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Abstract This paper presents a new family of parametric Lorenz curves based on
the arctan function and adding a parameter −∞ < α < ∞, α �= 0 to an initial
Lorenz curve L0(p), 0 ≤ p ≤ 1. The particular case obtained when α tends to zero
is reduced to the initial Lorenz curve L0(p). The corresponding distribution functions
are shown. Some inequality measures are calculated, and a method to compute the
Gini index based on the use of the inverse of the Lorenz curve is proposed. Finally, an
application to two well-known data sets is presented and a good fit is obtained.

Keywords Parametric Lorenz curve · Gini measure · Leimkuhler curve · Pietra
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1 Introduction

This paper introduces a parametric family of Lorenz curves obtained by a general
method, based on adding a parameter −∞ < α < ∞, α �= 0 to an initial Lorenz
curve L0(p), 0 ≤ p ≤ 1, using the arctan function. The particular case obtained when
α tends to zero is reduced to the initial Lorenz curve L0(p).

The development of new functional forms of Lorenz curves has been an attractive
area of research in recent decades; see, for example, Kakwani (1980), Aggarwal and
Singh (1984),Gupta (1984),Ortega et al. (1991),Basmann et al. (1990),Chotikapanich
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(1993), Ogwang and Rao (1996), Sarabia et al. (1999, 2010). For a recent review of
Lorenz curves and income distributions, see Chotikapanich (2008). These methods
also provide new functional forms of Leimkuhler curves, which are interesting in
terms of informetrics and in particular regarding concentration aspects in this field (see
Burrell 1992, 2005; Sarabia and Sarabia 2008; Sarabia et al. 2010, among others).

The densities and distribution functions corresponding to the new Lorenz curves
and the corresponding Gini and Pietra inequality indices are shown in closed forms for
some particular cases. A method based on the use of the inverse of the initial Lorenz
curve is given, which facilitates the computation of the Gini index with the family
proposed here.

In this study, we use two data sets (1977 and 1990) from the US Current Population
Survey (CPS), considered in Ryu and Slottje (1996), and compare the results with
those of the initial Lorenz curves examined.

The structure of this paper is as follows. In Sect. 2, we describe the new family
of arctan Lorenz curves and the corresponding Leimkuhler curves. Some particular
cases obtained by starting with an initial Lorenz curve L0(p) are shown. In Sect. 3,
the Gini and Pietra indices are obtained, together with the population functions for
some cases. In Sect. 4, we compare the performance of the proposed Lorenz curves
with that of the initial ones by fitting them to the two data sets, and finally, in Sect. 5,
our main conclusions are presented.

2 The new family of Lorenz curves

This section begins with the definition of the Lorenz curve provided by Gastwirth
(1971) in accordance with the original proposal by Pietra (1915). Thus:

Definition 1 Given a distribution function F(x) with support in the subset of the
positive real numbers and with finite expectation μ, we define a Lorenz curve as

LF (p) = 1

μ

∫ p

0
F−1(x)dx, 0 ≤ p ≤ 1, (1)

where F−1(x) = sup {y : F(y) ≤ x}.
A characterization of the Lorenz curve, which is well known in the literature, is

given by the following result.

Theorem 1 Assume that L(p) is defined and continuous in the interval [0, 1] with
second derivative L ′′(p). The function L(p) is a Lorenz curve if and only if

L(0) = 0, L(1) = 1, L ′(0+) ≥ 0 for p ∈ (0, 1), L ′′(p) ≥ 0. (2)

The main result of this paper is expressed in the following theorem.

Theorem 2 Let L0(p) be a Lorenz curve, −∞ < α < ∞, α �= 0, a real parameter
and consider the transformation

Lα(p) = 1 − arctan (α(1 − L0(p)))

arctan α
, 0 ≤ p ≤ 1. (3)
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Then, Lα(p) is also a Lorenz curve.

Proof Simple algebra provides that Lα(0) = 0, Lα(1) = 1,

L ′
α(p) = α

arctan α

L ′
0(p)

1 + (α(1 − L0(p)))2
> 0,

L ′′
α(p) = 1

1 + (α(1 − L0(p)))2

[
αL ′′

0(p)

arctan α
+ 2α2L ′

0(p)L
′
α(p)(1 − L0(p))

]
> 0,

and Lα(p) < p. Then, if L0(p) is a genuine Lorenz curve, expression (3) possesses
the proper convexity and slope constraints for us to assure that it always lies in the
lower triangle of the unit square, and therefore, Lα(p) represents a genuine Lorenz
curve. �	

Using the well-known result that establishes that

arctan u − arctan v = arctan

(
u − v

1 + uv

)

(3) can be rewritten in a more compact form as

Lα(p) = 1

arctan α
arctan

(
αL0(p)

1 + α2(1 − L0(p))

)
. (4)

By taking in (3) or alternatively in (4) the limit when the parameter α tends to zero
and applying L’Hospital’s rule, it is straightforward to derive that the initial Lorenz
curve L0(p) is obtained as a special case, i.e., Lα(p) → L0(p)whenα → 0. Thus, the
methodology proposed here can be considered as a mechanism for adding a parameter
to an initial Lorenz curve and therefore a means of obtaining a more flexible Lorenz
curve.

Other ways to write Lα(p) given in (4) can be obtained by using the following
representation of the arctan function (see Castellanos 1988):

arctan z = z

1 + z2
2F1

(
1, 1; 3

2
,

z2

1 + z2

)
=

∞∑
n=0

22n(n!)2
(2n + 1)!

z2n+1

(1 + z2)n+1 . (5)

Here 2F1(a, b; c, z) represents the hypergeometric function which has the integral
representation

2F1(a, b; c, z) = Γ (c)

Γ (b)Γ (c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − t z)−a dt, (6)

and where Γ (·) is the Euler gamma function.
Approximations to the arctan function can be obtained using second- and third-

order polynomials and simple rational functions (see Rajan et al. 2006 for details),
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and it is thus obtained that arctan ((1 + x)/(1 − x)) ≈ π(x + 1)/4. Applying this to
(3) and after some algebra, we have

Lα(p) ≈ L0(p)

1 + α(1 − L0(p))
, α > 0. (7)

Observe that the right-hand side in (7) is a genuine Lorenz curve and coincides
with expression (27) in Sarabia et al. (2010). Additionally, the Aggarwal and Singh
Lorenz curve (see Aggarwal and Singh 1984; Arnold 1986) is obtained from (7) when
L0(p) = p. The mechanism proposed here is more general that the one proposed in
Sarabia et al. (2010).

Expression (7) can also be obtained by considering the ordered sequence of Lorenz
curves given by

L0(p) ≥ L0(p)
2 ≥ · · · ≥ L0(p)

n ≥ . . . (8)

where n is an integer. It is possible to build a new family of Lorenz curves beginning
from (8), but now assuming that the powers {1, 2, . . . , n, . . . } are not fixed, and are
distributed according to a convenient discrete random variable with probability mass
function Pj = Pr(X = j), j = 1, 2, . . . . In the particular case that Pj = 1/(1 +
α) (α/(1 + α))n−1, α > 0, i.e., the geometric distribution, the family of Lorenz curves
gives (7).

It is known that the Lorenz curve determines the distribution of X up to a scale
factor transformation, since F−1(x) = μL ′(x). Moreover, the relation

K0(p) = 1 − L0(1 − p) (9)

determines the relationship between theLorenz and theLeimkuhler curves (seeSarabia
and Sarabia 2008 and Sarabia et al. 2010, among others). This curve plays an important
role in informetrics (see, for instance, Burrell 1992, 2005). Therefore, from (3) and
(9), we can also define a family of arctan Leimkuhler curves starting from an initial
Lorenz curve L0(p), given by

Kα(p) = arctan(α(1 − L0(1 − p)))

arctan α
, −∞ < α < ∞, α �= 0.

2.1 Lorenz ordering

Lorenz ordering is an important aspect in the analysis of income and wealth distribu-
tions. If we define L to be the class of all nonnegative random variables with positive
finite expectation, the Lorenz partial order ≤L on the class L is defined by

X ≤L Y ⇐⇒ LX (p) ≥ LY (p), ∀p ∈ [0, 1].

If X ≤L Y , then X exhibits less inequality than Y in the Lorenz sense. In the next
result, we show that family (3) is ordered with respect to parameter α.
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A family of arctan Lorenz curves 1219

Proposition 1 The Lorenz curve Lα(p) is orderedwith respect toα, i.e., if |α1| ≤ |α2|,
−∞ < α1, α2 < ∞, α1, α2 �= 0, then L |α1|(p) ≥ L |α2|(p), for 0 ≤ p ≤ 1.

Proof After computing the derivative of the logarithm of (3), then the sign of
dLα(p)/dα depends on the sign of

Φα(p) = − [1 − Lα(p)]
{
[1 − L0(p)]

(
1 + α2

)
arctan α

−
[
1 + α2(1 − L0(p))

2
]
arctan (α (1 − L0(p)))

}
.

Now, using the following inequalities

(
1 + α2

)
(1 − L0(p)) >

[
1 + α2 (1 − L0(p))

]
[1 − L0(p)] ,

arctan α > arctan (α (1 − L0(p))) ,

it is simple to see that Φα(p) < 0.
Hence, the result. �	
The following result sustains that the equality is obtained, i.e., X exhibits the same

inequality as Y , when α1 = −α2.

Proposition 2 It is verified that Lα(p) = L−α(p), for all −∞ < α < ∞, α �= 0 and
0 ≤ p ≤ 1.

Proof Self-evident. �	

2.2 New functional forms of Lorenz curves

In order to derive new functional forms of Lorenz curves, we now consider the follow-
ing initial Lorenz curves: egalitarian, Aggarwal and Singh Lorenz curve and Pareto
Lorenz curve.

The arctan egalitarian Lorenz curve is obtained in (4), by replacing the initial Lorenz
curve with L0(p) = p. Thus, it is given by

Lα(p) = 1

arctan α
arctan

(
αp

1 + α2(1 − p)

)
, −∞ < α < ∞, α �= 0. (10)

The arctan Aggarwal and Singh Lorenz curve is obtained in a similar way, replacing
the initial Lorenz curve (see Aggarwal and Singh 1984; Arnold 1986) with L0(p) =
p/(1 + θ(1 − p)), θ > 0, and therefore we have

Lα(p) = 1

arctan α
arctan

(
αp

1 + (1 − p)(θ + α2(1 + θ))

)
, (11)

where θ > 0, −∞ < α < ∞, α �= 0.
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1220 E. Gómez-Déniz

Consider now the Pareto Lorenz curve

L0(p) = 1 − (1 − p)θ , 0 < θ < 1,

from which we obtain the arctan Pareto Lorenz curve

Lα(p) = 1

arctan α
arctan

(
α(1 − (1 − p)θ )

1 + α2(1 − p)θ

)
. (12)

Finally, by taking as the initial one the Chotikapanich Lorenz curve given by
L0(p) = (exp(θp) − 1)/(exp(θ) − 1), θ > 0, we obtain the arctan Chotikapanich
Lorenz curve

Lα(p) = 1

arctan α
arctan

(
α(exp(θp) − 1)

exp(θ) − 1 + α2(exp(θ) − exp(θp))

)
. (13)

Of course, other arctan Lorenz curves can be obtained by replacing L0(p) in (4)
with other initial Lorenz curves, such as theGupta or generalized ParetoLorenz curves.
We chose the above initial Lorenz curves because, as discussed in the next section,
closed-form expressions can be obtained for some inequality measures and population
functions.

3 Inequality measures and population functions

The corresponding Gini and Pietra indices can be computed straightforwardly when
the egalitarian and Aggarwal initial Lorenz curves are chosen as L0(p).

3.1 Gini and Yitzhaki indices

The Gini coefficient (also known as the Lorenz concentration ratio) is a measure
(degree of concentration) of the inequality of a variable in a distribution of its elements,
on a scale from 0 to 1. If |α| < 1, α �= 0, and using the following representation of
the arctan function

arctan x =
∞∑
n=0

(−1)n

2n + 1
x2n+1, |x | < 1.

then the Gini index, which is defined as

G = 1 − 2
∫ 1

0
Lα(p) dp, (14)
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A family of arctan Lorenz curves 1221

can be written as

G = −1 + 2

arctan α

∞∑
n=0

(−1)nα2n+1

2n + 1

∫ 1

0
(1 − L0(p))

2n+1 dp, |α| < 1, α �= 0.

When |α| > 1, α �= 0, more algebra is required, as we wish to obtain a closed form
for the Gini index. In this case, and when the inverse of the initial Lorenz curve can
be obtained simply, the Gini index is derived from the following result

Proposition 3 The Gini index for the Lorenz curve in (3) is given by

G = 2

arctan α

∫ arctan α

0
L−1
0

(
1 − 1

α
tan y

)
dy − 1, (15)

for −∞ < α < ∞, α �= 0. Here, tan is the circular tangent function and L−1
0 (·) is

the inverse of the initial Lorenz curve.

Proof By computing the inverse function of the Lorenz curve in (3) and using a result
given by Anderson (1970), we have

∫ 1

0
Lα(p) dp = 1 −

∫ 1

0
L−1

α (y) dy.

Now, by computing the inverse of the Lorenz curve Lα(p), we obtain the result
after some simple algebra. �	

Expression (15) facilitates calculation of the Gini index, instead of using expres-
sion (14), especially when the inverse of the initial Lorenz curve can be computed
straightforwardly.

For example, if we assume that the initial Lorenz curve is the egalitarian Lorenz
curve then, by using (15), the Gini index is given by

G = 1 − log(1 + α2)

α arctan α
.

This result can also be obtained by performing integration by parts, taking into
account that

∫ 1

0
arctan(α(1 − p)) dp = 1

α
arctan α − 1

2α2 log(1 + α2).

An important generalization of the Gini index was proposed by Yitzhaki (1983),
who suggested the generalized Gini index, which is defined as

Gν = 1 − ν(ν − 1)
∫ 1

0
(1 − p)ν−2L(p)dp,
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where ν > 1 and L(p) is the Lorenz curve. Of course, if ν = 2, we obtain the Gini
index. When L0(p) = p, after some algebra, we obtain that the Yitzhaki index is
given (see “Appendix”) by

Gν = 1 − α

arctan α

[
1 + να2

ν + 2
2F1

(
1, 1 + ν/2; 2 + ν/2,−α2

)]
.

In the case of the Aggarwal and Singh initial Lorenz curve, using (15), the Gini
index is given by

G = 2θ

arctan α

∫ arctan α

0

α − tan y

αθ − tan y
dy − 1.

Then, the Gini index (see “Appendix”) is expressed as

G = 2θ

[
1 + α(1 − θ)

(1 + α2θ2) arctan α

(
log

(
θ
√
1 + α2

θ − 1

)
− αθ arctan α

)]
− 1.

Finally, assume the classical Pareto Lorenz curve as the initial Lorenz curve, and
again using (15), the Gini index is given by

G = 2

arctan α

∫ arctan α

0

[
1 −

(
tan y

α

)1/k
]
dy − 1.

The above integral is developed in the “Appendix,” and the Gini index is found to
be

G = 1 − 2αk

(1 + k) arctan α
2F1

(
1,

1 + k

2k
; 3k + 1

2
,−α2

)
.

Using numerical integration techniques, Gini and Yitzhaki indices can also be
calculated when other Lorenz curves are assumed as L0(p).

3.2 Pietra index

An interesting but less well-known index of inequality is the Pietra index, given by
the proportion of total income that would need to be reallocated across the population
to achieve perfect equality in income. This proportion is given by

P = max
0≤p≤1

[p − Lα(p)] = 1

2μ
E |X − μ|

and corresponds to the maximal vertical deviation between the Lorenz curve and the
egalitarian line (Pietra 1915; Frosini 2012 calls this same index Pietra–Ricci index,
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owing to the extensive studymade byRicci (1916) on the same subject). Frosini (2005)
also provides a simple graphical representation of this index.

Differentiating p − Lα(p) and using (3), we find that the Pietra index is attained
for a value of p satisfying the equation

[
1 + α2 (1 − L0(p))

2
]
arctan α − αL ′

0(p) = 0.

In particular, when L0(p) = p, the maximum is attained when

p = 1 − 1

α

√
α − arctan α

arctan α
.

Then, the Pietra index is given, in this case, by

P =
arctan

(
α

(
1 − 1

α

√
α−arctan α
arctan α

))

arctan α
− 1

α

√
α − arctan α

arctan α
.

When the initial Lorenz curve considered is the Aggarwal and Singh Lorenz curve,
the maximum is attained when

p0 = 1

θ2 + α2(1 + θ)2

[
(1 + θ)

(
α2 + θ

(
1 + α2

))

− 1√
arctan α

√
α(1 + θ)

(
θ2 + α2(1 + θ)2 − α(1 + θ) arctan α

)]
,

and the Pietra index is then

P = p0 + arctan(α(1 − p0(1 − θ)/(p0 − θ)))

arctan α
− 1.

Finally, for the Chotikapanich Lorenz curve, the Pietra index is

P = p0 − 1 + 1

arctan α
arctan

[
α

(
1 − eθp0 − 1

eθ − 1

)]
,

where p0 is derived from

eθp0 = 1

2α arctan α

[
(θ + 2α arctan α)eθ − 1

−
√(

θ2 − (arctan α)2
) (
eθ − 1

)2 + 4αθeθ
(
eθ − 1

)
arctan α

]
.

Numerical computation can be used to obtain the Pietra index in other cases, when
the initial Lorenz curve assumed is other than the egalitarian and Aggarwal and Singh
Lorenz curves.
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3.3 Population functions

In some particular cases, closed-form expressions can be obtained for the distribution
functions. For example, if we assume that L0(p) = p we have, if α < 0

F(x) = 1 + 1

α
κ1(x;μ, α), κ2(μ, α) ≤ x ≤ (1 + α2)κ2(μ, α)

and

F(x) = 1 − 1

α
κ1(x;μ, α), κ2(μ, α) ≤ x ≤ (1 + α2)κ2(μ, α),

if α > 0, where κ1(x;μ, α) =
√

μα
x arctan α

− 1 and κ2(μ, α) = μα

(1+α2) arctan α
. The

corresponding probability density functions are

f (x) = (1 + α2)κ2(μ, α)

2αx2κ1(x;μ, α)
, κ2(μ, α) ≤ x ≤ (1 + α2)κ2(μ, α)

and

f (x) = − (1 + α2)κ2(μ, α)

2αx2κ1(x;μ, α)
, κ2(μ, α) ≤ x ≤ (1 + α2)κ2(μ, α),

for α > 0 and α < 0, respectively.
Let L0(p) be the Aggarwal and Singh Lorenz curve. In this case, if α < 0

F(x) = κ1(α, θ) + 1√
x
κ2(μ, α, θ),

(
κ2(μ, α, θ)

κ1(α, θ)

)2

≤ x ≤
(

κ2(μ, α, θ)

κ1(α, θ) − 1

)2

and

F(x) = κ1(α, θ) − 1√
x
κ2(μ, α, θ),

(
κ2(μ, α, θ)

κ1(α, θ)

)2

≤ x ≤
(

κ2(μ, α, θ)

κ1(α, θ) − 1

)2

if α > 0, where

κ1(α, θ) = (1 + θ)
(
θ + α2(1 + θ)

)
(
θ2 + α2(1 + θ)2

) ,

κ2(μ, α, θ) =
√

α arctan α
(
θμ

(
θ2 + α2(1 + θ)2

) − α(1 + θ)2 arctan α
)

(
θ2 + α2(1 + θ)2

)
arctan α

.

The corresponding probability density functions are

f (x) = − 1

2x
√
x
κ2(μ, α, θ),

(
κ2(μ, α, θ)

κ1(α, θ)

)2

≤ x ≤
(

κ2(μ, α, θ)

κ1(α, θ) − 1

)2
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A family of arctan Lorenz curves 1225

and

f (x) = 1

2x
√
x
κ2(μ, α, θ),

(
κ2(μ, α, θ)

κ1(α, θ)

)2

≤ x ≤
(

κ2(μ, α, θ)

κ1(α, θ) − 1

)2

for α > 0 and α < 0, respectively.
Finally, for the arctan Chotikapanich Lorenz curve, the population function

becomes

F(x) = 1

θ
log

[
θμ(eθ − 1) + 2αxeθ arctan α − √

eθ − 1H(α, θ, μ, x)

2xα arctan α

]
,

where

H(α, θ, μ, x) = θ2μ2(eθ − 1) + 4x arctan α
[
x arctan α + eθ (αθμ − x arctan α)

]
,

begin −∞ < α < ∞, α �= 0 and

αθμ(
α2 + 1

) (
eθ − 1

)
arctan α

≤ x ≤ αθμ(
α2 + 1

) (
eθ − 1

)
arctan α

.

4 Numerical application

To compare the performance of the functional forms given in (10), (11) and (12), we
used the US data (for 2009 and 2013) obtained from the US Census Bureau, Current
Population Survey, 2014 Annual Social and Economic Supplement (see “Appendix,
Tables 5 and 6”). Three methods of estimation are considered, as described below.

4.1 Nonlinear least squares estimators

These are defined by the estimators whichminimize the sum of the squared differences
between the predicted and observed values. For a particular Lorenz curve Lα(p), the
minimization is associated with the expression

n∑
i=1

(pi − Lα(pi ))
2,

where the points (pi , Lα(pi ))ni=1 are available from an empirical Lorenz curve.
From the approximation given in (7), we consider as initial estimates those obtained

by least squares, replacing L0(p) for the classical expression and in every case map-
ping from the observations to the estimated parameters. This expression can also be
employed to obtain estimates by the method proposed by Castillo et al. (1998). In this
case, we begin by considering a single point (pi , qi ) of the empirical Lorenz curve,
and by substituting in (7), we obtain the simple estimate for α given by
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1226 E. Gómez-Déniz

Table 1 Results for the parameter estimates and MSE and MAX criteria

Model Estimated parameters SSEa MAXb Estimated indices

α̂ θ̂ Gini Pietra

Based on 2003 data for the USA

Classical

Aggarwal and Singh 2.98072 0.0104026 0.0463689 0.433071 0.332259

Pareto 0.40817 0.0782100 0.0830288 0.420283 0.319010

Chotikapanich 3.03685 0.0163449 0.0627102 0.442232 0.339143

Arctan

Egalitarian 3.60671 0.0207202 0.0731232 0.437163 0.343442

Aggarwal and Singh 0.25427 2.84932 0.0103904 0.0472890 0.433214 0.332529

Pareto 2.26125 0.77681 0.0091147 0.0212034 0.435615 0.330779

Chotikapanich 0.91206 2.27681 0.0156580 0.0635445 0.439873 0.339427

Based on 2013 data for the USA

Classical

Aggarwal and Singh 3.29329 0.0128622 0.0430045 0.453747 0.348964

Pareto 0.44192 0.0823078 0.0752993 0.387038 0.292319

Chotikapanich 3.37974 0.0451976 0.0595370 0.478752 0.368801

Arctan

Egalitarian 4.17665 0.0559155 0.0658484 0.477561 0.376789

Aggarwal and Singh 6.7 × 10−8 3.29329 0.0128622 0.0430045 0.453747 0.348964

Pareto 2.03291 0.71972 0.0042508 0.0213570 0.444280 0.335693

Chotikapanich 1.16084 2.28120 0.0426761 0.0601549 0.475442 0.369078

a SSE denotes the sum of squares of model estimation errors
bMAX denotes the maximum absolute error

α̂i ≈ L0(pi ; φ̂) − qi
qi (1 − L0(pi ; φ̂))

, i = 1, 2, . . . , n, (16)

where φ̂ is the least squares estimate obtained from the classical Lorenz curve, which
depends on parameter φ (which is a vector of parameters when the classical Lorenz
curve depends on more than one parameter). By combining all the initial estimators
(16) using a function such as the mean or median, the final estimators are obtained. For
example, if we use the mean function, the final estimation of α will be α̂ = 1

n

∑n
i=1 α̂i .

Finally, the results for the two data sets, 2009 and 2013, are shown in Table 1.
The parameter estimates, the mean squared error (MSE) and the maximum absolute
error (MAX)were computed for the two data sets considered. The corresponding table
shows that the newmodels provide better results in terms of smaller MSE, MAX, Gini
and Pietra indices (the empirical Gini, computed according to Brown’s formula, and
Pietra indices give the results 0.450007 and 0.324733, respectively, for the 2003 data
and 0.457607 and 0.330401 for the 2013 data) with respect to the initial Lorenz curves
considered, and that the best fit is obtained with the new functional forms proposed.
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Fig. 1 Lorenz curves for 2003 US income data based on nonlinear least square estimates. Dashed curves
represent the classical model and continuous curves, the arctan model

Figure 1 presents a graphical comparison between the empirical Lorenz curves
and the corresponding estimated Lorenz curves based on the nonlinear least squares
estimators for the Egalitarian and Pareto cases.

4.2 Maximum likelihood estimation based on the use of the population function

Maximum likelihood estimation based on the use of the population function was also
studied, using the cumulative distribution functions given in Sect. 3.3. When data
are grouped, let ni be the number of observations in the interval (c j−1, c j ]. The log-
likelihood function is then,


(φ) =
n∑

i=1

ni log
[
F(xi |φ) − F(xi−1|φ

]
,

where n is the sample size and φ the parameter/s to be estimated. See Chotikapanich
(2008) for details. From Table 2, we can see that the arctan model provides the value
of the maximum of the log-likelihood function in a better way than does the Dirichlet
distribution.

Because there is a mapping from the Lorenz curve to the density of the data and in
order to correct standard errors formodelmisspecification,we have estimated the para-
meters of interest by maximizing the log-likelihood and obtained robust (sandwich)
standard errors. See Freedman (2006) for details.

Finally, when the population function associated with a given Lorenz curve is
not known, estimation based on the use of the Dirichlet distribution is adequate for
comparing different models (see Chotikapanich and Griffiths 2002).

4.3 Model validation

For the situation in which the models are non-nested, a Vuong test was conducted
to compare the estimates of the different Lorenz curves. In this regard, we test the
null hypothesis that the two models are equally close to the actual model, against the
alternative that one of them is closer (Vuong 1989). The z-statistic is
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Table 2 MLE based on cumulative distribution function

Model Estimated parameter 
max Gini Pietra

α̂ θ̂

Based on 2003 data for the USA

Classical

Aggarwal and
Singh

3.20946 (0.457267) −364122 0.448395 0.344627

Pareto 0.351708 (0.055653) −474591 0.479609 0.367763

Chotikapanich 4.12416 (0.364762) −420247 0.547939 0.426463

Arctan

Egalitarian 5.84025 (0.334026) −415677 0.565166 0.450949

Aggarwal and
Singh

5.08 × 10−8(2.02 × 10−8) 3.20946 (0.457267) −364122 0.448395 0.344627

Chotikapanich 1.343 (2.00614) 2.84309 (1.165930) −406952 0.550498 0.435529

Based on 2013 data for the USA

Classical

Aggarwal and
Singh

2.43183 (0.631985) −359208 0.391275 0.298866

Pareto 0.420322 (0.125857) −472147 0.408131 0.309206

Chotikapanich 3.28319 (0.554086) −410022 0.468776 0.360652

Arctan

Egalitarian 4.57089 (0.465012) −407555 0.501865 0.397088

Aggarwal and
Singh

4.05 × 10−10(3.75 × 10−10) 2.43183 (0.631985) −359208 0.391275 0.298866

Chotikapanich 2.25203 (2.443510) 1.238 (1.547920) −403039 0.483135 0.378491

The robust standard errors are shown in parentheses

Z = 1

ω
√
n

(


(
θ̂1

) − 

(
θ̂2

))
,

where θ̂1 and θ̂2 are vectors of the estimated parameters and

ω2 = 1

n

n∑
i=1

[
log

(
f
(
xi |θ̂1

)
g

(
xi |θ̂2

)
)]2

−
[
1

n

n∑
i=1

log

(
f
(
xi |θ̂1

)
g

(
xi |θ̂2

)
)]2

where f and g represent the probability density functions of the two models to be
compared, respectively.

Due to the asymptotically normal behavior of the Z statistic, the null hypothesis
is rejected in favor of the alternative that f occurs with a significance level α, when
Z > z1−α , where z1−α is the (1 − α) quantile of the standard normal distribution.

To work with this test, we choose a critical value from the standard normal dis-
tribution that corresponds to the desired level of significance (e.g., for c = 1.96;
Pr(z ≥ | ± c|) = 0.05). Then, if z > c, we reject the null hypothesis that the models
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Table 3 Vuong test comparison of non-nested models

Aggarwal and
Singh

Pareto Chotikapanich

Arctan Egalitarian −9.2821 8.86773 0.770538

−5.2335 5.7230 0.361578

Arctan Aggarwal and Singh − 9.82886 5.60386

5.69444 3.63771

Arctan Chotikapanich −8.58913 6.017 −
−4.75552 3.48425 −

2003 year above and 2013 below

Table 4 Log-likelihood ratio
comparison of nested models

Model 2003 2013

Aggarwal and Singh 9828 –

Chotikapanich 26590 13966

are the same, in favor of the alternative that f is better than g. Thus, if z < c, we
reject the null hypothesis that the models are the same in favor of the alternative that
g is better than f , while if z ≤ c, we cannot reject the null hypothesis that the models
are the same. Under this criterion, and from Table 3, we conclude that the classical
Aggarwal and Singh Lorenz curve performs all the arctan models proposed and that
the Chotikapanich Lorenz curve performs the arctan Egalitarian Lorenz curve. In the
remaining cases, the arctan models are better than the Pareto and the Chotikapanich
Lorenz curves.

Finally, we examined whether likelihood ratio tests suggested that nested versions
were adequate. This test was computed, and the results obtained are shown in Table 4.
As we can see, the arctan model performs the classical model.

5 Conclusions

The proposed family of Lorenz curves seems to be a worthy addition to the existing
class of single parameter Lorenz curves. The family was applied to two data sets
with satisfactory results, using least squares and maximum likelihood. Thus, the new
specification is well capable of modeling income data.

Acknowledgments The authors thank the two anonymous referees and the Associate Editor for their
valuable comments and suggestions. EGD was partially funded by Grant ECO2013-47092 (Ministerio de
Economía y Competitividad, Spain).

Appendix

To compute the integral

Gν = 1 − ν(ν − 1)

arctan α

∫ 1

0
(1 − p)ν−2 arctan(α(1 − p)) dp
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we perform integration by parts, which gives

Gν = 1 + ν + αν

arctan α

∫ 1

0

(1 − p)ν−1

1 + α2(1 − p)2
dp.

The above integral is obtained by making the change of variable ω = 1 − p, and
the result is obtained after some algebra, taking into account (6).

To obtain the integral

∫ arctan α

0

α − tan y

αθ − tan y
dy

we make the change of variable ω = αθ − tan y and thus obtain the rational integral

∫ arctan α

0

α − tan y

αθ − tan y
dy = −

∫ α(θ−1)

αθ

α(1 − θ) + ω

ω(1 + (αθ − ω)2
dω,

which is simple to calculate.
In order to obtain the integral

∫ arctan α

0 (tan y)1/k dy we make the change of variable
ω = 1

α2 tan
2 y, giving the integral

α1/k+1

2

∫ 1

0
ω

1
2

(
1
k −1

)
(1 + α2ω)−1 dω.

From which the result is obtained after some algebra, taking into account (6).

Table 5 Distribution of income to $250,000 or more for households

Income of household Mean income Number Cumulative freq.

Lower Upper Population Income

2500 4999 3810 1266 0.011565 0.000729

5000 7499 6394 2717 0.036386 0.003355

7500 9999 8722 3593 0.069210 0.008093

10,000 12,499 11,174 4032 0.106044 0.014904

12,500 14,999 13,636 3708 0.139918 0.022548

15,000 17,499 16,104 3933 0.175848 0.032123

17,500 19,999 18,653 3501 0.207831 0.041995

20,000 22,499 21,073 3888 0.243349 0.054381

22,500 24,999 23,720 3327 0.273743 0.066312

25,000 27,499 26,067 3683 0.307389 0.080825

27,500 29,999 28,667 3035 0.335115 0.093978

30,000 32,499 31,019 3882 0.370578 0.112183

32,500 34,999 33,655 2677 0.395034 0.125803
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Table 5 continued

Income of household Mean income Number Cumulative freq.

Lower Upper Population Income

35,000 37,499 36,058 3417 0.426250 0.144430

37,500 39,999 38,643 2607 0.450066 0.159660

40,000 42,499 41,009 3420 0.481309 0.180862

42,500 44,999 43,644 2381 0.503060 0.196572

45,000 47,499 46,024 2721 0.527918 0.215504

47,500 49,999 48,630 2227 0.548262 0.231876

50,000 52,499 50,971 3012 0.575778 0.255086

52,500 54,999 53,682 1963 0.593711 0.271016

55,000 57,499 56,065 2343 0.615115 0.290875

57,500 59,999 58,651 1833 0.631861 0.307128

60,000 62,499 60,978 2442 0.654169 0.329639

62,500 64,999 63,664 1648 0.669225 0.345500

65,000 67,499 66,004 2007 0.687559 0.365527

67,500 69,999 68,641 1550 0.701719 0.381611

70,000 72,499 71,007 1995 0.719944 0.403027

72,500 74,999 73,665 1398 0.732716 0.418595

75,000 77,499 75,998 1835 0.749479 0.439678

77,500 79,999 78,646 1243 0.760835 0.454457

80,000 82,499 80,969 1575 0.775223 0.473736

82,500 84,999 83,688 1162 0.785838 0.488437

85,000 87,499 86,062 1362 0.798281 0.506157

87,500 89,999 88,687 968 0.807124 0.519136

90,000 92,499 91,029 1362 0.819566 0.537879

92,500 94,999 93,674 888 0.827679 0.550454

95,000 97,499 96,117 1114 0.837855 0.566641

97,500 99,999 98,677 804 0.845200 0.578635

100,000 149,999 118,880 10,719 0.943123 0.771276

150,000 199,999 168,806 3372 0.973928 0.857328

200,000 249,999 219,390 1307 0.985867 0.900677

≥250,000 424,693 1547 1.000000 1.000000

USA 2003. Source: US Census Bureau, Current Population Survey, 2014 Annual Social and Economic
Supplement

Table 6 Distribution of income to $250,000 or more for households

Income of household Mean income Number Cumulative freq.

Lower Upper Population Income

5000 9999 7983 4859 0.040875 0.004345

10,000 14,999 12,425 6693 0.097180 0.013661

15,000 19,999 17,249 7321 0.158767 0.027808
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Table 6 continued

Income of household Mean income Number Cumulative freq.

Lower Upper Population Income

20,000 24,999 22,254 6577 0.214096 0.044205

25,000 29,999 27,164 6302 0.267111 0.063383

30,000 34,999 32,057 6454 0.321405 0.086561

35,000 39,999 37,111 5827 0.370424 0.110786

40,000 44,999 42,035 5565 0.417239 0.136992

45,000 49,999 47,057 5286 0.461707 0.164858

50,000 54,999 51,940 5198 0.505434 0.195104

55,000 59,999 57,102 4349 0.542020 0.222924

60,000 64,999 61,914 4422 0.579220 0.253596

65,000 69,999 67,049 3818 0.611338 0.282274

70,000 74,999 72,012 3872 0.643911 0.313511

75,000 79,999 77,012 3702 0.675054 0.345449

80,000 84,999 82,054 3384 0.703521 0.376556

85,000 89,999 87,038 2622 0.725579 0.402122

90,000 94,999 92,100 2691 0.748217 0.429887

95,000 99,999 97,069 2288 0.767464 0.454768

100,000 104,999 101,891 2563 0.789025 0.484023

105,000 109,999 107,100 1922 0.805194 0.507084

110,000 114,999 111,993 1848 0.820740 0.530269

115,000 119,999 117,111 1528 0.833594 0.550316

120,000 124,999 121,889 1599 0.847046 0.572150

125,000 129,999 127,065 1389 0.858730 0.591922

130,000 134,999 132,061 1291 0.869591 0.611022

135,000 139,999 137,174 1082 0.878693 0.627649

140,000 144,999 141,980 1081 0.887787 0.644843

145,000 149,999 146,949 963 0.895888 0.660696

150,000 154,999 151,594 1298 0.906807 0.682740

155,000 159,999 157,250 847 0.913933 0.697661

160,000 164,999 161,893 771 0.920419 0.711644

165,000 169,999 167,100 636 0.925769 0.723550

170,000 174,999 171,822 623 0.931010 0.735542

175,000 179,999 177,134 546 0.935603 0.746376

180,000 184,999 181,670 529 0.940053 0.757143

185,000 189,999 186,844 427 0.943645 0.766080

190,000 194,999 192,136 428 0.947246 0.775293

195,000 199,999 197,196 358 0.950257 0.783202
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Table 6 continued

Income of household Mean income Number Cumulative freq.

Lower Upper Population Income

200,000 249,999 220,406 2600 0.972130 0.847399

≥250,000 411,160 3313 1.000000 1.000000

USA 2013. Source: US Census Bureau, Current Population Survey, 2014 Annual Social and Economic
Supplement

References

Aggarwal V, Singh R (1984) On optimum stratification with proportional allocation for a class of Pareto
distributions. Commun Stat Theory Methods 13:3017–3116

Anderson N (1970) Integration of inverse functions. Math Gaz 54(387):52–53
Arnold BC (1986) A class of hyperbolic Lorenz curves. Sankhyā: Indian J Stat, Ser B 48(3):427–436
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