.5 As the long-term unemployment can possibly be
transformed into structural unemployment (Weidner and Williams 2011; Daly et al.
2012), the short-term unemployment rate may be a more representative indicator of
business cycles.6

2.1.4 Brief assessment of the different methods

Potential output conceptually exists but is unobserved. Hence a degree of subjective
judgment is usually needed as to what is a legitimate detrending method.

The methods we include are notably different in terms of prior views and assump-
tions. The HP filter is easy to apply but lacks consistency with some economic notions,
in that it assumes the output gap is simply white noise. Also, the choice of the smooth-
ing parameter is hard to justify in a transparent way. The BN approach allows the trend
component to be nonlinear. However, without parameter instability, it usually implies
small and noisy cycle components (Morley et al. 2003) that are inconsistent with eco-

4 TheCBO’smethod uses the unemployment gap—the difference between the total unemployment rate and
theNAIRU—as the key variable for obtaining the cyclical components of any variable, as the unemployment
gap usually moves up and down closely with the business cycle. See “Appendix B” for details.
5 The long-term unemployment is defined by the number of civilians unemployed for 27 weeks and longer.
6 Gordon (2013) also argues that the distinction between short-run and long-run unemployment may help
to solve the “case of the missing deflation” after 2008 if the downward pressure on wages and the inflation
rate comes mainly from the short-run unemployment.
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Fig. 2 The measures of the output gap. Estimates were obtained using the US quarterly real GDP from
1947:3 to 2013:3

nomic intuitions.7 By contrast, the UC approaches and production function methods
can be flexible in adapting a wide range of econometric assumptions and economic
relationships. Nonetheless, detrending results are somewhat sensitive to specifications.

Furthermore, revisions between real-time and ex-post estimates affects results dif-
ferently, depending on which of the various methods is used. It appears that the
two-sided filters (HP and UC) give a higher weight to the end of sample observa-
tions, which are likely to be significantly revised (Cotis et al. 2004). Therefore, their
estimates are likely to experience higher revisions than those produced by production
function approaches at the last points of the estimation.

We would like to emphasize that we choose the set of methods we use because they
are representative of the methods widely used in various literature. Cotis et al. (2004)
summarizes properties of a wide range of detrending devices based onwhat they called
“core requirements” or “user specific requirements,” corresponding to criteria that are
universally in consideration or only relevant when estimates of potential outputs and
output gaps are used for specific purposes. We refer interested readers to their paper
for an extensive discussion.

2.2 Comparing different potential output estimates

Figure 2 shows the six measures of the output gap considered in this paper for the
financial crisis of 2008.8 For the Great Recession, the CBO and the CBO-SR exhibit
the first and second deepest troughs. In other words, they suggest the least potential
output loss during this period. The CBO estimate still exhibits a large negative gap
until the end of our samples, four years after the Great Recession ended, about 4%
below trend. However, all the other measures suggest that the output gap has been
closed despite slightly different historical estimates.

7 It is not the case in our estimation as we consider structural breaks in trend growth rates.
8 Data are publicly available from FRED. Parameter estimates of all models are available by request.
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The retrospective analysis points out that the potential output may have declined
after the Great Recession. That is, a substantial proportion of the output loss can be
considered as permanent or long term. Nonetheless, uncertainty remains as to which
measure fits the data best. In the next section, we will account for this issue through the
model averaging. Existing literature has suggested that the prolonged recession and
subsequent slow recovery could have damaged the long-term capacity of the economy,
as well as lowered the potential output through, e.g., less investment (Reifschneider
et al. 2013) and R&D activities (Ouyang 2011 and Haltmaier 2012). Bullard (2012)
argues that the economy was disrupted by a permanent, one-time shock to wealth,
which lowered consumption and output. In fact, the long-term damages to the potential
output of the US economy after the Great Recession have been found in many studies,
e.g., Bijapur (2012), Furceri and Mourougane (2012), Benati (2012), Reifschneider
et al. (2013), Ball (2014) and Fernald (2014). Furthermore, the lack of a period of
temporary high-speed growth following the end of a recession (Ng and Wright 2013)
also implies there could be some extent of long-term declines in the real output, at
least to some extent.

3 Inflation dynamics after the great recession

The financial crisis, which wiped out people’s wealth, forced households to reduce
consumption and weakened corporations’ abilities to invest. This can account for a
decrease in aggregate demand and also create deflationary pressure. On the other
hand, the deflationary pressure will be mitigated if there are long-term damages to the
potential output, which suppress the output gap and possibly lead to mild inflation, as
observed after the Great Recession. The analysis in the previous section indicates that
a great proportion of the real output fluctuations after the Great Recession is likely
attributed to the potential output movements. In this section, we investigate its impli-
cation on US inflation dynamics in the post-crisis era, through the lens of the Phillips
curve.

3.1 The missing deflation and permanent output loss

Ball and Mazumder (2011) examine US inflation dynamics, with particular emphasis
on the Great Recession, using an accelerationist Phillips curve as follows:

πt = πe
t + αyt + et , (4)

where πt is the annualized quarterly inflation of CPI, πe
t is the expected inflation,

and yt is the measure of economic slack, which is measured by the output gap in
this paper. We start with following Ball and Mazumder (2011) and assuming purely
backward-looking expectations, i.e., πe = 0.25

∑4
j=1 πt− j . Ball and Mazumder

(2011)’s exercise, with the most recent data set, is as follows: we estimate Phillips
curves (4) using the pre-crisis sample from 1981:3 to 2007:4 by ordinary least square
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Fig. 3 The dynamic simulation of the CPI, based on the CBO output gap

and conduct dynamic simulations for the 2008–2013period.9 The output gap to capture
inflationary pressure is measured by the CBO output gap as in their paper.

Figure 3 illustrates the updatedmissing deflation puzzle. The dashed line represents
the predicted inflation, which falls to a negative level according to the Phillips curve.
However, the actual inflation rate has been consistently positive since the recession
ended. Current explanations for the missing deflation have been focusing on a higher
expectation of inflation (e.g., Coibion and Gorodnichenko 2015), instability of the
slope coefficient (e.g.,Matheson andStavrev 2013;Murphy 2014) and awell-anchored
inflation expectation (e.g., Ball and Mazumder 2011).

We provide an alternative point of view as follows: instead of being a “problem” that
needs to be solved, the missing deflation may, in point of fact, contain valuable infor-
mation about the potential output in recent years. As shown in Fig. 3, the negative CBO
output gap has persisted long after the end of the Great Recession. As the results, the
Phillips curve predicts a continuously declining inflation. Since the output gapmay not
be as large as what the CBO reports, given the evidence provided in Sect. 2, this “miss-
ing deflation”may reflect an under-estimated permanent effect of the Great Recession.

To support our point of view, we re-estimate model (4) above with all output gap
measures reported in Sect. 2. To reduce the effect of the supply side, we also apply our
analysis to core CPI. The empirical results are presented in Table 1. All estimates based
on different measures of the output gap are reasonable; however, their implications for
the post-2008 inflation are heterogeneous. Figure 4 shows that, apart from the CBO
gapwhich predicts deflation in the post-crisis period, the other five output gaps suggest
a mild inflation rate, ranging from 0 to 4%, at the end of 2013.

To account for the uncertainty associated with the measures of the output gap, we
take an average of the dynamic simulations weighted across different output gaps as
the following:

9 There are two reasons for using data from 1981: first, we will incorporate the SPF inflation forecast,
which is only available since 1981, as a proxy for forward-looking expectation. Secondly, the inflation
dynamics in this sample period has been relatively stable than that in 1970s, so parameter instability is not
a major concern. The empirical results are similar using sample starting from 1985.
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Table 1 Estimated slope of the pure backward-looking Phillips curve

Output gap CBO HP UC UCSN BN CBO-SR

Inflation rate based on CPI

α 0.2204 0.4082 0.2974 0.2208 0.2383 0.1929

(0.0824) (0.1407) (0.1133) (0.1112) (0.0840) (0.0753)

LLK −201.8007 −201.2341 −202.2751 −204.4210 −201.4158 −201.8902

Weight 0.1712 0.3017 0.1065 0.0125 0.2516 0.1565

Inflation rate based on core CPI

α 0.2240 0.4238 0.2920 0.2095 0.2197 0.1912

(0.0810) (0.1405) (0.1161) (0.1131) (0.0897) (0.0742)

LLK −146.3124 −143.8000 −148.6730 −154.6417 −148.2838 −147.3767

Weight 0.0719 0.8865 0.0068 0.0000 0.0100 0.0248

Model: πt = 0.25
∑4

i=1 πt−i + αyt + εt , εt ∼ N (0, σ 2). The Newey–West robust standard errors are in
parentheses. LLK stands for log likelihood. The estimation sample is from 1981:3 to 2007:4
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Fig. 4 The dynamic simulations on inflation with the backward-looking Phillips curve based on estimates
reported in Table 1

τt =
6∑

j=1

w jτ j,t , for t ≥ 2008.

The weight, w j , is constructed according to

w j = exp(BIC j )
∑6

j=1 exp(BIC j )
,

where BIC is the Bayesian information criteria (BIC) defined as LLK − 0.5k ln(T ),
LLK is the log likelihood, k is the number of regressors, and T is the sample size.10

10 The model averaging technique we adopt has been used in many studies. See, for example, Gar-
ratt et al. (2008) and Morley and Piger (2012). One can also follow Garratt et al. (2014) for a more
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Fig. 5 The model-averaged dynamic simulations on inflation with the backward-looking Phillips curve

Table 1 reports the weight for each model. The highest weight, 0.3017, is assigned
to the HP gap for the CPI inflation, but the weights for other gap measures are not
negligible. The CBO gap is assigned a weight of 0.1712, considerable but not dom-
inating. As a result, the weighted average of the simulated inflation shown in Fig. 5
shifts toward the positive range. The model-averaged simulation indicates moderate
and positive inflation for most of the simulation period, which is in sharp contrast
to the simulation based on the CBO output gap. Results and point estimates in the
Phillips curve are similar for the core CPI inflation. The model-averaged simulated
inflation is brought upward to be mostly around zero, rather than being negative. Over
88% of the model weight, as reported in Table 1, is given to the HP gap, while the
other gaps play relatively minor roles.

3.2 Incorporating forward-looking inflation expectation

Despite the remarkable improvement in the Phillips curve prediction through consider-
ing permanent output loss, the performance of the pure backward-looking Phillip curve
(4) is not fully satisfactory: it predicts near-zero inflation, which is not consistent with
the mild inflation after 2011. One possible reason is that the simple backward-looking
inflation expectation does not capture the expectations of producers well enough. We
now examine the Phillips curve incorporating both forward- and backward-looking
inflation expectation as follows.

πt = θπ F
t + (1 − θ)π L

t + αyt + et , (5)

Footnote 10 continued
sophisticated averaging technique where weights are based on the ability of each specification to provide
accurate probabilistic forecasts of inflation.
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Table 2 Estimated coefficients of the forward-looking Phillips curve

Output gap CBO HP UC UCSN BN CBO-SR

Inflation rate based on CPI

θ 0.8881 0.8695 0.9577 0.9159 0.8818 0.9133

(0.1057) (0.1075) (0.0993) (0.1289) (0.1028) (0.1085)

α 0.2106 0.3710 0.3423 0.2347 0.2244 0.1981

(0.0419) (0.1048) (0.0569) (0.0987) (0.0463) (0.0366)

LLK −186.0679 −186.1239 −183.8150 −188.4587 −185.8229 −185.1147

Weight 0.0648 0.0613 0.6169 0.0059 0.0828 0.1682

Inflation rate based on core CPI

θ 0.6624 0.6426 0.6976 0.7735 0.6912 0.6784

(0.1534) (0.1359) (0.1404) (0.1329) (0.1402) (0.1513)

α 0.1148 0.2654 0.1581 0.1110 0.1056 0.0912

(0.0625) (0.1051) (0.0762) (0.0739) (0.0644) (0.0575)

LLK −133.8145 −130.0877 −133.5717 −135.4023 −134.6447 −134.6173

Weight 0.0223 0.9251 0.0284 0.0046 0.0097 0.0100

Model: πt = θπ F
t + (1 − θ)π L

t + αyt + εt , εt ∼ N (0, σ 2). π L
t = 0.25

∑4
i=1 πt−i . The Newey–West

robust standard errors are in parentheses. LLK stands for log likelihood. The estimation sample is from
1981:3 to 2007:4

where π F
t is the forward-looking expectation term and π L

t = ∑4
i=1 πt−i/4 is a

backward-looking expectation. If θ = 0, the model collapses to the simple model
used by Ball and Mazumder (2011).

We use the SPF forecasts of the CPI inflation as a proxy for π F
t in both analyses

with the CPI and the core CPI inflation.11 Table 2 reports the estimates of the Phillips
curve (5), and Fig. 6 reports the results from the dynamic simulations.

Our results are consistent with the existing literature, in that the forward-looking
inflation expectation plays an important role. The estimated θ is around 0.9 for CPI
inflation and around 0.7 for core CPI inflation. However, although greatly improved,
the Phillips curve based on the CBO gaps still fails to capture the inflation dynamics
for most of the post-Great Recession period: it predicts 0–0.5% inflation rates, which
are mostly below the observed numbers (Fig. 7).

On the other hand, the Phillips curve based on other gap measures performs reason-
ably well in comparison. The predicted inflation rates lie mostly between 1 and 2%.
As well, we observe notice that the differences among the predictions with different
output gaps are not as dramatic as those with the backward-looking Phillips curve.
This result is not surprising, considering the dominating role of the forward-looking
component and the stable SPF inflation forecast after the Great Recession.

As in Table 2, themajormodel weight shifts toward to theUC gapwith CPI inflation
and to the HP gap with core CPI inflation, while the weight assigned to the CBO’s

11 The SPF forecasts of the core CPI inflation are not available until 2007.
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Fig. 7 The model-averaged dynamic simulations on inflation with forward-looking inflation expectation

gap is below 10% in both cases. Therefore, our model-averaged prediction follows the
actual data quite closely.

3.3 Wage inflation dynamics

In this subsection, we investigate whether there is missing wage deflation and, if there
is, how potential output variations explain wage inflation dynamics. A wage Phillips
curve connectswage inflation tounemployment gap, andweadopt the same structure as
(4). Themeasure ofwages is based on earnings data for production and nonsupervisory
workers from the Establishment Survey. We obtain measures of unemployment gap
corresponding to our measures of the output gap through a gap version of Oknu’s
law: ut = −0.5yt , which comes from a general finding that for every 1% increase in
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Table 3 Estimated slope of the pure backward-looking wage Phillips curve

Output gap CBO HP UC UCSN BN CBO-SR

Inflation rate based on CPI

α −0.0868 −0.1023 −0.1037 −0.0636 −0.0876 −0.0763

(0.0390) (0.0728) (0.0493) (0.0360) (0.0393) (0.0362)

LLK −262.9597 −264.7572 −263.6507 −264.8204 −263.3386 −263.2239

Weight 0.3054 0.0506 0.1530 0.0475 0.2091 0.2345

Model: πw
t = 0.25

∑4
i=1 πw

t−i + αut + εt , εt ∼ N (0, σ 2). The Newey–West robust standard errors are in
parentheses. LLK stands for log likelihood. Estimation sample is 1964:1 to 2007:4

the unemployment gap, the US GDP will be roughly an additional 2% lower than its
potential GDP. The estimation sample spans from 1964:1 to 2013:3.

First, we find that there is missing wage deflation. Figure 8 indicates that simu-
lated wage inflation according to the CBO gaps is far below the actual observations.
Consistent with our previous results, other gap measures do not imply deflation. Note
that the CBO-SR gaps perform very well in explaining wage inflation. Second, we
find that wage inflation dynamics are not puzzling if we account for permanent output
variations properly. According to Table 3, more weights are put on the CBO gap, com-
pared to estimation results from the price Phillips curve, but about 70% of the model
weight is placed on other gap measures. Therefore, the model-averaged simulation
shown in Table 3 closely captures the wage inflation dynamics.

4 Conclusion

Our empirical results suggest that the seemingly broken Phillips curve relationship
after the Great Recession may be recovered to a great extent if we take permanent
output losses into account. We have applied several popular detrending methods to
estimate the output gap and found that a large portion of the declines in the real GDP
during the Great Recession seems to be permanent. As a result, the Phillips curve with
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all measures of the output gap, except the CBO’s estimates, predicts mild inflation.
A likelihood-based model averaging has been used to account for model uncertainty
associated with the choice of detrending method. Finally, we have shown that the
model-averaged prediction is largely in line with the observed data.

Given the complicated nature of the economy after the Great Recession, the puz-
zling post-crisis inflation dynamics may well result from more than one factor. We
have shown that well-anchored inflation expectations truly dowork to improve Phillips
curve prediction substantially; nonetheless the potential output variations play an
important role in explaining the post-crisis inflation dynamics.

Acknowledgements Thanks to Robert M. Kunst and two anonymous referees for their general advice and
Dick Startz for helpful comments.

Appendices

A Bayesian inference of the UC model

A.1 Normal innovations

The model containing (1)–(3) can be rewritten into state space form:

yt = [
1 1 0

]
xt (A.1)

xt =
⎡

⎣
μ

0
0

⎤

⎦ +
⎡

⎣
d
0
0

⎤

⎦ 1(t > Tb) +
⎡

⎣
1 0 0
0 φ1 φ2
0 1 0

⎤

⎦ xt−1 +
⎡

⎣
1 0
0 1
0 0

⎤

⎦
[

ηt
εt

]

(A.2)

where xt = [τt , ct , ct−1]′.
In order to ensure that the estimated covariance matrix is positive semi-definite, we

decompose the covariance matrix in the following way:

[
σ 2

η ρσησε

ρσησε σ 2
ε

]

=
[
1 0
b 1

] [
σ 2
1 0
0 σ 2

2

] [
1 b
0 1

]

(A.3)

and directly estimate {σ1, σ2, b} instead of the covariance matrix parameters{
ση, σε, ρ

}
. The posterior samples for the covariance parameters are obtained through

transformation.
Independent proper priors are specified for all parameters. σ 2

1 and σ 2
2 are assumed

to have independent inverse gamma priors IG(100, 0.5)12. These priors are diffuse

12 We follow Koop (2003) for the definition of inverse gamma (IG) distribution. If x > 0 follows inverse
gamma distribution IG(s−2, ν), the probability density function of x is defined as:

f (x; s−2, ν) =
(
2s−2

ν

)− ν
2 1

Γ
(
ν
2
) x− ν

2−1exp

(

− ν

2s−2x

)

where Γ (·) is the gamma function.
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and do not have finite moments. Therefore, a heavy weight will be put on sample
information.We assume somewhat informative normal priors forφ1+φ2 ∼ N (0.5, 1),
φ2 ∼ N (−0.5, 1) and b ∼ N (0, 1). Imposing truncations for μ ∈ [0, 2] and d ∈
[−1, 1],13 the uniform priors for μ and d are over the truncated areas giving truncated
normal posteriors accordingly. While the above priors are broadly consistent with
estimates from the literature, our estimation results are robust to more diffuse priors.14

Lastly, a flat proper prior is assumed for Tb such that all dates from 1947:1 to 2013:2
have equal probability to be the break date in the mean growth rate. Therefore, the
joint prior density is the product of all the above marginal prior densities.

Gibbs sampling approach is used to draw posterior samples for parameters includ-
ing the break date. Sampling the joint posterior distribution of parameters can be
conducted by sequential sampling from the conditional distributions. Details on the
Gibbs sampling are summarized as follows:

Define θ = [μ, φ1, φ2, ση, σε, ρ, d]. Let (·)(k) denote the kth posterior draw of the
latent variable xt or the parameters. Y denotes all the observed quarterly log real GDP
{y1, y2, . . .yT }. The kth step in our Gibbs sampler involves the following blocks:

– Draw
{
x (k)
t : t = 1, . . .T

}
∼ f (x1, . . .xT |Y, θ(k−1), Tb(k−1)) obtained from the

simulation smoother developed by Durbin and Koopman (2002). We then obtain
τ

(k)
t and c(k)

t as the first two elements in x (k)
t , as well as the residual terms [η̂t , ε̂t ]′.

– Draw
[
φ

(k)
1 , φ

(k)
2

]
∼ f (φ1, φ2|Y, x (k)

t , σ
(k−1)
ε ) given that the second row in (A.2)

has the following regression form:

ct = [
ct−1 ct−2

]
[

φ1
φ2

]

+ εt (A.4)

Stack (A.4) by time, we have

Yc = CΦ + ε

where Yc =
{
c(k)
3 , . . ., c(k)

T

}′
, ε = {ε3, . . ., εT }′ i.i.d.∼ N (0, 1/hε) with hε =

(σ
(k−1)
ε )−2, Φ = {φ1 + φ2, φ2}′ and

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c2 c1 − c2
...

ct−1 ct−2 − ct−1
...

cT−1 cT−2 − cT−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

13 Such truncation is assumed to avoid unreasonable draws forμ and d. As noted in de Pooter et al. (2008),
μ and d are nearly unidentified when the samples of φ1 and φ2 get very close to the nonstationary region.
In this case, arbitrary real values for μ and d can be drawn and cause the Gibbs sampler to have difficulty
in moving away from the nonstationary region.
14 As robustness check, setting the variance for the normal priors to be 10 and priors for σ 2

1 and σ 2
2 to be

IG(100, 0.1) gives similar results.
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Given multivariate normal prior N (Φ0, VΦ0) for Φ, the posterior distribution fol-
lows a multivariate normal distribution N (Φ̃, ṼΦ), where

ṼΦ =
(
V−1

Φ0 + hεC
′C

)−1
(A.5)

Φ̃ = ṼΦ

(
V−1

Φ0 Φ0 + hεC
′Yc

)
(A.6)

The posterior samples for
[
φ

(k)
1 , φ

(k)
2

]
must guarantee the stationarity of the pro-

cess. Therefore, we discard nonstationary draws and regenerate new ones until
they meet the stationary requirement.

– Draw
[
μ(k), d(k)

] ∼ f (μ, d|Y, x (k)
t , σ

(k−1)
η ) given the regression in the first row

of (A.2):

τt − τt−1 = [
1 1(t > Tb)

]
[

μ

d

]

+ ηt (A.7)

Stack (A.7) by time, we have

Yτ = D

[
μ

d

]

+ η

where Yτ =
{
τ

(k)
2 − τ

(k)
1 , . . ., τ

(k)
T − τ

(k)
T−1

}′
, η = {η2, . . ., ηT }′ i.i.d.∼ N (0, 1/hη)

with hη = (σ
(k−1)
η )−2 and

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
...

...

1 1(t > Tb)
...

...

1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Given uniform priors μ ∼ [0, 2] and d ∼ [−1, 1], the posterior distribution
follows a truncated multivariate normal distribution. It is equivalent to sampling
the posterior from N (M̃, ṼM ) and discard the samples out of the valid region,
where

ṼM = (hηD
′D)−1 (A.8)

M̃ = hη ṼM D′Yτ (A.9)

– Draw
[
σ

(k)
1 , σ

(k)
2

]
∼ f (σ1, σ2|Y, x (k)

t , μ(k), d(k), φ
(k)
1 , φ

(k)
2 , b(k−1)). Define η∗

t =
ηt ∼ N (0, σ 2

1 ) and ε∗
t = −bηt + εt ∼ N (0, σ 2

2 ), and we have the following:
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B−1
[

η̂t
ε̂t

]

=
[

η̂t
−bη̂t + ε̂t

]

=
[

η̂∗
t

ε̂∗
t

]

∼ N

([
0
0

]

,

[
σ 2
1 0
0 σ 2

2

])

(A.10)

where

B =
[
1 0
b 1

]

According to (A.10),

[
η∗
t

ε∗
t

]

∼ N

([
0
0

]

,

[
σ 2
1 0
0 σ 2

2

])

(A.11)

We assume independent priors for h−1
i = σ 2

i ∼ IG(s−2
i0 , νi0) with i = 1, 2. It is

equivalent to assume a Gamma prior G(s−2
i0 , νi0) for hi . The posterior of hi , in

this case, is G(s̃−2
i , ν̃i ), where for i = 1, 2

ν̃i = T + νi0 (A.12)

s̃21 = η∗′
η∗ + ν10s210

ν̃1
(A.13)

s̃22 = ε∗′
ε∗ + ν20s220

ν̃2
(A.14)

η∗ =
[
η

∗(k)
1 , . . ., η

∗(k)
T

]′
(A.15)

ε∗ =
[
ε
∗(k)
1 , . . ., ε

∗(k)
T

]′
(A.16)

– Draw b(k) ∼ f (b|Y, x (k)
t , μ(k), d(k), φ

(k)
1 , φ

(k)
2 , σ

(k)
2 ). Given the second row in

(A.10), we have a standard regression to sample b:

ε̂t = η̂t b + ε∗
t (A.17)

where ε∗
t ∼ N (0, σ 2

2 ).

Stack (A.17) by time, we have

ε̂ = Eb + e∗

where ε̂ =
{
ε̂
(k)
1 , . . ., ε̂

(k)
T

}′
, E =

{
η̂

(k)
1 , . . ., η̂

(k)
T

}′
and e∗ = {

ε∗
1 , . . ., ε

∗
T

}′ i.i.d.∼
N (0, 1/hs2) with hs2 = (σ

(k)
2 )−2. η̂(k)

t and ε̂
(k)
t are residuals in the first two rows

in (A.2).

Given normal prior N (b0, Vb0) for b, the posterior distribution follows a normal
distribution N (b̃, Ṽb), where
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Ṽb =
(
V−1
b0 + hs2E

′E
)−1

(A.18)

b̃ = Ṽb
(
V−1
b0 b0 + hs2E

′ε̂
)

(A.19)

– Draw Tb(k) ∼ f (Tb|Y, θ(k)). According to Wang and Zivot (2000), given the flat
proper prior assumed for Tb,

f (Tb|Y, θ) = f (Y |Tb, θ) f (Tb|θ)

f (Y |θ)

∝ f (Y |Tb, θ) f (Tb)

∝ f (Y |Tb, θ) (A.20)

According to (A.20), we can draw Tb from a multinomial distribution where
f (Tb|Y, θ) = f (Y |Tb,θ)

∑T−1
t=1 f (Y |Tb=t,θ)

A.2 Skew-normal innovations

A linear Gaussian state space model:

yt = Hβt + ωε∗
t , ε∗

t ∼ N (0, Ω̄m) (A.21)

βt = Fβt−1 + ση∗
t η∗

t ∼ N (0, Ω̄s) (A.22)

where ω = diag(ω1, . . . , ωd) and σ = diag(σ1, . . . , σr ). In what follows, matrix with
upper bar represents a correlation matrix. A linear skew-normal state space model
deviates the Gaussian one by assuming that

ε∗
t ∼ SN (Ω̄m, αm), and (A.23)

η∗
t ∼ SN (Ω̄s, αs). (A.24)

Note that a random variable x follows a multivariate skew-normal distribution,
SN (Ω̄, α), with density given by

fSN (x; Ω̄, α) = 2φ(x; Ω̄)Φ(α′x), (A.25)

where φ(x; Ω̄) is the pdf of the multivariate zero mean N (0,Ω) abd Φ(.) is the cdf
of the univariate N (0, 1) distribution.

In our Bayesian analysis, we use the following stochastic representation of the
multivariate skew-normal distribution.

ε∗
t = δm Zm + D(δm)U∗

m, (A.26)

η∗
t = δs Zs + D(δs)U

∗
s , (A.27)
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where δ = [δ1, δ2, . . .]′ and D(δ) = √
I − diag(δ)2. The random variable Z follows

a half normal N+(0, 1) and U a normal N (0, Ψ̄ ). Note that there is a 1-to-1 relation
between (Ω̄, α) and (δ, Ψ̄ ):

Ω̄ = D(δ)(Ψ̄ + λλ′)D(δ), (A.28)

α = (1 + λ′Ψ̄ −1λ)−0.5D(δ)−1Ψ̄ −1λ, (A.29)

where λ = D(δ)−1δ.
The scaled error terms thus have the following distributions:

εt ≡ ωε∗
t ∼ SN (Ωm, αm), Ωm = ωΩ̄mω, (A.30)

ηt ≡ ση∗
t ∼ SN (Ωs, αs), Ωs = σ Ω̄sσ . (A.31)

The corresponding stochastic representation is as follows:

εt = ωδm Zm + ωD(δm)U∗
m ≡ θm Zm +Um, Um ∼ N (0,Σm) (A.32)

ηt = σ δs Zs + σD(δs)U
∗
s ≡ θs Zs +Us, Us ∼ N (0,Σs). (A.33)

The only difficulty comes from the non-Gaussian term Z = [Zm, Zs]. Conditional
on Z , however, the model reduced to the following standard linear Gaussian state
space model:

yt − θm Zm,t = Hβt +Um,t , Um,t ∼ N (0,Σm) (A.34)

βt = θs Zs,t + Fβt−1 +Us,t Us,t ∼ N (0,Σs). (A.35)

The FFBS can be used to draw samples from conditional distribution of βT . Therefore,
the Gibbs sampler will be completed by drawing sample from conditional distribution
of Z given εT and ηT . Note that yt − Hβt = εt and βt − Fβt−1 = ηt .

Take Zm as example. Conditional on εT and other parameters,

p(Zm,t |εt , ·) ∝ p(εt |Zm,t , ·)p(Zm,t |·)
∝ exp

(
−0.5(εt − θm Zm,t )

′Σ−1
m (εt − θm Zm,t )

)

× exp
(
−0.5Z2

m,t

)
I (Zm,t > 0)

∝ exp
(
−0.5

[
Z2
m,t

(
θ ′
mΣ−1

m θm + 1
)

− 2Zm,tθ
′
mΣ−1

m εt

])
I (Zm,t > 0)

Therefore, completing the square leads to the conditional distribution as follows:

Zm,t |εt , · ∼ N+(at , A), where

at = Aθ ′
mΣ−1

m εt , A =
(
θ ′
mΣ−1

m θm + 1
)−1

.
(A.36)
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Conditional on Z and other blocks, we have the following regression system:

⎡

⎢
⎣

ε1,t
...

εd,t

⎤

⎥
⎦ =

⎡

⎢
⎣

θm,1
...

θm,d

⎤

⎥
⎦ Zm,t +Um . (A.37)

Drawing θm and Σm can be done easily.

B Estimates of the output gap using CBO’s method

The CBO estimates the potential output based on a neoclassical growth model, in
which the output is determined by the production function as follows:

ln(Y ) = 0.7 ln(L) + 0.3 ln(K ) + ln(TFP) + C, (B.1)

where L represents hours worked, K is capital input, TFP is total factor productivity,
and C is a constant. The potential output, denoted by Y ∗, is then computed by

ln(Y ∗) = 0.7 ln(L∗) + 0.3 ln(K ) + ln(TFP∗) + C, (B.2)

where L∗ and TFP∗ are potential level of hour worked and total factor productivity.
The key device used by the CBO to obtain the potential level of a variable X is a

cyclical adjustment equation as follows:

ln(X) = α(U −U∗) + ft (β) + ε, (B.3)

ft (β) is a linear function of time which breaks at the peak in the business cycle.15

U is the unemployment rate, and U∗ is the CBO’s estimates of the natural rate of
unemployment. Equation (B.3) can be estimated consistently using the ordinary least
squares for all variables needed to construct CBO’s potential output estimates.

The new potential output can be written as

ŷ = ŷnf + ŷother.

where ynf is the potential output in the nonfarm business sector, and yother is the real
output in other sector. CBO estimates ynf using a neoclassical growth model, but
using the cyclical adjustment Eq. (B.3) to obtain yother due to data availability. We
take an approximation of the above equation around the CBO’s estimate, denoted by
superscript ∗, as follows:

ln(ŷ) − ln(y∗) ≈ y∗
nf

y∗
ŷnf − y∗

nf

y∗
nf

+ y∗
other

y∗
ŷother − y∗

other

y∗
other

15 Thus, there are as many break points as the number of recessions after 1950.
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≈ wnf
(
ln(ŷnf) − ln

(
y∗
nf

)) + wother
(
ln

(
ŷother

) − ln
(
y∗
other

))
. (B.4)

Thus, we only need to compute the two term on the right-hand side; then, we can
obtain the potential output ln(ŷ). Note that

ln
(
y∗
nf

) = 0.7 ln
(
L∗
nf

) + 0.3 ln(Knf) + ln
(
TFP∗

nf

) + C

⇒ (
ln

(
ŷnf

) − ln
(
y∗
nf

)) = 0.7
(
ln(L̂nf) − ln

(
L∗
nf

))

+
(
ln( ˆTFPnf) − ln

(
TFP∗

nf

))

The variables with ˆ are obtained using cyclical adjustment Eq. (B.3) with the short-
run unemployment rate, while those with ∗ are using Eq. (B.3) with total unemploy-
ment rate. The total factor productivity of the nonfarm business sector is obtained from
Fernald (2012). For the other sector, we obtain the real output in other sector by sub-
tracting real output in the nonfarmbusiness sector from the total real output. The poten-
tial output in the other sector is thus constructed using cyclical adjustment Eq. (B.3).

We are confronted with a minor difficulty while using cyclical adjustment Eq. (B.3)
with the short-run unemployment rate. The natural rate of the short-run unemployment
is not available and needed to be estimated. Let ps be the samplemean of the proportion
of the short-run unemployment in the total unemployment, which is 0.8331 in our
sample. We obtain the estimates of the natural rate of the short-run unemployment by
ps ×U∗, where U∗ is the CBO’s estimates of the natural rate of unemployment.

C Measures of the output gaps from 1947:3 to 2013:3

Figure 9 shows the estimated output gap from 1947:3 to 2013:3.
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Fig. 9 Measures of the output gap
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