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Abstract In this paper, we provide an alternative hedging method based on a popular
risk indicator relating to value at risk (VaR) for shipowners to hedge spot freight rate
volatility in the tanker market. To achieve this, we use a univariate generalized autore-
gressive conditional heteroskedasticity model to capture the volatility characteristics
of freight derivative returns and apply time-varying copula models to describe the
nonlinear dependence between returns of spot and freight derivatives. Using quotes
of spot freight rate and forward freight agreement (FFA) in the tanker market from
January 3, 2006 to December 23, 2011, we derive the minimumVaR hedge ratios. Our
main findings are as follows: First, we found significant evidence for the presence of
volatility persistence in freight rate returns. Second, for dependence, we suggested that
a time-varying t-copula performs best in describing how returns of spot freight rates
relate to 1-month FFA returns, whereas a time-varying Gumbel copula performs much
better for the description of nonlinear dependence between returns of spot freight rates
and 2 and 3-month FFA returns. Third, the derived hedge ratios are associated with
shipowners’ risk preferences and freight rate dynamics, which have important implica-
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tions for shipowners in determining the optimal number of FFA contracts. The results
provide some insights into the modeling of freight derivatives for risk management.

Keywords Forward freight agreement ·Value-at-risk · Time-varying copula models ·
Hedge ratio

JEL Classification C52 · G12 · R49

1 Introduction

In the shipping market, the freight rate is the main income source for shipowners.
Nevertheless, frequent and fierce freight rate volatility makes shipowners’ incomes
unpredictable and brings great difficulties to their operational decisions. Extremely low
freight rates might bring a shipowner to bankruptcy. To hedge against such freight rate
risks, shipowners have adopted a variety ofmethods. For example, split operation of the
fleet, thefloating-indexmethod, and long-termcharter contracts have traditionally been
used to mitigate freight rate risks. These methods, however, are not flexible enough
to meet participants’ requirements. Referring to financial derivatives markets, some
shipping derivatives, such as forward freight agreement (FFA), freight futures and
freight options, were developed to hedge freight rate risks (Kavussanos and Visvikis
2006).

Among the existing shipping derivatives, FFA is widely used. According to Batche-
lor et al. (2007), FFAs are principal-to-principal contracts between a seller and a buyer
to settle a freight or hire rate for a specified quantity of cargo or type of vessel, on one
(usually) or more major trade routes. For example, a shipowner is generally concerned
that the spot price of a standard freight in some future month could be lower than his
or her expectation and sells FFA contracts to a charter with the help of a specialist
broker. When trading FFA contracts, a core issue is to determine the optimal number
needed to hedge a given level of exposure, which is the determination of the optimal
hedge ratio (Kavussanos et al. 2010). An appropriate hedge ratio not only achieves a
shipowner’s purpose of risk aversion but also decreases the hedging costs, which is
the fundamental guarantee of the FFA hedging function.

Consequently, our goal in this paper is to provide an alternative hedging method
based on a popular risk indicator relating value at risk (VaR) for shipowners to hedge
freight rate risks in the tanker market using FFA. From a shipowner’s perspective,
our study can enrich the existing literature in at least two important ways. Hedging
strategies based on minimum VaR have not received great attention in the shipping
derivatives market, although it is popular in the financial derivatives market. We also
describe the dependence structure between spot and FFA returns using copula func-
tions, which allow for the presence of nonlinear dependence.

The remainder of this paper is constructed as follows. Section 2 reviews the previous
studies of hedge ratio determination. Section 3 introduces the minimum VaR hedge
ratiomodel under a copula framework.We report data and summary statistics in Sect. 4.
We analyze and discuss our empirical results in Sect. 5 and provide conclusions in
Sect. 6.
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2 Review of the existing literature

The concept of an optimal hedge ratio, as borrowed from financial markets and applied
in shipping derivativesmarkets, indicates the proper size of the position to be held in the
futures market to hedge an opposite position in the spot market (Barbi and Romagnoli
2014). Great efforts have been made to derive the optimal hedge ratio. Traditional
hedging theory suggested that spot positions could be hedged by taking an equal
but opposite position in the futures market (Pennings and Meulenberg 1997). Also,
taking into account expected profit maximization, Working (1953, 1962) suggested a
complete hedging or un-hedging strategy. However, the performance of the traditional
hedging approach was relatively low because its assumption regarding the presence
of co-movements between spot and future prices generally failed when compared to
real world results.

Second, with the popularity of portfolio theory, modern hedging theory has drawn
great attention through its consideration of risk avoidance and hedging cost savings
(Johnson 1960; Stein 1961). Theoretically speaking, in a hedged portfolio, the optimal
hedge ratio is determined by a particular objective function and estimation technique.
In terms of objective functions, a common application is the maximization of utility
functions. For instance, using a logarithmic utility function, Rolfo (1980) derived
hedge ratios for cocoa futures. Cecchetti et al. (1988) combined investors’ expected
utility and time-varying joint distribution to estimate hedge ratios. Other studies, such
as Lence (1995, 1996), also contributed to this subject. But utility-maximizing hedge
ratios require a specific utility function and return distribution, which is often unknown
or quite different from one person to another.

Third, compared with the utility-maximizing hedge ratios, the risk-minimizing
approach received a more widespread application following Ederington (1979).
Different risk measurements produced a variety of hedge ratios, such as the minimum-
variance hedge ratio (Myers and Thompson 1989), the hedge ratio incorporating both
variance and return (Hsin et al. 1994), the sharp hedge ratio (Howard and D’Antonio
1984), the hedge ratio found by minimizing the mean-Gini coefficient (Cheung et al.
1990; Shalit 1995), the hedge ratio based on generalized semi-variance (Lien and Tse
2000; Chen et al. 2003), and the minimum VaR hedge ratio (Harris and Shen 2006;
Hung et al. 2006; Chang 2011). Among all those risk measurements, VaR has become
popular since it was adopted by the governors of the Central Banks gathered in Basle
(Switzerland) as a mandatory risk measure. Moreover, Harris and Shen (2006) proved
that hedging strategies based on minimum-VaR and minimum-conditional VaR yield
small but consistent improvements over minimum-variance hedging. Therefore, we
explore the minimum VaR hedge ratio in this paper.

Fourth, researchers have proposed several estimation techniques: the naive one-to-
one or zero hedging in traditional hedging theory (Working 1962), the constant hedge
ratio based on the regression model (Ederington 1979), and the vector autoregressive
model and vector error correction model (Kavussanos and Nomikos 2000a, b; Pok
et al. 2009). With the development of econometrics, a time-varying hedge ratio was
developed by using moving average, exponentially weighted moving average, autore-
gressive conditional heteroskedasticity (ARCH) and generalized-ARCH (GARCH)
models (Angelidis and Skiadopoulos 2008). Furthermore, to capture spillover effects
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that exist between the spot and derivatives markets, multivariate GARCH models
such as the BEKK model (Engle and Kroner 1995; Chang et al. 2011), constant
conditional correlation (CCC) model (Bollerslev 1990), and dynamic conditional cor-
relation (DCC) model (Engle 2002; Toyoshima et al. 2013) were adopted. Although
those multivariate GARCHmodels had superiority in capturing spillover effects, they
were criticized for their assumption of linear dependence, which was contradictory to
the well-known stylized fact that most financial returns are skewed and non-linearly
dependent (Patton 2006a, b). To overcome this shortcoming, researchers have used
copula models, which allow the presence of nonlinear dependence as an alternative
approach (Hsu et al. 2008; Lai et al. 2009).

Nevertheless, copula models have not been widely used in shipping derivatives
markets, and relatively few empirical studies have been conducted. Considering the
advantages of VaR and copula methods in measuring risk and describing dependence
structure, we propose an alternative hedging model for shipowners to hedge against
freight rate volatility.

3 Methodology

In the shipping derivatives markets, finding the optimal hedge ratio requires a
shipowner to calculate the optimal number of FFAs to hedge a given level of expo-
sure. To this end, we here demonstrate a minimum VaR hedge strategy under a copula
framework.

3.1 The optimal VaR hedging strategy

Following Chen et al. (2003), consider a portfolio consisting of Cs units of a long
spot position and C f units of a short futures position. Then the portfolio return and its
variance are:

rh = CsStrs − C f Ftr f
Cs St

= rs − hr f (1)

σ 2
h = σ 2

s + h2σ 2
f − 2hCov

(
rs, r f

)
(2)

where St and Ft denote spot and futures prices at time t . rh, rs = (St+1 − St )/St , and
r f = (Ft+1 − Ft )/Ft are the so-called one-period returns of the portfolio, spot and
futures positions, respectively. h is the hedge ratio that needs to be estimated. σ 2

s and
σ 2
f represent the conditional variances of spot and futures returns, with conditional

covariance Cov(rs, r f ).
VaR is generally defined as the largest loss on a portfolio that could be expected

with a particular probability over a certain horizon (Hung et al. 2006; Cao et al. 2010).
The VaR over one day at the confidence level α for the above portfolio is:

VaR = −E (rh) + Zασh (3)

where E(rh) is the expected return of the portfolio and Zα denotes the left percentile
at the confidence level α for a standard normal distribution. By combining (2) and (3),
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VaR is rewritten as:

VaR = hE (rh) − E (rs) + Zα

√
σ 2
s + h2σ 2

f − 2hCov
(
rs, r f

)
(4)

Accordingly, the minimum-VaR hedge ratio can be derived when VaR reaches its
minimum (Hung et al. 2006) and is expressed as:

h = ρ
σs

σf
− E

(
r f

) σs

σf

√√√√ 1 − ρ2

Z2
ασ 2

f − E
(
r f

)2 (5)

Z ′
α = Zα + 1/6

(
Z2

α − 1
)
sh + 1/24

(
Z3

α − 3Zα

)
(kh − 3) − 1/36

(
2Z3

α − 5Zα

)
s2h

(6)

where ρ describes the dependence structure between spot and futures returns, which
is estimated using copula methods. However, in Eq. (5), rs and r f are assumed to be
jointly normally distributed, which might be inappropriate in many circumstances. To
solve this problem, we use the Cornish–Fisher expansion to adjust the percentile Zα

using the skewness (sh) and kurtosis (kh) of the portfolio return distribution (Hill and
Davis 1968; Cao et al. 2010).

3.2 Copula method

The copula method is an efficient way to describe the dependence of variables by
allowing for the presence of nonlinear dependence, indicating that any multivariate
joint distribution function can be decomposed into the marginal distributions of each
variable and a copula function (Sklar 1959). Patton (2001) extended Sklar’s theorem
to conditional copulas and proposed a time-varying copula model:

Gt
(
rst , r f t |It−1

) = Ct
(
Fst (rst |It−1) , Ff t

(
r f t |It−1

) |It−1
)

(7)

where Gt (rst , r f t |It−1) is the conditional distribution of rst , r f t at time t . Two mar-
ginal distributions ut = Fst (rst |It−1) and vt = Ff t (r f t |It−1) are combined by a
time-varying conditional copula Ct (ut , vt |It−1), and It−1 denotes the information set
available at (t − 1).

Given the assumption of differentiable cumulative distribution functions, the con-
ditional density function of rst , r f t can be expressed as:

gt
(
rst , r f t |It−1

) = ∂Gt
(
rst , r f t |It−1

)

∂rst∂r f t

= ct
(
Fst (rst |It−1) , Ff t

(
r f t |It−1

) |It−1
) × fst (rst |It−1)

× f f t
(
r f t |It−1

)
(8)

In the above setting, ct (ut , vt |It−1) = ∂2Ct (ut , vt |It−1)/∂ut∂vt is the corresponding
density function to describe the dependence structure between the marginal den-
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sity functions fst (rst |It−1), f f t (r f t |It−1). The parameters in gt , ct , fst and f f t are
denoted θ, θc, θs , and θ f , respectively. Taking the logarithm of (8), a logarithmic like-
lihood function can be derived as:

log gt
(
rst , r f t |It−1, θ

) = log ct (ut , vt |It−1, θc)

+ log fst (rst |It−1,θs) + log f f t
(
r f t |It−1, θ f

)
(9)

Using a two-step maximum likelihood estimation procedure, we can estimate the
parameters (Shih and Louis 1995; Joe and Xu 1996). Specifically, the first step is to
estimate the parameters that pertain to the marginal distributions and obtain standard
residuals from some filtration method, and the second step is to estimate parameters
pertaining to the copula function given the estimated marginal distributions and obtain
dependence coefficients. The two-step estimation procedure produces asymptotically
efficient and normal parameter estimates (Patton 2006a).

θ̂s = argmax
T∑

t=1

log fst (rst |It−1,θs) ; θ̂ f = argmax
T∑

t=1

log f f t
(
r f t |It−1,θ f

)

θ̂c = argmax
T∑

t=1

logct (ut , vt |It−1, θc) (10)

Turning to marginal distributions, it is now widely accepted that volatilities of
freight rate returns show some characteristics of volatility clustering, leptokurtosis
and skewness, which can be captured by GARCH models (Kavussanos et al. 2004;
Chen and Wang 2004; Lu et al. 2008). Based on the work of Bollerslev (1986), we
apply a GARCH (1, 1) model to describe the marginal distributions of spot and FFA
returns.

rt = μt + εt = μt + σt zt , zt ∼ i id (0, 1) ; σ 2
t = ω + αε2t−1 + βσ 2

t−1 (11)

where μt and σ 2
t denote the conditional mean and variance, respectively, given ω >

0, α > 0, β > 0 and α+β < 1. Here, zt is often assumed to follow a normal, student-
t , or generalized error distribution (GED). Parameters and standardized residuals can
be obtained after estimating Eq. (11) using the maximum likelihood estimation.

For the dependence structure, we use several copulas: Gaussian, student-t , Clayton,
Gumbel, and Symmetrized Joe-Clayton (SJC copula; Patton 2006a; Wei et al. 2011;
Chollete et al. 2011; Yang and Hamori 2014). Among them, the first two are elliptical
copulaswhose probability density functions are given in Table 1 (Cherubini et al. 2004;
Lai et al. 2009; Lu et al. 2014). As shown in Table 1, a linear correlation coefficient
ρ is based on the association of the entire distribution of variables and neglects the
association difference between extreme values and mid-range values. That is to say, it
cannot capture the asymmetric fat tail phenomenon that exists in a multivariate setting,
which means the weight of the joint density in one or both tails is larger than that in
a multivariate normal density (Lai et al. 2009). Therefore, it makes sense to further
consider some alternative copulas that allow asymmetric tail dependence.
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Second, as discussed in Patton (2006b), the family of Archimedean copulas, such
as Clayton, Gumbel, and SJC, allows a variety of tail dependencies. Their probability
density functions are also reported in Table 1. Following Nelson (1999), tail depen-
dence, by measuring the concordance between extreme values, can be expressed as:

τU ≡ lim
u→1− P [F1 (X1) > u|F2 (X2) > u] = lim

u→1− P (U1 > u|U2 > u)

= lim
u→1−

1 − 2u + C (u, u)

1 − u

τ L ≡ lim
u→0+ P [F1 (X1) ≤ u|F2 (X2) ≤ u] = lim

u→0+ P (U1 ≤ u|U2 ≤ u)

= lim
u→0+

C (u, u)

u
(12)

where F1(X1) and F2(X2) are marginal distributions, u is a given threshold value, and
τU , τ L are the upper and lower tail dependence coefficients, respectively. In addition,
C(·) is a copula function.

Third, for time-varying copulas, ρ in elliptical copulas is specified as (Patton
2006b):

ρt = �̃

(

ωρ + βρρt−1 + αρ · 1
q

q∑

i=1

�−1 (ut−i )�−1 (vt−i )

)

ρt = �̃

(

ωρ + βρρt−1 + αρ · 1
q

q∑

i=1

t−1 (ut−i ; v) t−1 (vt−i ; v)

)

(13)

where �̃(x) = (1 − e−x )/(1 + e−x ) is the modified logistic transformation aiming
to keep ρt in the range of (−1, 1) at all times. Given that an Archimedean copula has
no linear dependence parameter, Kendall’s τ was proposed to solve this issue (Nelson
1999). Kendall’s τ measures the difference between the probability of concordance
and the probability of discordance for two independent random vectors. As discussed
in Nelson (1999), the relationship between copula parameters and Kendall’s τ can be
represented as: δC = 2τ/(1 − τ) for the Clayton copula, δG = 1/(1 − τ) for the
Gumbel copula, and τt = (2/π) sin−1(ρt ) for the Gaussian and student’s-t copulas.
Patton (2006b) defines the evolution of τ as:

τt = �

(

ω + βτt−1 + α · 1

10

10∑

i=1

|ut−i − vt−i |
)

(14)

Next, we will use those copulas to examine the dependence structures between spot
and FFA returns in the tanker market.

4 Data

To use the alternative hedging method presented in the previous section, we took daily
tanker spot, 1-monthFFA, 2-monthFFA, and3-monthFFAprices quoted inWorldscale
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points from the Baltic Exchange. We chose a popular route, TD3 (Dirty Tanker) from
Middle East Gulf to Japan for very large crude carriers (VLCC) vessel sizes of 250,000
deadweight tons. Such an individual route index is relevant for the risk exposures
of smaller companies employing vessels in the investigated route (Kavussanos and
Dimitrakopoulos 2011). Sample period runs from January 3, 2006, to December 23,
2011, including 1489 pairs of observations (excluding holidays).

We calculated the returns of spot and FFA prices by taking the first difference of the
logarithmic series, denoted as rs and r f i (i = 1, 2, 3), respectively. Table 2 illustrates
the descriptive statistics of the returns series. As shown in Table 2, the unconditional
means are close to zero for all returns series. In terms of standard deviations, 1-month
FFA returns show the greatest volatility over the target period. With the exception of
spot returns, all FFA returns are skewed to the left, implying a greater chance that
returns will go down rather than up. In addition, each return series has excess kurtosis,
indicating that it has a thicker tail and a higher peak than a normal distribution, which
is confirmed by the Jarque–Bera test. Ljung–Box tests imply the existence of serial
autocorrelation in the returns series. Augmented Dickey–Fuller unit root tests suggest
that all returns series are stationary, and we can thus avoid a spurious regression
problem in this paper. Figures 1, 2, 3 and 4 present the evolution of squared returns
and reveal some evidence of volatility clustering.

5 Empirical results and discussion

As discussed above, the minimum VaR hedge ratio depends not only on the volatility
in individual return series, but also on the dependence structure between different
return series. Before calculating the optimum hedge ratios, Eqs. (5) and (6) provide
the expected return and standard deviation by estimating the marginal distributions,
as well as the dependence measurement by estimating their joint distribution.
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Fig. 1 Squared series of spot returns
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Fig. 2 Squared series of 1-month FFA returns
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Fig. 3 Squared series of 2-month FFA returns

First, we apply a univariate GARCH model with GED residuals to capture the
volatility characteristics of the returns series and report the estimation result (Table 3).
Here, our attention is restricted to a GARCH (1,1) process because it has been empir-
ically proved to adequately fit the typical features (like a fat tail and spiked peak) of
freight rate returns (Kavussanos et al. 2004; Lu et al. 2008). In the conditional mean
equations, all parameters of the AR(1) term are clearly significant at the 5% level,
implying that the effects of one-period lagged returns on current returns are signif-
icantly different from zero. As for the conditional variance equations, the estimated
coefficients of the ARCH and GARCH terms are significantly positive at the 5% level,
and their sum in the individual equation is less than one (0.9001, 0.9925, 0.9735 and
0.9045, respectively), satisfying the estimation conditions. Moreover, the magnitude
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Fig. 4 Squared series of 3-month FFA returns

of each sum is close to 1, indicating the greater persistence of shocks to volatility.
The diagnostics on the standardized residuals from the GARCH models presented in
Table 2 suggest that the models are well-specified. In addition, the Q and F statistics
show no evidence to suggest the presence of serial correlation or heteroskedasticity in
the standardized residuals.

Second, before estimating copula parameters, we have to transform the standard-
ized residuals from the filtration into uniform inputs for the copula models, which is
achieved using the empirical cumulative distribution functions (Patton 2006b; Filho
et al. 2014). The K−S statistics presented in Table 3 show that the transformed stan-
dardized residuals (ust , v1t , v2t and v3t ) follow uniform distributions. Nevertheless,
the lower tail dependence in the Clayton copula and the asymmetric upper and lower
tail dependence in the SJC copula are empirically insignificant. Referring to Patton
(2004) and Huang et al. (2009), a rotated Gumbel copula is considered to examine the
lower tail dependence between different returns series. The estimation results of the
time-varying copulas (excluding insignificant copulas) are reported in Table 4, and it is
obvious that the best fitting copula function is the time-varying student-t copula when
hedging spot freight rate risk with 1-month FFA contracts and the time-varying Gum-
bel copula when hedgingwith 2 or 3-month FFA contracts. For themodel selection, we
apply the negative log-likelihood function value. From a practical perspective, spot
and 1-month FFA return series exhibit symmetric tail dependence when extremely
high and extremely low returns are observed, which is captured by a time-varying
t-copula. On the other side, spot and 2-month (or 3-month) FFA return series present
tail-dependence only when extremely high returns are observed, which is described
by a time-varying Gumbel copula.

Third, we derive Kendall’s τ , used as a quantitative measurement of nonlinear
dependence, based on the relationship between it and the copula parameters, and its
evolution is depicted in Figs. 5, 6, and 7. Compared to constant linear correlations,
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Fig. 5 The evolution of τ between spot and 1-month FFA return series
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Fig. 6 The evolution of τ between spot and 2-month FFA return series

Kendall’s τ displays obvious time-varying characteristics. Moreover, the dependence
between spot and FFA return series are generally overestimated by constant linear
correlations. More precisely, the constant linear correlations are 0.4039, 0.3122, and
0.2527, whereas the mean values of Kendall’s τ are 0.2648, 0.2204, and 0.1897
between spot returns and 1-month FFA, 2-month FFA, and 3-month FFA returns,
respectively. Broadly speaking, a relatively low dependence can be seen between spot
and FFA returns, which restricts the hedging function of FFA markets. Furthermore,
as the expiration date of FFA contracts becomes longer, the dependence between spot
and FFA returns becomes lower. That low dependence might be partially explained
by the following reasons. The empirical results in this study are based on exchange
traded data and do not consider over-the-counter (OTC) trade information because
detailed trade data by OTC are unavailable. On the other hand, many terms in FFA
contracts, such as the underlying shipping routes, vessel age, and traded volume, are
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Fig. 7 The evolution of τ between spot and 3-month FFA return series
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Fig. 10 The optimal hedge ratio hs f 3

Table 5 Descriptive statistics of
time-varying hedge ratios

Mean Median Maximum Minimum SD

hs f 1 0.2207 0.2023 1.2766 0.0799 0.098

hs f 2 0.2585 0.2396 1.7032 0.0450 0.127

hs f 3 0.2823 0.2557 1.7908 0.0374 0.1327

standard and might be inconsistent with shipowners’ realistic situations, which would
also decrease the dependence between spot and FFA returns.

Finally, after estimating the parameters of marginal and joint distributions, we
calculate the optimal hedge ratios. Figures 8, 9, and 10 illustrate the evolution of the
minimumVaR hedge ratios when hedging the spot freight rate risk with 1-month FFA,
2-month FFA and 3-month FFA contracts, respectively. As shown in those figures,
the minimum VaR hedge ratios present obvious dynamic characteristics. Moreover,
they became higher after the 2008 financial crisis (the corresponding t is about 750),
implying that participants’ hedging costs are higher. To further examine the hedging
costs with different FFA contracts, we present the descriptive statistics of theminimum
VaR hedge ratios in Table 5. With a longer expiration date for the contract, the mean
and standard deviation of time-varying hedge ratios rise. That is to say, shipowners
suffer higher costs and risks. Therefore, shipowners need to use appropriate hedging
strategies based on their risk preferences and the dynamic market environment and
then determine the optimal number of FFA contracts.

6 Conclusion

Knowledge of hedge ratios is essential to shipowners’ strategies when hedging spot
freight rate risk with shipping derivatives. The optimal hedge ratio depends not only
on the particular objective function but also on the estimation technique. In this paper,
we have provided an alternative hedging method based on the concept of VaR for
shipowners. Moreover, we adopted a univariate GARCHmodel to capture the volatil-
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ity characteristics of freight rate returns and applied time-varying copula models to
describe the nonlinear dependence between the spot and FFA returns. Our data are
quotes of the tanker spot freight rate and FFA during the period from January 3, 2006,
to December 23, 2011.

Our main results are as follows. First, we found empirical evidence to suggest the
presence of significant volatility persistence in freight rate returns. Second, regarding
the nonlinear dependence structure, the time-varying t-copula performs best when
hedging with 1-month FFA contracts and the time-varying Gumbel performs best
when hedging with 2 and 3-month FFA contracts. Finally, the minimum VaR hedge
ratios present obvious dynamic characteristics, and they were relatively higher after
the financial crisis. That is to say, shipowners had to pay higher hedging costs after the
crisis. Therefore, with a better understanding of hedge ratios, shipowners can make
improved investment decisions and receive stable cash flows.

A potential limitation of the current paper is related to hedging effectiveness. We
have not considered the hedging effectiveness of the minimum VaR method because
the traditional measure of hedging effectiveness is based on the minimum-variance
approach, which we deemed unsuitable. That limitation points to avenues for future
research.
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