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Abstract Theoretical models suggest monetary policy is transmitted to commodity
prices. We quantify this channel using several empirical methods under daily data. In
early 2009, the US real interest rate became negative, with sample mean varying from
1.75% (in the mid-1997 to January 28, 2009, subsample) to −1.50% (in January 29,
2009, to mid-September 2013 subsample). Gold displays higher risk-adjusted returns
earlier, while copper and oil have higher risk-adjusted returns more recently. Shocks
to the exchange rate and the real interest rate in VARs explain almost 30% for oil
and 32% for copper more recently when impulse responses are more significant. The
time-varying correlation of oil with the real interest rate in the more recent period is
−0.462, and its correlation with the exchange rate is−0.460, compared to−0.089 and
−0.120, respectively, in the earlier period. Vine copula methods identify a dependence
pattern of C-vine copula with t-copula in almost every pair among commodity prices,
the real value of the US dollar and the US real interest rate.
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1 Introduction

Commodity prices, monetary policy and exchange rates are all related to each other.
For example, when the US Federal Reserve raises interest rates, the US dollar tends
to become stronger and commodity prices get weaker. On the other hand, a sell-off
in commodities markets may drive investors into currencies often deemed less risky
investments, such as the Euro, Swiss franc and Japanese yen, thus making dollar
lower. It is interesting to model dynamic linkages among all of the three markets
and identify the dependence structure across them, which can help investors optimize
portfolio diversification. A vast literature links commodity prices to monetary policy,
and another links commodity prices to exchange rates. This paper connects these
two literatures from the perspective of daily returns of commodity prices (oil, gold,
copper, and cotton), the real value of the US dollar against major currencies, and
the US real interest rate, defined as the difference between the nominal short-term
interest rate (the Federal Funds target rate) and expected inflation. The time span runs
from mid-1997 (when data on 5-year Treasury Inflation Protected Securities became
available) to September 2013. Due to the magnitude of the most recent (2008–2009)
US recession, we break the sample into two periods in order to illustrate the recent
accommodative monetary policy in the USA, as well as to quantify the commonly
mentioned time-varying correlation properties associated with asset returns.

This research connects the commodity price run-up in the 2000s to US recent
monetary policy. Berthelsen (2013) summarizes some of the financial links as follows:
“…Commodity prices as a group nearly doubled between 1998 and 2008 as measured
by theDowJones-UBSCommodity Index,with some index components such as oil and
gold rising as much as sevenfold during that time and leading to talk of a commodities
“supercycle” among analysts and strategists. But prices never regained their peak after
the 2008 financial crisis, and have been drifting down since mid-2011. The trend has
worsened this year, leading investors and analysts to call the end of the supercycle.
The index slid 10.5% in the first half of the year, with raw materials dearest to China’s
growth—industrial metals such as copper, aluminum and nickel—posting declines of
as much as 20%.”

Commodity prices are also related to other markets, such as stocks. Kilian and
Park (2009) estimate recursive models with shocks to oil production, real economic
activity, real oil prices and stock returns. They identify the fundamental supply and
demand shocks underlying the innovations to the real price of oil and show that these
shocks explain one-fifth of the long-run variation in US real stock returns. These
shocks can be related to the real interest rate and to the exchange rate since the rate
of change of currency is associated with nominal interest rate differentials and rising
inflation (affected by oil prices) lowers real returns. Also, in equity markets wealth
effects become important and not only stock returns reflect expected (discounted) cash
flows but they may have an impact on the real economy and then on the market for
internationally traded commodities. The dynamic correlations between stock markets
and 25 commodities prices are examined in Creti et al. (2013). Using DCC-GARCH
methodology, the authors show that the dynamic correlations between commodity
and stock markets are very volatile, especially during the 2007–2009 financial cri-
sis. Byrne et al. (2013) investigate the relationship between commodity prices and
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macroeconomic fundamentals as well as the relationship between commodity prices
and risk, proxy for stock market uncertainty. The paper concludes that looser mone-
tary policy may lead to higher commodity prices. In addition, Sadorsky (2014) uses
VARMA-AGARCH and DCC-AGARCH methods to model volatilities and condi-
tional correlations between emerging market stock prices, copper prices, oil prices
and wheat prices, and Arouri et al. (2015) apply VAR-GARCH framework to explor-
ing both return and volatility spillovers between gold prices and stock market in China
over the period from March 22, 2004, through March 31, 2011.

Several theoretical frameworks link real interest rates to commodity prices. Byrne
et al. (2013) review the literature on bond returns and commodity prices, as well as
the role of uncertainty. Using annual data from 1901 to 2008, they document that real
interest rates and uncertainty are both found to be negatively related to a common
factor. Other works with long time spans for commodity research include Mollick
et al. (2008), Harvey et al. (2010) and Enders and Holt (2012), who invariably address
the long-term decline in commodity prices (the Prebisch–Singer hypothesis). Using
shorter time spans, empirical work has documented the relations between commodity
prices and real interest rates under vector autoregressions (VARs) as well. Akram
(2009) finds that oil prices increase with negative movements in US real interest rates
in his quarterly VAR model from 1990:1 to 2007:4 with OECD industrial production,
real interest rates, effective real exchange rate and the real price of oil. In particular,
shocks to real interest rates account for more than 20% of the forecast error variance in
oil prices, and real exchange rate fluctuations account for a little lower than 20%.Arora
and Tanner (2013) revisit this for monthly frequency VARs from 1975:1 to 2012:5
and conclude that the response of oil prices to real interest rates is consistent with
the storage reasoning, with oil prices becoming more responsive to real interest rates
after 2000. By estimating a model of the prices of oil and other storable commodities,
Frankel (2014) finds a negative effect of interest rates on the demand for inventories
and therefore on commodity prices and positive effects of expected future price gains
on inventory demand and therefore on today’s commodity prices.

There are two main reasons for the negative relationship between dollar prices
of commodities and the value of the dollar: (1) Commodities are usually priced in
dollars. When the value of dollar depreciates, it will take more dollars to buy the
same amount of a commodity as before the depreciation; and (2) the depreciation of
the value of the dollar against other currencies will create a purchasing power and
commodity demand for foreign investors. This will eventually promote the dollar
prices of commodities. With respect to oil and exchange rates, co-integration methods
in Lizardo and Mollick (2010) suggest that increases in real oil prices lead to stronger
currencies of net oil exporters (Canada, Mexico or Russia) and weaker currencies of
net importers, such as Japan, with monthly data starting in the mid-1970s to 2007:12.
Sari et al. (2010) examine oil, precious metals and the U.S. dollar/euro exchange rate
in VARs and report weak linkages between changes in exchange rates and oil price
returns with daily data from January 1999 to October 2007. Beckmann and Czudaj
(2013) use monthly data from January 1974 to November 2011 and find co-integrating
relationships between oil prices and the real broad index (USD vs. 26 currencies)
and with the major index (USD vs. 7 major currencies). Their results are generally
consistent with USD depreciation coinciding with increases in oil prices, with mixed
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results found when the interest rate is included in the long-run model. Employing
copula methods, Reboredo (2012) presents evidence of oil prices and exchange rate
dependence being weak, to rise only in the aftermath of the global financial crisis.
Aloui et al. (2013) study the conditional dependence structure between crude oil
prices and US dollar exchange rates using a copula-GARCH approach. They find
evidence of significant and symmetric dependence for almost all the oil–exchange
rate pairs considered over the 2000–2011 period. Choudhria and Schembrib (2014)
examine the Canada–US real exchange rate since the early 1970s to test two popular
explanations of the long-run real exchange rate based on the influence of sectoral
productivities and commodity prices. Ahumada and Cornejo (2015) explore long-run
effects of commodity prices on the real exchange rate in Argentina and find that a
rise in commodity prices appreciates the exchange rate when controlling by domestic
determinants. De Truchisa and Keddadb (2016) examine the volatility dependence
between crude oilmarket and fourUSdollar exchange rates bymeans of both fractional
co-integration and copula techniques. They find increasing linkages just before the
2008 market collapse and more recently in the aftermath of the European debt crisis
and conclude that dependence is sensitive to market conditions.

In this study, we are not only examining the relationships among commodities, real
interest rate and US Dollar but also comparing the relationships across changes in
US monetary policy. We investigate further how these three markets are correlated
with each other in the multivariate sense. Specifically, we use vector autoregressions
(VARs) to model dynamic linkages among commodities, the US real interest rate and
the dollar and apply vine copulamethods to identify the structure of dependence across
these three markets, which can help investors optimize portfolio diversification. We
adopt the theoretical model by Frankel (1986), based on Dornbusch’s (1976) famous
overshooting model of exchange rates, to commodity prices and the real interest rate.
Empirically, we estimate the returns of commodity prices responding to monetary
policy and exchange rates from both the VAR-type short-term responses and the mul-
tivariate Dynamic Conditional Correlation (DCC)-GARCHmodel proposed by Engle
(2002). The former captures dynamic responses across markets and the latter allows
for time-varying correlation, which is usually assumed in financial markets. We iden-
tify two subsamples to test changes in the relations among the series over time by
picking up the date at which the real interest rate becomes negative. This makes the
key building block of the theoretical model in this paper clear, i.e., commodity prices
respond to real interest rates. According to the upper left chart of Fig. 1, following the
expansionary monetary policy in the USA to deal with the most recent recession, the
real interest rate became negative and has remained so until the present. The US dollar
has also broadly weakened against major currencies. We thus split the data into two
subsamples: The first one is from mid-1997 to January 28, 2009, and the second one
from January 29, 2009, to mid-September 2013.1 The mean of the real interest rate in
the first subsample is 1.75%, and that in the second one is −1.50%.

1 On December 5, 2008, the effective Federal Funds rate was moved down to 0.12%, after levels of 0.52%
on December 1 and 1.04% on October 15. From December 2008 onwards, the FF rate remained within the
current very low levels (0.06–0.25% range), based on daily data from the US Federal Reserve of St. Louis
at http://research.stlouisfed.org/fred2/categories/118.
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Fig. 1 Movements of commodity prices (oil, gold, copper and cotton), ex-ante real interest rates and US
dollar index. Notes Separate vertical lines indicate the dates that there is a big cut in target Federal Fund
rate, September 24, and when real interest rate drops below zero, January 28, 2009, respectively

Accounting for the value of the US dollar against major currencies, we use daily
data and several methodologies in this paper to quantify commodity price responses to
both the real value of the dollar and the US real interest rate. Of particular interest is the
recent expansionary monetary policy in the USA following the 2008–2009 recession.
Aloui et al. (2011) report substantial changes in the degree of tail-dependence caused
by the global financial crisis. With theoretical models suggesting monetary policy
is transmitted to commodity prices, we employ VAR dynamic responses and DCC-
GARCH time-varying correlations methods first to quantify this channel under daily
data.

We find in VARs that shocks to the exchange rate and the real interest rate virtually
play no role in the variance decompositions of oil in earlier times, but they explain
almost 30% more recently (and 32% for copper), with markedly negative impulse
responses. Under negative real rates, positive shocks to the value of the US dollar and
the real interest rate lead to decrease in the price of commodities, with higher responses
for oil and copper. The time-varying correlation is much higher too more recently. For
example, the correlation between oil prices and the real interest rate is −0.462 for
the second subsample and −0.089 for the first one, that between oil prices and the
exchange rate is −0.460 for the second and −0.120 for the first and that between the
exchange rate and the real interest rate is 0.321 for the second and −0.004, which is
not statistically significant, for the first. Very similar patterns are found for copper and
cotton. Gold prices, however, vary inversely with real interest rates in the more recent
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964 W. Huang et al.

period, but its dynamic correlation with exchange rate is steady. Overall, the recent
US monetary policy is associated with stronger dynamic responses and a higher level
of dynamic correlation.

While VAR and DCC-GARCH models allow us to examine dynamic relationships
among commodity prices, the US dollar and the real interest rate, these methods are
silent on the dependence structure among the series, which has been of more interest
since the global financial crisis of 2008–2009. To address this, we apply the vine
copula methodology. During recent years, vine copula methods (Joe 1996; Bedford
and Cooke 2001, 2002; Aas et al. 2009) have appeared in the literature to capture
multivariate dependence flexibly and effectively. See also Dißmann et al. (2013) and
references therein. Thismethod has beenwidely applied in finance and economics. For
example, Riccetti (2013) applies vine copula method to the macroasset allocation of
portfolios containing a commodity component, andArreolaHernandez (2014) fits vine
copulamodels and portfolio optimizationmethodswith respect to five riskmeasures to
investigate the dependence risk and resource allocation characteristics of two 20-stock
coal–uranium and oil–gas sector portfolios from the Australian market in the context
of the global financial crisis of 2008–2009. More applications can be found in de
MeloMendes et al. (2010), Low et al. (2013),Weiß and Supper (2013), Abbara (2014),
Brechmann et al. (2014),Markwat (2014), Allen et al. (2014), Brechmann et al. (2015)
and Huang et al. (2016), who analyze the real interest rate—stock market link using
vine copula models. However, multivariate dependence among commodity prices, the
real value of the US dollar and the US real interest rate has not been addressed yet in
the literature, which is explored in the current paper using vine copula methods.

2 The model and the hypothesis

Our empiricalwork below is based onFrankel (1986),who appliedDornbusch’s (1976)
famous overshooting model of exchange rates to commodity prices. The building
blocks of the model are the following. First, there is one equation for expected rate of
change of oil prices ( p̂eo) as the sum of short-term nominal interest rate (i) and storage
costs (sc):

p̂eo = i + sc. (1)

Second, the rate of change of goods (manufactured) prices, ( p̂m) is assumed to depend
on a gradual adjustment over time to excess demand betweenmanufactures and poten-
tial output (y∗) in that sector (d − y∗), plus a term representing the expected secular
rate of inflation (μ), which is itself linked to money growth rate as in:

p̂m = π
(
d − y∗) + μ. (2)

Excess demand is in turn written as an increasing function of the price of oil relative
to manufactures and a decreasing function of the real interest rate (r∗ is a constant):

(
d − y∗) = δ (po − pm) − σ

(
i − μ − r∗) . (3)
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We substitute (3) in (2) and then recall themoneymarket equilibriumwith the liquidity
function (m − p = φy − λi), where m is the log of nominal money supply, p is
the log of the price level, y is the log of output, and parameters φ and λ are the
elasticities in money-demand form. Further, the price level is a weighted average of
manufacture prices and oil prices with respective weights [α and (1 − α)] : p =
αpm + (1 − α) po. Substitution and differencing, together with rational expectations,
lead to two equations in rate of change form, one for manufactures and the other for
oil. The one for oil, in particular, is given by

po = p∗
o − 1

θ

(
i − μ − r∗) , (4)

where θ is the speed of adjustment between oil prices and its expected value in the law
of motion for expected price of oil. Frankel (1986) provides the mathematical details
on θ , being directly related to π , the speed of adjustment in manufactured goods.
According to (4), if a change in macroeconomic policy has lowered the real interest
rate (i − μ) below r∗, then oil prices have risen above their long-run equilibrium
path p∗

o . Of course, the long-run equilibrium path of oil will imply equal levels
p∗
o = p∗

m = p∗ = m∗ − φy∗ + λ (r∗ + μ), using the money-demand function.
Interestingly, substituting this last equation in (4) yields

po = m∗ − φy∗ + λ
(
r∗ + μ

) − 1

θ

(
i − μ − r∗) . (5)

An unanticipated increase in the expected long-run rate of money growth μ increases
the current (long-run) p∗

o and thus the current po. In this case, thismodel of commodity
prices shows both the negative effect of the real interest rate and the positive effect
of the expected long-run money growth rate, which will be depreciating the domestic
currency.

We will apply the insights of this model to the price of oil (WTI given the focus on
US monetary policy and its transmission to commodity prices) and the expansion of
US Federal Reserve in recent years, which has led Fed to accumulate assets of more
than $4 trillion, mostly in US Treasuries but also in mortgage backed securities bought
by Fed. Cecchetti (2009) discusses the responses by the Federal Reserve in the early
stages of the crisis. Intuitively, an expansion of Fed balance sheet lowers substantially
the domestic real interest rate, which pushes up oil prices internationally.

An important link is the exchange rate channel: While an expansion of domestic
money depreciates the USD against other currencies, lower US interest rates suggest
by the ex-ante uncovered interest parity (UIP) condition that the rate of depreciation of
the USD must fall. It is therefore important to control for exchange rate effects when
verifying the link between real interest rates and oil prices. There are, of course, many
ways to identify a change in monetary policy. We focus on a market-driven indicator
based on when the real interest rate became (and remained) negative for the time of
the subsample period.
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3 The data

This paper explores the dynamic relationships among commodity prices, the real
value of the US dollar and the US real interest rate. All data series are collected
from Datastream database at a daily frequency from July 1997 to September 2013.
Commodities used in this study include crude oil, precious metal gold, industrial
metal copper and agricultural raw material cotton.2 Crude oil prices, OIL_WTI, are
prices of West Texas Intermediate (WTI), expressed in US dollars per barrel. Gold
prices, GOLD, are prices of precious metal gold that are traded in London Metal
Exchange and measured in US dollars per troy ounce. Copper prices, COPPER, are
the price of grade A industrial metal copper that are also traded in London Metal
Exchange and quoted in US dollars per metric ton. Cotton prices, COTTON, are Mill-
Delivered prices of cotton and quoted in US cents per pound. As for the exchange
rate, EX_MAJ is a weighted average of the foreign exchange value of the US dol-
lar against a subset of the major index currencies including the Euro Area, Canada,
Japan, UK, Switzerland, Australia and Sweden. The index has base March 1973=100,
and an increase means a USD appreciation. Following the conventional approach,
ret_OIL_WTI, ret_GOLD, ret_COPPER, ret_COTTON and ret_EX_MAJ represent
first differences of log of (consecutive) daily prices of OIL_WTI, GOLD, COPPER,
COTTON and EX_MAJ, respectively. The ex-ante real interest rate used in this study
is computed using the formula for the ex-ante real interest rate (real_interestt , or
rr) at time t : real_interestt = FFRt − (treasuryt − T I PSt ), where FFRt is the
target Federal Fund rate at time t, treasuryt and T I PSt are the yields in 5-year US
T-note and in 5-year US Treasury Inflation Protected Security at time t , respectively.3

The term (treasuryt − T I PSt ) is also called expected inflation at time t and repre-
sents US Treasury market-based expectations of inflation: “the excess of the nominal
interest rate over the TIPS rate, . . ., which we will call the interest rate differential,
provides a rough measure of expected inflation.” Abel et al. (2014, p. 273).

We identify two subsamples to test changes in the relationships among the series
over time. According to the graph of real_interestt in Fig. 1 (top right), there are
other dates that real_interest drops below zero, yet it moved back up after some time.
We split the data at January 29, 2009, since real_interest drops below zero and stays
negative after that date, indicating a sustained period of negative real interest rate.4

The summary statistics of variables used in this study are presented in Table 1.
Panel A reports descriptive statistics on or before January 28, 2009, while Panel B
reports descriptive statistics after January 28, 2009. According to Table 1, the increase

2 Other commodities were also included, such as aluminum, silver and wheat, but their behavior was very
similar to one of the four commodities reported herein.
3 We also use yields in 10-year US T-note and 10-year TIPS for robustness check, and the results are
insensitive. However, the studied sample will be shorter if using 10-year US T-note and 10-year TIPS
because the data on 10-year TIPS were not introduced until January 2, 2003.
4 An anonymous referee suggested we test econometrically for one or more structural breaks. Performing
the Bai–Perron tests to first differences of real interest rates, we find the break to be December 1, 2008,
which is very close (9 weeks before) to our choice of late-January 2009. Our preferred break point has the
real interest rate staying below zero throughout the second subsample, a clear measure of accommodative
monetary policy.
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in commodity price returns in the later period is visible. The mean price of GOLD
increases by 217% in the later period (from $436.32 per barrel to $1383.77 per barrel),
which is the highest rate of increase among all commodities considered in this paper.
OIL andCOPPER prices have a close rate of increase (100% forOIL_WTImean price
and 123% for COPPERmean price), while COTTON, an agricultural commodity, has
the lowest rate of increase of 65% in the later period. To adjust for the investment risk
in these commodities, Sharpe ratios are calculated for each of the commodity price
returns by dividing the mean by its associated standard deviation. For the period on or
before January 28, 2009,GOLD has the highest risk-adjusted return (0.0212), followed
by OIL_WTI (0.0088) and COPPER (0.0065). COTTON has negative risk-adjusted
return of −0.0120 for this period. For the period after January 28, 2009, COPPER
and OIL have higher risk-adjusted returns (0.0390 and 0.0333, respectively), GOLD
has the lowest risk-adjusted return (0.0192), and COTTON switches from a negative
risk-adjusted return to a positive risk-adjusted return of 0.0222. For the exchange rate
market, the US dollar shows a depreciation against major trade-partners’ currencies as
EX_MAJ decreases from amean of 91.78–74.49 across periods. A careful examination
into the data shows that the period before January 28, 2009, contains a faster rate of
depreciation ofUSdollar than the period after January 28, 2009.As alreadymentioned,
average real interest rates, rr, have a positivemean (1.75%) in the period on and before
January 28, 2009, and a negative one (−1.5%) after. This change of more than 3%
across subperiods reflects the accommodative US monetary policy in the more recent
period, following the financial crisis of 2008–2009.

To visualize the relationship of each commodity series, we plot each of them in
various panels in Fig. 1 against the real interest rate and the US dollar major index.
Overall, there are negative co-movements between commodities prices and the real
interest rate, which are more visible in the recent period. This finding provides initial
support for the theoretical negative relationship between commodity prices and the
real interest rate discussed in the model above. One possible interpretation is that
during Quantitative Easing (QE) periods large amounts of funds went into gold and
other commodities, which serve well as inflation hedges relative to stock and credit
markets. Graphs of commodities prices and the US dollar index suggest negative
co-movements between commodities prices and US dollar, especially in the second
subsample.

4 Methodological frameworks

To examine how commodity prices, US dollar index and the real interest rate react to
their shocks across subsamples, we adopt an unrestricted vector autoregression (VAR)
model. AVARmodel has been frequently used to analyze the impact of oil price shocks
on other economic series and financial series (see, e.g., Sadorsky 1999; Huang et al.
2005; Kilian and Park 2009; Lee et al. 2012), and the upward behavior of commodity
prices in response to the real interest rate in Akram (2009). Contrary to structural
VARwhich imposes restriction on certain variables, we allow for unrestricted dynamic
relationships among the series following the 3-way flows across commodity, currency
and interest rate markets. Our unrestricted VAR model is estimated by
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Rt = B0 +
p∑

i=1

Bi Rt−i + ε1t , (6)

where Rt is a vector of the three series studied in this paper (ret_EX_MAJ, diff_rr
and one of the following: ret_OIL_WTI, ret_GOLD, ret_COPPER, ret_COTTON).
B0 is a 3 × 1 column vector of constant terms, Bi is a 3 × 3 matrix of unknown
coefficients, and ε1t is a 3 × 1 column vector of error terms. p is the number of lags
which is determined based on Akaike information criterion and final prediction error
as proposed by Hamilton (1994).

We also examine time-varying co-movements among commodity prices, US dol-
lar index and the real interest rate across subsamples. We employ the multivariate
DCC-GARCH model proposed by Engle (2002). The DCC-GARCH model allows
estimation of the dynamic changes in conditional correlation among the aforemen-
tioned series. One important advantage of the DCC-GARCH model over traditional
constant correlation method is the allowance for the estimation of time-varying corre-
lation coefficients of standardized residuals (hence controlling for heteroscedasticity).
To be consistent with the VAR model above, we use a trivariate DCC-GARCH (1,1)
framework with three series: each of the commodity price returns, the US dollar index
and the real interest rate.

In the trivariate DCC-GARCH(1,1) model, the system equation contains multiple
mean equations and conditional variance equations. A representation of the mean
equations is a reduced form of VAR model similar to Eq. (6), with one lag only:5

Ri,t = αi + βi ∗ Ri,t−1 + β j R j,t−1 + βk Rk,t−1 + εi t , (7)

R j,t = α j + βi ∗ Ri,t−1 + β j R j,t−1 + βk Rk,t−1 + ε j t , (8)

Rk,t = αk + βi ∗ Ri,t−1 + β j R j,t−1 + βk Rk,t−1 + εkt , (9)

where Rt is a vector of the three series studied in this paper (ret_EX_MAJ, diff_rr
and one of the following: ret_OIL_WTI, ret_GOLD, ret_COPPER, ret_COTTON).
εt = (εi t , ε j t , εkt )

′ is a vector of three error terms that can be rewritten as εt =
H1/2
t εt , where εt = (εi t , ε j t , εkt )

′ is an independently and identically distributed
(i.i.d.) sequence of random vectors withmean zero and covariance matrix Ht . εt is also
called standardized residuals. The matrix Ht represents the Cholesky decomposition
of

Ht = Var
(
εi,t , ε j,t , εk,t

∣
∣Ωt−1

) =
⎡

⎣
hii,t hi j,t hik,t
h ji,t h j j,t h jk,t

hki,t hk j,t hkk,t

⎤

⎦ (10)

where �t−1 represents the past information up to time t − 1. Therefore, εi t ∼
N (0, Ht ) . The time-varying variances of the returns are generated by

5 It will be shown below that one lag in mean Eqs. (7)–(9) passes the diagnostic tests on the error terms.
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hii,t = ωi + θi hii,t−1 + δiε
2
i,t−1 + ξi j h j j,t−1 + ξikhkk,t−1, (11)

h j j,t = ω j + θ j h j j,t−1 + δ jε
2
j,t−1 + ξ j i hii,t−1 + ξ jkhkk,t−1, (12)

hkk,t = ωk + θkhkk,t−1 + δkε
2
k,t−1 + ξki hii,t−1 + ξk j h j j,t−1. (13)

In addition, the conditional covariance between two return series can be specified as

hi j,t = ρi j,t
√
hii,t h j j,t , (14)

hik,t = ρik,t
√
hii,t hkk,t , (15)

h jk,t = ρ jk,t
√
h j j,t hkk,t (16)

from which the time-varying conditional correlations (ρi j,t ) between two returns can
be estimated.

According toEngle (2002), estimating themean equations (7)–(9) and the variance–
covariance equations (10)–(16) simultaneously in one step is not practical because of
the large number of parameters involved. Using a two-stage approach—estimating the
mean equations (7)–(9) first and then using the residuals to formulate the variance–
covariance equations—is a more tractable method. The DCC model can be estimated
by maximizing the log-likelihood function

L (θ) = −
T∑

t=1

(ln |Ht | + εt H
−1
t εt ), (17)

where θ is the 21 × 1 parameter vector.
As mentioned in Sect. 1, multivariate dependence has become more interesting

after the 2008–2009 financial crisis. We apply vine copula method to identify the
dependence pattern among commodity prices, the real value of the US dollar and the
US real interest rate. Under the vine copula method, a general multivariate distribution
is decomposed into a cascade of pair-copulas.

The selecting and estimating procedure introduced in Dißmann et al. (2013) will
be used in the subsequent vine copula analysis. Under this procedure, an automated
strategy are used first to jointly search for an appropriate regular vine (R-vine) tree
structure, pair-copula families and the parameter values of the chosen pair-copula
families. This is a sequential approach starting by identifying the first tree, its pair-
copula families and their parameter estimates. The specification of the second tree
utilizes transformed variables which depend on the choices made in the first tree,
and so on until the last tree. For each tree selection, a maximum spanning tree algo-
rithm is used and edge weights are chosen appropriately to reflect large dependencies,
pair-copulas are chosen independently using AIC, and the sequential estimation
approach suggested by Aas et al. (2009) is used to estimate the corresponding
pair-copula parameters. Once an appropriate R-vine distribution is found, maximum
likelihood estimation method is used to jointly estimate all parameters, using the
sequential estimates as starting values.
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R-vine is a special case of vine,6 and two special cases of R-vine, canonical (C-) and
drawable (D-) vines,7 are generally addressed in the literature. The most commonly
applied one is the C-vine. Therefore, if our found R-vine is not a C-vine, we apply the
Vuong test (Vuong 1989) to see whether the found R-vine is statistically different from
a C-vine. If the found R-vine is not statistically different from a C-vine, the C-vine is
selected. The n-dimensional density corresponding to a C-vine is given by

n∏

k=1

f (xk)
n−1∏

j=1

n− j∏

i=1

c j, j+i |1,..., j−1
{
F(x j |x1, . . . , x j−1),

F(x j+i |x1, . . . , x j−1)
}
, (21)

where F is the distribution function, f is the density function, and c is the copula
density function.

Since maximum likelihood estimation method is used in the vine copula model
fitting, in order for this estimation method to be valid, we first apply an AR(1)–
GARCH(1,1) model to filter out autocorrelations in our data. Then, applying the
above-mentioned selecting and estimating, we find themost appropriate R-vine copula
model to fit the dependence structure among commodity prices, the real value of the
US dollar and the US real interest rate. In selecting pair-copulas, we considered the
following copulas: Gaussian, Student t, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7
and BB8 copulas. Finally, the selected vine copula model is verified by the goodness-
of-fit test proposed by Schepsmeier (2013).

5 Results

5.1 Correlation analysis

Table 2 reports the correlation matrices in returns (or first differences in the case of
the real interest rate), used in both VAR and DCC-GARCH models. A table with the
correlation coefficients of the series in levels is available upon request. The results
from Table 2 are generally consistent with the graphic patterns in Fig. 1. According
to Table 2, all commodity prices show negative correlations with the real interest rate,
and these negative correlations are much larger in the recent period with −0.4563
for ret_OIL_WTI, −0.1305 for ret_GOLD, −0.3338 for ret_COPPER and −0.1763
for ret_COTTON. Commodity price returns are negatively correlated with the US
dollar index. While ret_OIL_WTI, ret_COPPER and ret_COTTON show increases
(in absolute value) in their correlation with dollar index across periods, ret_GOLD
shows a decrease (in absolute value, from −0.525 to −0.328) with the exchange rate.
Among commodities, ret_COTTON is correlated the least with others. In general,
these findings suggest that commodity price returns move inversely with EX_MAJ, but

6 The definitions of vine and R-vine can be found on page 1042 of Bedford and Cooke (2002).
7 For technical details and examples of R-, C- and D-vine copulas, see, e.g., pp. 54–55 of Dißmann et al.
(2013).
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Table 2 Correlation coefficients in return (or first differences)

ret_OIL_WTI ret_GOLD ret_COPPER ret_COTTON ret_EX_MAJ diff_rr_1

Panel A: Period on or before January 28, 2009

ret_OIL_WTI 1.0000

ret_GOLD 0.2306 1.0000

ret_COPPER 0.3016 0.3640 1.0000

ret_COTTON 0.1845 0.1361 0.1958 1.0000

ret_EX_MAJ −0.2266 −0.5250 −0.2961 −0.1532 1.0000

diff_rr −0.1149 −0.0204 −0.0918 −0.1248 0.1249 1.0000

Panel B: Period after January 28, 2009

ret_OIL_WTI 1.0000

ret_GOLD 0.2032 1.0000

ret_COPPER 0.5014 0.3133 1.0000

ret_COTTON 0.2600 0.1243 0.2695 1.0000

ret_EX_MAJ −0.4263 −0.3283 −0.5433 −0.2846 1.0000

diff_rr −0.4563 −0.1305 −0.3338 −0.1763 0.3066 1.0000

This table presents correlation coefficients for data series used in this study, in their return or first-difference
form. Panel A reports correlation coefficients for the period on or before January 28, 2009, and Panel B
reports correlation coefficients for the period after January 28, 2009

they also suggest gold commoves less with the other commodities and with currency
fluctuations in the second subperiod.

5.2 Variance decompositions and impulse response functions

From the VAR models described in the methodology section, we extract the forecast
error variance decompositions as well as the generalized impulse response functions
using Monte Carlo simulations with 5000 replications. While the forecast error vari-
ance decompositions show how much of the variance of a variable can be explained
by shocks to another variable in the model, the use of generalized impulse response
functions allows estimations of responses of variables to shocks of other variables in
the VARmodel. Tables 3, 4, 5 and 6 report, for up to a 5-day forecasted horizon period,
the variance decompositions of the VAR models in (6) for ret_OIL_WTI, ret_GOLD,
ret_COPPER and ret_COTTON, respectively. Based on Akaike information criterion
(AIC) and final prediction error (FPE), we employ p = 11, 12, 12 and 2 lags in VAR
models for ret_OIL_WTI, ret_GOLD, ret_COPPER and ret_COTTON, respectively, in
the first subperiod. For the second subperiod, p = 2 lags are used in all VAR models.8

8 Under this choice of lag length, application of VAR residual serial correlation LM tests at 5 lags suggests
good properties in general for all models (using statistical significance at 5% level). For example, in the
case of OIL we do not reject the null hypothesis of no correlation using 1% level since LM-stat = 6.15 (p
value of 0.725) in the first subperiod. And we do not reject the null hypothesis of no correlation using 5%
level since LM-stat = 16.20 (p value of 0.063) in the more recent period.
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Table 3 Variance decompositions of VAR for ret_EX_MAJ, diff_rr and ret_OIL_WTI

VDs across days Innovations

Before After

Shocks in Shocks in Shocks in Shocks in Shocks in Shocks in
ret_EX_MAJ diff_rr ret_OIL_WTI ret_EX_MAJ diff_rr ret_OIL_WTI

ret_EX_MAJ

1 100.00 0.00 0.00 100.00 0.00 0.00

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2 99.59 0.11 0.30 99.49 0.38 0.13

(0.245) (0.133) (0.206) (0.437) (0.375) (0.229)

3 99.37 0.33 0.31 98.99 0.49 0.52

(0.306) (0.219) (0.214) (0.603) (0.439) (0.413)

4 98.98 0.46 0.55 98.96 0.51 0.53

(0.384) (0.261) (0.284) (0.622) (0.450) (0.425)

5 98.98 0.46 0.56 98.95 0.51 0.54

(0.390) (0.263) (0.291) (0.627) (0.452) (0.431)

diff_rr

1 0.23 99.77 0.00 9.19 90.81 0.00

(0.177) (0.177) (0.000) (1.552) (1.552) (0.000)

2 0.51 99.49 0.00 9.36 90.56 0.08

(0.276) (0.281) (0.049) (1.581) (1.591) (0.195)

3 0.66 99.34 0.00 9.62 90.24 0.13

(0.311) (0.317) (0.070) (1.574) (1.591) (0.258)

4 0.72 99.12 0.16 9.62 90.24 0.13

(0.320) (0.361) (0.170) (1.574) (1.592) (0.259)

5 0.79 99.00 0.21 9.63 90.23 0.13

(0.335) (0.386) (0.197) (1.575) (1.593) (0.260)

ret_OIL_WTI

1 1.78 0.50 97.72 18.66 11.68 69.66

(0.476) (0.260) (0.538) (2.030) (1.589) (2.195)

2 1.99 0.57 97.45 18.67 11.70 69.63

(0.508) (0.283) (0.576) (2.031) (1.588) (2.194)

3 2.01 0.72 97.27 18.51 12.29 69.20

(0.513) (0.321) (0.597) (2.011) (1.654) (2.207)

4 2.04 0.75 97.21 18.51 12.29 69.20

(0.520) (0.330) (0.609) (2.011) (1.655) (2.207)

5 2.04 0.78 97.18 18.51 12.30 69.19

(0.521) (0.338) (0.615) (2.011) (1.657) (2.208)

This table reports the variance decomposition of 2 VAR models (before and after January 28, 2009) for
ret_EX_MAJ, diff_rr and ret_OIL_WTI using Monte Carlo method with 5000 repetitions. Numbers of lag
length used in these VAR models are 11 and 2 for period before and after January 28, 2009, respectively, as
indicated by final prediction error and Akaike information criterion in VAR lag order selection procedure.
Standard errors are reported in parenthesis
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Table 4 Variance decompositions of VAR for ret_EX_MAJ, diff_rr and ret_GOLD

VDs across days Innovations

Before After

Shocks in Shocks in Shocks in Shocks in Shocks in Shocks in
ret_EX_MAJ diff_rr ret_GOLD ret_EX_MAJ diff_rr ret_GOLD

ret_EX_MAJ

1 100.00 0.00 0.00 100.00 0.00 0.00

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2 99.90 0.09 0.01 99.49 0.34 0.17

(0.132) (0.119) (0.058) (0.432) (0.346) (0.262)

3 99.48 0.30 0.23 99.09 0.46 0.46

(0.281) (0.207) (0.192) (0.593) (0.416) (0.429)

4 99.24 0.40 0.36 99.08 0.46 0.46

(0.340) (0.242) (0.234) (0.600) (0.423) (0.430)

5 99.23 0.40 0.37 99.07 0.47 0.46

(0.35) (0.25) (0.24) (0.60) (0.43) (0.43)

diff_rr

1 0.19 99.81 0.00 9.43 90.57 0.00

(0.163) (0.163) (0.000) (1.593) (1.593) (0.000)

2 0.47 99.52 0.01 9.59 90.02 0.39

(0.265) (0.269) (0.054) (1.620) (1.655) (0.373)

3 0.60 99.35 0.04 9.84 89.66 0.50

(0.295) (0.312) (0.102) (1.608) (1.658) (0.447)

4 0.67 99.21 0.12 9.84 89.65 0.51

(0.305) (0.340) (0.151) (1.608) (1.659) (0.450)

5 0.71 99.10 0.19 9.85 89.64 0.51

(0.318) (0.368) (0.188) (1.609) (1.660) (0.450)

ret_GOLD

1 18.92 0.06 81.02 10.98 0.08 88.94

(1.284) (0.088) (1.284) (1.682) (0.189) (1.691)

2 19.11 0.06 80.83 11.35 0.29 88.36

(1.289) (0.102) (1.289) (1.689) (0.338) (1.718)

3 19.06 0.32 80.62 11.38 0.29 88.33

(1.287) (0.216) (1.291) (1.693) (0.357) (1.727)

4 19.07 0.48 80.45 11.38 0.30 88.32

(1.280) (0.262) (1.290) (1.693) (0.362) (1.729)

5 19.17 0.63 80.20 11.38 0.30 88.32

(1.280) (0.297) (1.297) (1.693) (0.362) (1.729)

This table reports the variance decomposition of 2 VAR models (before and after January 28, 2009) for
ret_EX_MAJ, diff_rr and ret_GOLD using Monte Carlo method with 5000 repetitions. Numbers of lag
length used in these VAR models are 12 and 2 for period before and after January 28, 2009, respectively, as
indicated by final prediction error and Akaike information criterion in VAR lag order selection procedure.
Standard errors are reported in parenthesis
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Table 5 Variance decompositions of VAR for ret_EX_MAJ, diff_rr and ret_COPPER

VDs across days Innovations

Before After

Shocks in Shocks in Shocks in Shocks in Shocks in Shocks in
ret_EX_MAJ diff_rr ret_COPPER ret_EX_MAJ diff_rr ret_COPPER

ret_EX_MAJ

1 100.00 0.00 0.00 100.00 0.00 0.00

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2 99.58 0.12 0.30 99.42 0.39 0.19

(0.242) (0.133) (0.202) (0.452) (0.367) (0.272)

3 99.35 0.35 0.30 99.29 0.51 0.20

(0.305) (0.225) (0.209) (0.523) (0.431) (0.308)

4 99.19 0.46 0.35 99.28 0.51 0.20

(0.345) (0.260) (0.228) (0.531) (0.439) (0.309)

5 99.19 0.46 0.35 99.28 0.52 0.20

(0.352) (0.264) (0.233) (0.533) (0.441) (0.309)

diff_rr

1 0.24 99.76 0.00 9.29 90.71 0.00

(0.183) (0.183) (0.000) (1.603) (1.603) (0.000)

2 0.51 99.48 0.01 9.46 90.54 0.00

(0.268) (0.276) (0.063) (1.639) (1.642) (0.122)

3 0.65 99.32 0.03 9.73 90.27 0.00

(0.299) (0.313) (0.091) (1.623) (1.628) (0.167)

4 0.72 99.20 0.08 9.73 90.27 0.00

(0.311) (0.337) (0.133) (1.624) (1.629) (0.168)

5 0.79 99.09 0.11 9.74 90.26 0.00

(0.326) (0.359) (0.157) (1.624) (1.630) (0.169)

ret_COPPER

1 5.14 0.57 94.29 29.10 3.10 67.80

(0.790) (0.270) (0.827) (2.210) (0.827) (2.219)

2 5.33 0.62 94.05 29.08 3.28 67.64

(0.813) (0.287) (0.855) (2.213) (0.856) (2.220)

3 5.34 0.81 93.85 29.08 3.47 67.46

(0.812) (0.328) (0.869) (2.212) (0.894) (2.220)

4 5.50 0.81 93.70 29.08 3.47 67.45

(0.826) (0.330) (0.883) (2.212) (0.896) (2.221)

5 5.63 0.82 93.55 29.08 3.47 67.45

(0.840) (0.338) (0.899) (2.211) (0.898) (2.221)

This table reports the variance decomposition of 2 VAR models (before and after January 28, 2009) for
ret_EX_MAJ, diff_rr and ret_COPPER using Monte Carlo method with 5000 repetitions. Numbers of lag
length used in these VAR models are 12 and 2 for period before and after January 28, 2009, respectively, as
indicated by final prediction error and Akaike information criterion in VAR lag order selection procedure.
Standard errors are reported in parenthesis
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Table 6 Variance decompositions of VAR for ret_EX_MAJ, diff_rr and ret_COTTON

VDs across days Innovations

Before After

Shocks in Shocks in Shocks in Shocks in Shocks in Shocks in
ret_EX_MAJ diff_rr ret_COTTON ret_EX_MAJ diff_rr ret_COTTON

ret_EX_MAJ

1 100.00 0.00 0.00 100.00 0.00 0.00

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2 99.52 0.13 0.36 99.63 0.37 0.00

(0.261) (0.138) (0.225) (0.375) (0.357) (0.116)

3 99.23 0.39 0.38 99.37 0.48 0.15

(0.332) (0.238) (0.234) (0.504) (0.431) (0.266)

4 99.23 0.39 0.38 99.36 0.50 0.15

(0.334) (0.239) (0.235) (0.514) (0.440) (0.267)

5 99.23 0.39 0.38 99.35 0.50 0.15

(0.334) (0.239) (0.235) (0.518) (0.443) (0.267)

diff_rr

1 0.24 99.76 0.00 9.30 90.70 0.00

(0.184) (0.184) (0.000) (1.586) (1.586) (0.000)

2 0.61 99.35 0.04 9.46 90.36 0.18

(0.298) (0.311) (0.087) (1.619) (1.633) (0.265)

3 0.74 99.22 0.04 9.72 90.10 0.18

(0.322) (0.337) (0.100) (1.614) (1.630) (0.288)

4 0.74 99.22 0.04 9.73 90.10 0.18

(0.323) (0.339) (0.100) (1.614) (1.631) (0.291)

5 0.74 99.22 0.04 9.74 90.09 0.18

(0.324) (0.339) (0.100) (1.615) (1.632) (0.291)

ret_COTTON

1 0.87 0.66 98.47 8.26 0.88 90.86

(0.342) (0.297) (0.447) (1.501) (0.529) (1.563)

2 0.99 0.66 98.35 8.21 0.92 90.87

(0.366) (0.301) (0.466) (1.496) (0.541) (1.561)

3 0.99 0.74 98.27 8.24 0.92 90.84

(0.367) (0.322) (0.482) (1.499) (0.551) (1.568)

4 0.99 0.74 98.27 8.24 0.92 90.84

(0.367) (0.322) (0.482) (1.499) (0.551) (1.569)

5 0.99 0.74 98.27 8.24 0.92 90.83

(0.367) (0.323) (0.482) (1.500) (0.552) (1.569)

This table reports the variance decomposition of 2 VAR models (before and after January 28, 2009) for
ret_EX_MAJ, diff_rr and ret_COTTON using Monte Carlo method with 5000 repetitions. Numbers of lag
length used in these VAR models are 2 and 2 for period before and after January 28, 2009, respectively, as
indicated by final prediction error and Akaike information criterion in VAR lag order selection procedure.
Standard errors are reported in parenthesis
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According to Table 3, for the period on or before January 28, 2009, the variance of
dollar index returns, difference in real interest rate and oil price returns are significantly
explained only by their own shocks. At day 5, shocks to dollar index returns explain
98.98% of its own variance. Shocks in real interest rate difference explain 99.00%
of the variance of real interest rate difference, and shocks in oil price returns explain
97.18% of the variance of oil price returns. Before January 28, 2009, the short-term
relationships among exchange rate, monetary policy and a commodity price (oil price)
are thus very weak. In the period after January 29, 2009, onwards, however, after 5-
day shocks in dollar index returns are able to explain 9.63% of the variance of real
interest rate differences. Moreover, shocks in dollar index returns and real interest rate
differences are able to explain 18.51 and 12.30%, respectively, of the variance of oil
price returns. In the more recent period with negative real interest rates throughout,
the linkages among exchange rate markets, monetary policy and oil are much stronger
than before.

Among the other commodities,GOLD is the one that contrasts themost fromothers.
According to Table 4, for the period on or before January 28, 2009, the variances of
gold price returns are well explained (19.17%) by shocks of dollar index returns. This
decreases to 11.38% for the period after January 28, 2009. While shocks to changes
in the real interest rate are able to explain well other commodity price returns in the
second period, it is not the case for gold price returns (only 0.3%). Similar to oil and
other models, after 5-day shocks in dollar index returns are able to explain 9.85% of
the variance of real interest rate differences in the VAR for gold. In the more recent
period, as shown in Table 5, the variance of copper price returns is explained by shocks
of dollar index returns up to 29.08% (in 5 days), the most among all commodities,
and by shocks of real interest rate differences at 3.47% (in 5 days). Consistent with
previous tables, while shocks of dollar index returns have no impact on the variance
of real interest rate differences only in the period on or before January 28, 2009, they
explain up to 9.74% variance of real interest rate differences in second period. Similar
results are found in Table 6 for cotton VAR model, except that shocks of real interest
rate differences have almost no impact (up to 5 days of only 0.74 and 0.92%) on the
variance of cotton price returns across subperiods.

Figures 2, 3, 4 and 5 report the impulse response of VARmodels for ret_OIL_WTI,
ret_GOLD, ret_COPPER, ret_COTTON, respectively, for the 5-day forecasted period.
The responses to generalized one standard deviation innovations ± 2 standard error
(confidence bands) are plotted in the y-axis, and time (days) is plotted in the x-axis.
Following the theoretical model in Sect. 2, we focus on the responses of real interest
rates and oil prices. The exchange rate has long been considered to play an essential
role in deciding how much goods and services should be exported and imported.
Therefore, prices of those goods and services are determined by the exchange rate.9

Indeed, results of the variance decompositions from Tables 3, 4, 5 and 6 confirm that

9 The authors agree with one of the anonymous referees that the exchange rate is largely influenced by the
monetary policy and the related expectations about future interest rates. We notice that relations among the
exchange rate, oil prices and the real interest rate are dynamic and complicated. The exchange rate could
be influenced by monetary policy and oil prices. However, we find results favoring the exchange rate as a
determining role in this study.

123



Dynamic responses and tail-dependence among commodities. . . 979

-.001

.000

.001

.002

.003

.004

.005

1 2 3 4 5

Response of RET_EX_MAJ to RET_EX_MAJ

-.001

.000

.001

.002

.003

.004

.005

1 2 3 4 5

Response of RET_EX_MAJ to DIFF_RR_1

-.001

.000

.001

.002

.003

.004

.005

1 2 3 4 5

Response of RET_EX_MAJ to RET_OILWTINP

-.0002

.0000

.0002

.0004

.0006

.0008

.0010

1 2 3 4 5

Response of DIFF_RR_1 to RET_EX_MAJ

-.0002

.0000

.0002

.0004

.0006

.0008

.0010

1 2 3 4 5

Response of DIFF_RR_1 to DIFF_RR_1

-.0002

.0000

.0002

.0004

.0006

.0008

.0010

1 2 3 4 5

Response of DIFF_RR_1 to RET_OILWTINP

-.004

.000

.004

.008

.012

1 2 3 4 5

Response of RET_OILWTINP to RET_EX_MAJ

-.004

.000

.004

.008

.012

1 2 3 4 5

Response of RET_OILWTINP to DIFF_RR_1

-.004

.000

.004

.008

.012

1 2 3 4 5

Response of RET_OILWTINP to RET_OILWTINP

Response to Generalized One S.D. Innovations ± 2 S.E.

-.004

-.002

.000

.002

.004

.006

1 2 3 4 5

Response of RET_EX_MAJ to RET_EX_MAJ

-.004

-.002

.000

.002

.004

.006

1 2 3 4 5

Response of RET_EX_MAJ to DIFF_RR_1

-.004

-.002

.000

.002

.004

.006

1 2 3 4 5

Response of RET_EX_MAJ to RET_OILWTINP

-.0004

-.0002

.0000

.0002

.0004

.0006

1 2 3 4 5

Response of DIFF_RR_1 to RET_EX_MAJ

-.0004

-.0002

.0000

.0002

.0004

.0006

1 2 3 4 5

Response of DIFF_RR_1 to DIFF_RR_1

-.0004

-.0002

.0000

.0002

.0004

.0006

1 2 3 4 5

Response of DIFF_RR_1 to RET_OILWTINP

-.0050

-.0025

.0000

.0025

.0050

.0075

.0100

1 2 3 4 5

Response of RET_OILWTINP to RET_EX_MAJ

-.0050

-.0025

.0000

.0025

.0050

.0075

.0100

1 2 3 4 5

Response of RET_OILWTINP to DIFF_RR_1

-.0050

-.0025

.0000

.0025

.0050

.0075

.0100

1 2 3 4 5

Response of RET_OILWTINP to RET_OILWTINP

Response to Generalized One S.D. Innovations ± 2 S.E.

A

B

Fig. 2 Impulse response function of VAR model A before January 28, 2009, B after January 28, 2009,
for ret_EX_MAJ, diff_rr and ret_OIL_WTI. Notes Using Monte Carlo method with 5000 repetitions, the
responses to generalized one standard deviation innovations ± 2 standard error (confidence bands) are
plotted in the y-axis and time (days) is plotted in the x-axis
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Fig. 3 Impulse response function of VAR model A before January 28, 2009, B after January 28, 2009, for
ret_EX_MAJ, diff_rr and ret_GOLD.NotesUsingMonte Carlo method with 5000 repetitions, the responses
to generalized one standard deviation innovations ± 2 standard error (confidence bands) are plotted in the
y-axis and time (days) is plotted in the x-axis
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Fig. 4 Impulse response function of VAR model A before January 28, 2009, B after January 28, 2009,
for ret_EX_MAJ, diff_rr and ret_COPPER. Notes Using Monte Carlo method with 5000 repetitions, the
responses to generalized one standard deviation innovations ± 2 standard error (confidence bands) are
plotted in the y-axis and time (days) is plotted in the x-axis
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Fig. 5 Impulse response function of VAR model A before January 28, 2009, B after January 28, 2009,
for ret_EX_MAJ, diff_rr and ret_COTTON. Notes Using Monte Carlo method with 5000 repetitions, the
responses to generalized one standard deviation innovations ± 2 standard error (confidence bands) are
plotted in the y-axis and time (days) is plotted in the x-axis
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Table 7 Trivariate DDC-GARCH model for ret_OIL_WTI, ret_EX_MAJ and diff_rr

Before After

ret_OIL_WTI diff_rr ret_EX_MAJ ret_OILWTINP diff_rr ret_EX_MAJ

Mean equation

ret_OI L_WT It−1 −0.042** 0.001 −0.013* −0.006 −0.002 −0.028

(0.021) (0.001) (0.007) (0.040) (0.002) (0.023)

di f f _rr t−1 0.107 −0.112* 0.014 −0.744 0.080** 0.493

(0.352) (0.064) (0.124) (0.702) (0.036) (0.352)

ret_EX_MAJt−1 0.014 0.009** 0.004 0.082 0.001 −0.063*

(0.046) (0.004) (0.018) (0.057) (0.003) (0.034)

Constant, α 0.000** −0.000 −0.000 0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Variance equation

Arch 0.063** 0.211** 0.035*** 0.081*** 0.100* 0.039***

(0.029) (0.084) (0.007) (0.024) (0.051) (0.009)

Garch 0.919*** 0.759*** 0.958*** 0.894*** 0.833*** 0.956***

(0.041) (0.075) (0.009) (0.028) (0.095) (0.006)

Constant, ω 0.000 0.000** 0.000** 0.000** 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Correlation

ρoil_rr −0.089*** −0.462***

(0.028) (0.049)

ρoil_ex −0.120*** −0.460***

(0.026) (0.049)

ρrr_ex −0.004 0.321***

(0.022) (0.057)

Adjustment

λ1 0.026** 0.023***

(0.010) (0.007)

λ2 0.894*** 0.945***

(0.059) (0.015)

Diagnostic tests

Standardized residuals

Hosking (20) 181.852 191.764

p value [0.447] [0.260]

Li–McLeod (20) 196.053 192.227

p value [0.196] [0.253]

Squared standardized residuals

Hosking2 (20) 181.751 191.395

p value [0.449] [0.267]
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Table 7 continued

Before After

ret_OIL_WTI diff_rr ret_EX_MAJ ret_OILWTINP diff_rr ret_EX_MAJ

McLeod–Li2 (20) 196.013 191.808

p value [0.196] [0.260]

This table reports estimates of the trivariate DCC-GARCH(1,1) models (before and after January 28, 2009)
for ret_OIL_WTI, diff_rr and ret_EX_MAJ. Hosking (20), Hosking2 (20), Li–McLeod (20) and McLeod–
Li2 (20) are the multivariate Portmanteau statistics of Hosking (1980), Li and McLeod (1981) and McLeod
and Li (1983), respectively, up to 20 lags. Robust standard errors are in parenthesis, and p values are in
square brackets
***, **, * Statistical significance at the 1, 5 and the 10% levels, respectively

dollar index returns are largely determined by their own shocks.10 In other words, our
results favor the exchange rate as a determining role in this study.

In general, while the real interest rate has a small reaction due to shocks of the
dollar index return in the first period, it responds positively and significantly during
the later period. The magnitudes of response associating to 1% increase in the dollar
index returns vary closely around 0.0137% increase in the real interest rate across
the models in day 1. This implies that a stronger USD leads to a higher real price of
US dollar-based assets. In addition, the real interest rate reacts negatively to shocks
of commodity prices, and the magnitude of the reaction is larger in the period after
January 28, 2009. One possible reason is that commodity prices push up inflation,
thus making the real interest rate fall. On the relationship between dollar index and
commodity markets, there are negative and significant effects maintained throughout
the period of this study. However, the effects between shocks of dollar index returns
on commodity price returns in the period after January 28, 2009, are much larger
than that in the first period. Specifically, after January 28, 2009, the 1% increase in
the standard deviation of the dollar index shock leads to a −0.39% decrease in oil
price return, −0.17% decrease in gold price return, −0.42% decrease in copper price
return and −0.26% decrease in cotton price return. Positive increases to innovations
in the value of the US dollar lead to falling commodity price returns (especially in the
second subperiod), and this negative relationship seems to be stronger for oil, copper
and cotton. And there are also declines in the value of the USD when innovations in
commodity prices increase.

In line with the correlation analysis, there is a small effect/no effect between shocks
to the real interest rate change and commodity price returns in the period on or before
January 28, 2009, while there is a negative and significant effect in the second period.
Specifically, after January 28, 2009, the 1 basis point increase in real interest rate shock
leads to a significant−0.41% decrease in oil price return (Fig. 2B),−0.07% decrease

10 For the ret_OIL_WTI VAR model, for example, dollar index returns respond to their own shocks by
98.98% (first period) and 98.95% (second period) after 5 days. For the ret_GOLD VAR, dollar index
returns respond to their own shocks by 99.23% (first period) and 99.07% (second period) after 5 days.
For the ret_COPPER VAR, dollar index returns respond to their own shocks by 99.19% (first period) and
99.28% (second period) after 5 days. For ret_COTTON VAR, dollar index returns respond to their own
shocks by 99.23% (first period) and 99.35% (second period) after 5 days.
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Table 8 Trivariate DDC-GARCH model for ret_GOLD, ret_EX_MAJ and diff_rr

Before After

ret_GOLD diff_rr ret_EX_MAJ ret_GOLD diff_rr ret_EX_MAJ

Mean equation

ret_GOLDt−1 −0.002 0.000 −0.009 −0.021 −0.008*** 0.008

(0.023) (0.005) (0.018) (0.033) (0.003) (0.028)

di f f _rrt−1 −0.012 −0.113* 0.054 −0.319 0.089*** 0.598*

(0.135) (0.068) (0.118) (0.356) (0.031) (0.310)

ret_EX_MAJt−1 −0.057*** 0.009** −0.008 −0.077** −0.000 −0.016

(0.019) (0.004) (0.020) (0.036) (0.003) (0.034)

Constant, α 0.000 −0.000 −0.000 0.000 −0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Variance equation

Arch 0.063*** 0.217** 0.036*** 0.093* 0.122*** 0.044***

(0.021) (0.088) (0.007) (0.050) (0.036) (0.010)

Garch 0.921*** 0.761*** 0.956*** 0.877*** 0.798*** 0.952***

(0.027) (0.076) (0.009) (0.058) (0.061) (0.008)

Constant, ω 0.000* 0.000** 0.000** 0.000 0.000** 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Correlation

ρgold_rr 0.040 −0.230***

(0.061) (0.072)

ρgold_ex −0.460*** −0.473***

(0.053) (0.060)

ρrr_ex −0.070 0.310***

(0.064) (0.068)

Adjustment

λ1 0.013*** 0.036***

(0.003) (0.011)

λ2 0.980*** 0.931***

(0.005) (0.028)

Diagnostic tests

Standardized residuals

Hosking (20) 182.267 203.010

p value [0.439] [0.128]

Li–McLeod (20) 193.936 179.302

p value [0.197] [0.501]

Squared standardized residuals

Hosking2 (20) 182.141 201.395

p value [0.441] [0.143]
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Table 8 continued

Before After

ret_GOLD diff_rr ret_EX_MAJ ret_GOLD diff_rr ret_EX_MAJ

McLeod–Li2 (20) 193.778 178.910

p value [0.203] [0.509]

This table reports estimates of the trivariate DCC-GARCH(1,1) models (before and after January 28, 2009)
for ret_GOLD, diff_rr and ret_EX_MAJ. Hosking (20), Hosking2 (20), Li–McLeod (20) and McLeod–Li2

(20) are the multivariate Portmanteau statistics of Hosking (1980), Li and McLeod (1981) and McLeod and
Li (1983), respectively, up to 20 lags. Robust standard errors are in parenthesis, and p values are in square
brackets
***, **, * Statistical significance at the 1, 5 and the 10% levels, respectively

in gold price return (Fig. 3B), −0.26% decrease in copper price return (Fig. 4B) and
−0.16% decrease in cotton price return (Fig. 5B). The negative relationship between
real interest rates and commodity price returns is again stronger for oil and copper.

5.3 Trivariate DCC-GARCH (1,1)

Tables 7, 8, 9 and 10 report the estimation results of trivariateDCC-GARCH(1,1)mod-
els for ret_OIL_WTI, ret_GOLD, ret_COPPER, ret_COTTON, respectively, before
and after our selected break point of January 28, 2009. To check for model diag-
nostics, we use the methods proposed by Hosking (1980), Li and McLeod (1981) and
McLeod andLi (1983) to verify the appropriateness of the parsimoniousGARCH (1,1)
specification. These multivariate versions of the Portmanteau statistic do not reject the
null hypothesis of no serial correlation in the standardized and squared standardized
residuals, respectively, up to 20 lags, indicating that the models are well specified.
Tables 7, 8, 9 and 10 show that the estimates of the two DCC parameters, λ1 and λ2,
are always statistically significant, suggesting that the second moments of the studied
series are indeed time-varying. The coefficients for the lagged shock-squared terms
and variance in the variance equation are highly significant in all models, which is
consistent with time-varying variance. In addition, the sum of estimated coefficients of
Arch and Garch term in the variance equation is close to unity for all models, implying
that the volatilities are highly persistent.

According to Table 7, the time-varying correlation between oil prices and the real
interest rate extracted from DCC-GARCH(1,1) model decreases significantly from
−0.089 to −0.462 across periods. A similar pattern is found in the relationship
between oil price and dollar index: The time-varying correlation decreases signifi-
cantly from −0.120 to −0.460. These results are consistent with those found in the
correlation analysis and in the VAR model. These patterns can also be seen clearly in
Fig. 6which showspair-wise time-varying conditional correlation coefficients between
returns/differences of commodities and the dollar index/real interest rate.

As for GOLD in Table 8, the dynamic correlation between its return and the real
interest rate decreases to a statistically significant −0.230 in the second subsample,
while the dynamic correlation between the dollar index and gold returns remain visibly
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Table 9 Trivariate DDC-GARCH model for ret_COPPER, ret_EX_MAJ and diff_rr

Before After

ret_COPPER diff_rr ret_EX_MAJ ret_COPPER diff_rr ret_EX_MAJ

Mean equation

ret_COPPERt−1 −0.020 0.002 −0.028** −0.015 0.000 0.007

(0.019) (0.002) (0.012) (0.036) (0.002) (0.024)

di f f _rr t−1 −0.173 −0.036 0.023 −1.511*** 0.103*** 0.850***

(0.137) (0.037) (0.119) (0.498) (0.033) (0.325)

ret_EX_MAJt−1 −0.027 0.005 0.008 0.099* 0.003 −0.054

(0.026) (0.003) (0.018) (0.057) (0.003) (0.037)

Constant, α 0.000 0.000 −0.000 0.000 −0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Variance equation

Arch 0.043*** 0.033*** 0.036*** 0.070*** 0.106*** 0.038***

(0.009) (0.010) (0.006) (0.016) (0.037) (0.009)

Garch 0.953*** 0.966*** 0.956*** 0.913*** 0.818*** 0.956***

(0.012) (0.009) (0.008) (0.018) (0.071) (0.007)

Constant, ω 0.000* 0.000 0.000** 0.000** 0.000* 0.000*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Correlation

ρcopper_rr −0.025 −0.342***

(0.055) (0.068)

ρcopper_ex −0.155* −0.581***

(0.091) (0.051)

ρrr_ex −0.016 0.325***

(0.067) (0.075)

Adjustment

λ1 0.007* 0.023***

(0.004) (0.006)

λ2 0.989*** 0.958***

(0.010) (0.017)

Diagnostic tests

Standardized residuals

Hosking (20) 177.040 196.631

p value [0.548] [0.188]

Li–McLeod (20) 200.187 153.527

p value [0.144] [0.924]

Squared standardized residuals

Hosking2 (20) 176.907 196.114

p value [0.551] [0.195]
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Table 9 continued

Before After

ret_COPPER diff_rr ret_EX_MAJ ret_COPPER diff_rr ret_EX_MAJ

McLeod–Li2 (20) 200.166 153.590

p value [0.144] [0.924]

This table reports estimates of the trivariate DCC-GARCH(1,1) models (before and after January 28, 2009)
for ret_COPPER, diff_rr and ret_EX_MAJ. Hosking (20), Hosking2 (20), Li–McLeod (20) and McLeod–
Li2 (20) are the multivariate Portmanteau statistics of Hosking (1980), Li and McLeod (1981) and McLeod
and Li (1983), respectively, up to 20 lags. Robust standard errors are in parenthesis, and p values are in
square brackets
***, **, * Statistical significance at the 1, 5 and the 10% levels, respectively

negative: −0.460 and −0.473 across subperiods. See also Fig. 6, row 2. According to
Table 9, decreases in the correlation coefficients between copper prices and the real
interest rate as well as with the dollar index are also found. The time-varying corre-
lation coefficient between copper prices and the real interest rate drops significantly
from−0.025 to−0.342 across periods, and the correlation coefficient between copper
prices and the dollar index drops significantly from −0.155 to −0.581 as well. These
decreasing patterns can also be seen clearly in Fig. 6 when time-varying conditional
correlation coefficients are used. Table 10 also indicates decrease in correlation coeffi-
cient between cotton prices and the real interest rate as well as the dollar index, but to a
less extent. The correlation coefficient between cotton prices and the real interest rate
drops significantly from −0.048 to −0.181 across periods, and that between cotton
prices and dollar index decreases significantly from −0.057 to −0.282. These results
match those found in the unconditional correlation analysis and in the VAR model
reported earlier.

Importantly, the relationship between the real interest rate and the dollar index
is found in each of the DCC-GARCH(1,1) models. Regardless the models used, we
always find a significant increase in this relationship from no time-varying correlation
(insignificant correlations) to roughly 0.31 (for gold in Table 8 and cotton in Table 10)
or 0.32 (for oil in Table 7) and 0.33 (for copper in Table 9) after January 28, 2009. These
increasing patterns can also be seen clearly in Fig. 7 when time-varying conditional
correlation coefficients for various models are examined. In the more recent period,
an increase in the real value of the US dollar is associated with higher rate of return
of US-based assets. This is against the ex-ante UIP condition typically employed in
order to make financial assets equally attractive at home and abroad.

5.4 Dependence pattern among series

In this section, we use the vine copula method to model the dependence among com-
modity price, real value of the dollar and the US real interest rate. After transforming
the real interest rate series into return form, we fit each series with a skewed normal
AR(1)–GARCH(1,1) filter and obtain the copula data. Applying the selecting and esti-
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Table 10 Trivariate DDC-GARCH model for ret_COTTON, ret_EX_MAJ and diff_rr

Before After

ret_COTTON diff_rr ret_EX_MAJ ret_COTTON diff_rr ret_EX_MAJ

Mean equation

ret_COTT ONt−1 −0.045** 0.000 −0.013 0.080** −0.002 0.003

(0.019) (0.002) (0.009) (0.033) (0.001) (0.017)

di f f _rr t−1 0.087 −0.108 0.024 0.645 0.088*** 0.684**

(0.229) (0.066) (0.124) (0.638) (0.033) (0.329)

ret_EX_MAJt−1 0.019 0.009** 0.010 0.009 0.001 −0.045

(0.035) (0.004) (0.018) (0.058) (0.003) (0.033)

Constant, α −0.000 −0.000 −0.000 0.000 −0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Variance equation

Arch 0.042*** 0.214** 0.035*** 0.049*** 0.105*** 0.037***

(0.007) (0.083) (0.006) (0.014) (0.038) (0.009)

Garch 0.953*** 0.757*** 0.958*** 0.935*** 0.823*** 0.957***

(0.008) (0.074) (0.008) (0.020) (0.069) (0.006)

Constant,ω 0.000** 0.000** 0.000** 0.000* 0.000* 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Correlation

ρcopper_rr −0.048* −0.181***

(0.026) (0.048)

ρcopper_ex −0.057** −0.282***

(0.027) (0.046)

ρrr_ex −0.013 0.313***

(0.028) (0.052)

Adjustment

λ1 0.009*** 0.017***

(0.003) (0.006)

λ2 0.966*** 0.948***

(0.011) (0.019)

Diagnostic tests

Standardized residuals

Hosking (20) 176.927 183.374

p value [0.551] [0.416]

Li–McLeod (20) 204.067 178.050

p value [0.112] [0.527]

Squared standardized residuals

Hosking2 (20) 176.861 182.875

p value [0.552] [0.426]
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Table 10 continued

Before After

ret_COTTON diff_rr ret_EX_MAJ ret_COTTON diff_rr ret_EX_MAJ

McLeod–Li2 (20) 206.991 177.868

p value [0.102] [0.531]

This table reports estimates of the trivariate DCC-GARCH(1,1) models (before and after January 28, 2009)
for ret_COTTON, diff_rr and ret_EX_MAJ. Hosking (20), Hosking2 (20), Li–McLeod (20) and McLeod–
Li2 (20) are the multivariate Portmanteau statistics of Hosking (1980), Li and McLeod (1981) and McLeod
and Li (1983), respectively, up to 20 lags. Robust standard errors are in parenthesis, and p values are in
square brackets
***, **, * Statistical significance at the 1, 5 and the 10% levels, respectively
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Fig. 6 Time-varying conditional correlations among commodity prices (oil, gold, copper and cotton), ex-
ante real interest rates and US dollar index. Notes Separate vertical lines indicate the dates that there is a
big cut in target Federal Fund rate (on September 24, 2008), and when real interest rate drops below zero
(on January 28, 2009), respectively

mating procedure described in Sect. 4, the vine copula modeling results are obtained
(see Table 11 and Fig. 8).

Table 11 verifies the negative relationship between commodity price returns and
exchange rate returns, as shown by negative copula parameters. The strongest depen-
dence occurs at the pair-copula of gold price return and exchange rate return before
January 28, 2009, and that of copper price return and exchange rate return after Jan-
uary 28, 2009, whose copula parameters −0.4615 and −0.5353 are the largest in
absolute value. Almost all pair-copulas are Student t copulas, with the fattest tail in
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Fig. 7 Time-varying conditional correlations between ex-ante real interest rates and US dollar index from
different DCC-GARCH models. Notes Separate vertical lines indicate the dates that there is a big cut in
target Federal Fund rate, September 24, and when real interest rate drops below zero, January 28, 2009,
respectively

the pair-copula of gold price return and exchange rate return during the second subpe-
riod, which has the smallest number of degrees of freedom 5.1673. This phenomenon
reflects higher volatility and dependence risk among different markets during the
second subperiod. It is also noted that, from the first subperiod to the second, vine
structures change for gold and cotton, as indicated by the third column. Specifically,
the pair-copula in the first tree changes from 13 ({gold/cotton price return, real inter-
est rate return}) in the first subperiod to 23 ({exchange rate return, real interest rate
return}) in the second. This indicates that the dependence between gold/cotton and
real interest rate is stronger than that between exchange rate and real interest rate in
the first subperiod, while the dependence between exchange rate and real interest rate
is stronger than that between gold/cotton and real interest rate in the second subperiod.
The vine structures for oil and copper are the same for both subperiods, but depen-
dence and tail-dependence are stronger in the second subperiod, as shown by copula
parameter value and number of degrees of freedom.

Figure 8A, B displays the vine copula structures before and after January 28, 2009,
respectively. Panel (a) in Fig. 8A shows that the gold price return is the central leading
force in the six-series co-movement in the first subperiod, while Panel (a) in Fig. 8B
shows that the copper price return is the central leading force in the second subperiod.
Panels (b) and (c) in Fig. 8A show that in the first subperiod, the vine copula structure of
each of the four commodity price returnswith exchange rate return and real interest rate
return is exactly the same, with commodity price returns as the central series leading
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Table 11 Vine copula estimation results

Periods Commodity
returns (to be vined
with ret_EX_MAJ
and ret_rr)

Pair-
copula

Copula
family

Copula parameter
(SE)

Degrees of
freedom (SE)

Before January
28, 2009

ret_OIL_WTI 12 t −0.1241 (0.0190) 12.3843 (3.2103)

13 t −0.1838 (0.0188) 10.8006 (2.3817)

23|1 t −0.0230 (0.0188) 29.0951 (18.0350)

ret_GOLD 12 t −0.4615 (0.0148) 7.1766 (1.0650)

13 t −0.0347 (0.0188) 30 (17.3395)

23|1 t −0.0143 (0.0192) 16.7930 (6.2087)

ret_COPPER 12 t −0.1577 (0.0187) 13.8662 (4.2621)

13 t −0.1180 (0.0189) 16.3090 (5.3460)

23|1 t −0.0164 (0.0190) 21.5283 (10.3824)

ret_COTTON 12 t −0.0564 (0.0192) 14.8809 (4.8406)

13 t −0.0767 (0.0189) 22.6444 (10.9226)

23|1 t −0.0048 (0.0191) 20.5178 (9.4710)

After January
28, 2009

ret_OIL_WTI 12 t −0.4272 (0.0239) 9.2902 (2.9495)

13 t −0.4248 (0.0244) 8.4603 (2.5426)

23|1 t 0.1274 (0.0312) 8.0461 (2.2008)

ret_GOLD 12 t −0.3530 (0.0277) 5.1673 (0.9674)

23 t 0.2829 (0.0291) 5.5713 (1.1299)

13|2 t −0.0435 (0.0310) 11.1465 (4.1260)

ret_COPPER 12 t −0.5353 (0.0204) 8.1486 (2.2000)

13 t −0.2979 (0.0283) 7.1105 (1.7807)

23|1 t 0.1607 (0.0309) 7.0796 (1.7530)

ret_COTTON 12 t −0.2889 (0.0271) 14.9542 (7.6859)

23 t 0.2851 (0.0292) 5.7301 (1.2076)

13|2 Gaussian −0.0798 (0.0287) –

This table reports vine copula estimation results for the multivariate distribution of
oil/gold/copper/cotton price return with exchange rate return and real interest rate return. The
numbers in each pair-copula represent different series: 1 for oil/gold/copper/cotton price return
(ret_OIL_WTI/ret_GOLD/ret_COPPER/ret_COTTON), 2 for exchange rate return (ret_EX_MAJ), 3 for
real interest rate return (ret_rir). Details of pair-copula are reported in Fig. 8 and in Sect. 5.4. Standard
errors are reported in parenthesis

the co-movement with exchange rate return and real interest rate return. However, we
can see from Panels (b) and (c) in Fig. 8B that in the second subperiod, the vine copula
structure of gold/cotton price return with exchange rate return and real interest rate
return deviates, with exchange rate return leading its co-movement with commodity
price returns and real interest rate return. Figure 8A, B also shows that all vine copula
structures are canonical vines (C-vines). C-vine is one of the two special cases of
regular vines discussed in Aas et al. (2009). A typical property of C-vines is that there
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Fig. 8 Vine copula structures A before January 28, 2009, B after January 28, 2009. Notes Since the
dependence during the first subperiod is not very strong, we only present the vine copula structures for the
second subperiod, with the structure for first subperiod available upon request. (a) Vine copula structure for
the multivariate distribution of all four commodity returns (ret_OIL_WTI, ret_GOLD, ret_COPPER and
ret_COTTON) with exchange rate return (ret_EX_MAJ) and real interest rate return (ret_rir). The letters in
the figure represent different series: a for oil price return, b for gold price return, c for copper price return, d
for cotton price return, e for exchange rate return and f for real interest rate return. (b) Vine copula structure
for the multivariate distribution of oil/copper price return (ret_OIL_WTI/ret_COPPER) with exchange rate
return (ret_EX_MAJ) and real interest rate return (ret_rir). The numbers in the figure represent different
series: 1 for oil/copper price return, 2 for exchange rate return and 3 for real interest rate return. (c) Vine
copula structure for the multivariate distribution of gold/cotton price return (ret_GOLD/ret_COTTON) with
exchange rate return (ret_EX_MAJ) and real interest rate return (ret_rir). The numbers in the figure represent
different series: 1 for gold/cotton price return, 2 for exchange rate return and 3 for real interest rate return

is a central variable (or pair) in each tree of the vine structure, and the relationships of
this variable (or pair) with each of other variables (or pairs) capture the dependence
in a specific tree.

Schepsmeier (2013) extends the goodness-of-fit test for copulas introduced by
Huang and Prokhorov (2014) and develops a goodness-of-fit test for regular vine
copula models. We apply this method bootstrapped 200 times to test whether the C-
vine copulas detailed in Fig. 8 and Table 11 are appropriate. The testing results indicate
that p value in each and every case is unanimously 1, which strongly suggests that our
vine copula modeling is a good fit.
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Fig. 8 continued

6 Concluding remarks

This paper verifies the link among several commodity prices, the real value of the US
dollar againstmajor currencies and theUS real interest rate, using three complementary
methodologies under daily data from July 1997 to September 2013. Gold displays
higher risk-adjusted returns in the earlier period followed by oil and copper, while
more recently copper and oil have higher risk-adjusted returns, followed by cotton.
Shocks to exchange rates and real interest rates in VARs play virtually no role in the
variance decompositions of oil earlier but explain almost 30% more recently (32%
for copper). In VARs positive shocks to the value of the US dollar and to real interest
rates lead to decreases in commodity returns, especially for oil and copper, which was
illustrated theoretically with the help of the model by Frankel (1986).

The time-varying correlation fromDCC-GARCHmodels is also much higher more
recently. For oil, the time-varying correlation is−0.462betweenoil and the real interest
rate (−0.460 between oil and the exchange rate), compared to −0.089 and −0.120,
respectively, for the earlier period. For copper, the time-varying correlation is −0.342
between copper and the real interest rate (−0.581 between oil and the exchange rate),
compared to −0.025 and −0.155, respectively, for the earlier period. Similar patterns
are found for cotton. Gold, however, is different. The time-varying correlation between
gold and the real interest rate increases (in absolute value) over time (from 0.040 to
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−0.230), while the dynamic correlation between gold and the exchange rate remains
about the same, with −0.460 in the earlier period and −0.473 in the recent one. For
gold, there has been no marked increase in the dynamic correlation between gold
returns and the value of the dollar. This is supportive of a steady link between gold
returns and currency.11 While a full explanation warrants further examination, gold
is a safe-haven asset. It has been known as an excellent long-term hedge against
inflation. Despite some short-term price fluctuations, gold has been shown to maintain
its purchasing value (see, e.g., Chua andWoodward 1982; Worthington and Pahlavani
2007; Blose 2010; Wang et al. 2011). In addition, gold is an excellent commodity
to hedge against financial crisis. Baur and Lucey (2010) study US, UK and German
stock and bond returns and gold returns and find that gold is a safe haven in extreme
stock market conditions. Therefore, gold is fundamentally different from the other
three commodities reported in this study.

Overall, the loose US monetary policy is associated with stronger dynamic
responses and higher dynamic correlations. Multivariate dependence among various
series has become more interesting after last financial crisis. Since the above-
mentioned VAR and DCC-GARCH models are silent on it, we apply the vine copula
methodology and find that multivariate dependence structures change from the first to
second subperiod. The C-vine copula model with t-copula in almost each pair is found
to be the most appropriate to model the multivariate dependence in both subperiods,
with different leading series in each. It is confirmed that tail-dependence is stronger in
the second subperiod.We obtain negative pair-copula parameters between commodity
price returns and exchange rate returns, with the strongest dependence for the pair of
copper price and exchange rate returns, while the relationships between commodity
and real interest rate returns are negative only for oil and copper.
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