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Tolga Omay1 · Ayşegül Çorakcı2 ·
Furkan Emirmahmutoglu3

Received: 12 October 2014 / Accepted: 9 December 2015 / Published online: 6 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Real interest rate is a crucial variable that determines the consumption,
investment and saving behavior of individuals and thereby acts as a key policy tool
that the central banks use to control the economy. Although many important theo-
retical models require the real interest rates to be stationary, the empirical evidence
accumulated so far has not been able to provide conclusive evidence on the mean
reverting dynamics of this variable. To resolve this puzzle we re-investigate the sto-
chastic nature of the real interest rates by developing unit root tests for nonlinear
heterogeneous panels where the alternative hypothesis allows for a smooth transition
between deterministic linear trends around which stationary asymmetric adjustment
may occur.When the newly developed panel unit root tests are applied to the real inter-
est rates of the 17 OECD countries, we were able to uncover overwhelming empirical
support in favor of mean reversion in the short-run and long-run real interest rates.
Therefore, these results show that the conclusions drawn from a miss-specified test
that ignores the presence of either nonlinearity, structural breaks or cross sectional
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dependence can give quite misleading results about the stochastic behavior of the real
interest rates.

Keywords Smooth break · Panel unit root · Cross-sectional dependence ·
Nonlinearity · Real interest rate

JEL Classifications C2 · C5 · E4

1 Introduction

One of the central issues in macroeconomics and finance is the stochastic properties
of the real interest rates. The question of whether the real interest rate is constant and
follows amean reverting stochastic process has attracted agreat deal of attention among
economists since the seminalworkofFisher (1930).At stake, amongother things, is the
validity of the intertemporal Euler equation implied by the consumption-based asset
pricingmodels (CAPM) (Lucas 1978; Breeden 1979; Hansen and Singleton 1982), the
Black-Scholes model used to determine the price of options (Black and Scholes 1973),
the Fisher hypothesis and efficiency of capital markets, the long-run super neutrality
hypothesis, the real interest rate parity hypothesis (RIPH) and the implications of
many models of monetary transmission mechanism. Thus, many important theoretical
models in themacroeconomics literature imply or assume stationary real interest rates.
However, the empirical studies after decades of investigation still could not provide a
definite answer regarding the stationary properties of the real interest rates.

After a comprehensive overview, the following conclusions can be drawn from
the existing econometric analysis1. First, when the conventional univariate unit roots
are applied to the data, the null hypothesis of a unit root in general could not be
rejected (e.g., Rose 1988; Moosa and Bahatti 1996; Kapetanios et al. 2003; Choi
and Moh 2007; Tsong and Lee 2012). Second, there is strong evidence that the real
interest rate reverts to a long-run mean, but that the adjustment to this mean follows
a nonlinear process (e.g., Garcia and Perron 1996; Kapetanios et al. 2003; Million
2004; Lanne 2006; Christopoulos and Leon-Ledesma 2007). In particular, the real
interest rates are shown to exhibit threshold dynamics, which coincides quite well with
the central bank’s “opportunistic disinflation” policy strategy. Third, many empirical
studies report the existence of structural breaks in the mean of the real interest rate
series, which if exists greatly reduces the power of the conventional unit root tests (e.g.,
Clemente et al. 1998; Bai and Perron 1998; Caporale and Grier 2000; Bai and Perron
2003; Lai 2008). Fourth, studies that utilize a much longer span of data and/or allow
for the use cross-sectional information in the panel data tend to find strong evidence
in favor of mean reverting behavior in the real interest rates (e.g., Costantini and Lupi
2007; Sekioua and Zakane 2007;Westerlund 2008; Tsong and Lee 2013; Pesaran et al.
2013). Thus, it seems that the reported empirical results that drive a wedge between
the theoretical models and the data are due to the econometric challenges involved
in identifying stationary real interest rate series. To the best of our knowledge, the

1 See Neely and Rapach (2008) for a comprehensive survey of this literature.
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empirical literature has not considered testing for the long run mean reversion of the
real interest rates using panel data allowing for structural breaks and regime-wise
nonlinearity together with cross-sectional dependence. However, as mentioned above,
existing evidence clearly points to the presence of both structural breaks and nonlinear
dynamics in the real interest rate at the international level,which implies that these have
to be accounted for when analyzing the stochastic properties of the series in a panel
setting. Hence, in this paper to analyze the stochastic properties of the real interest rate
series, we accomplish this task and develop unit root tests that allow simultaneously
for the existence of structural breaks and regime-wise nonlinearity in heterogeneous
panels (see Lundbergh et al. 2000; Skalin and Teresvirta 2002; Lütkepohl et al. 1998;
Sollis et al. 2002 and Sollis 2004 for the univariate case).

To this end, the present study extends the nonlinear unit root testing framework of
Sollis (2004) to heterogeneous panels by drawing upon the work of Im et al. (2003)
(hereafter, IPS). This allowsus to combine smooth transition (ST) and threshold autore-
gressive (TAR)models within a panel framework2. Furthermore, to correct for the size
distortion that is caused by cross-sectional dependence (CSD), we implement Chang’s
(2004) sieve bootstrapmethodology3. Small sample properties of the newly developed
tests are compared to that of the conventional IPS panel unit root test, which ignores
the presence of both structural breaks and nonlinearity.We have also compared our test
with the panel Leybourne et al. (1998) (PLNV) test proposed by Omay et al. (2013)
that only considers the presence of smooth structural breaks in a heterogeneous panel
setting (henceforth, OHS).We show that our newly proposed test has significant power
gains over both the IPS and PLNV test. This makes our proposed test quite relevant
for analyzing the stationary properties of the real interest rate series, which are argued
to exhibit both threshold dynamics and structural breaks.

By implementing our newly proposed panel unit root tests to the real interest rates
of 17OECD countries over the period 1979:Q2–2011:Q2, we find conclusive evidence

2 In order to consider smooth breaks in the deterministic components of a series, many studies have
alternatively developed unit root tests based onGallant’s (1981) flexible Fourier form.However, as discussed
in Omay et al. (2013), the smooth transition methodology has many advantages over the Flexible Fourier
form (see also Omay 2015). Thus, in this article we have employed the smooth transition model to handle
the structural shifts in the data. Moreover, the dummy variable based structural break unit root testing
procedures skip the idea of heterogeneity. The most important conclusion that can be drawn from the
simulation studies carried out in this study and the ones in Omay et al. (2013) is that if the panel structural
break tests do not estimate the break point heterogeneously, they are insufficient to test the real-life data.
Fortunately, the proposed tests in this study have proven to be quite successful in both heterogeneous and
homogeneous parameter settings via the Monte Carlo simulation studies.
3 There are other methods to remedy the CSD problem such as the common correlated effect (CCE)
estimator proposed by Pesaran (2006, 2007). The CCE estimator augments the panel regressions by cross-
sectional averages of lagged first-difference terms, and this approach is valid for panels where N and T
are of the same order of magnitudes (Pesaran 2007) unlike the principal component approach that requires
N/T → 0. Although Kapetanios et al. (2011) have shown that the CCE estimators have better small
sample properties than the factor-based estimators, using the CCE estimator in our present context is quite
troublesome since our testing procedure utilizes an indicator function that may produce problems while
taking the averages of the independent variables. Hence, we prefer to use the bootstrap methodology which
also solves the CSD problem in a multifactor error structure. Besides, the bootstrap methodology is shown
to be a better remedy for smooth structural break panel unit root tests with CSD, as opposed to the CCE
methodology (Omay et al. 2013).
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that the real interest rates are integrated of order zero (i.e., I(0)). Also, the scope of the
paper covers different terms of the real interest rate—short-term and long-term—that
provides a comprehensive analysis of the topic. Particularly, using the panel ST-TAR
unit root tests, we show that the short-term real interests rates of all the 17 OECD
countries are stationary around a broken trend. For the long-term interest rates, only
the real interest rate series of France is found to contain a unit root.

The remainder of the article is structured as follows. In Sect. 2, the newly proposed
unit root tests are developed. In Sect. 3, the critical values of this test under cross
sectional independence are presented. Sections 4 and 5 illustrate the methodology
used to handle the cross-sectional dependence problem and provide the empirical
powers of our test in comparison to that of the IPS and the OHS tests. Section 6
applies the newly proposed unit root tests to analyze the mean reversion of the real
interest rates. Section 7 is reserved for concluding remarks.

2 The model and testing framework

Let yit be a panel ST-TAR process with changing trend function on the time domain
t = 1, 2, . . . , T for the cross-sectional units i = 1, 2, . . . , N . Consider yit , which is
generated by one of the following smooth transition (ST) processes:

Model A: yit = αi1 + αi2Sit (γi , τi ) + εi t (2.1)

Model B: yit = αi1 + βi1t + αi2Sit (γi , τi ) + εi t (2.2)

Model C: yit = αi1 + βi1t + αi2Sit (γi , τi ) + βi2t Sit (γi , τi ) + εi t (2.3)

where Sit (γi , τi ) is the logistic smooth transition (LST) function based on a sample of
size T and N , Sit (γi , τi ) = [1+exp{−γi (t−τi T )}]−1 where γi > 0 and τi determine
the mid-point of transformation for each i = 1, 2, . . . , N , and εi t is generated by the
following TAR model;

�εi t = ρi1 Ii tεi,t−1 + ρi2(1 − Ii t )εi,t−1 + ηi t (2.4)

where Ii t is the Heaviside indicator function such that Ii t = 1 if εi,t−1 ≥ 0, Ii t = 0 if
εi,t−1 < 0, and ηi t is a zero-mean stationary process.

In Eq. (2.4) if H0: ρi1 = ρi2 = 0 for all i , then εi t and therefore yit contains a
unit root, while if ρi1 = ρi2 < 0 for some i , yit is a stationary panel ST-TAR process
with symmetric adjustment. On the other hand, if ρi1 < 0, ρi2 < 0 and ρi1 �= ρi2 for
some i , then yit is a stationary panel ST-TAR process this time displaying asymmetric
adjustment. These hypotheses are valid irrespective of whether Model A, B or C is
used to describe the deterministic components of yit .

In this modeling strategy, likewise Leybourne et al. (1998) (hereafter, LNV), the
structural change is modeled as a smooth transition between different regimes rather
than as an instantaneous structural break. The transition function Sit (γi , τi ) is a con-
tinuous function bounded between 0 and 1. Thus, the ST model can be interpreted as a
regime-switching model that allows for two regimes associated with the extreme val-
ues of the transition function, Sit (γi , τi ) = 0 and Sit (γi , τi ) = 1, where the transition
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from one regime to the other is gradual. The parameter γi determines the smoothness
of the transition, and thus, the smoothness of transition from one regime to the other.
The two regimes are associated with the small and large values of the transition vari-
able sit = t relative to the threshold τi . For the large values of γi , Sit (γi , τi ) passes
through the interval (0,1) very rapidly, and as γi approaches+∞ this function changes
value from 0 to 1 instantaneously at time t = τi T . Therefore, if we assume that εi t
is a zero mean I (0) process and use model (1), then yit becomes a stationary process
around a nonlinear mean which changes from the initial value αi1 to the final value
αi1+αi2. However, assuming that εi t is generated by the TARmodel given in Eq. (2.4)
allows asymmetric adjustment around this nonlinear mean with differing degrees of
autoregressive persistence parameters given by ρi1 and ρi2. Similar conditions follow
for models given by Eqs. (2.2) and (2.3)4.

The models given in (2.1), (2.2) and (2.3) can be used to test the following hypoth-
esis:

H0: yit = μi t , μi t = μi,t−1 + εi t , μi0 = ψi (2.5a)

H1: Model A,Model B or Model C (2.5b)

or

H0: yit = μi t , μi t = κi + μi,t−1 + εi t , μi0 = ψi (2.6a)

H1: Model B or Model C (2.6b)

where εi t is assumed to be a stationary processes with zero mean.
Following Sollis (2004), LNV and OHS the test statistics proposed here are calcu-

lated using a two-step procedure:

Step 1 Using a nonlinear least squares (NLS) algorithm, we estimate only the deter-
ministic components of the preferred model for each of the cross-sectional units and
collect the NLS residuals by

Model A ε̂i t = yit − α̂i1 − α̂i2Sit
(
γ̂i , τ̂i

)

Model B ε̂i t = yit − α̂i1 − β̂i1t − α̂i2Sit
(
γ̂i , τ̂i

)

Model C ε̂i t = yit − α̂i1 − β̂i1t − α̂i2Sit
(
γ̂i , τ̂i

) − β̂i2t Sit
(
γ̂i , τ̂i

)

Step 2 We test for the presence of a unit root in the residuals obtained from the first
step regression using the following TAR model,

�ε̂i t = ρi1 Ii t ε̂i,t−1 + ρi2(1 − Ii t )ε̂i,t−1 +
ki∑

j=1

δi j�ε̂i,t− j + ηi t (2.7)

Sollis t-test for the i th individual is the most significant of the t-statistics used for
testing ρi1 = 0 and ρi2 = 0 in Eq. (2.7) and is defined by:

4 For further discussions see LNV and Sollis (2004).
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ti = max (ti1, ti2) (2.8)

where ti1 and ti2 are individual t-statistics for ρi1 = 0 and ρi2 = 0, respectively. The
t-statistics are defined as follows:

ti j =
√
T − ki − 2

(
ε̂′
i j,−1MQi j �ε̂i

)

(
ε̂′
i j,−1MQi j ε̂i j,−1

)1/2 (
�ε̂′

i MXi j �ε̂i
)1/2

j = 1, 2 (2.9)

where �ε̂i = (
�ε̂i1,�ε̂i2, ...�ε̂iT

)′, ε̂i1,−1 = (
Ii ε̂i0, , . . . , Ii ε̂i,T−1

)′, ε̂i2,−1 =
(
(1 − Ii )ε̂i0, . . . , (1 − Ii )ε̂i,T−1

)′, Qi1 = (
(1 − Ii )ε̂i2,−1,�ε̂i,−1, . . . ,�ε̂i,−ki

)
,

Qi2 = (
Ii ε̂i1,−1,�ε̂i,−1, . . . ,�ε̂i,−ki

)
, MQi j = IT − Qi j

(
Q′

i j Qi j

)−1
Q′

i j , MXi j =
IT − Xi j

(
X ′
i j Xi j

)−1
X ′
i j , Xi j = (

ε̂i j,−1, Qi j
)
and IT is an identity matrix of order

T .
For testing the unit root null H0: ρi1 = ρi2 = 0 inEq. (2.7), non-standard individual

F-test statistics is given by:

Fi =
(
RP̂i

)′ [
σ̂ 2
i R

(
C ′
iCi

)−1
R′]−1 (

RP̂i

)
/2 (2.10)

where Ci = [
Ii ε̂i,−1, (1 − Ii ) ε̂i,−1,�ε̂i,−1, . . . ,�ε̂i,−ki

]
, R = [

I2, 02×ki

]
, P̂i =

[
ρ̂i1, ρ̂i2

]′, which ρ̂i1 and ρ̂i2 are the Ordinary Least Square (OLS) estimators of ρi1

and ρi2, and σ̂ 2
i is the OLS estimator of σ 2

i .
We propose testing for whether yit contains a unit root using the F-statistic for

testing ρi1 = ρi2 = 0 in (2.7), and/or the most significant of the t-statistics from
those for testing ρi1 = 0 and ρi2 = 0. When the full model is given by Eqs. (2.1)
and (2.4), the relevant F and t-statistics will be referred to as F̄1p,α and t̄1p,α . When
the full model is given by Eqs. (2.2) and (2.4), the relevant F and t-statistics will be
referred to as F̄2p,α and t̄2p,α , and when the full model is given by Eqs. (2.3) and (2.4),
the relevant F and t-statistics will be referred to as F̄3p,α and t̄3p,α . For each of the
models, we obtain the mean group statistics as follows:

F̄jp,α = N−1
N∑

i=1

Fi j = 1, 2, 3 (2.11)

t̄ j p,α = N−1
N∑

i=1

ti j = 1, 2, 3 (2.12)

As the NLS estimation of the parameters γi and τi does not allow for closed-form
solutions, it would be extremely hard to find any analytical relationship between the
ε̂i t and yit . This, of course, makes the determination of the null asymptotic distribution
of the test statistics by analytical means more or less intractable (Leybourne et al.
1998). Leybourne et al. (1998) stated that the linearity property in the intercept and
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trend terms ensures that the residual ε̂i from all the models are invariant to the choice
of the starting values (i.e., μi0 = ψi ) and that Model A, B and C are invariant to both
starting values and the drift term κi . Therefore, the obtained critical values are invariant
to the parameters γ and τ , and as a result invariant to α and β. To further prove this
statement, we employ a new Monte Carlo design to see the invariance of the critical
values with respect to the parameters α, β, γ and τ . For this purpose, we use {γ, τ }:
{1.0, 0.5} , {1.5, 0.6} and {0.5, 0.4} for generating the critical values. The simulated
density functions are obtained for N = 1, T = 100 for 1000 and 50000 trials and show
us that the critical values are invariant to the parameters α, β, γ and τ . The simulated
density functions for different parameter values of {γ, τ } are given in “Appendix”.

3 Critical values of the proposed tests under cross-sectional
independence

In this section the critical values of the unit root tests proposed above will be given
under the assumption of cross-sectional independence using Monte Carlo simulation.
Although the panel unit root tests developed in this study are especially designed for
analyzing unit root behavior in the real interest rates, they are also general enough to be
used in testing for the presence of unit root in anymacroeconomic variable that exhibits
both nonlinearity and structural breaks. In studying group of countries that are heavily
integrated like the group of OECD countries studied here and for macroeconomic vari-
ableswith close cross country links like the real interest rates analyzed here, accounting
for cross-sectional dependence is crucial. However, for other cases which involve the
study of macroeconomic variables in which cross-sectional dependence does not con-
stitute a serious problem the critical values tabulated in this section should be used.

The exact critical values of t̄1p,α and F̄1p,α statistics under the assumption of cross
sectional independence are generated by Monte Carlo simulations with 5000 replica-
tions and reported for Model A in Table 15.

4 Sieve bootstrap algorithm under cross-sectional dependence

In this paper, we have followed Chang’s (2004) Sieve bootstrap methodology to over-
come the cross-sectional dependence problem arising from investigating the real inter-
est rates of theOECDcountries that are heavily integrated. The Sieve bootstrap scheme
used in this paper is summarized via a five-step algorithm in the following manner.
Step 1 Following Basawa et al. (1991), under the null of a unit root (ε̂i t = �yit ) we
estimate the errors as:

υ̂i t = ε̂i t −
pi∑

j=1

δ̂i j ε̂i,t− j (4.1)

where lag orders pi are determined via information criteria (e.g. AIC, SBC) by starting
with pmax.

5 The critical values of t̄2p,α , F̄2p,α , t̄3p,α , and F̄3p,α for Models B and C are available upon request.
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Table 1 The exact critical values of test statistics for Model A

T/N t̄1p,α F̄1p,α

5 10 15 25 50 5 10 15 25 50

1%

30 −3.307 −3.053 −2.903 −2.791 −2.693 8.998 7.652 7.083 6.556 6.086

50 −3.115 −2.905 −2.792 −2.719 −2.616 7.925 6.953 6.499 6.133 5.711

70 −3.074 −2.866 −2.756 −2.674 −2.598 7.825 6.783 6.340 5.958 5.617

100 −3.046 −2.832 −2.736 −2.657 −2.564 7.596 6.610 6.235 5.876 5.488

150 −2.980 −2.799 −2.724 −2.638 −2.556 7.328 6.411 6.194 5.788 5.414

200 −2.978 −2.801 −2.721 −2.642 −2.543 7.335 6.501 6.111 5.833 5.376

5%

30 −3.010 −2.855 −2.771 −2.697 −2.625 7.483 6.744 6.379 6.058 5.767

50 −2.897 −2.749 −2.688 −2.623 −2.558 6.777 6.250 5.958 5.722 5.433

70 −2.866 −2.717 −2.652 −2.582 −2.534 6.702 6.090 5.832 5.558 5.333

100 −2.822 −2.681 −2.633 −2.566 −2.511 6.626 5.949 5.737 5.454 5.243

150 −2.785 −2.667 −2.612 −2.556 −2.499 6.388 5.905 5.658 5.422 5.197

200 −2.787 −2.665 −2.606 −2.553 −2.486 6.435 5.860 5.650 5.384 5.155

10%

30 −2.883 −2.752 −2.702 −2.643 −2.585 6.829 6.329 6.058 5.834 5.578

50 −2.779 −2.673 −2.620 −2.576 −2.523 6.319 5.899 5.701 5.513 5.293

70 −2.746 −2.638 −2.594 −2.542 −2.499 6.186 5.737 5.582 5.364 5.195

100 −2.728 −2.615 −2.576 −2.523 −2.475 6.111 5.639 5.478 5.270 5.096

150 −2.691 −2.599 −2.559 −2.506 −2.468 5.948 5.589 5.429 5.226 5.069

200 −2.692 −2.592 −2.545 −2.505 −2.458 5.978 5.564 5.398 5.213 5.028

Step 2 Stine (1987) states that the residuals have to be centered with

υ̃t = υ̂t − (T − p)−1
T∑

t=p+1

υ̂t (4.2)

where υ̂t = (υ̂1t , υ̂2t , ..., υ̂Nt )
′ and p = max (pi ). Moreover, we construct N×T [υ̃i t ]

matrix from these residuals.We select the residuals column randomlywith replacement
at a time to preserve the cross-sectional structure of the errors. The bootstrap residuals
are denoted by υ̃∗

i t where T = 1, 2, . . . , T ∗ and T ∗ = T + M .
Step 3 We construct bootstrap samples ε∗

i t recursively from

ε∗
i t =

pi∑

j=1

δ̂i jε
∗
i,t− j + υ̃∗

i t (4.3)

where δ̂i j are the estimates obtained from Step 1. Notice that we generate T + M
values of �y∗

i t and discard the first M values to ensure stationarity.
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Step 4 We produce bootstrap samples y∗
i t from

y∗
i t = y∗

i,t−1 + ε∗
i t (4.4)

Step 5 Using bootstrap samples y∗
i t , the bootstrap test statistics (e.g. F̄∗

1p,α
and t̄∗

1p,α
)

are computed for each relevant model by employing a two-step procedure, which is
presented in the previous section.

We repeat steps (2) to (5)many times to find bootstrap empirical distribution of these
panel test statistics and obtain the bootstrap critical values by selecting the appropriate
percentiles of the sampling distributions.

5 Finite sample performance

In this section, we investigate the Monte Carlo performance of the proposed panel
test statistics under the assumption of cross sectional dependence. Before giving
the Monte Carlo results for the proposed test statistics, it is important to demon-
strate that the presence of cross-sectional dependence will distort the size of the
tests. In this case, the data-generating process (DGP) with one factor is given as
follows:

yit = yi,t−1 + εi t yio = 0
εi t = λi ft + uit

(5.1)

where ft ∼ i.i.d.N (0, 1) and uit ∼ i.i.d.N (0, σ 2
i ) with σ 2

i ∼ i.i.d.U [0.5, 1.5].
ft and uit are independent of each other. We distinguish between two degrees of
cross-sectional dependence, so that we generate λi ∼ i.i.d.U [0, 0.2] for “low cross-
sectional dependence”, andλi ∼ i.i.d.U [1, 4] for “high cross-sectional dependence”6.
We use 2000 replications to compute the size distortions of the tests at the 5% nominal
level7.

Tables 2 and 3 present the Monte Carlo results in the presence of high and low
cross-sectional dependence, respectively. As to be expected, the presence of high cross
sectional dependence given Table 2 leads to size distortions for both test statistics when
N and T are large. Even if T is small for all values of N , both test statistics show
size distortions. In general, their size distortions rise monotonically with N and T
for all models. Otherwise, in case of low cross sectional dependence (Table 3) for all
values of N and T , and for all models both test statistics have the correct empirical
size.

After illustrating the size distortions problem, next we investigate the small sample
properties of our tests under cross-sectional dependence using Monte Carlo simula-

6 For two different degrees of cross-sectional dependence, the average pair-wise correlations are computed
as 0.01 and 0.816 for N = 10, respectively.
7 For all Monte Carlo simulations, since random parameter values are used, the whole experiment is
simulated 5 times and the mean of the empirical sizes and powers obtained from these simulations are
reported for different values of N and T . All programs are available upon request in both MATLAB and
RATS formats.
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Table 2 The exact size of
F̄1p,α and t̄1p,α in case of DGP
with factor (High cross section
dependence)

T/N F̄1p,α t̄1p,α

5 10 25 5 10 25

Model A

50 15.69 21.10 28.15 15.63 22.70 30.94

100 13.10 21.89 29.59 14.30 22.78 31.34

150 17.03 21.33 29.24 18.06 22.65 30.83

200 14.46 22.08 29.81 15.69 22.80 30.86

Table 3 The exact size of
F̄1p,α and t̄1p,α in case of DGP
with factor (Low cross section
dependence)

T/N F̄1p,α t̄1p,α

5 10 25 5 10 25

Model A

50 5.98 5.04 4.35 5.14 4.96 4.57

100 4.70 5.68 5.67 5.32 5.79 5.36

150 6.11 5.24 4.90 6.02 5.16 4.58

200 4.88 4.93 5.07 5.08 4.26 4.28

tions with Sieve bootstrap. We apply the Sieve bootstrap method to obtain critical
values of the test statistics. To this end, we report experiments based on 1000 replica-
tions with 199 bootstrap replications. The experiments were carried out for all the pair
of N = 5, 10, and 25 and T = 50, 100, 150 and 200. First we report the empirical
size of the tests for all models. To this end, we employ the following DGP for the
empirical size under the null (2.5a)

yit = yi,t−1 + εi t yio = 0
εi t = λi ft + uit
uit = ρi ui,t−1 + vi t

(5.2)

where ft ∼ i.i.d.N (0, 1) and vi t ∼ i.i.d.N (0, σ 2
i ) with σ 2

i ∼ i.i.d.U [0.5, 1.5]. Also,
we set as λi ∼ i.i.d.U [1, 4]8. To examine the impact of residual serial correlation,
we generate ρi ∼ i.i.d.U [−0.4, 0.4] which will then be used in the generation of the
errors, vi t .

Table 4 presents the empirical size of our tests for all models. We see that the
empirical size of both test statistics is close to the nominal size for almost all T and
N .

For brevity, we consider the empirical size-adjusted powers of the t̄1p,α and F̄1p,α .
By way of comparison, we also report size-adjusted powers of IPS test (t̄IPS) which

8 As an anonymous referee has, Chang’s (2004, page 277–278)DGPcauses there to beweak cross-sectional
dependence. Therefore, using Pesaran (2007)’s one factor DGP, the size and power analysis of the tests are
conducted only for the values of λi ∼ i.i.d.U [1, 4] that generate high cross-sectional dependence. In this
situation, the average pair-wise correlation is computed as 0.816 for N = 10. All size analysis are available
upon request for Model B and C for Tables 2, 3 and 4.
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Table 4 The exact size of
F̄1p,α and t̄1p,α in case of
cross-sectional dependence

T/N F̄1p,α t̄1p,α

5 10 25 5 10 25

Model A

50 5.58 4.92 4.72 5.34 4.92 4.66

100 5.20 4.68 4.76 5.24 4.68 4.60

150 4.82 5.24 4.42 4.88 5.16 4.58

200 5.00 4.40 4.80 4.90 4.62 5.20

includes intercept plus trend term9 and the PNLV test (t̄LNV ). To evaluate the size-
adjusted power of the all test statistics, we employ the following panel ST-TAR(1)
DGP under heterogeneous alternative (2.5b).

yit = αi1 + αi2Sit (γi , τi ) + εi t

�εi t = ρi1 Ii tεi,t−1 + ρi2(1 − Ii t )εi,t−1 + uit
uit = λi ft + vi t

vi t = ρivi,t−1 + ηi t

(5.3)

whereηi t ∼ i.i.d.N (0, σ 2
i )withσ 2

i ∼ i.i.d.U [0.5, 1.5]. Ii t is defined as before. Factor
loadings (λi ) and ft are generated as Eq. (5.2). We consider two different range of the
smooth transition parameters, namely γi ∼ i.i.d.U [0.5, 1.5] and γi ∼ i.i.d.U [3, 5] to
represent the slow and fast transitions, respectively. All other parameters are assigned
as follows: ρi1 ∼ i.i.d.U [−0.9,−0.7], ρi2 ∼ i.i.d.U [−0.2, 0], αi1 = 1, αi2 ∈
{2, 10}, τi = 0.5. In size-adjusted power experiments, under the alternative hypothesis,
we use the DGP given in Eq. (5.2) for i = 1, . . . , [N/2] and the one given in Eq. (5.3)
for i = [N/2] + 1, . . . , N with [N/2] being the nearest integer value of N/2.

The results fromTable 5 clearly indicate that the size-adjusted power of the new test
statistics t̄1p,α and F̄1p,α increase quite significantly as the number of observations (T )

increase for a given panel size (N ). The same result holds as the panel size increases
(N ) for a given number of observations (T ). In addition, the increase in the value of
γi from slow to fast, other things being equal causes the power of the newly proposed
tests to decrease. This outcome is not unexpected because as the value of γi increases
the transition resembles more an abrupt structural change rather than a smooth one,
and this leads to power losses in the LNV based tests like ours. The same pattern is
observed in the empirical powers of LNV test itself. However, an increase in the time
series dimension (T ) helps to offset this power loss. As shown in the first two panels
of Table 7 for a small break (αi2 = 2), irrespective of the value of the parameter γi ,
the power of IPS test t̄I PS exceeds that of the newly proposed tests t̄1p,α , F̄1p,α and
the OHS test t̄LNV . This may stem from the fact that the calculation of t̄1p,α , F̄1p,α
and t̄LNV requires the estimation of more parameters than does the IPS test. Thus,

9 Leybourne et al. (1998) pointed that Model A is capable to proxy a function containing a linear trend
with certain combinations of parameters. In this context, the IPS test with intercept and linear trend is a
natural competitor to our proposed t̄1p,α statistic.
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Table 5 The empirical size-adjusted power comparison of alternative tests under cross-sectional depen-
dence

T/N 5 10 25

t̄1p,α F̄1p,α t̄LNV t̄I PS t̄1p,α F̄1p,α t̄LNV t̄I PS t̄1p,α F̄1p,α t̄LNV t̄I PS

γi ∼ U (0.5, 1.5) α2i = 2

50 13.50 12.50 10.80 19.80 14.20 12.10 8.50 19.90 15.50 14.50 13.20 20.30

100 35.30 32.50 27.60 40.70 40.40 39.00 32.60 47.40 43.20 38.60 33.80 46.90

150 58.60 57.40 50.80 65.10 71.00 70.00 60.80 71.40 75.10 73.10 60.20 73.60

200 81.60 82.50 69.60 82.90 95.70 97.30 71.50 86.20 93.20 93.10 68.40 86.00

γi ∼ U (3, 5) α2i = 2

50 12.80 12.30 10.50 20.10 14.10 12.40 11.70 19.60 14.10 12.70 16.80 23.50

100 35.10 32.30 27.40 41.40 41.00 37.90 34.20 48.40 42.10 40.50 36.90 48.40

150 59.80 58.20 54.20 64.10 70.30 70.20 60.40 72.90 67.70 69.50 52.00 76.40

200 81.20 83.10 70.80 82.20 86.80 89.10 76.50 86.60 86.80 86.90 69.20 91.00

γi ∼ U (0.5, 1.5) α2i = 10

50 14.40 12.30 9.50 3.20 13.50 11.80 10.90 1.60 16.90 14.90 11.80 2.50

100 33.30 30.30 24.80 8.40 37.90 34.30 33.20 7.30 41.00 36.50 33.60 10.60

150 56.70 55.50 46.40 19.40 68.30 67.50 61.40 13.90 72.70 71.20 54.70 27.00

200 80.20 80.10 60.20 33.70 85.90 87.70 76.00 23.40 91.40 92.40 65.20 37.90

γi ∼ U (3, 5) α2i = 10

50 12.20 10.80 9.80 5.00 12.20 10.90 10.80 2.40 15.70 14.20 13.00 3.50

100 33.50 28.60 25.20 10.50 38.40 34.30 29.30 8.00 41.00 35.80 32.40 12.40

150 57.10 55.30 42.70 25.30 68.90 67.90 57.20 16.20 74.60 72.40 52.80 24.10

200 80.90 80.40 65.80 36.60 86.60 87.80 66.70 25.20 92.70 92.90 64.20 41.40

the loss of power from having to do so seems to be offset by the gain in power from
using the correctly specified data-generating process. Although the empirical power
of the new tests exceed that of the OHS test for the small break case, the power of
the OHS test still remains close to power of the new tests with the difference being
approximately 11% at most. On the other hand, for a large break (αi2 = 10), not only
the power of the IPS test collapses but also the power of the newly proposed tests t̄1p,α
and F̄1p,α still exceeds that of the OHS test. Thus, ignoring large breaks and nonlinear
adjustment when both are present in the panel data series produces large power losses
when testing for a unit root10.

6 Empirical results

In this study, to test the null hypothesis of a unit root in the real interest rate series
(RIRs) we have employed quarterly data that include observations on the nominal
interest rate and the consumer price index over the period 1979:Q2—2011:Q2 (i.e. 129

10 A detailed power analysis has been conducted by OHS. For further details refer to Omay et al. (2013).
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data points) for seventeen OECDmember countries.11 The seventeen OECD countries
includeAustralia, Austria, Belgium,Canada, France,Germany, Italy, Japan,Korea, the
Netherlands,NewZealand,Norway, Spain, Sweden, Switzerland, theUnitedKingdom
(UK), and United States (US).

Since the seminalwork ofRose (1988),many studies in the literature have recoursed
to the ex post rate for investigating the stationarity properties of the RIRs. While the
ex-ante real interest rate is the nominal interest rate minus the expected inflation rate,
the ex post real interest rate is found by subtracting the realized inflation from the
nominal rate. Economic decisions by nature depend on the ex-ante real interest rate;
however, the ex-ante real rates are in fact unobservable in contrast to the ex post
rates. To prevent the shortcomings involved in specifying the correct way, the agents
form their expectations or using survey data that are not available for many countries
over a long time span, we will stick with this approach and use the ex post real rate.
An alternative solution would be to construct inflation forecasts using econometric
models. However, as argued in Neely and Rapach (2008), such models fail to include
all the necessary variables that agents use to forecast inflation and do not change as the
structure of the economy changes12.Moreover, under the assumption that expectations
are formed rationally across countries, the ex post (actual) real interest rate will differ
from the ex-ante real interest rate by a white noise random error which is orthogonal
to past information. Therefore, as argued in Moosa and Bahatti (1996), under rational
expectations if the ex post real interest rate is found to be stationary then this may be
interpreted as the ex-ante real interest rate being constant over time. Even without the
assumption of rational expectations, the difference between the two rates is a stationary
nonpersistent process (Peláez 1995) that is believed to not have an intense effect on
the results (Kapetanios et al. 2003).

Following Pesaran et al. (2013) the ex-post real interest rate for each country j is
calculated as r jt = 0.25 ln(1+ R jt/100) − (p jt − p j,t−1), where R jt is the nominal
rate of interest per annum in per cent in country j at time t , p jt = ln(CPI jt ) and
CPI jt is the consumer price index of country j at time t .

A vast majority of the studies in the literature have utilized the nominal short-term
interest rate (i.e., the three month treasury-bill rate, money market rate, deposit rate
or the discount rate) to calculate and test for the stationarity of the RIRs (Kapetanios
et al. 2003; Neely and Rapach 2008; Pesaran et al. 2013; Kapetanios and Shin 2011).
However, the nominal long-term interest rates not only are more relevant to saving and
investment decisions than the short-term rates (Tsong and Lee 2012) but also more
directly reflect the financing costs for capital investments (Obstfeld and Taylor 2002).
Therefore, to provide a more comprehensive investigation of the stochastic behavior
of the RIRs, we utilized both the short-term and long-term nominal interest rates of
the countries included in the study. The long-term government bond yield (typically
the yield on ten year government bonds) is used as a proxy for the long-term nominal

11 The data used in this study are retrieved from the Global VAR modeling (GVAR) database, which is
publicly available at: https://sites.google.com/site/gvarmodelling/data. A detailed description of the data
and sources are also included.
12 See Neely and Rapach (2008) and the references therein for a discussion of the further challenges
involved in econometrically forecasting inflation.
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interest rate. The short-term (three month) nominal interest rates are the treasury-bill
rates for Canada, Sweden, UK and US; money market rates for Australia, Austria,
Belgium, France, Germany, Italy, Japan, Korea, the Netherlands, Norway, Spain and
Switzerland; and the discount rate for New Zealand.

We have carried out a preliminary analysis to determine the stochastic and deter-
ministic features of our real interest rate series before demonstrating the results of our
panel unit root tests. The results of this analysis are given in panel A of Table 6 for both
the short-term and long-term RIRs. In panel A yit , γi and τi denote the original real
interest rate series (i.e., the r jt ’s), the estimate of the transition speed parameter, and
the estimate of threshold parameter, respectively. To be comparable we used the same
notation given in Eq. (2.1). In the third and seventh columns of panel A, we present the
estimates of the threshold parameter ci obtained from the estimation of the TARmodel
with de-trended series ε̂i t given in (2.1) and (2.4) using Chan’s (1993) methodology13.
Besides, we have also tested the symmetry of the two regime TAR parameters ρ1 and
ρ2 given in Eq. (2.4). The results of these asymmetry tests are given in the fourth and
eight columns of panel A for the short-term and long-term RIRs, respectively.

As it can be seen from the second column of Table 6, the estimates of the threshold
parameters τi are clustered around 0.5. This shows us that the structural breaks in the
short-term RIRs take place at the middle of the samples. Thus, the sample countries
short-term RIRs face a structural break at the middle of the 1990s. Moreover, we can
also classify the break dates in the short-term RIRs of these countries with respect
to the estimates of the γi (first column in panel A). Out of 17 countries included in
the study, 8 of them have sharp transition (with estimates γ̂i > 1.0), 5 of them have
smooth transition (with estimates 0.1 < γ̂i < 1.0) and 2 of them have highly smooth
transitions (γ̂i < 0.1)14. Therefore, the parameter values of γi and τi obtained are
consistent with the power simulations.

In addition, we have investigated the de-trended series ε̂i t considering the threshold
parameter and the tabulated results obtained in the third column. The results show us
that the threshold parameters are located around ĉi = 0.00. This finding particularly
justifies the usage of Enders and Granger’s (1998) TAR unit root test15.

We also test the asymmetry of the parameters in the fourth column of Table 6 for the
short-term RIRs. The test results exhibit a symmetric pattern in the TAR parameters.
However, we can still order the TAR parameters of these countries from being the
most symmetric tomost asymmetric. Accordingly Spain, Japan, and Switzerland seem

13 The TAR model estimates are available upon request.
14 As it can be seen from the second column, we have also found out that 2 out of 17 countries have time
varyingmean structure, but do not have a significant threshold parameter. Therefore,we neither classify them
as having sharp nor smooth structural breaks. It is better to indicate this type of estimates as nonlinear trend.
Besides, these two countries, namely Austria and Germany, have significant transition speed parameters.
This corroborates the fact that these countries have nonlinear trends.
15 Also Enders and Granger (1998) have proposed two alternative M-TAR unit root tests. One explicitly
estimates the threshold parameter, while the other assumes it to be equal to zero. On the other hand, Sollis
(2004) combinedLNVstructural de-trendingwith theEG-TAR type of unit root tests,which set the threshold
parameter exogenously to zero. This type of structural de-trending (nonlinear attractor) also has a secondary
effect. It automatically locates the threshold parameter of the TAR model to zero. Therefore, the threshold
parameters obtained in the third column of Table 8 show us that extending Sollis (2004) directly to a panel
stetting is a true strategy to follow rather than explicitly finding the threshold level as in Chan (1993).
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Table 6 Pre-test of deterministic and stochastic features of samples

Countries Short-term RIRs Long-term RIRs

yit ε̂i t yi t ε̂i t

γ̂i τ̂i ĉi Asy−test γ̂i τ̂i ĉi Asy−test

Panel A: time series test

Australia 13.136 0.427∗ −0.005 2.721 0.719∗∗ 0.625∗ 0.004 2.070

Austria 0.035∗ 2.401 0.003 0.073 0.113∗ 0.647∗ 0.003 0.396

Belgium 1.300∗∗∗ 0.517∗ 0.005 0.516 0.114∗ 0.635∗ −0.001 0.278

Canada 1.270 0.533∗ −0.002 0.136 0.194∗∗∗ 0.646∗ 0.001 0.004

France 0.138∗ 0.647∗ 0.003 0.247 0.222∗∗∗ 0.684∗ 0.001 2.118

Germany 0.027∗ 2.015 0.004 0.382 0.060∗ 0.745∗ 0.000 0.437

Italy 0.791∗∗ 0.610∗ 0.005 2.799∗∗∗ 0.651∗∗∗ 0.605∗ 0.003 2.297

Japan 0.314∗ 0.466∗ −0.002 0.014 0.939∗∗ 0.514∗ −0.001 0.821

Korea 0.690∗∗∗ 0.648∗ −0.003 0.636 8.402∗ 0.663∗ −0.007 8.469∗
Netherlands 0.391∗ 0.495∗ 0.003 1.558 0.224∗ 0.568∗ 0.002 1.223

New Zealand 8.876∗ 0.628∗ −0.008 0.038 23.214∗ 0.245∗ −0.006 8.227∗
Norway 11.836 0.473∗ −0.005 0.262 10.450∗∗ 0.534∗ 0.005 0.747

Spain 0.395∗∗∗ 0.602∗ 0.007 0.005 0.579∗ 0.594∗ 0.005 0.530

Sweden 0.124∗ 0.738∗ 0.006 0.155 0.136∗∗∗ 0.800∗ 0.000 0.460

Switzerland 7.803∗ 0.713∗ 0.002 0.032 14.272∗∗ 0.393∗ 0.000 0.893

UK 12.660∗∗∗ 0.442∗ 0.005 0.557 0.058∗ 1.494 0.005 1.510

USA 1.543∗∗∗ 0.392∗ −0.002 0.670 0.095∗∗∗ 0.672∗ 0.005 0.313

Short-term RIRs Long-term RIRs

CDLM1 CDLM2 CD CDLM1 CDLM2 CD

Panel B: panel test of cross section dependence

4288.34∗ 251.77∗ 63.11∗ 3747.91∗ 219.00∗ 58.25∗

*, **, *** denote significance levels at 1, 5% and 10%, respectively
γ̂i and τ̂i denotes the transition speed parameter and the threshold parameter of the LNV model. ĉi is the
threshold parameter estimates obtained from the results of the TAR model. In this case the threshold value
ids obtained using the Chan’s (1993) method. Asy-test is obtained under the null H0 : ρ1 = ρ2

to have the most symmetric TAR estimation results, whereas Italy, Australia and the
Netherlands are the most asymmetric ones. Therefore, we expect to find the short-term
RIRs of Italy, Australia and the Netherlands’ to be stationary around a nonlinear trend
with our proposed panel unit root test in SPSM procedure. On the other hand, these
countries are not expected to be found stationary using the PLNV test16. Fortunately,
our proposed test has power against symmetric cases as well. Therefore, the countries
which are found symmetric in the fourth column should be found as stationary with
the newly proposed tests as well, since the newly proposed test nests the PLNV test.
The same results are obtained in case of the long-term RIRs.

16 These 3 countries are indeed found to be nonstationary with the implementation of the PLNV test
(Table 7).
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In panel B of Table 6, cross-sectional dependence of the short-term and long-term
RIRs are tested using the CD tests proposed by Pesaran (2004). All the CD test results
indicate high cross sectional dependence between the RIRs of the countries in the
sample. Therefore, when testing for the integration properties of the RIRs, the cross-
sectionally dependent versions of our proposed tests (bootstrap) should be used.

To test whether the short-term and long-term RIRs exhibit mean reversion, in addi-
tion to our newly proposed combined tests t̄1p,α and F̄1p,α , we have also applied two
alternative panel unit root tests to the RIRs of the OECD countries for comparison.
The first of these tests is the conventional panel unit root test of IPS. However, an
aforementioned weakness of the standard IPS test is that it ignores the possibility
of breaks. Since the literature has documented that the RIRs may display structural
breaks, the panel LNV test was applied as a second test to the RIRs that allows for
both smooth breaks and cross sectional dependence. However, both the IPS and the
panel LNV tests are based on the assumption that the RIRs follow a linear adjustment
process, which may not be true according to the existing empirical evidence. Thus, to
consider the presence of structural breaks and nonlinearity simultaneously, we further
apply our proposed tests to the RIRs that also uses additional information from the
cross sectional units to achieve a power gain.

The results of the three aforementioned tests are given in Tables 7 and 8 for the
short-term and long-term RIRs, respectively. All of the three tests are applied on a
reducing dataset using the SPSM procedure17.

Evidence from panel A of Table 7 shows that the IPS test rejects the null hypothesis
of a unit root in the short-term RIRs for the entire panel and in only 6 countries out
of 17. The 11 short-term RIRs that are found nonstationary according to the linear
panel unit root test belongs to USA, Austria, Japan, Germany, France, Spain, Korea,
UK, Belgium, the Netherlands, and Italy. On the other hand, when potential breaks
in the RIRs are considered and the panel unit root test with breaks (the panel LNV
test) is applied to the panel, the results again point to the stationarity of the panel
around a broken trend, but this time with 12 out of 17 countries behaving like an
I(0) process (panel B). Thus, accounting for structural breaks within a panel context
has considerably increased the number of countries for which the unit root null is
rejected for the short-term RIRs, namely the RIRs of only 5 countries (Austria, Spain,
Australia, the Netherlands, and Italy) are found to be nonstationary.

At this point, two main conclusions can be made with regard to our findings in
Table 7. First, the existence of unit root in the short-term RIRs cannot be conclusively
refuted for more than 50%—about 65%—of our sample when the linear panel unit
root test without breaks is applied. Second, by considering the presence of structural

17 Applying the panel unit root tests with the sequential panel selection method (SPSM) proposed by
Chortareas andKapetanios (2009) has allowedus to distinguish the panel into its stationary andnonstationary
components. For further technical details on this methodology refer to Chortareas and Kapetanios (2009).
On the other hand, recently Costantini and Lupi (2014) have investigated the performance of the SPSM
proposed by Chortareas andKapetanios (2009). The authors suggest that there are some classes of panel unit
root tests that are better suited than others to be applied jointly with the SPSM such as the IPS test. Besides,
they also recommend that for the Chortareas and Kapetanios (2009) methodology to be used the sample in
the investigation must be fairly large and most of the series in the sample should be I(0). Fortunately, our
sample fulfills these criteria. For further discussion see Costantini and Lupi (2014).
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Table 7 Panel unit root test results for short-term real interest rates

Sequence Series t̄I PS Min. ADF Sequence Series t̄LNV Min. LNV

Panel A: linear unit root tests without
structural break—IPS test

Panel B: linear unit root tests with smooth
structural break—PLNV test

1 Switzerland −2.611∗ −4.666 1 Japan −4.788∗ −7.102

2 N. Zealand −2.482∗ −4.209 2 Germany −4.643∗ −6.827

3 Canada −2.367∗∗ −3.929 3 Canada −4.498∗ −6.770

4 Sweden −2.256∗∗ −3.830 4 Switzerland −4.335∗ −5.812

5 Australia −2.135∗∗∗ −3.682 5 Sweden −4.222∗ −5.479

6 Norway −2.006∗∗∗ −2.953 6 UK −4.117∗ −5.353

7 USA −1.920 −2.803 7 Korea −4.004∗ −5.158

8 Austria −1.831 −2.768 8 Belgium −3.889∗∗ −5.001

9 Japan −1.727 −2.526 9 Norway −3.765∗∗ −4.547

10 Germany −1.627 −2.311 10 N. Zealand −3.668∗∗ −4.473

11 France −1.530 −2.210 11 France −3.553∗∗∗ −4.191

12 Spain −1.416 −1.959 12 USA −3.446∗∗∗ −4.165

13 Korea −1.308 −1.578 13 Austria −3.304 −4.161

14 UK −1.240 −1.519 14 Spain −3.088 −3.869

15 Belgium −1.147 −1.206 15 Australia −2.828 −3.363

16 Netherlands −1.118 −1.201 16 Netherlands −2.560 −2.893

17 Italy −1.034 −1.034 17 Italy −2.227 −2.227

Sequence Series F̄1p,α Min. F̄1p,α Sequence Series Max. t̄1p,α Min. Max. t̄1p,α

Panel C: nonlinear unit root tests with smooth structural break—OEE-F and OEE-t tests

1 Japan 14.970∗ 25.182 1 UK −4.589∗ −6.672

2 UK 14.331∗ 24.804 2 Japan −4.459∗ −6.238

3 Germany 13.633∗ 23.580 3 Germany −4.340∗ −5.611

4 Canada 12.923∗ 22.895 4 Canada −4.250∗ −5.501

5 USA 12.156∗ 17.263 5 N. Zealand −4.153∗ −4.889

6 Switzerland 11.730∗ 17.148 6 Switzerland −4.092∗ −4.889

7 Sweden 11.238∗ 13.649 7 USA −4.020∗ −4.635

8 Belgium 10.996∗ 12.724 8 Sweden −3.958∗ −4.465

9 N. Zealand 10.804∗ 12.416 9 Korea −3.902∗ −4.446

10 Australia 10.603∗ 12.027 10 Australia −3.834∗ −4.401

11 Italy 10.400∗ 11.826 11 Belgium −3.753∗ −4.226

12 Korea 10.162∗ 11.525 12 Netherlands −2.755∗ −4.179

13 Spain 9.889∗ 11.507 13 Italy −3.573∗ −3.901

14 Norway 9.485∗ 10.255 14 Spain −3.491∗ −3.784

15 Netherlands 9.228∗ 10.058 15 Norway −3.393∗ −3.666
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Table 7 continued

Sequence Series F̄1p,α Min. F̄1p,α Sequence Series Max. t̄1p,α Min. Max. t̄1p,α

Panel C: nonlinear unit root tests with smooth structural break—OEE-F and OEE-t tests

16 France 8.813∗ 8.871 16 Austria −3.257∗∗ −3.372

17 Austria 8.756∗∗ 8.756 17 France −3.141∗∗∗ −3.141

In all cases *, **, and *** denote rejection of the unit root null hypothesis at 1, 5 and 10% significance levels,
respectively.We include only a constant term in the test regressions. Test results are obtained employing 1000
bootstrap replications. In each panel, the countries given in the second column are sorted in a descending
order according to the univariate counterparts of each panel unit root test applied on the RIRs of the OECD
countries included in the study. Min. ADF denotes the individual minimumADF (the univariate counterpart
of the IPS test) statistics that are used to decide on the individual series to be dropped from the panel when
implementing the SPSMwith the IPS test. Min. LNV denotes the individual minimum LNV (the univariate
counterpart of the panel LNV test) statistics that are used to carry out the reduction of the individual series
for the SPSM and PLNV test. Min. F̄1p,α and Max. t̄1p,α denote Sollis’s (2004) individual minimum F-
and t-statistics (the univariate counterparts of our proposed tests) that are used to carry out the reduction of
the individual series for the SPSM and the OEE-F and OEE-t tests

Table 8 Panel unit root test results for long-term real interest rates

Sequence Series t̄I PS Min. ADF Sequence Series t̄LNV Min. LNV

Panel A: linear unit root tests without
structural break—IPS test

Panel B: linear unit root tests with
structural break—PLNV test

1 N. Zealand −2.498∗ −5.048 1 Switzerland −4.780∗ −6.520

2 Australia −2.339∗ −3.768 2 Belgium −4.672∗ −6.467

3 Sweden −2.243∗ −3.766 3 Japan −4.552∗ −6.197

4 Switzerland −2.135∗∗ −3.166 4 Austria −4.434∗ −5.771

5 UK −2.055∗∗ −2.822 5 Canada −4.332∗ −5.760

6 Germany −1.991∗∗∗ −2.782 6 N. Zealand −4.213∗ −5.717

7 Norway −1.919 −2.647 7 Germany −4.076∗∗ −5.646

8 Austria −1.847 −2.645 8 Spain −3.919∗∗ −5.461

9 USA −1.758 −2.500 9 Australia −3.748∗∗ −5.233

10 Japan −1.665 −2.161 10 Norway −3.562∗∗ −5.124

11 Canada −1.594 −2.066 11 USA −3.339∗∗∗ −4.584

12 Italy −1.516 −1.838 12 Netherlands −3.131 −4.297

13 Korea −1.451 −1.781 13 UK −2.898 −3.777

14 Netherlands −1.369 −1.765 14 France −2.678 −3.700

15 France −1.237 −1.724 15 Sweden −2.337 −3.174

16 Spain −0.994 −1.470 16 Korea −1.919 −2.646

17 Belgium −0.517 −0.517 17 Italy −1.193 −1.193

Sequence Series F̄1p,α Min. F̄1p,α Sequence Series Max. t̄1p,α Min. Max. t̄1p,α

Panel C: non-linear unit root tests with structural break—OEE-F and OEE-t tests

1 Korea 16.626∗ 22.837 1 Korea −4.981∗ −6.692

2 UK 16.238∗ 22.460 2 UK −4.874∗ −6.501
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Table 8 continued

Sequence Series F̄1p,α Min. F̄1p,α Sequence Series Max. t̄1p,α Min. Max. t̄1p,α

Panel C: non-linear unit root tests with structural break—OEE-F and OEE-t tests

3 Belgium 15.823∗ 21.791 3 N. Zealand −4.766∗ −5.958

4 Switzerland 15.397∗ 21.336 4 Japan −4.681∗ −5.793

5 Japan 14.940∗ 19.698 5 Australia −4.595∗ −5.745

6 Australia 14.544∗ 19.135 6 Switzerland −4.499∗ −5.475

7 N. Zealand 14.126∗ 18.658 7 Belgium −4.410∗ −5.248

8 Austria 13.673∗ 16.742 8 Germany −4.327∗ −4.881

9 Canada 13.332∗ 16.530 9 Norway −4.265∗ −4.854

10 Germany 12.932∗ 16.139 10 Austria −4.191∗ −4.774

11 Italy 12.474∗ 15.182 11 Canada −4.108∗ −4.745

12 Spain 12.023∗ 14.790 12 Italy −4.002∗ −4.485

13 USA 11.470∗ 14.681 13 Netherlands −3.906∗ −4.449

14 Norway 10.667∗ 13.754 14 Spain −3.770∗ −4.233

15 Netherlands 9.638∗ 13.160 15 USA −3.615∗ −4.188

16 Sweden 7.877∗∗ 8.907 16 Sweden −3.329∗∗ −3.722

17 France 6.846 6.846 17 France −2.936 −2.936

In all cases *, **, and *** denote rejection of the unit root null hypothesis at 1, 5 and %10 significance levels,
respectively.We include only a constant term in the test regressions. Test results are obtained employing 1000
bootstrap replications. In each panel, the countries given in the second column are sorted in a descending
order according to the univariate counterparts of each panel unit root test applied on the RIRs of the OECD
countries included in the study. Min. ADF denotes the individual minimumADF (the univariate counterpart
of the IPS test) statistics that are used to decide on the individual series to be dropped from the panel when
implementing the SPSMwith the IPS test. Min. LNV denotes the individual minimum LNV (the univariate
counterpart of the panel LNV test) statistics that are used to carry out the reduction of the individual series
for the SPSM and PLNV test. Min. F̄1p,α and Max. t̄1p,α denote Sollis’s (2004) individual minimum F-
and t-statistics (the univariate counterparts of our proposed tests) that are used to carry out the reduction of
the individual series for the SPSM and the OEE-F and OEE-t tests

breaks in the RIRs and further applying the panel LNV test we can uncover mean
reverting dynamics in the RIRs for about 70% of the sample.

Altogether our findings so far highlight the importance of taking structural breaks
into account when studying the stochastic properties of the RIRs. However, even if a
possible structural break in the short-term RIRs was taken into account, the test did
not yield very strong evidence that the short-term RIRs behave like an I(0) process.
The panel LNV test still cannot reject the unit root null in 30% of the countries,
though it provides additional 6 rejections of unit root compared to the results of the
IPS test. On the whole, neither the linear panel model nor the panel model with
smooth breaks can overwhelmingly support the long-run mean reversion of the short-
term RIRs for our sample. Hence, the more powerful tests proposed in this study that
exploits the possibility of nonlinearities and breaks in the RIRs simultaneously will
be implemented.

Panel C of Table 7 contains the results of our proposed tests on the short-term
RIRs. By applying the same SPSM outlined above, the null hypothesis of a unit root
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in the short-term RIRs was rejected for all the countries included in the study. Thus,
we have obtained conclusive evidence in favor of the long-run mean reversion of the
short-term RIRs for all the OECD countries included in the study. Ability to obtain
overwhelming evidence of mean reversion seems to suggest that nonlinearity and
breaks in the short-term RIRs co-exist in all the countries we studied.

Table 8 contains the results on the long-term RIRs. The results are similar to those
obtained for the short-term RIRs.We again started by conducting a standard IPS panel
unit root test with bootstrap and the SPSM methodology (Panel A in Table 7) and
concluded that for a vast majority of the countries the unit root null hypothesis cannot
be rejected (only in 6 out of 17 cases, which corresponds to about 35% of rejections).
Afterward, to consider the presence of structural breaks in the long-term RIRs, we
applied the panel smooth break unit root test with again bootstrap and the SPSM
methodology (Panel B in Table 7), but even in this case we were able to provide only
some support for the long-run mean reversion of the long-term RIRs (about 65% of
rejections of the unit root null hypothesis). This finding probably suggests that allowing
for structural breaks only offers a partial solution to the extensive non-rejection of the
unit root null again in the long-term RIRs.

On the other hand, when both nonlinearity and smooth breaks in the long-term
RIRs are simultaneously considered while tackling cross-sectional dependence, the
null hypothesis of a unit root in the RIRs is considerably rejected in Panel C in sharp
contrast with the results in Panels A and B. Using our proposed tests together with
the SPSM methodology outlined above, we find that 16 out of 17 countries exhibit
mean-reverting dynamics in their long-term RIRs. Particularly, the unit root null is
not rejected only for France. Comparing the results in Panels B and C, we find that
an additional five rejections of the unit root dynamics can be found in our sample,
including the Netherlands, UK, Sweden, Korea, and Italy. More rejections for the
long-term RIRs may again be attributed to the improved power of our proposed tests.

After determining the stochastic properties of the RIR series, we next employed a
heterogeneous Panel ST-TAR estimation. As in Sollis (2004), this estimation is carried
out in two steps. First the deterministic component is estimated (the smooth trend is
removed) and then the panel TAR estimation is carried out using Eq. (2.4) and thus
the residuals obtained from the first step. For the short-term RIRs, we have found out
that the group mean estimator of the speed of adjustment coefficient is -0.549 ( ¯̂ρ1) if
εi,t−1 ≥ 0, which is also classified as the high regime, and -0.572 ( ¯̂ρ2) for the low
regime. Both of the regime parameters are significant at 1% significance level. In case
of the long-term RIRs the estimates obtained are −0.549 and −0.647 for the high
regime and low regime, respectively. Thus, the RIRs are found to display differential
speeds of adjustment with the positive phase of the RIR sequence being more persis-
tent than the negative phase, which implies faster adjustment for negative RIRs than
for positive ones.

7 Conclusion

Real interest rate remains one of the crucial variables in the macroeconomics and
finance literature. Although many important theoretical models require the real inter-
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est rates to be stationary, the empirical evidence accumulated so far has not been
able to provide conclusive evidence on the mean reverting dynamics of this vari-
able. Thus, serious questions have been raised about the validity of many important
macroeconomic relationships, models and hypotheses involving stationary real inter-
est rates. In this study we show that a potential solution to this problem is using a
test that is specifically designed to fit the stochastic features of the real interest series.
A researcher should consider all factors pertinent to a situation when conducting an
analysis. Likewise, to investigate the stochastic properties of the real interest rates
one should also utilize a test that allows for the possibility of nonlinearity and struc-
tural breaks simultaneously in a panel setting that induces additional power gains with
the use of cross-sectional information. Accounting for cross-sectional dependence is
especially important in analyzing macroeconomic variables with close cross country
links like the real interest rates.

The empirical power of our newly proposed unit root tests are compared with the
powers of two alternative panel unit root tests—the IPS test ignoring both nonlinearity
and structural breaks and the PLNV test considering only structural breaks—using
Monte Carlo simulation exercises. Under the hypothesis that the data are generated by
a globally asymmetric stationary ST-TAR process our tests are shown to have better
small sample properties than the aforementioned tests.

When the newly proposed panel unit root tests are applied to the short-term and
long-term real interest rates of the 17 OECD countries we were able to uncover over-
whelming empirical support in favor of the mean reversion in the real interest rates.
Particularly, the unit root null is rejected for all OECD countries when the new panel
unit root tests are applied to the short-termRIRs. Our findings imply that for all OECD
countries included in our study, a one-time shock to the short-term real interest rate
will have no permanent effect on the economy. In case of the long-term RIRs, the unit
root null is not rejected only in France, which implies that a one-time shock to the
long-term real interest rate in France would be permanent and could not be eliminated
with the passage of time.

Overall, the empirical results verifymean reversion in the expostOECDreal interest
rates. However, the main contribution of this paper is twofold. First we show in this
paper that the mean (or equilibrium value) to which the ex post real interest rates
revert in the long-run, is not a constant but changes smoothly over time. However;
as argued in Kesriyeli et al. (2006) while most studies have allowed for nonlinear
dynamics in the interest rates, they have assumed that the interest rate dynamics was
constant over time. Researchers have also typically assumed that the interest rate
policy was constant in the period of relatively low interest rates since 1984. The
authors argue that such assumptionsmay lead to significant misspecification.We show
that this misspecification carries over to our panel of OECD countries. The long-run
equilibrium real interest rate may be altered by forces caused by important structural
events. In the general equilibrium growth models, these forces include permanent
changes in the exogenous rate of time preference, risk aversion, or long-run growth rate
of technology. In other more complicatedmacroeconomicmodels, permanent changes
in public purchases and their financing or changes in the steady-state money growth
rate also induce changes in the long-run equilibrium or steady-state real interest rate.
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Besides the aforementioned long-run behavior of the real rates, the second con-
tribution of this paper is to show that in the short-run the real interest rate adjusts
asymmetrically toward this endogenously changing equilibrium real interest rate.
The estimation results demonstrate that asymmetric behavior is detected between
the regimes of positive and negative real interest rates. More specifically, the mean
reverting process that governs the real interest rate adjustment to its long-run equilib-
rium value depends on the sign of the disequilibrium or shock. This implies that the
real interest rate adjusts differently or asymmetrically to positive and negative devi-
ations of the real interest rate from its long-run equilibrium value18. Particularly, for
the OECD real interest rates, we have demonstrated that the real interest rates tend
to adjust faster to equilibrium for negative real interest rates than for positive ones.
This observed sign asymmetry can be rationalized with the existence of asymmetric
optimal policy rules that arise in case of inflation and/or output targeting19. According
to the nonlinear Phillips curve literature positive aggregate demand shocks manifested
in the form of positive inflation and/or output gaps (i.e., occurring in the expansionary
phase of the business cycle) are more inflationary than negative shocks (i.e. in case of
recessions) which are disinflationary. As argued in Schaling (2004), a positive devi-
ation of inflation from its target level causes the real interest rates to be negative in
the short-run. The danger of inflation caused in this case becomes much more severe
than the linear case. This causes an inflation targeting central bank to increase the
nominal rates by more than if the output inflation trade-off was symmetric20. Simi-
larly, in case of a negative deviation, the real rates will be positive in the short-run and
the accompanying disinflationary pressure will be less than in the linear case. Hence,
the central bank will only call for a small cut in the nominal rate. In other words,
with nonlinear Phillips curve and inflation targeting the optimal monetary policy rule
is asymmetric: Positive deviations from the inflation target and or in the output gap
imply higher (absolute values of) real interest rates than negative deviations. Thus,
inflation targeting central banks react more aggressively to positive aggregate demand
shocks that cause negative real interest rates in the short-run and thereby induce a
relatively rapid adjustment in the real rates toward equilibrium when they are in the
negative regime. The same result carries over to central banks that give equal weights
to both output and inflation stabilization (the case of flexible inflation targeting)21.

18 Following Schaling (2004), the long-run equilibrium value in our model is set to zero.
19 For nonlinear optimal monetary policy rules see Schaling (2004) and Dolado et al. (2005); and the
references therein.
20 Inflation targeting here is interpreted in strict terms in the sense that it refers to the case in which the
central bank only aims to minimize only deviations of inflation from its assigned target. With no weight
given to output stabilization in the central bank’s loss function, the real interest rate becomes a nonlinear
function of the deviation of the inflation rate from its target (i.e., inflation gap) and the output gap. Thus,
a central bank with strict inflation targeting still responds to output gaps. See Schaling (2004) for further
details.
21 Flexible inflation targeting refers to the case in which the goal of monetary policy is to stabilize not
only inflation around the target level (as in the case of strict inflation targeting) but also output around its
own target level. This causes again the optimal real interest rate to be a nonlinear function of the deviation
of the inflation rate from its target and the output gap. See Schaling (2004) for further details.

123



Real interest rates: nonlinearity and structural breaks 305

8 Appendix

As it can be seen from the generated density functions obtained for different initial val-
ues of γ and τ , critical values at convergence are clearly not sensitive to the choices of
initial values as stated in Leybourne et al. (1998). Therefore, the test statistics obtained
are invariant to parameters α, β, γ and τ . In order to be accurate, we increase the trial
number from 1000 to 50000. After carrying out this new simulation experiment, we
have obtained the same density functions for the Max t-test and F-Tests as follows,
with different initial values of γ and τ (Figs. 1, 2, 3 and 4).

From the figures given above, it can be clearly seen that the critical values are
invariant to the parameters α, β, γ and τ in NLS estimation with respect to the choice
of different initial values.
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Fig. 1 Density functions comparison of F test
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Fig. 2 Density functions comparison of Max-t test
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Fig. 3 Density functions comparison of F test
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